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Magnetic field effect on the pion superfluid phase transition is investigated in the frame of a Pauli—
Villars regularized Nambu-Jona-Lasinio model. Instead of directly dealing with a charged pion
condensate, we apply Goldstone’s theorem (massless Goldstone boson z ™) to determine the onset of

the pion superfluid phase and obtain the phase diagram in the magnetic field, temperature, isospin,

and baryon chemical potential space. In a weak magnetic field, it is analytically proven that the
critical isospin chemical potential of the pion superfluid phase transition is equal to the mass of 7™
meson in the magnetic field. The pion superfluid phase is retarded to higher isospin chemical
potential and can survive at a higher temperature and higher baryon chemical potential under the

external magnetic field.
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The study of quantum chromodynamics (QCD) at finite
isospin density and the corresponding pion superfluid
phase attracts much attention due to its relation to the
investigation of compact stars, isospin asymmetric nuclear
matter, and heavy-ion collisions at intermediate energies.
On the numerical side, while there are not yet precise
lattice results at finite baryon density due to the Fermion
sign problem, it is in principle no problem to do lattice
simulation at finite isospin density [1-3]. On the analyti-
cal side, effective models such as the Nambu—Jona-
Lasinio model (NJL), linear sigma model, and the chiral
perturbation theory have been widely used to investigate
pion superfluid phase structure [4-26]. There are two
equivalent criteria for the critical point of pion super-
fluid phase transition, the nonvanishing charged pion
condensate and the massless z+ meson, which correspond
to the spontaneous breaking of isospin symmetry and the
Goldstone boson, respectively, guaranteed by Goldstone’s
theorem [27,28]. With vanishing temperature, the critical
isospin chemical potential x§ is the pion mass in vacuum
m,. When y; > m,, the u quark and d quark form coherent
pairs and condensate, and the system enters the pion
superfluid phase [1-26]. At hadron level, in the normal
phase (u; < m,) without a charged pion condensate,
different pion modes explicitly show the mass splitting
according to their isospin with m_ =m, F y; and
My = m,. As u; = u§ = my, the excitation of z* meson
is free with zero momentum, which indicates the onset of
the pion superfluid phase [2,12,15-17,24]. Inside the pion
superfluid phase (4; > m,), #© meson remains massless
as the Goldstone mode [2,12,15-17,24].
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Recently, the magnetic properties of QCD matter have
become important. For instance, a certain class of neutron
stars (magnetars) exhibits intense magnetic fields of
strengths up to 10'*15 Gauss at the star surface, and
the field is expected to become stronger towards the star
center, about 10'® Gauss [29,30]. However, the magnetic
field effect on the pion superfluid is still an open
question. The difficulty lies in the fact that the pion
superfluid is a phase with charged pion condensates. It
breaks both the isospin symmetry in the flavor space and
the translational invariance in the coordinate space,
and thus the Fourier transformation between coordinate
and momentum spaces is not as simple as for a neutral
condensate or without a magnetic field. Lattice quantum
chromodynamics (LQCD) simulations exhibit a sign
problem at finite isospin chemical potential and the
magnetic field. By using a Taylor expansion in the
magnetic field, it is reported that at vanishing temper-
ature, the onset of the pion condensate shifts to a larger
isospin chemical potential under the magnetic fields [31],
which is qualitatively consistent with the enhancement of
the charged pion mass with growing magnetic fields [32].
In the study of effective models, people also focus on the
charged pion condensate, but the interaction between the
charged pion condensate and the magnetic field is simply
neglected in Refs. [33,34] or, taken into account by the
Ginzburg-Landau approach, assuming a tiny condensate
in Ref. [35].

In this paper, we will study the pion superfluid phase
transition at finite magnetic fields, temperature, isospin,
and baryon chemical potential in the frame of a Pauli—
Villars regularized NJL. model, which is inspired by the
Bardeen-Cooper-Shrieffer theory and describes remarkably
well the quark pairing mechanisms and hadron mass
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spectra [36—41]. Instead of directly dealing with charged
pion condensate, we investigate the magnetic field effect
on pion superfluid through its Goldstone mode =+, deter-
mining the critical point of pion superfluid phase tran-
sition by the massless z™ meson. Seriously taking into
account the breaking of translational invariance for
charged particles, the pion propagators, in terms of quark
bubbles, are analytically derived, and pion masses are
solved. At the weak magnetic field, vanishing temper-
ature, and vanishing baryon chemical potential, we
analytically prove that the critical isospin chemical
potential of the pion superfluid phase transition is equal
to the #7 mass in the magnetic field, the same as the
vanishing magnetic field case [2,12,15-17,24]. Under the
external magnetic field, the pion superfluid phase is
shifted to a higher isospin chemical potential and can
survive at a higher temperature and a higher baryon
chemical potential.

The two-flavor NJL model is defined through the
Lagrangian density in terms of quark fields y [36—41]

L =iy, D" = mg + you)y + G[(fy)* + (piystw)?].

(1)

Here the covariant derivative D, = d, + iQA, couples
quarks  with electric charge Q = diag(Q,,Q,) =
diag(2e/3,—¢/3) to the external magnetic field B =
(0,0, B) in z-direction through the potential A, = (0,0,
Bx{,0). The quark chemical potential p = diag(u,,, uy) =
diag(ug/3 + p;/2, ug/3 — pu;/2) is a matrix in the flavor
space, with u, and u,; being the u- and d-quark chemical
potentials and pp and p; being the baryon and isospin
chemical potentials. Note that G is the coupling constant
in scalar and pseudoscalar channels. At finite isospin
chemical potential and the magnetic field, the isospin
symmetry SU(2), is broken down to U(1), symmetry, and
the chiral symmetry SU(2), is broken down to U(1),
symmetry. With the spontaneous breaking of chiral U(1),
symmetry and isospin U(1), symmetry, the Goldstone
mode reads 7° meson and 7t meson, respectively. Note
that m, is the current quark mass characterizing the
explicit chiral symmetry breaking.

Corresponding to the symmetries and their sponta-
neous breaking, we have two order parameters, the
neutral chiral condensate () for chiral restoration
phase transition and the charged pion condensate
(ryst'y) for pion superfluid phase transition. Under
magnetic fields, the charged pion condensate breaks
both the isospin symmetry in the flavor space and the
translational invariance in the coordinate space, and thus
the Fourier transformation between coordinate and
momentum spaces is not as simple as for the neutral
condensate or without a magnetic field. In our current
work, to avoid the complication and difficulty of dealing
with charged pion condensates under a magnetic field,

we will start from the normal phase only with neutral
chiral condensates and determine the critical point of pion
superfluid phase transition by the appearance of the
Goldstone boson, massless z™ meson. Physically, it is
equivalent to define the phase transition by the order
parameter (charged pion condensate) and Goldstone mode
(massless 77 meson), as guaranteed by Goldstone’s theo-
rem [2,12,27,28].

In mean field approximation, the chiral condensate ()
or the dynamical quark mass m, = my — 2G(yy) is con-
trolled by the gap equation [42—48],

mozmq(l—ZGfl), (2)
_ |QfB| dp; 1
J] = 3;(1,1 o gE—f
x (L= f(Es +py) = f(Ef — py)], (3)

with the summation over all flavors and Landau energy
levels, spin factor @, =2 —6,), quark energy E;=

\/ p3 +2n|Q¢B| + m2, and the Fermi-Dirac distribution

function f(x) = 1/(e" 4+ 1).

As quantum fluctuations above the mean field, mesons
are constructed through quark bubble summations in the
frame of random phase approximation [37-41]. Taking
into account the interaction between charged mesons and
magnetic fields, and generalizing our derivations in
Ref. [48] to a finite quark chemical potential case, the
meson propagator D,, can be expressed in terms of the
meson polarization function II;, with conserved Ritus
momentum k [49-51],

- G
Dy (k) = TG, (1) (4)

The meson pole mass m,, is defined through the pole of the
propagator at zero momentum,

Based on Goldstone’s theorem for the spontaneous
breaking of isospin symmetry, massless Goldstone mode
7t exists in the pion superfluid phase. Therefore, the
critical isospin chemical potential p” for the pion super-
fluid can be identified by the condition

my+ (B, T, pg, u5™) = 0. (6)

For the 7™ meson, we have

[+ (ko) = Jy + J(ko), (7)
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2 (ko) 8
0) Z/ 2 4E, E, (8)

X |:f<_En’ _ﬂu) _f(En _,ud)
ko+u; +Ey +E,

+f(En’ _:uu) _f(_En _/"d):|
kO +u—Ey—E,

[(ko + p1)2/2 = n'|Q,B| — n|QyBlJj,
—2+/1'|Q,B|n|Q4B|j; .. ©)

El

Jnn' (k0> =

with the u-quark energy E,; = \/ p3 +2n'|Q,B| + m7 and

d-quark energy E, = \/ p3 + 2n|Q,B| + m. The detailed

derivations of Eqs. (4), (7), (8), and (9) are written in the
Appendix. Note that the lowest Landau-level term with n =
n’ = 0 does not contribute to the polarization function with
Jio = 0 because the spins of u and d quarks at the lowest
Landau level are aligned parallel to the magnetic field, but
7" meson has spin zero. This leads to the heavy z" mass in
the magnetic field [48] and thus delays the pion superfluid
in the magnetic field (see the discussions of Fig. 1).
Because of the four-fermion interaction, the NJL model
is not a renormalizable theory and needs regularization.
Although the above analytical derivations do not depend on
the regularization, in the numerical calculations we should
choose a regularization scheme to obtain finite results for
momentum integrals. The magnetic field does not cause
extra ultraviolet divergence but introduces discrete Landau
levels and anisotropy in momentum space. The usually
used hard/soft momentum cutoff regularization schemes
do not work well in the magnetic field since the momen-
tum cutoff, together with the discrete Landau levels, will
cause some nonphysical results [52-58], such as the
oscillations of the chiral condensate, critical temperature,
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FIG. 1. Critical isospin chemical potential u§* (black and red
solid lines) for the pion superfluid phase transition and u{ (green
dotted line) for the chiral restoration phase transition as a function
of the magnetic field at T = pp = 0. Note that z+ mass in the
magnetic field M+ = m (B, T = ug = u; = 0) is plotted in a
blue dashed line for reference.

critical density, tachyonic pion mass, and the breaking of
the law of causality for the Goldstone mode. In this work,
we take into account the gauge invariant Pauli—Villars
regularization scheme [47,48], where the quark momentum
runs formally from zero to infinity, and the nonphysical
results are cured [56-58]. The three parameters in the
Pauli—Villars regularized NJL model, namely the current
quark mass my =235 MeV, the coupling constant
G =3.44 GeV~2, and the Pauli-Villars mass parameter
A = 1127 MeV are fixed by fitting the chiral condensate
(py) = —(250 MeV)?3, pion mass m, = 134 MeV, and
pion decay constant f, =93 MeV in a vacuum with 7' =
up =u; =0and B =0.

In Fig. 1, we plot the critical isospin chemical potential
u§”* (black and red solid lines) for the pion superfluid phase
transition as a function of the magnetic field at 7 = up = 0,
which is determined by the condition of the massless
Goldstone boson m (B, T = pug = 0, u5™) = 0. Note that
us* increases with the magnetic field, which is qualitatively
consistent with the conclusion of LQCD [31] and model
calculations [35], and this means that the magnetic field
delays/disfavors the pion superfluid phase transition at
finite isospin chemical potential. Physically, it can be
understood in this way. Locating the two constituent quarks
at the lowest Landau level is forbidden for charged pions
due to its zero spin. According to the quark energy

E; = \/ p3+ 2n|QB| + mé different electric charges of

u and d quarks indicate a different effective quark mass

\/2n|QsB| + m} with a finite magnetic field and zero

momentum p3; = 0. This mass difference plays the role of
an effective Fermi surface mismatch when u quark and d
quark form cooper pairs. The larger the magnetic field
(mass difference) is, the more difficult to form pion
superfluid becomes, and this leads to the increasing pj”
in the magnetic field.

Critical isospin chemical potential u$¢ for chiral restora-
tion phase transition (see green dotted line in Fig. 1) is
determined by the dynamical quark mass. At finite mag-
netic fields, chiral restoration is a first-order phase tran-
sition, and the quark mass jumps from a large value to a
small value. It is noticeable that u§¢ and u§* are different
from each other, except for one point at eB = 4.75m2 with
HS€ > uS™ at eB < 4.75m2 and p§¢ < uS* at eB > 4.75m2.

The critical isospin chemical potential u{” is separated
into two parts, denoted by the connecting point of the red
and black solid lines at eB = 4.75m2 in Fig. 1. For
eB < 4.75m2, we observe that the critical isospin chemical
potential is equal to the z mass in the magnetic field with
W =My =my (B, T = pug = pu; = 0), as shown by the
overlap between the black solid line and blue dashed line in
Fig. 1. This conclusion can be analytically proven, similar
to the case without a magnetic field [12]. At T = 0, the
Fermi-Dirac distribution f(x) becomes a Heaviside step
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FIG. 2. Pion superfluid phase diagram in the y; — T plane with
up = 0 and a fixed magnetic field. The black dashed line is for
eB/m2 = 0, and the red solid line is for eB/m2 = 5.

function 6(—x). With a fixed magnetic field, we solve a
constant quark mass m,(B,T = pp = 0,4;) = m,(B,T =
ug = u; = 0) from gap Eq. (2) before the chiral restoration
happens. And by straightforward comparison of gap Eq. (2)
and pole Eq. (5), a linearly decreasing n* mass is
obtained m,+(B,T = ug = 0,p;) = M+ — p;. Applying
Goldstone’s theorem, the critical isospin chemical poten-
tial u§* for the pion superfluid is determined by the
condition m+(B,T = ug = 0,u5") = 0. Therefore, we
solve u5* = M. At eB = 4.75m2, both the pion super-
fluid phase transition and the chiral restoration phase
transition happen at the same critical isospin chemical
potential u§* = uj¢. Since chiral restoration is a first-order
phase transition, associated with the quark mass jump, it
leads to the discontinuous y§”* for the pion superfluid phase
transition, as shown by the different slopes of the black and
red lines around eB = 4.75m2. For eB > 4.75m2, no such
analytical derivations are available, and we should rely on
the numerical calculations. The critical isospin chemical
potential u¢* is deviated from M+, although they both
increase in magnetic fields. With stronger magnetic fields,
the deviation becomes larger.

We now turn on the temperature effect and depict the
pion superfluid phase diagram in the u; — T plane with
ug = 0, the fixed magnetic field eB/m2 = 0 (black dashed
line), and eB/m?2 = 5 (red solid line) in Fig. 2. The phase
transition line determined by the massless #© meson
divides the u; —T plane into two regions. The pion
superfluid phase is located in the high isospin chemical
and low temperature region, and the quarks are in the
normal phase for the low isospin chemical potential and/or
high temperature region. With increasing temperature,
the quark thermal motion becomes strong. It prohibits
the quark pairing and leads to the phase transition from the
pion superfluid phase to the normal phase. The critical
temperature increases with isospin chemical potential.
Compared to the vanishing magnetic field case, the pion
superfluid phase is retarded to higher isospin chemical
potential, and it survives in higher temperature under a
finite magnetic field.

fr (MeV)

FIG. 3. Pion superfluid phase diagram in the y; — up plane with
T =0 and fixed magnetic field. The black dashed line is for
eB/m2 = 0, and the red solid line is for eB/m2 = 5.

Figure 3 is the phase diagram in the y; — up plane with
T = 0 and the fixed magnetic field. The black dashed line is
for eB/m2 = 0, and the red solid line is for eB/m2 = 5.
The pion superfluid phase is located in the high isospin
chemical potential and low baryon chemical potential
region. In the low isospin chemical potential and/or high
baryon chemical potential region, quarks are in the normal
phase. At zero baryon chemical potential, the u quark and
d quark form coherent pairs and condensate on a uniform
Fermi surface, as u; > u§”. When the baryon chemical
potential is switched on, there appears to be a Fermi
surface mismatch between the u quark and d quark, and it
causes the phase transition from the pion superfluid phase
to the normal phase. The critical baryon chemical poten-
tial increases with isospin chemical potential. With a
stronger magnetic field, the pion superfluid phase happens
at higher isospin chemical potential and survives at higher
baryon chemical potential. It should be mentioned that
when the baryon chemical potential is large enough, the
quark system will enter the color superconductor phase
[59-67]. Nonzero isospin chemical potential tends to
destroy the color condensate, and thus in a large isospin
chemical potential case, it is safe to neglect the color
superconductor.

The magnetic field effect on the pion superfluid phase
transition is studied in the frame of a Pauli—Villars
regularized NJL model. Instead of directly dealing with
the charged pion condensate, we apply Goldstone’s
theorem (massless Goldstone boson z) to determine
the onset of the pion superfluid phase. Seriously taking
into account the breaking of translational invariance,
the charged pion propagator is constructed at the finite
magnetic field, temperature, and chemical potential, and
the z* mass and pion superfluid phase diagram are
obtained. At weak magnetic field, vanishing temperature,
and vanishing baryon chemical potential, it is analytically
proven that the critical isospin chemical potential u§”* is
equal to the #* mass in the magnetic field, u§* = M.
Under the external magnetic field, the pion superfluid
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phase is retarded to higher isospin chemical potential and
can survive at higher temperatures and higher baryon
chemical potentials.
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APPENDIX: DERIVATIONS OF CHARGED
MESON PROPAGATOR IN A MAGNETIC FIELD

As quantum fluctuations above the mean field, mesons
are constructed through quark bubble summation in the
frame of RPA [37—41]. Namely, the quark interaction via a
meson exchange is effectively described by using the
Dyson—Schwinger equation,

Di(x,2) = 2G6(x = 2) + / d*y2GTy (x.y) Dy (y. 2),
(A1)
where D,,(x, y) represents the meson propagator from x to

v, and the corresponding meson polarization function is the
quark bubble

Iy (x, y) = iTr[3, S (x, )Ty S(y. x)] (A2)
with the meson vertex
T M= iT_ M=nr
r, =4 +75 + r;, = . 75 +
it_ys M=m_ it.ys M=nm_
it3ys M = m, it3ys M = m.
(A3)

The quark propagator matrix in flavor space S =
diag(S,, S,) is at mean field level, and the trace is taken
in spin, color, and flavor spaces.

There are two equivalent ways to treat the quark and
meson propagators in the magnetic field, the Schwinger
scheme [44-46] and the Ritus scheme [49-51]. In the
following, we derive the meson propagator with the Ritus
method and comment on its advantage in the end.

In the Ritus scheme, one can well define the Fourier-like
transformation for the particle propagator from the con-
served Ritus momentum space to the coordinate space
[49-51]. The quark propagator with flavor f in the
coordinate space can be written as

P (x17172)

(2. y) Z/ 70 et

X Df(p)Pn<)’1ap2)’

1 s s
Pn('xl’ PZ) E[gn/(xl’ P2)+1n9n/_1(x1, p2)]
iS¢ s, 5
+ 7f [9d (x1. P2) = 19,1 (X1, P2)]y172,
D' (p)=v-p (A4)

where p = (pg,0, po, p3) is the Fourier transformed
momentum, p = (po + uys, 0,—s7+/2n|Q;B|, p3) is the
conserved Ritus momentum with n describing the quark
Landau level in the magnetic field, u is the quark chemical
potential, s, = sgn(Q/B) is the quark sign factor, the
magnetic field dependent function g,/ (xy, py) = ¢, (x, —
srp2/|QfB|) is controlled by the Hermite polynomial
H,(§) via §,(0) = (2"nl\/mQB|™/2) /210 H,
(¢/10sB[7Y/?), and 1, = 1
energy level.

For charged mesons M = z,. with spin zero, the Fourier
transformation is extended to

— 8,0 1s governed by the Landau

Dmbjﬂm%ﬂwmmwam,

nm@aﬂMﬁﬂwmmwam, (A3)

where F(x) = e"'i‘"‘gf”’ (x1,ky) is the solution of the
Klein—Gordon equation with index / describing the meson
Landau level in the magnetic field, the Fourier transformed
momentum k = (ko, 0, k,, k3), and the meson sign factor
sy = sgn(QyB), and k= (ky,0,—sy1/(21+1)|QuB|.k3)
is the conserved four-dimensional Ritus momentum.

Taking into account the complete and orthogonal
conditions

Z/Zy Fi(y) =

sW(x=y). (A6

/ BxF(x)F(x) = (27O (k= K)oy, (AT)

and the Dyson—Schwinger Eq. (A1), the meson propagator
in momentum space can be simplified as

2G

Dulk) = 1 -2GI, (k)

(A8)

Taking the mean field quark propagator (A4) and the
definition (A2) for the quark bubble, we have the =z,
polarization function
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I, (x,y) = 2N, Trp [75Su(x, ¥)75Sa(y, x)]
dpdy
= 23N,
—y-p+my

x Trp |:Pn(xl7q2)Pn’(x]vp2)W
q

—i(p—7)(x—y)

y-q+
+P,(y1.2)Py (YIaPZ)L_]—q]

in coordinate space and

3~ 53~ i
k)—8l3N /d4xd4 Z/dpd e~ i(P=a—k)(x—y)

x gl (x1.k2) g/ (v1. k)

mg — Podo + P35
X | Ay (x1,y1,ky) —— -
{ (p* = mg)(q* — m7)

] o

+A_<xlayl7k2)

(p* -

in Ritus-momentum space with

Ai(xl’ylﬂkQ) = a+<xl’k2)a+<yls kZ) =+ a, <> a_,

19,51 (2.92)9, (2. p2) £ u <> d]
aj:(z’ k2) - 2 :

(Al1)

Doing the integrations over xg, X, x3 and yq, Vs, V3,
we obtain the momentum conservation relation p =
G+ k. At finite temperature, the integration over the
particle energy is replaced by the Fermion/Boson
Matsubara frequency summation in the imaginary time
formalism of finite temperature field theory. After a

straightforward derivation, we have the z, polarization
function at the pole

(ko) = J1 + Ja(ko), (A12)
k Z/dp3.]n n kO f(_En’ _ﬂu) _f(En _ﬂd)
0) 2n 4E,E, ko+u; +E,+E,
+f(En’ _/'tu) _f(_En _/'td)
k0+ﬂ1_En’_En ’
jn,n/(kO) = [(kO +/’l1)2/2 - n/|QuB| - n|QdB|]J;n’
n'|Q,B|n|Q4Blj, - (A13)

jni.n/ = 2NC/dxldyldqz/Zn'Ai(xl,yl,k2), (A14)

with the quark energies E,; = \/ p3 +2n'|Q,B| + m} and

E, — \/qg +2n|QyB| + m2 and the Fermi-Dirac distri-

bution function f(E) = 1/(e"/T +1).

In the end, let us briefly compare the Ritus and
Schwinger schemes in constructing mesons under the
external magnetic field. The difference is the treatment
of the breaking of translational symmetry by the magnetic
field [48]. A conserved momentum, called Ritus momen-
tum, is introduced in the Ritus scheme and a Schwinger
phase is embedded in the particle’s propagator in the
Schwinger scheme. For neutral mesons, the Ritus momen-
tum is reduced to the normal momentum and the Schwinger
phase disappears automatically; the two schemes are both
convenient and give the same analytic formula. For charged
mesons, we still obtain an algebraic equation for the meson
propagator in terms of the conserved Ritus momentum,
while the nontrivial Schwinger phase leads to an integral
equation for the meson propagator, in which it is more
difficult to extract the meson properties.
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