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Magnetic field effect on the pion superfluid phase transition is investigated in the frame of a Pauli–
Villars regularized Nambu–Jona-Lasinio model. Instead of directly dealing with a charged pion
condensate, we apply Goldstone’s theorem (massless Goldstone boson πþ) to determine the onset of
the pion superfluid phase and obtain the phase diagram in the magnetic field, temperature, isospin,
and baryon chemical potential space. In a weak magnetic field, it is analytically proven that the
critical isospin chemical potential of the pion superfluid phase transition is equal to the mass of πþ

meson in the magnetic field. The pion superfluid phase is retarded to higher isospin chemical
potential and can survive at a higher temperature and higher baryon chemical potential under the
external magnetic field.

DOI: 10.1103/PhysRevD.102.114006

The study of quantum chromodynamics (QCD) at finite
isospin density and the corresponding pion superfluid
phase attracts much attention due to its relation to the
investigation of compact stars, isospin asymmetric nuclear
matter, and heavy-ion collisions at intermediate energies.
On the numerical side, while there are not yet precise
lattice results at finite baryon density due to the Fermion
sign problem, it is in principle no problem to do lattice
simulation at finite isospin density [1–3]. On the analyti-
cal side, effective models such as the Nambu–Jona-
Lasinio model (NJL), linear sigma model, and the chiral
perturbation theory have been widely used to investigate
pion superfluid phase structure [4–26]. There are two
equivalent criteria for the critical point of pion super-
fluid phase transition, the nonvanishing charged pion
condensate and the massless πþ meson, which correspond
to the spontaneous breaking of isospin symmetry and the
Goldstone boson, respectively, guaranteed by Goldstone’s
theorem [27,28]. With vanishing temperature, the critical
isospin chemical potential μcI is the pion mass in vacuum
mπ . When μI > mπ , the u quark and d̄ quark form coherent
pairs and condensate, and the system enters the pion
superfluid phase [1–26]. At hadron level, in the normal
phase ðμI < mπÞ without a charged pion condensate,
different pion modes explicitly show the mass splitting
according to their isospin with mπ� ¼ mπ ∓ μI and
mπ0 ¼ mπ . As μI ¼ μcI ¼ mπ , the excitation of πþ meson
is free with zero momentum, which indicates the onset of
the pion superfluid phase [2,12,15–17,24]. Inside the pion
superfluid phase ðμI ≥ mπÞ, πþ meson remains massless
as the Goldstone mode [2,12,15–17,24].

Recently, the magnetic properties of QCD matter have
become important. For instance, a certain class of neutron
stars (magnetars) exhibits intense magnetic fields of
strengths up to 1014–15 Gauss at the star surface, and
the field is expected to become stronger towards the star
center, about 1018 Gauss [29,30]. However, the magnetic
field effect on the pion superfluid is still an open
question. The difficulty lies in the fact that the pion
superfluid is a phase with charged pion condensates. It
breaks both the isospin symmetry in the flavor space and
the translational invariance in the coordinate space,
and thus the Fourier transformation between coordinate
and momentum spaces is not as simple as for a neutral
condensate or without a magnetic field. Lattice quantum
chromodynamics (LQCD) simulations exhibit a sign
problem at finite isospin chemical potential and the
magnetic field. By using a Taylor expansion in the
magnetic field, it is reported that at vanishing temper-
ature, the onset of the pion condensate shifts to a larger
isospin chemical potential under the magnetic fields [31],
which is qualitatively consistent with the enhancement of
the charged pion mass with growing magnetic fields [32].
In the study of effective models, people also focus on the
charged pion condensate, but the interaction between the
charged pion condensate and the magnetic field is simply
neglected in Refs. [33,34] or, taken into account by the
Ginzburg–Landau approach, assuming a tiny condensate
in Ref. [35].
In this paper, we will study the pion superfluid phase

transition at finite magnetic fields, temperature, isospin,
and baryon chemical potential in the frame of a Pauli–
Villars regularized NJL model, which is inspired by the
Bardeen-Cooper-Shrieffer theory and describes remarkably
well the quark pairing mechanisms and hadron mass*maoshijun@mail.xjtu.edu.cn
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spectra [36–41]. Instead of directly dealing with charged
pion condensate, we investigate the magnetic field effect
on pion superfluid through its Goldstone mode πþ, deter-
mining the critical point of pion superfluid phase tran-
sition by the massless πþ meson. Seriously taking into
account the breaking of translational invariance for
charged particles, the pion propagators, in terms of quark
bubbles, are analytically derived, and pion masses are
solved. At the weak magnetic field, vanishing temper-
ature, and vanishing baryon chemical potential, we
analytically prove that the critical isospin chemical
potential of the pion superfluid phase transition is equal
to the πþ mass in the magnetic field, the same as the
vanishing magnetic field case [2,12,15–17,24]. Under the
external magnetic field, the pion superfluid phase is
shifted to a higher isospin chemical potential and can
survive at a higher temperature and a higher baryon
chemical potential.
The two-flavor NJL model is defined through the

Lagrangian density in terms of quark fields ψ [36–41]

L ¼ ψ̄ðiγνDν −m0 þ γ0μÞψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�:
ð1Þ

Here the covariant derivative Dν ¼ ∂ν þ iQAν couples
quarks with electric charge Q ¼ diagðQu;QdÞ ¼
diagð2e=3;−e=3Þ to the external magnetic field B ¼
ð0; 0; BÞ in z-direction through the potential Aν ¼ ð0; 0;
Bx1; 0Þ. The quark chemical potential μ ¼ diagðμu; μdÞ ¼
diagðμB=3þ μI=2; μB=3 − μI=2Þ is a matrix in the flavor
space, with μu and μd being the u- and d-quark chemical
potentials and μB and μI being the baryon and isospin
chemical potentials. Note that G is the coupling constant
in scalar and pseudoscalar channels. At finite isospin
chemical potential and the magnetic field, the isospin
symmetry SUð2ÞI is broken down to Uð1ÞI symmetry, and
the chiral symmetry SUð2ÞA is broken down to Uð1ÞA
symmetry. With the spontaneous breaking of chiral Uð1ÞA
symmetry and isospin Uð1ÞI symmetry, the Goldstone
mode reads π0 meson and πþ meson, respectively. Note
that m0 is the current quark mass characterizing the
explicit chiral symmetry breaking.
Corresponding to the symmetries and their sponta-

neous breaking, we have two order parameters, the
neutral chiral condensate hψ̄ψi for chiral restoration
phase transition and the charged pion condensate
hψ̄γ5τ1ψi for pion superfluid phase transition. Under
magnetic fields, the charged pion condensate breaks
both the isospin symmetry in the flavor space and the
translational invariance in the coordinate space, and thus
the Fourier transformation between coordinate and
momentum spaces is not as simple as for the neutral
condensate or without a magnetic field. In our current
work, to avoid the complication and difficulty of dealing
with charged pion condensates under a magnetic field,

we will start from the normal phase only with neutral
chiral condensates and determine the critical point of pion
superfluid phase transition by the appearance of the
Goldstone boson, massless πþ meson. Physically, it is
equivalent to define the phase transition by the order
parameter (charged pion condensate) and Goldstone mode
(massless πþ meson), as guaranteed by Goldstone’s theo-
rem [2,12,27,28].
In mean field approximation, the chiral condensate hψ̄ψi

or the dynamical quark mass mq ¼ m0 − 2Ghψ̄ψi is con-
trolled by the gap equation [42–48],

m0 ¼ mqð1 − 2GJ1Þ; ð2Þ

J1 ¼ 3
X
f;n

αn
jQfBj
2π

Z
dp3

2π

1

Ef

× ½1 − fðEf þ μfÞ − fðEf − μfÞ�; ð3Þ

with the summation over all flavors and Landau energy
levels, spin factor αn ¼ 2 − δn0, quark energy Ef ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2njQfBj þm2

q

q
, and the Fermi–Dirac distribution

function fðxÞ ¼ 1=ðex=T þ 1Þ.
As quantum fluctuations above the mean field, mesons

are constructed through quark bubble summations in the
frame of random phase approximation [37–41]. Taking
into account the interaction between charged mesons and
magnetic fields, and generalizing our derivations in
Ref. [48] to a finite quark chemical potential case, the
meson propagator DM can be expressed in terms of the
meson polarization function ΠM with conserved Ritus
momentum k̄ [49–51],

DMðk̄Þ ¼
G

1 −GΠMðk̄Þ
: ð4Þ

The meson pole massmM is defined through the pole of the
propagator at zero momentum,

1 − GΠMðk0 ¼ mMÞ ¼ 0: ð5Þ

Based on Goldstone’s theorem for the spontaneous
breaking of isospin symmetry, massless Goldstone mode
πþ exists in the pion superfluid phase. Therefore, the
critical isospin chemical potential μcπI for the pion super-
fluid can be identified by the condition

mπþðB; T; μB; μcπI Þ ¼ 0: ð6Þ

For the πþ meson, we have

Ππþðk0Þ ¼ J1 þ J2ðk0Þ; ð7Þ
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J2ðk0Þ ¼
X
n;n0

Z
dp3

2π

jn;n0 ðk0Þ
4EnEn0

ð8Þ

×

�
fð−En0 − μuÞ − fðEn − μdÞ

k0 þ μI þ En0 þ En

þ fðEn0 − μuÞ − fð−En − μdÞ
k0 þ μI − En0 − En

�
;

jn;n0 ðk0Þ ¼ ½ðk0 þ μIÞ2=2 − n0jQuBj − njQdBj�jþn;n0
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0jQuBjnjQdBj

p
j−n;n0 ; ð9Þ

with the u-quark energy En0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2n0jQuBj þm2

q

q
and

d-quark energy En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2njQdBj þm2

q

q
. The detailed

derivations of Eqs. (4), (7), (8), and (9) are written in the
Appendix. Note that the lowest Landau-level term with n ¼
n0 ¼ 0 does not contribute to the polarization function with
j�0;0 ¼ 0 because the spins of u and d̄ quarks at the lowest
Landau level are aligned parallel to the magnetic field, but
πþ meson has spin zero. This leads to the heavy πþ mass in
the magnetic field [48] and thus delays the pion superfluid
in the magnetic field (see the discussions of Fig. 1).
Because of the four-fermion interaction, the NJL model

is not a renormalizable theory and needs regularization.
Although the above analytical derivations do not depend on
the regularization, in the numerical calculations we should
choose a regularization scheme to obtain finite results for
momentum integrals. The magnetic field does not cause
extra ultraviolet divergence but introduces discrete Landau
levels and anisotropy in momentum space. The usually
used hard/soft momentum cutoff regularization schemes
do not work well in the magnetic field since the momen-
tum cutoff, together with the discrete Landau levels, will
cause some nonphysical results [52–58], such as the
oscillations of the chiral condensate, critical temperature,

critical density, tachyonic pion mass, and the breaking of
the law of causality for the Goldstone mode. In this work,
we take into account the gauge invariant Pauli–Villars
regularization scheme [47,48], where the quark momentum
runs formally from zero to infinity, and the nonphysical
results are cured [56–58]. The three parameters in the
Pauli–Villars regularized NJL model, namely the current
quark mass m0 ¼ 5 MeV, the coupling constant
G ¼ 3.44 GeV−2, and the Pauli–Villars mass parameter
Λ ¼ 1127 MeV are fixed by fitting the chiral condensate
hψ̄ψi ¼ −ð250 MeVÞ3, pion mass mπ ¼ 134 MeV, and
pion decay constant fπ ¼ 93 MeV in a vacuum with T ¼
μB ¼ μI ¼ 0 and B ¼ 0.
In Fig. 1, we plot the critical isospin chemical potential

μcπI (black and red solid lines) for the pion superfluid phase
transition as a function of the magnetic field at T ¼ μB ¼ 0,
which is determined by the condition of the massless
Goldstone boson mπþðB; T ¼ μB ¼ 0; μcπI Þ ¼ 0. Note that
μcπI increases with the magnetic field, which is qualitatively
consistent with the conclusion of LQCD [31] and model
calculations [35], and this means that the magnetic field
delays/disfavors the pion superfluid phase transition at
finite isospin chemical potential. Physically, it can be
understood in this way. Locating the two constituent quarks
at the lowest Landau level is forbidden for charged pions
due to its zero spin. According to the quark energy

Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2njQfBj þm2

q

q
, different electric charges of

u and d quarks indicate a different effective quark massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njQfBj þm2

q

q
with a finite magnetic field and zero

momentum p3 ¼ 0. This mass difference plays the role of
an effective Fermi surface mismatch when u quark and d̄
quark form cooper pairs. The larger the magnetic field
(mass difference) is, the more difficult to form pion
superfluid becomes, and this leads to the increasing μcπI
in the magnetic field.
Critical isospin chemical potential μccI for chiral restora-

tion phase transition (see green dotted line in Fig. 1) is
determined by the dynamical quark mass. At finite mag-
netic fields, chiral restoration is a first-order phase tran-
sition, and the quark mass jumps from a large value to a
small value. It is noticeable that μccI and μcπI are different
from each other, except for one point at eB ¼ 4.75m2

π with
μccI > μcπI at eB < 4.75m2

π and μccI < μcπI at eB > 4.75m2
π .

The critical isospin chemical potential μcπI is separated
into two parts, denoted by the connecting point of the red
and black solid lines at eB ¼ 4.75m2

π in Fig. 1. For
eB < 4.75m2

π , we observe that the critical isospin chemical
potential is equal to the πþ mass in the magnetic field with
μcπI ¼ Mπþ ¼ mπþðB; T ¼ μB ¼ μI ¼ 0Þ, as shown by the
overlap between the black solid line and blue dashed line in
Fig. 1. This conclusion can be analytically proven, similar
to the case without a magnetic field [12]. At T ¼ 0, the
Fermi–Dirac distribution fðxÞ becomes a Heaviside step
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FIG. 1. Critical isospin chemical potential μcπI (black and red
solid lines) for the pion superfluid phase transition and μccI (green
dotted line) for the chiral restoration phase transition as a function
of the magnetic field at T ¼ μB ¼ 0. Note that πþ mass in the
magnetic field Mπþ ¼ mπþðB; T ¼ μB ¼ μI ¼ 0Þ is plotted in a
blue dashed line for reference.
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function θð−xÞ. With a fixed magnetic field, we solve a
constant quark mass mqðB; T ¼ μB ¼ 0; μIÞ ¼ mqðB; T ¼
μB ¼ μI ¼ 0Þ from gap Eq. (2) before the chiral restoration
happens. And by straightforward comparison of gap Eq. (2)
and pole Eq. (5), a linearly decreasing πþ mass is
obtained mπþðB; T ¼ μB ¼ 0; μIÞ ¼ Mπþ − μI . Applying
Goldstone’s theorem, the critical isospin chemical poten-
tial μcπI for the pion superfluid is determined by the
condition mπþðB; T ¼ μB ¼ 0; μcπI Þ ¼ 0. Therefore, we
solve μcπI ¼ Mπþ . At eB ¼ 4.75m2

π, both the pion super-
fluid phase transition and the chiral restoration phase
transition happen at the same critical isospin chemical
potential μcπI ¼ μccI . Since chiral restoration is a first-order
phase transition, associated with the quark mass jump, it
leads to the discontinuous μcπI for the pion superfluid phase
transition, as shown by the different slopes of the black and
red lines around eB ¼ 4.75m2

π. For eB > 4.75m2
π, no such

analytical derivations are available, and we should rely on
the numerical calculations. The critical isospin chemical
potential μcπI is deviated from Mπþ , although they both
increase in magnetic fields. With stronger magnetic fields,
the deviation becomes larger.
We now turn on the temperature effect and depict the

pion superfluid phase diagram in the μI − T plane with
μB ¼ 0, the fixed magnetic field eB=m2

π ¼ 0 (black dashed
line), and eB=m2

π ¼ 5 (red solid line) in Fig. 2. The phase
transition line determined by the massless πþ meson
divides the μI − T plane into two regions. The pion
superfluid phase is located in the high isospin chemical
and low temperature region, and the quarks are in the
normal phase for the low isospin chemical potential and/or
high temperature region. With increasing temperature,
the quark thermal motion becomes strong. It prohibits
the quark pairing and leads to the phase transition from the
pion superfluid phase to the normal phase. The critical
temperature increases with isospin chemical potential.
Compared to the vanishing magnetic field case, the pion
superfluid phase is retarded to higher isospin chemical
potential, and it survives in higher temperature under a
finite magnetic field.

Figure 3 is the phase diagram in the μI − μB plane with
T ¼ 0 and the fixed magnetic field. The black dashed line is
for eB=m2

π ¼ 0, and the red solid line is for eB=m2
π ¼ 5.

The pion superfluid phase is located in the high isospin
chemical potential and low baryon chemical potential
region. In the low isospin chemical potential and/or high
baryon chemical potential region, quarks are in the normal
phase. At zero baryon chemical potential, the u quark and
d̄ quark form coherent pairs and condensate on a uniform
Fermi surface, as μI > μcπI . When the baryon chemical
potential is switched on, there appears to be a Fermi
surface mismatch between the u quark and d̄ quark, and it
causes the phase transition from the pion superfluid phase
to the normal phase. The critical baryon chemical poten-
tial increases with isospin chemical potential. With a
stronger magnetic field, the pion superfluid phase happens
at higher isospin chemical potential and survives at higher
baryon chemical potential. It should be mentioned that
when the baryon chemical potential is large enough, the
quark system will enter the color superconductor phase
[59–67]. Nonzero isospin chemical potential tends to
destroy the color condensate, and thus in a large isospin
chemical potential case, it is safe to neglect the color
superconductor.
The magnetic field effect on the pion superfluid phase

transition is studied in the frame of a Pauli–Villars
regularized NJL model. Instead of directly dealing with
the charged pion condensate, we apply Goldstone’s
theorem (massless Goldstone boson πþ) to determine
the onset of the pion superfluid phase. Seriously taking
into account the breaking of translational invariance,
the charged pion propagator is constructed at the finite
magnetic field, temperature, and chemical potential, and
the πþ mass and pion superfluid phase diagram are
obtained. At weak magnetic field, vanishing temperature,
and vanishing baryon chemical potential, it is analytically
proven that the critical isospin chemical potential μcπI is
equal to the πþ mass in the magnetic field, μcπI ¼ Mπþ .
Under the external magnetic field, the pion superfluid
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FIG. 2. Pion superfluid phase diagram in the μI − T plane with
μB ¼ 0 and a fixed magnetic field. The black dashed line is for
eB=m2

π ¼ 0, and the red solid line is for eB=m2
π ¼ 5.
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FIG. 3. Pion superfluid phase diagram in the μI − μB plane with
T ¼ 0 and fixed magnetic field. The black dashed line is for
eB=m2

π ¼ 0, and the red solid line is for eB=m2
π ¼ 5.
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phase is retarded to higher isospin chemical potential and
can survive at higher temperatures and higher baryon
chemical potentials.
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APPENDIX: DERIVATIONS OF CHARGED
MESON PROPAGATOR IN A MAGNETIC FIELD

As quantum fluctuations above the mean field, mesons
are constructed through quark bubble summation in the
frame of RPA [37–41]. Namely, the quark interaction via a
meson exchange is effectively described by using the
Dyson–Schwinger equation,

DMðx; zÞ ¼ 2Gδðx − zÞ þ
Z

d4y2GΠMðx; yÞDMðy; zÞ;

ðA1Þ

where DMðx; yÞ represents the meson propagator from x to
y, and the corresponding meson polarization function is the
quark bubble

ΠMðx; yÞ ¼ iTr½Γ�
MSðx; yÞΓMSðy; xÞ� ðA2Þ

with the meson vertex

ΓM ¼

8>>><
>>>:

1 M ¼ σ

iτþγ5 M ¼ πþ
iτ−γ5 M ¼ π−

iτ3γ5 M ¼ π0;

Γ�
M ¼

8>>><
>>>:

1 M ¼ σ

iτ−γ5 M ¼ πþ
iτþγ5 M ¼ π−

iτ3γ5 M ¼ π0:

ðA3Þ

The quark propagator matrix in flavor space S ¼
diagðSu; SdÞ is at mean field level, and the trace is taken
in spin, color, and flavor spaces.
There are two equivalent ways to treat the quark and

meson propagators in the magnetic field, the Schwinger
scheme [44–46] and the Ritus scheme [49–51]. In the
following, we derive the meson propagator with the Ritus
method and comment on its advantage in the end.
In the Ritus scheme, one can well define the Fourier-like

transformation for the particle propagator from the con-
served Ritus momentum space to the coordinate space
[49–51]. The quark propagator with flavor f in the
coordinate space can be written as

Sfðx; yÞ ¼
X
n

Z
d3p̃
ð2πÞ3 e

−ip̃·ðx−yÞPnðx1; p2Þ

×Dfðp̄ÞPnðy1; p2Þ;

Pnðx1; p2Þ ¼
1

2
½gsfn ðx1; p2Þ þ Ing

sf
n−1ðx1; p2Þ�

þ isf
2

½gsfn ðx1; p2Þ − Ing
sf
n−1ðx1; p2Þ�γ1γ2;

D−1
f ðp̄Þ ¼ γ · p̄ −mq; ðA4Þ

where p̃ ¼ ðp0; 0; p2; p3Þ is the Fourier transformed
momentum, p̄ ¼ ðp0 þ μf; 0;−sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njQfBj

p
; p3Þ is the

conserved Ritus momentum with n describing the quark
Landau level in the magnetic field, μf is the quark chemical
potential, sf ¼ sgnðQfBÞ is the quark sign factor, the
magnetic field dependent function g

sf
n ðx1; p2Þ ¼ ϕnðx1 −

sfp2=jQfBjÞ is controlled by the Hermite polynomial

HnðζÞ via ϕnðζÞ ¼ ð2nn! ffiffiffi
π

p jQfBj−1=2Þ−1=2e−ζ2jQfBj=2Hn×
ðζ=jQfBj−1=2Þ, and In ¼ 1 − δn0 is governed by the Landau
energy level.
For charged mesons M ¼ π� with spin zero, the Fourier

transformation is extended to

DMðk̄Þ ¼
Z

d4xd4yF�
kðxÞDMðx; yÞFkðyÞ;

ΠMðk̄Þ ¼
Z

d4xd4yF�
kðxÞΠMðx; yÞFkðyÞ; ðA5Þ

where FkðxÞ ¼ e−ik̃·xgsMl ðx1; k2Þ is the solution of the
Klein–Gordon equation with index l describing the meson
Landau level in the magnetic field, the Fourier transformed
momentum k̃ ¼ ðk0; 0; k2; k3Þ, and the meson sign factor
sM ¼ sgnðQMBÞ, and k̄¼ðk0;0;−sM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ1ÞjQMBj
p

;k3Þ
is the conserved four-dimensional Ritus momentum.
Taking into account the complete and orthogonal

conditions

X
l

Z
d3k̃
ð2πÞ3 FkðxÞF�

kðyÞ ¼ δð4Þðx − yÞ; ðA6Þ

Z
d4xFkðxÞF�

k0 ðxÞ ¼ ð2πÞ4δð3Þðk̃ − k̃0Þδll0 ; ðA7Þ

and the Dyson–Schwinger Eq. (A1), the meson propagator
in momentum space can be simplified as

DMðk̄Þ ¼
2G

1 − 2GΠMðk̄Þ
: ðA8Þ

Taking the mean field quark propagator (A4) and the
definition (A2) for the quark bubble, we have the πþ
polarization function
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Ππþðx; yÞ ¼ 2i3NcTrD½γ5Suðx; yÞγ5Sdðy; xÞ�

¼ 2i3Nc

X
n;n0

Z
d3p̃d3q̃
ð2πÞ6 e−iðp̃−q̃Þðx−yÞ

× TrD

�
Pnðx1; q2ÞPn0 ðx1; p2Þ

−γ · p̄þmq

p̄2 −m2
q

þ Pnðy1; q2ÞPn0 ðy1; p2Þ
γ · q̄þmq

q̄2 −m2
q

�
ðA9Þ

in coordinate space and

Ππþðk̄Þ ¼ 8i3Nc

Z
d4xd4y

X
n;n0

Z
d3p̃d3q̃
ð2πÞ6 e−iðp̃−q̃−k̃Þðx−yÞ

× gþl ðx1; k2Þgþl ðy1; k2Þ

×

�
Aþðx1; y1; k2Þ

m2
q − p̄0q̄0 þ p̄3q̄3

ðp̄2 −m2
qÞðq̄2 −m2

qÞ

þ A−ðx1; y1; k2Þ
p̄2q̄2

ðp̄2 −m2
qÞðq̄2 −m2

qÞ
�

ðA10Þ

in Ritus-momentum space with

A�ðx1; y1; k2Þ ¼ αþðx1; k2Þαþðy1; k2Þ � αþ ↔ α−;

α�ðz; k2Þ ¼
½Ingsdn−1ðz; q2Þgsun0 ðz; p2Þ � u ↔ d�

2
:

ðA11Þ

Doing the integrations over x0, x2, x3 and y0, y2, y3,
we obtain the momentum conservation relation p̃ ¼
q̃þ k̃. At finite temperature, the integration over the
particle energy is replaced by the Fermion/Boson
Matsubara frequency summation in the imaginary time
formalism of finite temperature field theory. After a

straightforward derivation, we have the πþ polarization
function at the pole

Ππþðk0Þ ¼ J1 þ J2ðk0Þ; ðA12Þ

J2ðk0Þ ¼
X
n;n0

Z
dp3

2π

jn;n0 ðk0Þ
4EnEn0

�
fð−En0 − μuÞ− fðEn − μdÞ

k0 þ μI þEn0 þEn

þ fðEn0 − μuÞ− fð−En − μdÞ
k0 þ μI −En0 −En

�
;

jn;n0 ðk0Þ ¼ ½ðk0 þ μIÞ2=2− n0jQuBj− njQdBj�jþn;n0
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0jQuBjnjQdBj

p
j−n;n0 ; ðA13Þ

j�n;n0 ¼ 2Nc

Z
dx1dy1dq2=2πA�ðx1; y1; k2Þ; ðA14Þ

with the quark energies En0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2n0jQuBj þm2

q

q
and

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q23 þ 2njQdBj þm2

q

q
and the Fermi–Dirac distri-

bution function fðEÞ ¼ 1=ðeE=T þ 1Þ.
In the end, let us briefly compare the Ritus and

Schwinger schemes in constructing mesons under the
external magnetic field. The difference is the treatment
of the breaking of translational symmetry by the magnetic
field [48]. A conserved momentum, called Ritus momen-
tum, is introduced in the Ritus scheme and a Schwinger
phase is embedded in the particle’s propagator in the
Schwinger scheme. For neutral mesons, the Ritus momen-
tum is reduced to the normal momentum and the Schwinger
phase disappears automatically; the two schemes are both
convenient and give the same analytic formula. For charged
mesons, we still obtain an algebraic equation for the meson
propagator in terms of the conserved Ritus momentum,
while the nontrivial Schwinger phase leads to an integral
equation for the meson propagator, in which it is more
difficult to extract the meson properties.
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