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We use a diffusion Monte Carlo method to solve the many-body Schrödinger equation describing fully
heavy tetraquark systems. This approach allows us to reduce the uncertainty of the numerical calculation at
the percent level, accounts for multiparticle correlations in the physical observables, and avoids the usual
quark clustering assumed in other theoretical techniques applied to the same problem. The interaction
between particles was modeled by the most general and accepted potential—i.e., a pairwise interaction
including Coulomb, linear-confining and hyperfine spin-spin terms. This means that, in principle, our
analysis should provide some rigorous statements about the mass location of the all-heavy tetraquark
ground states, which is particularly timely due to the very recent observation made by the LHCb
Collaboration of some enhancements in the invariant mass spectra of J=ψ pairs. Our main results are as
follows: (i) The ccc̄c̄, ccb̄b̄ (bbc̄c̄), and bbb̄b̄ lowest-lying states are located well above their corresponding
meson-meson thresholds. (ii) The JPC ¼ 0þþ ccc̄c̄ ground state with preferred quark-antiquark pair
configurations is compatible with the enhancement(s) observed by the LHCb Collaboration. (iii) Our
results for the ccc̄b̄ and bbc̄b̄ sectors seem to indicate that the 0þ and 1þ ground states are almost
degenerate, with the 2þ located around 100 MeV above them. (iv) Smaller mass splittings for the cbc̄b̄
system are predicted, with absolute mass values in reasonable agreement with other theoretical works.
(v) The 1þþ cbc̄b̄ tetraquark ground state lies at its lowest S-wave meson-meson threshold, and it is
compatible with a molecular configuration.
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I. INTRODUCTION

The J=ψ signal was observed simultaneously at
Brookhaven [1] and SLAC [2] in 1974; it was a heavy
resonance with a surprisingly small decay width. Three
years later, an even heavier resonance but equally narrow,
the so-called ϒ state, was observed at Fermilab [3,4]. The
interpretation of the J=ψ and ϒ as low-lying bound states
of a heavy quark, Q, and its antiquark, Q̄, with Q either a c
or b quark, explained their narrow decay widths and, in
fact, was proved to be crucial to establishing quantum
chromodynamics (QCD) as the strong-interaction sector of
the StandardModel of particle physics [5,6]. It is also worth
mentioning that a related system, the cb̄ bound state ðBþ

c Þ,
has also been found in nature [7]; and that the heaviest of
the quarks—i.e., the top quark—was discovered in 1995 at
Fermilab [8], with a mass around 175 GeV and a large

decay width that, due to weak interactions, forbids the
formation of narrow tt̄ resonances.
Heavy quarkonia, viz. mesons containing only a heavy-

valence quark-antiquark pair, opened the possibility to use
a nonrelativistic (NR) picture of QCD. They can indeed be
classified in terms of the quantum numbers of a NR bound
state, and the spacings between radial, orbital, and spin
excitations have a pattern similar to the ones observed in
positronium, an eþe− NR bound state well studied in
quantum electrodynamics (QED) [9,10]. Being baryonic
analogues of heavy quarkonia, triply-heavy baryons may
provide a complementary window in the understanding of
the nonrelativistic regime of QCD and the strong inter-
action between heavy quarks, without taking into account
the usual light-quark complications. One can imagine that
we could continue with the game of incorporating valence
heavy quarks and/or antiquarks, and thus form tetraquark,
pentaquark, hexaquark, etc., bound-state systems which
would help us to understand, at least, the generalization of
the (heavy) quark-quark strong interaction to multibody
states. Note here that composite hadrons with four and
more light or heavy quarks were already conjectured in
1964 by Gell-Mann [11] and Zweig [12] as a side product
of explaining the observed spectrum of mesons and
baryons from the quark model picture.
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It is a fact that many precise experimental results are
available for conventional heavy quarkonia [13]. In addi-
tion, tens of charmonium- and bottomonium-like states, the
so-called XYZ states, which cannot fit the quark model
picture, have been identified along the last two decades at B
factories (BABAR, Belle, and CLEO), τ-charm facilities
(CLEO-c and BES), and hadron-hadron colliders (CDF,
D0, LHCb, ATLAS, and CMS). So far, there is no con-
sensus about the nature of these exotic states (see
Refs. [14–17] for reviews of the experimental and theo-
retical status of the subject). Their analysis and new
determinations will continue with the upgrade of experi-
ments such as BES III [18], Belle II [19], and HL- and
HE-LHC [20]. This will provide sustained progress in the
field as well as the breadth and depth necessary for a vibrant
heavy quark research environment.
The ultimate aim of this theory is to describe the

properties of the XYZ states from QCD’s first principles.
However, since this task is quite challenging, a more
modest goal is to start with the development of QCD-
motivated phenomenological models that specify the col-
ored constituents, how they are clustered, and the forces
between them. In that line, simultaneously to the exper-
imental measurements, theorists have been proposing for
the XYZ states different kinds of color-singlet clusters
made by quarks and gluons, which go beyond conventional
mesons (quark-antiquark), baryons (three-quarks) and anti-
baryons (three-antiquarks); the most famous are glueballs,
quark-gluon hybrids and multiquark systems (for a graphic
picture of these kinds of hadrons, see, for example, Figs. 1,
6, and 7 of Ref. [16]). The first and best known exotic state
is the Xð3872Þ, which was observed in 2003 as an
extremely narrow peak in the Bþ → Kþðπþπ−J=ψÞ chan-
nel and at exactly the D̄0D�0 threshold [21,22]. It is
suspected to be a cnc̄ n̄ (n ¼ u or d quark) tetraquark
state whose features resemble those of a molecule, but
some experimental findings seem to point out the existence
in its wave function of more compact components such as
diquark-antidiquark and quark-antiquark [23–28].
Finally, fully heavy tetraquarks have recently received

considerable attention, both experimentally and theoreti-
cally. On the experimental side, it is thought that all-heavy
tetraquark states will be very easy to spot, because their
masses should be far away from the typical mass regions
populated by both conventional heavy mesons and the
XYZ states discovered until now. A search for deeply
bound bbb̄ b̄ tetraquark states at the LHC was motivated by
Eichten et al. in Ref. [29], and it was carried out by the
LHCb Collaboration [30], determining that no significant
excess is found in the μþμ−ϒð1SÞ invariant-mass distribu-
tion. On the other hand, the LHCb Collaboration has
recently released in Ref. [31] a study of the J=ψ -pair
invariant mass spectrum finding a narrow peak and a broad
structure which could originate from hadron states con-
sisting of four charm quarks.

From the theoretical side, concerning the interaction
between heavy quarks, chiral symmetry is explicitly
broken, and thus meson-exchange forces cannot exist in
a fully heavy tetraquark system [32,33], which would favor
the formation of genuine tetraquark configurations rather
than loosely bound hadronic molecules. This is interesting
by itself, but also it simplifies the kind of quark-(anti)quark
interactions to be taken into account, justifying the pro-
liferation of theoretical works.
In the literature, we find fully heavy tetraquark compu-

tations based on phenomenological mass formulas [34–36],
QCD sum rules [32,37–39], QCD-motivated bag models
[40], NR effective field theories [41,42], potential models
[33,43–55], nonperturbative functional methods [56],
and even some exploratory lattice-QCD calculations
[57]. Some works predict the existence of stable QQQ̄ Q̄
(Q ¼ c or b) bound states with masses slightly lower than
the respective thresholds of quarkonium pairs (see, for
instance, Refs. [32,34,35,37,38,41,42,50]). In contrast,
there are other studies that predict no stable ccc̄ c̄
and bbb̄ b̄ tetraquark bound states because their masses
are larger than two-quarkonium thresholds (see, e.g.,
Refs. [36,43,45,47,57]). To some extent, a better under-
standing of the mass locations of fully heavy tetraquark
states would be desirable, if not crucial, for our compre-
hension of their underlying dynamics and their experimen-
tal hunting.
The goal of the present study is to achieve the most

general and accurate prediction for the ground states of
fully heavy tetraquarks. In order to comply with the first
feature, we are not going to assume any particular cluster-
ing between the valence quarks (antiquarks); the interaction
between them is the most simple and accepted one:
Coulombþ linear-confiningþ hyperfine spin-spin, and it
will be implemented nonperturbatively.1 The second fea-
ture, accurateness, is fulfilled using a diffusionMonte Carlo
(DMC) technique for solving the many-body Schrödinger
equation which, in contrast with variational methods,
allows us to reduce the uncertainty of the numerical
calculation at the percent level, since the systematic one
associated with the trial wave function is eliminated by the
algorithm. Note, too, that it is possible to disentangle the
uncertainty inherent to many-body techniques from the
theoretical one coming from the model.
The manuscript is arranged as follows: In Sec. II, the

theoretical framework is presented; we explain first the
origin, features and implementation of the computational
algorithm, and later the quark model Hamiltonian and how

1It is fair to notice that a similar calculation to the one
presented herein has been recently released in Ref. [58]; however,
important differences must be mentioned: (i) meson-meson and
diquark-antidiquark clusters were assumed, (ii) the sextet-
antisextet diquark-antidiquark configuration was fully neglected,
and (iii) the hyperfine spin-spin interaction was computed
perturbatively.
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their parameters are fixed. Section III is mostly devoted to
the analysis and discussion of our theoretical results on
fully heavy tetraquarks; note here that we first study all-
heavy mesons and baryons, comparing our results with
those available from variational methods in order to
confirm the validation of our approach. Finally, we sum-
marize and give some prospects in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Quark model

The Hamiltonian which describes fully heavy bound-
state systems can be written as

H ¼
Xn-part:
i¼1

�
mi þ

p⃗2
i

2mi

�
− TCM þ

Xn-part:
j>i¼1

Vðr⃗ijÞ; ð1Þ

where mi is the quark mass, p⃗i is the momentum of the
quark, and TCM is the center-of-mass kinetic energy. Since
chiral symmetry is explicitly broken in the heavy quark
sector, the two-body potential, Vðr⃗ijÞ, can be deduced from
the one-gluon exchange and confining interactions—i.e.,

Vðr⃗ijÞ ¼ VOGEðr⃗ijÞ þ VCONðr⃗ijÞ: ð2Þ
It is important to highlight that the potentials above have

tensor and spin-orbit contributions, which shall be
neglected in this work. This is because our main purpose
here is to get a first, unified, and nonperturbative reliable
description of fully heavy hadron ground states (from two-
to four-quark systems) within the DMC method. Moreover,
this kind of interaction appeared not to be essential for a
global description of baryons [59], and beyond [54].
The Coulomb and hyperfine terms are collected in the

one-gluon exchange potential, and are given by

VOGEðr⃗ijÞ ¼
1

4
αsðλ⃗i · λ⃗jÞ

�
1

rij
−

2π

3mimj
δð3Þðr⃗ijÞðσ⃗i · σ⃗jÞ

�
;

ð3Þ
where αs is the strong coupling constant fixed in a
phenomenological way, λ⃗ are the SUð3Þ-color Gell-
Mann matrices, and the Pauli spin matrices are denoted
by σ⃗. The Dirac delta function of the hyperfine term comes
from the Fermi-Breit approximation of the one-gluon
exchange interaction. In order to perform nonperturbative
calculations, the δð3Þðr⃗ijÞ is usually replaced by a smeared
function that, in our case, reads as follows:

δð3Þðr⃗ijÞ → κ
e−r

2
ij=r

2
0

π3=2r30
; ð4Þ

with κ a quark model parameter and r0 ¼ Að2mimj

miþmj
ÞB a

regulator which depends on the reduced mass of the quark-
(anti)quark pair.

Confinement is one of the crucial aspects of the strong
interaction that is widely accepted and incorporated into
any QCD-based model. Studies of QCD on a lattice have
demonstrated that multigluon exchanges produce an attrac-
tive linearly rising potential, which is proportional to the
distance between infinitely heavy quarks [60]. This phe-
nomenological observation is usually modeled as

VCONðr⃗ijÞ ¼ ðbrij þ ΔÞðλ⃗i · λ⃗jÞ; ð5Þ

where b is the confinement strength and Δ is a global
constant fixing the origin of energies.
Table I shows the quark model parameters relevant for

this work. Note here that we are using the so-called AL1
potential proposed by Silvestre-Brac and Semay in
Ref. [61], and applied extensively to the baryon sector
in Ref. [59]. It is worth emphasizing that the potential
collects nicely the most important phenomenological fea-
tures of QCD for heavy quarks, and that the parameters
were constrained by a simultaneous fit of 36 mesons and 53
baryons with a remarkable agreement with data.

B. Computational algorithm

Quantum Monte Carlo (QMC) methods have been
successfully applied to many research areas, but quantum
chemistry and material science are the ones which have
received more attention [62–64]. This is because QMC is a
natural competitor of other methods where the uncorrelated
or Hartree-Fock state does not provide a good description
of the many-body ground state. Other applications of QMC
algorithms are solid-state physics concerning the dynamics
of condensed helium systems [65,66] and studies on the
properties of both bosonic and fermionic ultracold quantum
gases [67–70].
Since nuclear Hamiltonians induce strong correlations,

QMC methods have appeared to be very valuable in the
understanding of nuclei and nucleonic matter. Variational
Monte Carlo (VMC) algorithms dealing with nuclear inter-
actions were introduced in the early 1980s [71]. Afterwards,
methods based onGreen functionMonteCarlo (GFMC) burst
into nuclear physics in the late 1980s [72,73] andwere applied
mostly to spin-isospin-dependent Hamiltonians. The GFMC

TABLE I. Quark model parameters used herein and taken from
AL1 potential in Refs. [59,61].

Quark masses mc (GeV) 1.836
mb (GeV) 5.227

OGE αs 0.3802
κ 3.6711

A ðGeVÞB−1 1.6553
B 0.2204

CON b (GeV2) 0.1653
Δ (GeV) −0.8321
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technique is very accurate but becomes increasingly complex
when moving toward larger systems, with 12C being the
system used in state-of-the-art studies [74–76]. Diffusion
MonteCarlomethods [77] appear to bemuchmore efficient at
treating large systems; however, there are unsolved issues
when dealing with spin-isospin dependent potentials.
The application of QMC methods to hadron physics has

been scarce, basically because most known hadrons consist
of two- and three-body relativistic bound states. However,
the description from different perspectives of composite
states with four or more light or heavy quarks (antiquarks)
has recently received considerable attention since the
discovery of the potentially nonrelativistic four-quark
charmonium-like system Xð3872Þ. It is in this context that
QMC algorithms can contribute to shed some light on the
study of tetraquark, pentaquark, hexaquark, etc., nonrela-
tivistic systems.
Up to our knowledge, the first QMC study of mesons and

baryons was performed by Carlson et al. in Refs. [78,79].
The authors used a VMC method developed previously
for nuclear physics problems, and their results compared
reasonably well with those of the well-known Isgur-Karl
quark model [80–83]. The diffusion Monte Carlo method
has been applied recently to the fully beautiful tetraquark
system in Ref. [58]; in particular, the authors calculate the
ground-state energy of the JPC ¼ 0þþ bbb̄ b̄ system.
The central idea behind the DMC method is to write the

Schrödinger equation for n particles in imaginary time
(ℏ ¼ c ¼ 1):

−
∂Ψα0 ðR; tÞ

∂t ¼ ðHα0α − EsÞΨαðR; tÞ; ð6Þ

where Es is the usual energy shift used in DMC methods,
R≡ ðr⃗1;…; r⃗nÞ stands for the position of n particles, and α
denotes each possible spin-color channel, with given
quantum numbers, for the n-particles system. The function
ΨαðR; tÞ can be expanded in terms of a complete set of the
Hamiltonian’s eigenfunctions as

ΨαðR; tÞ ¼
X
i

bi;αe−ðEi−EsÞtϕi;αðRÞ; ð7Þ

where the Ei’s are the eigenvalues of the system’s
Hamiltonian operator, Ĥ. The ground-state wave fun-
ction, ϕ0;αðRÞ, is obtained as the asymptotic solution of
Eq. (6) when t → ∞, as long as there is overlap between
ΨαðR; t ¼ 0Þ and ϕ0;αðRÞ, for any α channel.
A crucial feature of QMC methods is the use of

importance sampling techniques [84] in order to reduce
the statistical fluctuations to a manageable level. This is to
say, instead of dealing with the real solution to the many-
body Schrödinger equation ΨαðR; tÞ, we consider the
function

fαðR; tÞ≡ ψðRÞΨαðR; tÞ ¼ ψðRÞ½cαΨðR; tÞ�; ð8Þ

where ψðRÞ is a time-independent trial function which,
together with the spin-color-channel coefficients, cα,
includes all the information known a priori about the
system.
The function ψðRÞ depends only on the position of the

particles. It could be either an analytical expression of an
educated guess with, for instance, maxima at the minima of
the spinless quark-quark potential, or a product of the
corresponding two-particle Schrödinger equation [in our
case, Eq. (6)] using a simplified form of the interparticle
interaction, which includes only the particles’ positions. We
take that last approach and consider the solutions for a
Coulomb potential. Those are similar to the 1s atomic
hydrogen orbitals and can be found in any textbook. This
means that

ψðRÞ ¼
Y
i<j

ϕðr⃗ijÞ ¼
Y
i<j

expð−aijrijÞ; ð9Þ

where aij are constants determined by the so-called cusp
conditions—i.e., they are chosen in order to avoid a
divergence of the trial function’s derivative (needed to
calculate the drift force, see below), when the distance
between particles i and j, rij, tends to 0. Note herein that
the second equality in Eq. (9) is the most general expression
and the minimum requirement dictated by the cusp con-
ditions, and more sophisticated guesses of ϕðr⃗ijÞ can be
implemented.
It is worth mentioning herein that the symmetry of the

full trial wave function must be that of a system of
fermions, as quarks are. This means that it has to be
antisymmetric with respect to the interchange of two
identical particles. The function ψðRÞ given in Eq. (9) is
symmetric under the exchange of any two particles, and
thus one has to look for adequate combinations of spin and
color wave functions for all the quark ensembles—mesons,
baryons, and tetraquarks—considered in this work (see
below for further details).
With the function of Eq. (8) in hand, Eq. (6) turns out to

be

−
∂fα0 ðR;tÞ

∂t ¼−
1

2m
∇2

Rfα0 ðR;tÞþ
1

2m
∇R½FðRÞfα0 ðR;tÞ�

þ½ELðRÞ−Es�fα0 ðR;tÞþVα0αðRÞfαðR;tÞ
≡ ½Að1Þ þAð2Þ þAð3Þ�fα0 ðR;tÞþVα0αðRÞfαðR;tÞ
≡Afα0 ðR;tÞþVα0αðRÞfαðR;tÞ; ð10Þ

where

ELðRÞ ¼ ψðRÞ−1H0ψðRÞ; ð11Þ

FðRÞ ¼ 2ψðRÞ−1∇RψðRÞ ð12Þ
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are the so-called local energy and drift force, respectively.
The formal solution of Eq. (10) is given by

fα0 ðR0; tþ ΔtÞ ¼
X
α

Z
dRGα0αðR0;R;ΔtÞfαðR; tÞ: ð13Þ

While algorithms based on GFMC implement the whole
Green’s function, DMC methods rely on reasonable
approximations of Gα0αðR0;R;ΔtÞ for small values of the
time step Δt and iterate repeatedly to obtain the asymptotic
solution fαðR; t → ∞Þ. In our case, the Green’s function is
approximated by

Gα0αðR0;R;ΔtÞ ≈ hR0je−AΔtjRie−Vα0αðRÞΔt; ð14Þ

where, for the first part, we follow Ref. [85] and approxi-
mate it as

expð−AΔtÞ ¼ exp

�
−Að3ÞΔt

2

�
exp

�
−Að2ÞΔt

2

�

× exp ð−Að1ÞΔtÞ

× exp

�
−Að2ÞΔt

2

�
exp

�
−Að3ÞΔt

2

�
; ð15Þ

which is exact up to order ðΔtÞ2. With the expression
above, Eq. (13) becomes

fα0 ðR0; tþ ΔtÞ ¼
Z

dR
Z

dR1 � � � dR4

×

�
Gð3Þ

�
R0;R1;

Δt
2

�
Gð2Þ

�
R1;R2;

Δt
2

�

×Gð1ÞðR2;R3;ΔtÞ

×Gð2Þ
�
R3;R4;

Δt
2

�
Gð3Þ

�
R4;R;

Δt
2

��

×
X
α

e−Vα0αðRÞΔtfαðR; tÞ; ð16Þ

with

Gð1ÞðR0;R; tÞ ¼
�
2πt
m

�
−3n

2

exp

�
−
mðR0 − RÞ2

2t

�
; ð17Þ

Gð2ÞðR0;R; tÞ ¼ δðR0 − RðtÞÞ; where

�Rð0Þ ¼ R;
dRðtÞ
dt ¼ FðRðtÞÞ

2m ;

ð18Þ

Gð3ÞðR0;R; tÞ ¼ exp½−ðELðRÞ − EsÞt�δðR0 − RÞ: ð19Þ

Note herein that in the case of having more than one α
channel, we follow the method proposed in Ref. [86] and
propagate the quantity

F ðR; tÞ ¼
X
α

fαðR; tÞ; ð20Þ

such as

F ðR0; tþ ΔtÞ ¼
Z

dRhR0je−AΔtjRi
X
α0α

e−Vα0αðRÞΔtfαðR; tÞ

¼
Z

dRhR0je−AΔtjRiωðR; tÞF ðR; tÞ; ð21Þ

where we have introduced the weight factor

ωðR; tÞ ¼
P

α0αe
−Vα0αðRÞΔtfαðR; tÞP

αfαðR; tÞ
: ð22Þ

With either one channel or more, the effective way of
applying the DMC method defined by Eq. (21) is the
following: Each walker is characterized by the positions, R,
and the coefficients of each channel, cα; all of them are
fixed by an initial guess. Then, for each walker, we take the
following steps:

(i) Apply to the positions of all particles a displacement
of FðRÞΔt=4m.

(ii) Apply a displacement χ, randomly drawn from the
3n Gaussian distribution exp ½−mχ2=ð2ΔtÞ�.

(iii) Repeat step (i), with the new drift force derived from
the modified positions.

(iv) Randomly replicate the walker, considering the
product of branching ratios,

B1 ¼ e−½
ELðR0ÞþELðRÞ

2
−Es�Δt ð23Þ

and

B2 ¼
P

αc
0
αP

αcα
; ð24Þ

where the latter is derived from Eq. (22), and
therefore the coefficients are updated according to

c0α ¼
X
α0
e−Vαα0 ðRÞΔtcα0

≈
X
α0
½δαα0 − Vαα0 ðRÞΔt�cα0 : ð25Þ

Following Ref. [86], this last update can be easily
visualized and calculated by considering Vαα0 ðRÞ as
an α × α matrix containing all the information about
the coupling between the α channels, and the cα
coefficients as the elements of a column vector.
Then, the cα0 ’s are a new column vector obtained
when multiplying the former matrix and vector.

The procedure above must be repeated for each walker
until the set of them is exhausted. The resulting set of
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walkers corresponds to the new positions and coefficients
fR0; c0αg. Finally, the whole procedure must be repeated as
many times as needed to reach the asymptotic limit t → ∞.

III. RESULTS

A detailed discussion about the particular features of our
spectrum will be given in the following subsections.
However, a comment is due here on the theoretical
uncertainty of our results. There are two kinds of theoretical
errors: one is inherently connected to the statistical nature
of the DMC algorithm, and the other one is related to a
shortcoming of the quark model approach and lies on the
way to fixing the model parameters. The statistical error of
the energy is of the order of 1 MeV and is negligible with
respect to the systematic error related to the quark model.
To reach that value, we perform Monte Carlo simulations
comprising 6 × 105 steps, with each step being the result of
trying to move each of the quarks for each of the (typically)
1000 walkers. To avoid spurious correlations, we only
consider in the averages the values for every 100 steps, and
we drop the first 105 values to avoid any influence of the
(randomly chosen) initial configuration in the results. The
energies reported here are the result of averaging those
5000 values, whose standard deviation is ∼1 MeV. Note,
too, that all other physical observables presented herein are
averaged in the same way.
As mentioned above, the set of model parameters are

fitted to reproduce a certain number of hadron observables
within a determinate range of agreement with experiment.
Therefore, it is difficult to assign an error to those para-
meters and, as a consequence, to the magnitudes calculated
when using them. As the range of agreement between
theory and experiment is around 10%–20%, this value can
be taken as an estimation of the model uncertainty for fully
heavy tetraquark systems.

A. Fully heavy mesons

Four fundamental degrees of freedom at the quark
level—space, spin, flavor, and color—are generally
accepted in QCD, and any hadron’s wave function must
be expressed as a product of these four terms:

jψhadroni ¼ jϕrijχsijχfijχci: ð26Þ
From now on, we shall drop out the trivial flavor wave
function because only fully heavy hadrons are considered
in this work, and thus, due to the explicit breaking of chiral
symmetry, the considered quark model Hamiltonian is
blind to the heavy quark flavor.
Concerning the color degree of freedom, any hadron

state must be a color singlet one, because no color charge
has been observed in nature. The leading Fock state of a
fully heavy meson is constituted by a quark, Q, and an
antiquark, Q̄, withQ being either a c or b quark. Therefore,
the SUð3Þcolor wave function is constructed as follows:

ð27Þ

where the singlet state is the physically interesting one in
this work, and it is given by the well-known symmetric
expression

jχcimeson ¼
1ffiffiffi
3

p ðjrr̄i þ jgḡi þ jbb̄iÞ: ð28Þ

Since a meson is made by distinguishable particles (a
quark and an antiquark), there is no restriction in the spin
wave functions due to the antysymmetry principle, and thus
all possibilities can be considered:

jχS¼0;Sz¼0i ¼
1ffiffiffi
2

p ðj↑↓i − j↓↑iÞ; ð29Þ

jχS¼1;Sz¼þ1i ¼ j↑↑i; ð30Þ

jχS¼1;Sz¼0i ¼
1ffiffiffi
2

p ðj↑↓i þ j↓↑iÞ; ð31Þ

jχS¼1;Sz¼−1i ¼ j↓↓i: ð32Þ

The S ¼ 0 state is antisymmetric with respect to the particle
exchange 1 ↔ 2, whereas the S ¼ 1 wave functions are all
symmetric.
One can guess that an excitation of a unit of angular

momentum costs an energy of around 500 MeV. This effect
can be estimated from the experimental MðL¼1Þ−
MðL¼0Þ mass differences: f1ð1285Þ−ωð782Þ≈499MeV,
a1ð1260Þ − ρð770Þ ≈ 460 MeV, χc1ð1PÞ − J=ψ ≈ 414,
and χb1ð1PÞ −ϒð1SÞ ≈ 432 MeV, but also in the baryon
sector as, for instance, Nð1535Þ − Nð940Þ ≈ 570 MeV.
Therefore, we shall limit ourselves to analyzing states
with orbital angular momentum equal to zero. An important
consequence is that the space-wave function will
always represent an S-wave state, which is completely
symmetric.
Once the (trial) wave function of the meson is con-

structed, we follow the DMC algorithm explained in the
section above and obtain, as a proof of concept, the masses
of the singlet and triplet S-wave ground states of heavy
quarkonia. Our results are shown in Table II; they compare
fairly well with the experimental data despite the simplicity
of the quark model; this also supports our confidence in the
mass prediction for fully heavy tetraquark bound states.
Our numerical technique is contrasted with the same
calculation but using a variational approach [54]. As one
can see in Table II, there are negligible differences between
the two methods; as expected, our values are always below
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the ones reported in Ref. [54]. This validates our technique
against the variational one, which should give an upper
energy limit quite close to the real eigenvalue in the case of
meson systems. As we shall see later, the differences
between the two numerical approaches will be larger as
the number of particles increases.
The concept of a radial distribution function can be

applied to multiquark systems and, in fact, can provide
valuable information about the existence of interquark
correlations—in particular, two-body correlations. If the
n-particle wave function is defined as ψðr⃗1;…; r⃗nÞ, where
spin, flavor, and color degrees of freedom have been
ignored for simplicity without loss of generalization, the
probability of finding particle 1 in position r⃗1, particle 2 in
position r⃗2, …, particle n in position r⃗n is

Pðr⃗1;…; r⃗nÞ ¼ ψ�ðr⃗1;…; r⃗nÞψðr⃗1;…; r⃗nÞ; ð33Þ

and it is normalized to 1, i.e.,

1 ¼
Z

dr⃗1 � � � dr⃗nPðr⃗1;…; r⃗nÞ: ð34Þ

Therefore, one can define

ρð2Þðr⃗1; r⃗2Þ ¼
Z

dr⃗3 � � � dr⃗nPðr⃗1;…; r⃗nÞ; ð35Þ

which expresses the probability of finding two particles in
positions r⃗1 and r⃗2, and the radial distribution function as

ρðrÞ ¼ 4πr2
Z

dR⃗ρð2ÞðR⃗þ r⃗; R⃗Þ; ð36Þ

where r indicates now the distance between the two
particles considered.
Figure 1 shows, for the studied mesons, the radial

distribution functions which are pure estimators calculated
within our DMC following Ref. [87,88]. Among the
features one can observe, the following are of particular
interest: (i) The cc̄ states are the most extended objects, and
the system becomes more compact in going from the cc̄
meson to the bb̄ one, with the size of the bb̄ system being
about half that of the cc̄ meson. (ii) The S ¼ 1 state is
slightly more extended than the S ¼ 0 state because of the
different sign of the spin-spin hyperfine interaction.
(iii) The structural differences between the S ¼ 0 and S ¼
1 states seem to blur as we go to heavier quarks, as is
expected, since the hyperfine mass splitting gets smaller.
Finally, the typical mean-square radii, hr2i, of the studied

quarkonium systems are shown in Table III. They compare
nicely with the results reported by a well-known non-
relativistic QCD effective field theory for quarkonium
[89,90]. Moreover, looking at the table, we can confirm
that the interparticle distance of the bb̄ system is about half
of the cc̄ system’s distance, and the Bc’s radius is closer to
that of the bottomonium than to that of the charmonium.

B. Fully heavy baryons

We turn now our attention to the study of all-heavy
ground-state baryons, and thus no orbital angular

TABLE II. The mass spectra of the heavy quarkonia in units of
MeV. The first, second, and third columns refer to the name and
quantum numbers of the considered hadron, the fourth column is
our result, the fifth column is the same calculation but using a
variational method [54], and the sixth column collects exper-
imental data if such exists.

n2Sþ1LJ JPC DMC VAR [54] EXP [13]

ηc 11S0 0−þ 3005 3006.6 2983.9� 0.5
J=ψ 13S1 1−− 3101 3102.1 3096.900� 0.006

Bc 11S0 0−þ 6292 6293.5 6274.9� 0.8
B�
c 13S1 1−− 6343 � � � � � �

ηb 11S0 0−þ 9424 9427.9 9398.7� 2.0
ϒð1SÞ 13S1 1−− 9462 9470.4 9460.30� 0.26
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FIG. 1. Radial distribution functions, r2ρð2ÞðrÞ, with r ¼ jr⃗2 − r⃗1j being the relative coordinate between the two particles, for the
studied charmonium (left panel), Bc (middle panel), and bottomonium (right panel) states.
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momentum excitations must be considered; i.e., only
S-wave symmetric states are under scrutiny.
Concerning the SUð3Þcolor wave function, it is con-

structed as follows:

ð37Þ

where the colorless state is fully antisymmetric and its color
wave function is given by the textbook expression

jχcibaryon ¼
1ffiffiffi
6

p ðjrgbi þ jgbri þ jbrgi

− jrbgi − jgrbi − jbgriÞ: ð38Þ

With three particles of spin 1=2, one can construct the
following spin states:

ð39Þ

with

jχS¼3=2;Sz¼þ3=2iS ¼ j↑↑↑i; ð40Þ

jχS¼1=2;Sz¼þ1=2iMS ¼
1ffiffiffi
6

p ðj↑↓↑i þ j↓↑↑i − 2j↑↑↓iÞ;

ð41Þ

jχS¼1=2;Sz¼þ1=2iMA ¼ 1ffiffiffi
2

p ðj↑↓↑i − j↓↑↑iÞ; ð42Þ

examples of the spin wave functions used herein, without
loss of generality. For the baryons

Ωþþ
ccc ;Ωþ

ccb;Ω0
cbb;Ω−

bbb; ð43Þ

the spin wave function must comply with Pauli statistics in
the case that quarks are the same. Namely, the Ssym: ¼ 3=2S
wave function, which is completely symmetric, must be
used for the Ωccc and Ωbbb baryons; whereas the Ssym: ¼
1=2MS wave function, which is symmetric with respect the
two particles that are equal, must be used for the ground
states ofΩccb andΩcbb, because it is an allowed state with a
lower energy than the S ¼ 3=2 case.
Table IV shows the calculated masses for the ground

states of the ΩQQQ baryons (Q ¼ c or b) in each allowed
spin channel and compares them with those obtained in
Ref. [59]. As one can see, there are negligible differences
between the two numerical approaches. Unfortunately,
there is no experimental data to compare with; therefore,
we encourage the design of experimental setups at, for
instance, the LHC@CERN facility able to detect this kind
of particle, because the reward could be high and, as
mentioned above, triply heavy baryons are ideally suited to
study QCD and, in particular, the heavy quark-(anti)quark
interaction, as has been the case for heavy quarkonia.
In order to check further the capabilities of the DMC

method to describe heavy baryons, we calculate several
structural (static) properties to compare them with the
results obtained in Ref. [59]—in particular, the following
properties:

hR2
mi≡ hψhadronj

X3
i¼1

mi

M
ðr⃗i − R⃗Þ2jψhadroni; ð44Þ

hR2
ci≡ hψhadronj

X3
i¼1

eiðr⃗i − R⃗Þ2jψhadroni; ð45Þ

hμi≡ hψhadronj
X3
i¼1

ei
2mi

ðli
z þ 2sizÞ2jψhadroni: ð46Þ

They are presented in Table V, and one can see that the
values obtained in Ref. [59] are perfectly reproduced.
Therefore, as a proof of concept, our numerical technique
can be applied to study not only eigenenergies but also

TABLE III. Mean-square radii, hr2i, of the studied quarkonium
systems, in units of fm2.

Meson hr2i
ηc 0.131
J=ψ 0.158

Bc 0.091
B�
c 0.101

ηb 0.041
ϒð1SÞ 0.043

TABLE IV. Masses, in MeV, of the ground states of fully heavy
baryons. The first, second, and third columns refer to the name
and quantum numbers of the considered hadron, the fourth
column is our result, and the fifth column is the same calculation
but using a variational method [59]. Note that, for comparison,
the masses presented here include three-body force corrections
using the value of the constant C reported in Table 1 of Ref. [59].

Baryon 2Sþ1LJ JP DMC Ref. [59]

Ωþþ
ccc

4S3=2 3=2þ 4798 4799
Ωþ

ccb
2S1=2 1=2þ 8018 8019

Ω0
cbb

2S1=2 1=2þ 11215 11217
Ω−

bbb
4S3=2 3=2þ 14398 14398
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structure properties of the hadrons under consideration
when the momentum of the proof is less than or equal to the
typical hadron scale, 1 GeV.

Equation (44) gives us an idea of the physical size of the
baryon, where

R⃗ ¼ m1r⃗1 þm2r⃗2 þm3r⃗3
M

ð47Þ

is the center-of-mass coordinate, with M ¼ m1 þm2 þm3

being the total mass of the system. One can see in Table V
that the results lie between 0.02 and 0.07 fm2. This means
that the spatial extension of such baryons goes from 0.15
to 0.26 fm, while for the mesons we have

phR2
miQQ̄ ¼phr2i=2 ∈ ½0.1; 0.2� fm—i.e., triply heavy baryons are

objects only slightly less compact than their heavy quar-
konia counterparts. This can be explained by the fact that
the color quark-quark interaction is half as intense as the
quark-antiquark one, but a priori, one would expect a

TABLE V. The mass mean-square radii (in fm2), charge mean-
square radii (in e fm2), and magnetic moments (in nuclear
magnetons) for all the baryons listed in Table IV.

Observable Approach Ωþþ
ccc Ωþ

ccb Ω0
cbb Ω−

bbb

hR2
mi DMC 0.069 0.040 0.028 0.021

Ref. [59] 0.069 0.040 0.028 0.021

hR2
ci DMC 0.138 0.096 0.034 −0.021

Ref. [59] 0.138 0.097 0.034 −0.021

hμi DMC 1.023 0.475 −0.193 −0.180
Ref. [59] 1.023 0.475 −0.193 −0.180
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FIG. 2. Radial distribution functions for the studied Ωccc (upper-left panel), Ωccb (upper-right panel), Ωcbb (bottom-left panel), and
Ωbbb (bottom-right panel) baryons. The (pink) long-dashed curve plotted in the Ωccc and Ωbbb panels is the same radial distribution
function, but for the cc̄ and bb̄ mesons, respectively.
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bigger effect, and this could indicate that some kind of
diquark correlations are at play.
Equation (45) defines the charge mean-square radii that

can be deduced from the value of the baryon’s electric form
factor at the photon point extracted from lepton-baryon
scattering experiments. A result that might be worth
emphasizing is the electric charge radius of the positive-
charged baryon Ωþ

ccb, which is 0.31 fm, 3 times smaller
than the proton’s radius, 0.84 fm [13].
If mesonic exchange currents and relativistic effects can

be ignored, the magnetic moment operator is given by
Eq. (46), which is just the sum of the magnetic moments of
each quark, with orbital and spin contributions. Our values
for the positive-charged and neutral triply heavy baryons,
Ωþ

ccb and Ω0
cbb, are 0.475μN and −0.193μN , respectively.

These can be compared with the values of the proton and
neutron: 2.79μN and −1.91μN , collected in Ref. [13].
Namely, the triply heavy baryon partner of the nucleon
has a magnetic moment 5–10 times smaller.
Figure 2 shows the relevant radial distribution functions.

Among the observed features, the following are of par-
ticular interest. In the cases of Ωccc and Ωbbb baryons, the
quark-quark probability distribution function is broader
than its quark-antiquark counterpart. There are two kinds of
probability distributions in the cases of Ωccb and Ωcbb
baryons, one referring to the QQ pair when the two heavy
quarks are equal, and the other one to when the QQ pair is
made with different species. The same pattern as in heavy
quarkonia is observed in triply heavy baryons, where the
QQ-pair seems to be more compact as the heavy quark
mass is larger, and thus this could facilitate the appearance
of strong ðcbÞ and ðbbÞ diquark correlations inside theΩccb
and Ωcbb baryons, respectively.
Finally, the typical mean-square radii, hr2iji, of the

studied triply heavy baryons are collected in Table VI.
Among other features, it highlights that the cb and bb pairs
are closer inside the Ωccb and Ωcbb baryons, respectively.
For completeness, we have calculated the JP ¼ 3=2þ

lowest-lying states of the Ωccb and Ωcbb baryons. Their
masses are 8046 and 11 247 MeV, respectively. These
values compare well with the variational ones reported in
Ref. [59]. We expect bigger differences when radial,
angular, and spin excitations are compared; this goes
beyond the scope of the present manuscript but indicates
a possible next step to follow in the future. Finally, the

predicted mass splittings Δm ¼ mð3=2þÞ −mð1=2þÞ are
28 MeV and 32 MeV for the Ωccb and Ωcbb baryons; they
are of the same order of magnitude as those collected in
Ref. [91] and references therein.

C. Fully heavy tetraquarks

Diffusion Monte Carlo methods are designed to com-
pute nonrelativistic bound states of a few- to many-particle
system. This technique has been successfully applied to
the field of nuclear physics studying light and middle
nuclei, as well as objects of high nuclear density such as
neutron stars. However, as explained before, applications
of DMC to hadron physics are scarce because most
hadrons were understood as relativistic bound states of
few (two or three) light quarks (antiquarks). Nowadays,
many experimental signals point out the existence of tetra-
[31], penta- [92,93], and even hexaquark [94] systems,
mostly in heavy quark sectors where nonrelativistic
dynamics could be thought of as a good assumption,
and thus Monte Carlo techniques are becoming attractive
approaches to apply in hadron physics. After the appli-
cation of the method to mesons and baryons as a proof of
concept, our next step is the study of all-heavy tetraquarks.
Further studies of more complex multiquark systems shall
be performed in the future, but they go beyond the scope
of this manuscript.
Multiquark systems present richer color structures than

mesons and baryons. Without assuming any kind of
clustering, the color algebra applied to tetraquark states
leads to the following irreducible representations:

3c ⊗ 3c ⊗ 3̄c ⊗ 3̄c ¼ ð2 × 1cÞ ⊕ ð4 × 8cÞ
⊕ ð2 × 10cÞ ⊕ 27c; ð48Þ

where two color singlet states appear. They are usually
known as the ð3̄c ⊗ 3cÞ and ð6c ⊗ 6̄cÞ diquark-antidiquark
configurations; i.e.,

3c ⊗ 3c ⊗ 3̄c ⊗ 3̄c ¼ ð3̄c ⊕ 6cÞ ⊗ ð3c ⊕ 6̄cÞ
¼ 1ð3̄c⊗3cÞ ⊕ 1ð6c⊗6̄cÞ ⊕ � � � : ð49Þ

Knowing that 3̄c diquark and 3c antidiquark representations
are antisymmetric under the transposition of the two
particles,

j3̄α12i ¼
1ffiffiffi
2

p ϵαβγjQβð1ÞijQγð2Þi; ð50aÞ

j312;αi ¼
1ffiffiffi
2

p ϵαβγjQ̄βð1ÞijQ̄γð2Þi; ð50bÞ

where ϵαβγ is the Levi-Civita tensor, with the greek
letters going from 1 to 3; and that the 6c diquark

TABLE VI. Mean-square radii, hr2iji, of the studied triply heavy
baryons, in units of fm2.

Baryon hr2cci hr2cbi hr2bbi
Ωþþ

ccc 0.206 � � � � � �
Ωþ

ccb 0.182 0.136 � � �
Ω0

cbb � � � 0.117 0.073
Ω−

bbb � � � � � � 0.062
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and 6̄c antidiquark are symmetric under the same
transposition,2

j6α12i ¼ dαβγjQβð1ÞijQγð2Þi; ð51aÞ

j6̄12;αi ¼ dαβγjQ̄βð1ÞijQ̄γð2Þi; ð51bÞ

one can build two orthogonal singlet color tetraquark states:

j3̄12334i ¼
1ffiffiffiffiffi
12

p ϵαβγϵαλσjQβð1ÞijQγð2ÞijQ̄λð3ÞijQ̄σð4Þi;

ð52Þ

j6126̄34i ¼
1ffiffiffi
6

p dαβγdαλσjQβð1ÞijQγð2ÞijQ̄λð3ÞijQ̄σð4Þi:

ð53Þ

Their explicit expressions in terms of the familiar red,
green, and blue degrees of freedom, and without explicitly
clustering, can be written down as

j3̄12334i ¼
1ffiffiffiffiffi
12

p ðþjrgr̄ ḡi þ jgrḡ r̄i − jrgḡ r̄i

− jgrr̄ ḡi þ jrbr̄ b̄i þ jbrb̄ r̄i
− jrbb̄ r̄i − jbrr̄ b̄i þ jgbḡ b̄i
þ jbgb̄ ḡi − jgbb̄ ḡi − jbgḡ b̄iÞ; ð54Þ

which is antisymmetric under the exchange of either both
quarks or both antiquarks, and

j6126̄34i ¼
1ffiffiffi
6

p ½þjrrr̄ r̄i þ jggḡ ḡi þ jbbb̄ b̄i

þ 1

2
ðþjrgr̄ ḡi þ jgrḡ r̄i þ jrgḡ r̄i

þ jgrr̄ ḡi þ jrbr̄ b̄i þ jbrb̄ r̄i
þ jrbb̄ r̄i þ jbrr̄ b̄i þ jgbḡ b̄i
þ jbgb̄ ḡi þ jgbb̄ ḡi þ jbgḡ b̄iÞ�; ð55Þ

which is symmetric under the exchange of either both
quarks or both antiquarks.
It is also important to notice herein that the two color

states defined above can be expressed in another set of
color representations,

j3̄12334i ¼ þ
ffiffiffi
1

3

r
j113124i −

ffiffiffi
2

3

r
j813824i

¼ −
ffiffiffi
1

3

r
j114123i þ

ffiffiffi
2

3

r
j814823i; ð56Þ

j6126̄34i ¼ þ
ffiffiffi
2

3

r
j113124i þ

ffiffiffi
1

3

r
j813824i

¼ þ
ffiffiffi
2

3

r
j114123i þ

ffiffiffi
1

3

r
j814823i; ð57Þ

called meson-meson (1c ⊗ 1c) and color-hidden (8c ⊗ 8c)
states.
If we turn now our attention to the spin degree of

freedom, the QQQ̄ Q̄ (Q ¼ c or b) system, made by
fermions of spin 1=2, can have total spin S ¼ 0, 1, or 2.
There are two linearly independent S ¼ 0 wave functions
that can be written as

jχS¼0;Sz¼0iSS ¼
1ffiffiffiffiffi
12

p ðþ2j↓↓↑↑i þ 2j↑↑↓↓i

− j↓↑↑↓i − j↑↓↓↑i
þ j↓↑↓↑i − j↑↓↑↓iÞ; ð58aÞ

jχS¼0;Sz¼0iAA ¼ 1

2
ð−j↓↑↓↑i − j↓↑↑↓i

− j↑↓↓↑i þ j↑↓↑↓iÞ: ð58bÞ

They are, respectively, symmetric (S) and antisymmetric
(A) under the exchange of both quarks and both antiquarks.
The linearly independent S ¼ 1 wave functions are given
by (Sz ¼ S is assumed without loss of generality)

jχS¼1;Sz¼þ1iSA ¼ 1ffiffiffi
2

p ðj↑↑↑↓i − j↑↑↓↑iÞ; ð59aÞ

jχS¼1;Sz¼þ1iAS ¼
1ffiffiffi
2

p ðj↑↓↑↑i − j↓↑↑↑iÞ; ð59bÞ

jχS¼1;Sz¼þ1iSS ¼
1

2
ðþj↑↑↑↓i þ j↑↑↓↑i

− j↑↓↑↑i − j↓↑↑↑iÞ; ð59cÞ

which correspond to the symmetric-antisymmetric, anti-
symmetric-symmetric, and symmetric-symmetric ex-
changes of quarks and antiquarks. Finally, the S ¼ 2 spin
wave function can be written as

jχS¼2;Sz¼þ2iSS ¼ j↑↑↑↑i; ð60Þ

where Sz ¼ S is again assumed without lost of generality.
Note that this spin wave function is fully symmetric under
the exchange of both quarks and both antiquarks.

2The nonvanishing dαβγ ¼ dαβγ constants are d111 ¼ d222 ¼
d333 ¼ 1 and d412 ¼ d421 ¼ d523 ¼ d532 ¼ d613 ¼ d631 ¼ 1=

ffiffiffi
2

p
.
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We shall focus our attention to the ground states of
QQQ̄ Q̄, with Q being either a c or b quark in any possible
combination. This implies that the space wave function
is totally symmetric and, in order to fulfill Fermi-Dirac
statistics, the wave-function configurations of Table VII
must be taken into account for each tetraquark sector and
JPðCÞ quantum numbers. We perform a coupled-channels
calculation, based on the DMC algorithm explained above,
for those sectors shown in Table VII which have more than
one spin-color configuration. It is worth highlighting that
the treatment of spin-dependent potentials and coupled-
channels calculations are challenging features for
Monte Carlo methods which have avoided their extended
application to hadron physics; both are considered herein.
Now, let us proceed to describe in detail our theoretical

findings for each sector of fully heavy tetraquarks.

1. The ccc̄ c̄ tetraquark ground states

The masses of the S ¼ 0, 1, and 2 ground states of ccc̄ c̄
tetraquarks are shown in Table VIII. We first compare our
results with those obtained when solving the same
Hamiltonian but using a Rayleigh-Ritz variational
method. One can see that both approaches are compatible;
however, the differences are larger than the ones shown in
the meson and baryon sectors, because the variational
methods begin to have difficulties as the number of
particles grows. Nevertheless, the disagreement between

the two approaches is between 8 and 20 MeV, which is
smaller than the usual uncertainty assigned to any quark
model. Note, too, that the variational method only provides
an upper limit of the eigenenergy, and it depends on the
goodness of the trial wave function; DMC results depend
less on such details and, in principle, provide an exact
estimate of the eigenenergy.
Table VIII provides also a comparison with numerous

works that reported results on ccc̄ c̄ tetraquarks using a
large variety of techniques. It seems that our results
6.35 GeV, 6.44 GeV, and 6.47 GeV for the ground states
with quantum numbers JPC ¼ 0þþ, 1þ−, and 2þþ, respec-
tively, are located just in the middle of the ranges covered
by all approaches, which are [5.97–6.80] GeV, [6.05–
6.90] GeV, and [6.09–6.96] GeV. These mass ranges are in
agreement with the recently observed structures in the
invariant mass distribution of J=ψ pairs [31]. The ccc̄ c̄
ground state with quantum numbers JPC ¼ 0þþ is about
400–500 MeVabove the ηcηc and J=ψJ=ψ thresholds. This
suggests that the JPC ¼ 0þþ state is unstable and can decay
into ηcηc and J=ψJ=ψ final states through quark rearrange-
ments. The JPC ¼ 1þ− state lies about 400 MeV above the
mass threshold of ηcJ=ψ , while JPC ¼ 2þþ is about
300 MeV above the mass threshold of J=ψJ=ψ ; they
can also easily decay into such charmonium pairs through
quark rearrangement.
Figure 3 shows the relevant radial distribution functions

for the ccc̄ c̄ ground states. It is very interesting to observe

TABLE VII. Spin-color configurations for fully heavy tetraquark systems.

System JPðCÞ Spin-color configurations

ccc̄ c̄; bbb̄ b̄
0þðþÞ jχS¼0iSS ⊗ j3̄c3ciAA jχS¼0iAA ⊗ j6c6̄ciSS

ccb̄ b̄ (bbc̄ c̄)
1þð−Þ jχS¼1iSS ⊗ j3̄c3ciAA
2þðþÞ jχS¼2iSS ⊗ j3̄c3ciAA

ccc̄ b̄, bbc̄ b̄ 0þ jχS¼0iSS ⊗ j3̄c3ciAA jχS¼0iAA ⊗ j6c6̄ciSS
1þ jχS¼1iSS ⊗ j3̄c3ciAA jχS¼1iSA ⊗ j3̄c3ciAA jχS¼1iAS ⊗ j6c6̄ciSS
2þ jχS¼2iSS ⊗ j3̄c3ciAA

cbc̄ b̄ 0þðþÞ jχS¼0iSS ⊗ j3̄c3ciAA jχS¼0iSS ⊗ j6c6̄ciSS jχS¼0iAA ⊗ j3̄c3ciAA jχS¼0iAA ⊗ j6c6̄ciSS
1þð−Þ jχS¼1iSS ⊗ j3̄c3ciAA jχS¼1iSS ⊗ j6c6̄ciSS

1ffiffi
2

p ðjχS¼1iSA − jχS¼1iASÞ ⊗ j3̄c3ciAA 1ffiffi
2

p ðjχS¼1iSA − jχS¼1iASÞ ⊗ j6c6̄ciSS
1þðþÞ 1ffiffi

2
p ðjχS¼1iSA þ jχS¼1iASÞ ⊗ j3̄c3ciAA 1ffiffi

2
p ðjχS¼1iSA þ jχS¼1iASÞ ⊗ j6c6̄ciSS

2þðþÞ jχS¼2iSS ⊗ j3̄c3ciAA jχS¼2iSS ⊗ j6c6̄ciSS

TABLE VIII. Predicted masses, in MeV, for the ccc̄ c̄ system computed with the diffusion Monte Carlo technique and compared with
those obtained with the variational approach [54]. For completeness, we also compare our results with those of other frameworks.

JPC DMC VAR [54] [33] [36] [45] [32] [43] [95] [34] [46] [37,38] [50] [35] [41]

0þþ 6351 6371 6487 6797 6477 6460–6470 6437 6200 6192 6038–6115 5990 5969 5966 < 6140
1þ− 6441 6450 6500 6899 6528 6370–6510 6437 � � � � � � 6101–6176 6050 6021 6051 � � �
2þþ 6471 6479 6524 6956 6573 6370–6510 6437 � � � � � � 6172–6216 6090 6115 6223 � � �
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that quark-antiquark pairs are slightly closer than quark-
quark ones in the S ¼ 0 (JPC ¼ 0þþ) state, whereas the
situation gradually changes as spin increases. In any case,
the cc and cc̄ radial distribution functions are very similar,
with a mean value close to ∼0.5 fm, indicating that our
tetraquark structures are compact objects and not meson-
meson molecular states, which have typical intermeson
distances of ≳1 fm.
In order to quantify our observations, we have computed

the mass mean-square radii of the JPC ¼ 0þþ, 1þ−, and
2þþ ccc̄ c̄ ground states. They are, respectively, 0.087 fm2,
0.092 fm2, and 0.095 fm2—i.e., they are comparable with
those obtained for mesons and baryons. Moreover,
Table IX shows the typical mean-square radii for each
(anti)quark-quark pair, indicating that no interquark dis-
tance is very different from the rest, and thus all pairs play a
similar role, with distances of the order of ∼0.5 fm.

2. The bbb̄ b̄ tetraquark ground states

Let us now turn our attention to the JPC ¼ 0þþ, 1þ−, and
2þþ ground states of bbb̄ b̄ tetraquarks shown in Table X.
We compare first our results with those obtained when

solving the same Hamiltonian but using a Rayleigh-Ritz
variational method. One can see that even larger
differences, between 30 and 50 MeV, are found in the
bbb̄ b̄ sector, with our results always below the ones
reported in Ref. [54], as expected. From the dynamical
point of view, we would expect better agreement in
tetraquark sectors where heavier quark masses are
involved, and thus the issue might be related with the
oscillating parameters of the Gaussian basis used in
Ref. [54] for the bbb̄ b̄ sector. Another possibility is that,
as will be shown later, interquark distances are smaller in
these tetraquarks, and thus multibody correlations could
play a more important role. Table X provides also a
comparison with numerous works that reported results
on bbb̄ b̄ tetraquarks using a large variety of theoretical
techniques. Again, our results, 19.20 GeV, 19.28 GeV,
and 19.29 GeV, for the ground states with the quantum
numbers JPC ¼ 0þþ, 1þ−, and 2þþ, respectively, are located
just in the middle of the ranges covered by all approaches,
which are ½18.46–20.16�GeV, ½18.32–20.21� GeV, and
½18.32–20.24� GeV.
Figure 4 shows the relevant radial distribution functions

for the bbb̄ b̄ ground states. As in the case of fully charm
tetraquarks, the quark-antiquark pairs are closer than quark-
quark ones in the S ¼ 0 (JPC ¼ 0þþ) state. The situation,
however, gradually changes as spin increases, and thus the
diquark (antidiquark) distance seems to be slightly smaller
for JPC ¼ 1þ− and 2þþ bbb̄ b̄ tetraquarks. The theoretical
fact that the JPC ¼ 0þþ bbb̄ b̄ ground state could prefer to
be in quark-antiquark pairs, together with a predicted mass
which is 300–400 MeV above the ηbηb and ϒð1SÞϒð1SÞ
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FIG. 3. Relevant radial distribution functions for the studied ccc̄ c̄ tetraquark ground states.

TABLE IX. Mean-square radii, hr2iji, of the studied fully
charmed tetraquarks, in units of fm2.

JPC hr2cci hr2cc̄i hr2c̄ c̄i
0þþ 0.246 0.216 0.246
1þ− 0.225 0.255 0.223
2þþ 0.229 0.266 0.231

TABLE X. Predicted masses, in MeV, for the bbb̄ b̄ system computed with the diffusion Monte Carlo technique and compared with
those obtained with the variational approach [54]. For completeness, we also compare our results with those of other frameworks.

JPC DMC VAR [54] [33] [36] [37,38] [34] [35] [41] [58] [32] [57] [41]

0þþ 19 199 19 243 19 322 20 155 18 840 18 826 18 754 18 720 18 690 18 460–18490 18 798 < 18890
1þ− 19 276 19 311 19 329 20 212 18 840 � � � 18 808 � � � � � � 18 320–18540 � � � � � �
2þþ 19 289 19 325 19 341 20 243 18 850 � � � 18 916 � � � � � � 18 320–18530 � � � � � �
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thresholds, could provide founded reasons to keep looking
for (reasonably wide) bumps in the invariant mass of
bottomonium pairs at the LHCb experiment.
We report in Table XI the typical mean-square radii of

the studied bbb̄ b̄ tetraquarks. The table highlights again
the change of configuration from quark-antiquark pairs to
diquark-antidiquark ones when going from S ¼ 0 to S ¼ 2

ground states of bbb̄ b̄ tetraquarks. Finally, the mass mean-
square radii for the JPC ¼ 0þþ, 1þ−, and 2þþ ground states
are, respectively, 0.026 fm2, 0.028 fm2, and 0.029 fm2.
This indicates that these states are very compact and far
away from the picture of meson-meson molecules.

3. The ccb̄ b̄ (bbc̄ c̄) tetraquark ground states

A similar theoretical calculation must be performed for
computing the ground states of the JP ¼ 0þ, 1þ, and
2þ ccb̄ b̄ (bbc̄ c̄) tetraquarks. We obtain the masses

mðJP ¼ 0þÞ ¼ 12 865 MeV; ð61aÞ

mðJP ¼ 1þÞ ¼ 12 908 MeV; ð61bÞ

mðJP ¼ 2þÞ ¼ 12 926 MeV; ð61cÞ

which compare as follows:

mðJP ¼ 0þÞ ¼ 12 886 MeV; ð62aÞ

mðJP ¼ 1þÞ ¼ 12 924 MeV; ð62bÞ

mðJP ¼ 2þÞ ¼ 12 940 MeV; ð62cÞ

with the variational calculation [54]. As one can see, the
differences between the two numerical methods are around
20MeV, and our values are always below those obtained by
the variational method. Note, too, that our results are in
reasonable agreement with the scarce ones reported by
other theoretical methods [33]. Moreover, our predictions
are above their lowest open-flavor decay channels for about
240–280 MeV, and thus, they should appear as resonances
with relatively large widths in the invariant masses of BcBc,
BcB�

c, or B�
cB�

c final states.
An interesting feature distinguishes this sector with

respect to the two already discussed—i.e., the ccc̄ c̄ and
bbb̄ b̄ sectors. The expected pattern of interquark distances
for cc, cb̄, and b̄ b̄ (from larger to shorter) is conservedwhen
changing the total spin S ¼ 0, 1, and 2. An example of the
output is drawn in Fig. 5 for the JP ¼ 0þ ccb̄ b̄ ground state.
We report, too, the mass mean-square radii for the JP ¼ 0þ,
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FIG. 4. Relevant radial distribution functions for the studied bbb̄ b̄ tetraquark ground states.

TABLE XI. Mean-square radii, hr2iji, of the studied fully
bottom tetraquarks, in units of fm2.

JPC hr2bbi hr2
bb̄
i hr2

b̄ b̄
i

0þþ 0.079 0.067 0.079
1þ− 0.068 0.078 0.068
2þþ 0.068 0.080 0.068
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FIG. 5. Radial distribution functions for the JP ¼ 0þ ground
state of ccb̄ b̄ tetraquarks. The case bbc̄ c̄ is obviously equal. No
further information is obtained for the JP ¼ 1þ and 2þ cases.
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1þ, and 2þ ground states, which are 0.046 fm2, 0.047 fm2,
and 0.048 fm2, respectively. These values lie between the
ones reported above for the ccc̄ c̄ and bbb̄ b̄ tetraquarks.

4. The ccc̄ b̄ and bbc̄ b̄ tetraquark ground states

The ccc̄ b̄ and bbc̄ b̄ (and cbc̄ b̄) systems have not been
studied before with either the Hamiltonian used herein or
the variational method. Therefore, we cannot analyze in
these cases the goodness of our numerical framework,
diffusion Monte Carlo, with respect to the variational one.
We shall compare our results with those obtained by other
theoretical approaches and numerical techniques, but such
works are scarce, because of the complexity of the coupled-
channels calculation needed to study the ccc̄ b̄, bbc̄ b̄, and
cbc̄ b̄ tetraquarks.

The ccc̄ b̄ and bbc̄ b̄ systems share some common
features in terms of heavy quark symmetry, and thus they
will be discussed together. Table XII shows our spectrum of
ground states with quantum numbers JP ¼ 0þ, 1þ, and 2þ.
As one can see, in both tetraquark sectors, the 0þ and 1þ
states are almost degenerate, with the 2þ ground state lying
around 100 MeVabove them. The same picture is drawn by
Ref. [36], while smaller mass splittings are predicted in
Ref. [33]. It is interesting to observe, too, that our absolute
figures are in disagreement with the other two cases
reported in Table XII, with the results of Ref. [36] much
higher than ours and those of Ref. [33], the latter being of
the same order of magnitude as ours. Another feature that
needs to be mentioned is that the lowest strong-decay
threshold is ηcBc (ηbBc) for the ccc̄ b̄ (bbc̄ b̄) tetraquark
sector, and it is around 400 MeV (400 MeV) below the
lowest-lying bound state; therefore, bound states of the
ccc̄ b̄ and bbc̄ b̄ systems with narrow widths are not
favored.
Figure 6 shows the radial distribution functions for the

JP ¼ 0þ, 1þ, and 2þ ground states of the ccc̄ b̄ (upper
panels) and bbc̄ b̄ (lower panels) systems. The interested
reader can observe how the different quark-(anti)quark
rearrangements are taking over as the total spin is getting
higher. For instance, in both ccc̄ b̄ and bbc̄ b̄ tetraquark
sectors, the (purple) dot-dashed curve which represents a

TABLE XII. Predicted masses, in MeV, for the ccc̄ b̄ and bbc̄ b̄
systems computed with the diffusion Monte Carlo technique and
compared with those obtained by Refs. [33,36].

JP DMC [33] [36] DMC [33] [36]

0þ 9615 9715 10 144 16 040 16 141 16 823
1þ 9610 9727 10 174 16 013 16 148 16 840
2þ 9719 9768 10 273 16 129 16 176 16 917
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FIG. 6. Relevant radial distribution functions for the JP ¼ 0þ, 1þ, and 2þ ground states of the ccc̄ b̄ (upper panels) and bbc̄ b̄ (lower
panels) systems.

DIFFUSION MONTE CARLO CALCULATIONS OF FULLY-HEAVY … PHYS. REV. D 102, 114007 (2020)

114007-15



quark-antiquark pair is the one that extends the least in
space for S ¼ 0 and 1, indicating that quark-antiquark pair
configuration could be important in such cases, whereas the
S ¼ 2 prefers diquark-antidiquark pairs.
The typical mean-square radii, hr2iji, of the studied ccc̄ b̄

(upper rows) and bbc̄ b̄ (lower rows) tetraquarks are
collected in Table XIII. For both tetraquark sectors, one
can observe that the closest quark-(anti)quark pair is the cb̄
for S ¼ 0 and S ¼ 1, whereas it is the c̄ b̄ for S ¼ 2,
indicating the change between quark-antiquark pair con-
figuration and one related with diquark-antidiquark pairs
when the total spin grows. Finally, the mass mean-square
radii for the JP ¼ 0þ, 1þ, and 2þ ground states are,
respectively, 0.059 fm2, 0.064 fm2, and 0.066 fm2 for
the ccc̄ b̄ system, and 0.035 fm2, 0.036 fm2, and
0.037 fm2 for the bbc̄ b̄ system.

5. The cbc̄ b̄ tetraquark ground states

The cbc̄ b̄ system has no constraints from the Pauli
principle. Therefore, looking at Table VII, there are four
spin-color configurations for the JPC ¼ 0þþ ground state,
another four in the case of the JPC ¼ 1þ−, only two for the
JPC ¼ 1þþ channel, and two more for the JPC ¼ 2þþ
ground state. The predicted ground-state masses are listed
in Table XIV and compared with the available results
reported by other theoretical approaches [33,35,36]. Our
results, with masses at around 12.5 GeV, are in reasonable
agreement with those of Ref. [35]; however, both
approaches predict figures which are slightly lower than

the ones reported in Ref. [33]. The results published in
Ref. [36] are systematically higher than others because the
confinement term is ignored completely. As in the cases of
ccc̄ b̄ and bbc̄ b̄ tetraquarks, the J ¼ 0 and the lowest J ¼ 1

states are almost degeneratewith even the JPC ¼ 1þ− cbc̄ b̄
ground state located below the JPC ¼ 0þþ one. At this stage
of our work, it could be necessary to recall that our
calculation is parameter free once the model is fitted to
the meson and baryon sector.
The lowest S-wave meson-meson thresholds in the cbc̄ b̄

tetraquark sector are the ηcηb (12 429 MeV) for the JPC ¼
0þþ channel, ηcϒð1SÞ (12 467 MeV) for the JPC ¼ 1þ−

channel, and J=ψϒð1SÞ (12 563 MeV) for the JPC ¼ 1þþ

and 2þþ channels. We are predicting tetraquark ground-
state masses which lie≲100 MeV above their lowest open-
flavor S-wave meson-meson threshold—i.e., they could
appear as resonance candidates in the invariant mass of
their corresponding meson-meson channel. It is worth
emphasizing that the JPC ¼ 1þþ ground state is located
at exactly, within theoretical uncertainty, its lowest S-wave
meson-meson threshold.
Figure 7 shows the relevant radial distribution functions

for the JPC ¼ 0þþ, 1þ−, 1þþ, and 2þþ ground states of the
cbc̄ b̄ system. One can see that the radial distribution
functions follow the same pattern for all ground states—
i.e., the interquark distance of the bb̄ pair is the shortest
one, followed by that of the cc̄ pair, and finally the
distances between the c quark and either the b̄ or b quark
are the same and the largest. However, the bottom-left panel
of Fig. 7 shows that the JPC ¼ 1þþ cbc̄ b̄ ground state is
particularly different with respect to the others, with a more
extended radial distribution for the cb and cb̄ pairs. In fact,
such distribution is indicating that the interquark distance
between the c and b quarks is of the order of 1 fm, whereas
the cc̄ and bb̄ pairs are clustered within a distance of 0.5 fm
or less. Therefore, it seems that the JPC ¼ 1þþ cbc̄ b̄
tetraquark ground state prefers to be in a meson-meson
configuration.
In order to quantify our statements above, Table XV

shows the typical mean-square radii, hr2iji, of the studied
cbc̄ b̄ tetraquark ground states. In the case of the JPC ¼
1þþ ground state, a mean-square radius larger than 1 fm2 is
obtained for the cb and cb̄ pairs, whereas the others are
∼0.1 fm2. This may indicate, in contrast with the other

TABLE XIII. Mean-square radii, hr2iji, of the studied ccc̄ b̄
(upper rows) and bbc̄ b̄ (lower rows) tetraquarks, in units of fm2.

JP hr2cci hr2cc̄i hr2
cb̄
i hr2

c̄ b̄
i

0þ 0.225 0.202 0.155 0.181
1þ 0.253 0.205 0.166 0.208
2þ 0.217 0.241 0.191 0.159

JP hr2bbi hr2bc̄i hr2
bb̄
i hr2

c̄ b̄
i

0þ 0.097 0.130 0.076 0.097
1þ 0.108 0.136 0.074 0.153
2þ 0.076 0.148 0.095 0.136

TABLE XIV. Predicted masses, in MeV, for the cbc̄ b̄ system
computed with the diffusion Monte Carlo technique and com-
pared with those obtained by other theoretical frameworks.

JPC DMC [33] [35] [36]

0þþ 12 534 12 854 12 359 13 396
1þ− 12 510 12 881 12 424 13 478
1þþ 12 569 12 933 12 485 13 510
2þþ 12 582 12 933 12 566 13 590

TABLE XV. Mean-square radii, hr2iji, of the studied cbc̄ b̄
tetraquarks, in units of fm2.

JPC hr2cbi hr2cc̄i hr2
cb̄
i hr2

bb̄
i

0þþ 0.233 0.142 0.233 0.045
1þ− 0.245 0.134 0.245 0.045
1þþ 1.397 0.171 1.397 0.044
2þþ 0.345 0.172 0.344 0.050
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cases studied, that cc̄ and bb̄ pairs tend to form separated
clusters within a distance of 1 fm. Furthermore, we report
herein the mass mean-square radii for the JPC ¼ 0þþ, 1þ−,
1þþ, and 2þþ ground states, which are 0.053 fm2,
0.055 fm2, 0.3 fm2, and 0.076 fm2, respectively. One
can see again that the JPC ¼ 1þþ cbc̄ b̄ ground state is
twice as extended as the others.
Our results suggest that the JPC ¼ 1þþ ground state is

remarkably different with respect to the other cases studied
because, on one hand, its mass lies exactly at its lowest
S-wave meson-meson threshold and, on the other hand,
clusters of QQ̄ pairs (with Q being either c or b) appear
with a separation between them of the order of 1 fm. We
believe that both features are intimately related, and further
studies shall be performed which go beyond the scope of
this manuscript.

IV. SUMMARY AND OUTLOOK

Fully heavy tetraquarks have recently received con-
siderable attention from experiment. The most significant
example is the observation made by the LHCb
Collaboration of some enhancements in the J=ψ -pair
invariant mass spectrum whose origin could be linked to
hadron states consisting of four charm quarks. Moreover,
one should expect that the searching of doubly hidden
bottom and charm tetraquark states will probably become
one of the most attractive experimental goals with the
future running of BES III, Belle II, and LHC.
From the theoretical side, several approaches have been

proposed to calculate the spectrum of tetraquark systems
made up only of heavy quarks. Their main goal was to
establish theoretically the existence of fully heavy tetra-
quarks with narrow widths—i.e., stable. Mixed results have
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FIG. 7. Relevant radial distribution functions for the JPC ¼ 0þþ, 1þ−, 1þþ, and 2þþ ground states of the cbc̄ b̄ system.
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been obtained, with some theoretical studies claiming that
some lowest-lying all-heavy tetraquarks could be located
slightly lower than their respective thresholds of quarko-
nium pairs, and others asserting that fully heavy tetraquarks
are located much higher in mass than their lowest possible
meson-meson strong decay channel.
In order to contribute to a better understanding of the

multiquark dynamics, we have used a diffusion Monte
Carlo method to solve the many-body Schrödinger equation
that describes the fully heavy tetraquark systems.
This approach allows us to reduce the uncertainty of the
numerical calculation, accounts for multiparticle correla-
tions in the physical observables, and avoids the usual quark
clustering assumed in other theoretical techniques applied to
the same problem. Moreover, quantum Monte Carlo com-
putations shall enable us to scale the same bound-state
problem to other multiquark systems such as pentaquarks,
hexaquarks, etc.
The used quark model Hamiltonian has a pairwise

interaction which is the most general and accepted one:
Coulombþ linear-confiningþ hyperfine spin-spin; there-
fore, our analysis should provide some rigorous statements
about the mass location of the all-heavy tetraquark ground
states. Note, too, that such conclusions are parameter free,
because the model parameters were constrained by a
simultaneous fit of 36 mesons and 53 baryons, with a
range of agreement between theory and experiment around
10%–20%, which can be taken as an estimation of the
model uncertainty for fully heavy tetraquarks.
The ccc̄ c̄, ccb̄ b̄ (bbc̄ c̄), and bbb̄ b̄ lowest-lying states

are located just in the middle of the mass ranges predicted
by other theoretical approaches. All states appear above
their corresponding meson-meson thresholds, and thus the
existence of stable ccc̄ c̄, ccb̄ b̄ (bbc̄ c̄), and bbb̄ b̄ systems
with very narrow widths is disfavored; nevertheless, this
does not forbid them from having resonances in these
tetraquark sectors which can be experimentally observed in
the near future. Interesting too is the observation that there
is a transition between quark-antiquark pairs and diquark-
antidiquark ones when going from S ¼ 0 to S ¼ 2 in the
QQQ̄ Q̄ with all Q’s either c or b quarks, but not in the
ccb̄ b̄ (bbc̄ c̄) sector. However, it is important to clarify that
these states are compact ones, with sizes on the order of a

typical hadron. Finally, the JPC ¼ 0þþ ccc̄ c̄ ground state
is predicted to have a mass compatible with the enhance-
ments observed by the LHCb Collaboration.
Theoretical studies of the ccc̄ b̄, bbc̄ b̄, and cbc̄ b̄

systems are scarce because the complexity of the needed
coupled-channels calculation. For the ccc̄ b̄ and bbc̄ b̄
sectors, our results seem to indicate that the 0þ and 1þ

ground states are almost degenerate, with the 2þ lowest-
lying state located around 100 MeV above them. For the
cbc̄ b̄ system, we predict small mass splittings between
the studied bound states and absolute mass values located
in between those predicted by other theoretical works.
Moreover, we find clear evidence that the JPC ¼ 1þþ cbc̄ b̄
ground state has a meson-meson molecular configuration,
which deserves to be investigated further.
Finally, the diffusion Monte Carlo method is, in prin-

ciple, applicable to a wide range of related problems and
open questions. For instance, some natural extensions
of the work presented herein could be the analysis of
excited states and the exploration of other multiquark
systems such as pentaquarks, hexaquarks, etc. On the other
hand, answering some complex questions related with few-
and many-body hadron physics appears scientifically
interesting, such as what would be the binding energy
per quark in a many-body bound-state system, whether
there is any limit in the number of quarks and antiquarks
that a hadron could host, or if other constituents could play
a role in the stability of exotic hadrons.
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