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We study the properties of fully-heavy tetraquarks at finite temperature and their production in high-
energy nuclear collisions. We obtain the masses and wave functions of the exotic hadron states ccc̄c̄ and
bbb̄b̄ by solving the four-body Schrödinger equation in vacuum and strongly interacting matter. In vacuum,
the tetraquarks are above the corresponding meson-meson mass threshold, and the newly observed exotic
state Xð6900Þ might be a ccc̄c̄ state with quantum number JPC ¼ 0þþ or 1þ−. In hot medium, the
temperature dependence of the tetraquark masses and the dissociation temperatures are calculated. Taking
the wave function at finite temperature, we construct the Wigner function for the tetraquark states and
calculate, with coalescence mechanism, the production yield and transverse momentum distribution of
ccc̄c̄ in heavy-ion collisions at LHC energy. In comparison with nucleon-nucleon collisions, the yield per
binary collision is significantly enhanced.

DOI: 10.1103/PhysRevD.102.114001

I. INTRODUCTION

The quantum chromodynamics (QCD), which is widely
accepted as the theory of strong interaction, allows the
existence of exotic hadrons, such as glueballs containing
only gluons [1,2], hybrids with quarks and gluons [3,4],
multi-quark states like tetraquarks and pentaquarks [5,6] and
hadronic molecules [7,8]. There are a lot of candidates for
exotic hadrons in the light-quark sector, such as a0ð980Þ,
f0ð1370Þ and Λð1405Þ. In 2003, the Belle Collaboration
discovered a new hadron state, named Xð3872Þ [9]. It cannot
be explained as a normal meson or a baryon, since its decay
properties indicate that it contains a pair of charmquarks. This
is the first discovery of exotic hadrons with heavy quarks.
After that, many more hadrons are found in processes with
final states containing a heavy quark-antiquark pair, and such
hadrons are refereed to as XYZ states. So far, there have been
more than thirty XYZ states discovered in experiments, see
recent reviews [8,10–13]. Among the studies, there are many
theoretical works focusing on fully-heavy tetraquarks
QQQ̄Q̄ (Q ¼ c, b) [14–25]. The advantage of studying
fully-heavy tetraquarks is the nonrelativistic treatmentswhich
largely simplify the calculations. Such treatments include
lattice QCD [26,27], QCD sum rules [28,29] and potential
models [17,20,21,23–25]. Recently, a narrow structure

around 6.9 GeV, named Xð6900Þ, is observed by the
LHCb Collaboration at

ffiffiffi
s

p ¼ 7, 8, 13 TeV [30]. This is
the first candidate of fully-heavy tetraquarks observed in
experiment.
The main difficulty of observing fully-heavy tetraquarks

in elementary collisions, such as electron-positron and
nucleon-nucleon collisions, is the small production cross
section of heavy quarks. The formation of a fully-heavy
tetraquark requires at least two pairs of heavy quarks with
small relative momenta, which is very rare in an elementary
event. This difficulty can be overcame in high-energy
nuclear collisions. Since the binding energy among the
nucleons of a nucleus can be safely neglected at high
energies, a nucleus-nucleus collision contains a number of
binary nucleon-nucleon collisions. Therefore, the number of
heavy quarks and in turn the number of fully-heavy
tetraquarks will be significantly enhanced in high-energy
nuclear collisions. From the experimental data [31,32], the
charm quark number can reach 10 at the Relativistic Heavy-
Ion Collider (RHIC) and even 100 at the Large Hadron
Collider (LHC). After the creation in the initial stage of the
collisions, the heavy quarks will pass through the new state
of matter of light quarks and gluons which is called the
quark-gluon plasma (QGP). Due to the strong interaction
with the matter, heavy quarks are widely considered as a
sensitive probe of the QGP [33,34]. The energy loss of heavy
quarks during the evolution in the hot medium makes them
be partially or even fully thermalized with the matter before
the hadronization. Finally, on the hadronization hypersurface
of heavy quarks, tetraquark states are formed via coalescence
mechanism [35–39]. The key factor in all coalescence
models for light and heavy hadrons is the coalescence
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probability for quarks to form a hadron state. Considering
the big problem of confinement, the coalescence probability
or the Wigner function is normally taken as a Gaussian
distribution with adjustable parameters [35–39].
Taking into account the fact that charm and bottom

quarks are very heavy and their moving velocity is small,
there exists a hierarchy of scales in the study of heavy
quarks: m ≫ mv ≫ mv2 [40,41]. Integrating out the
degrees of freedom with momenta larger than m and mv
successively in the QCD Lagrangian, one can derive its
nonrelativistic versions NRQCD and pNRQCD [41].
Furthermore, if neglecting the interaction between color-
singlet and color-octet states, the pNRQCD becomes a
potential model [41]. In this case, one can employ the
Schrödinger equation to study the properties of hadrons
consist of only heavy quarks. The potential model has been
successfully applied to open and closed heavy flavors in
vacuum and at finite temperature [42–44]. It is pointed out
that, in comparison with nucleon-nucleon collisions in
vacuum the Ξcc andΩccc yields per binary nucleon-nucleon
collision in heavy-ion collisions at RHIC and LHC will
be largely enhanced [45,46]. In this work, we employ the
four-body Schrödinger equation to study the properties of
fully-heavy tetraquark states ccc̄c̄ and bbb̄b̄ at finite
temperature and their production in high-energy nuclear
collisions. Different from light hadrons where the coales-
cence probability is assumed to be a Gaussian distribution,
the probability for fully-heavy tetraquarks is derived from
the wave function of the system controlled by the
Schrödinger equation. This is essential for predicting the
properties of unconfirmed particles.
The structure of the paper is as follows. In Sec. II we

present the theoretical framework of solving the four-body
Schrödinger equation. The tetraquark properties, including
mass and size, in vacuum and hot medium are investigated
in Secs. III and IV. In Sec. V the total yield and transverse
momentum distribution of the fully-charmed tetraquark
state ccc̄c̄ in heavy-ion collisions are calculated and
compared with its production in nucleon-nucleon colli-
sions. After summarizing in Sec. VI, we provide supple-
mentary informations about the hyperspherical harmonic
functions in Appendix A, and the method to compute the
potentials is described in Appendix B.

II. THEORETIC FRAMEWORK

For a system of four quarks with the same mass m, the
wave function Ψðr1; r2; r3; r4Þ and the energy E are
controlled by the Schrödinger equation

�X4
i¼1

q̂2
i

2m
þ
X
i<j

VijðjrijjÞ
�
Ψ ¼ EΨ; ð1Þ

where we have assumed that the interaction potential V ¼P
i<j Vij is the summation of the two-body interactions,

and the direct three- and four-body potentials are neglected.
Taking into account one-gluon-exchange interaction, the
two-body potential can be effectively expressed as [47,48],

VijðjrijjÞ ¼ −
1

4
λai · λ

a
j ðVc

ijðjrijjÞ þ Vss
ij ðjrijjÞsi · sjÞ; ð2Þ

where λai ða ¼ 1;…; 8Þ are the SU(3) Gell-Mann matrices,
the factor 1=4 is from the normalization, Vc

ij is the spin
independent interaction, Vss

ij is the strength of the spin-spin
interaction, and jrijj ¼ jri − rjj is the distance between the
two quarks labeled by i and j. In order to solve the four-
body Schrödinger equation, we first introduce the Jacobi
coordinates,

X ¼ 1

4
ðr1 þ r2 þ r3 þ r4Þ

x1 ¼
ffiffiffiffiffiffiffi
3m
4μ

s �
r4 −

r1 þ r2 þ r3
3

�

x2 ¼
ffiffiffiffiffiffiffi
2m
3μ

s �
r3 −

r1 þ r2
2

�

x3 ¼
ffiffiffiffiffi
m
2μ

r
ðr2 − r1Þ; ð3Þ

where μ is a parameter with dimension of mass and its value
does not affect the final result [49]. We take μ ¼ M ¼ 4m
in numerical calculations. With such coordinates, the
kinetic energy becomes

X4
i¼1

q̂2
i

2m
¼ P2

2M
þ p2

1

2μ
þ p2

2

2μ
þ p2

3

2μ
: ð4Þ

Since the potential depends only on the relative
coordinates xi, one can factorize the four-body motion
into a center-of-mass motion and a relative motion,
Ψðr1; r2; r3; r4Þ ¼ ΘðXÞΦðx1;x2;x3Þ. The bound state
properties only relate to the relative motion of the system,
and we just need to deal with the nine dimensional wave
equation. We then express the relative coordinates x1, x2

and x3 in the hyperspherical frame: hyperradius ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
and hyperangles Ω ¼ fα2; α3; θ1;ϕ1; θ2;

ϕ2; θ3;ϕ3g, where the angles α2 ≡ arcsinðx2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
Þ

and α3 ≡ arcsinðx3=ρÞ are defined within the range
½0; π=2�, and fxi; θi;ϕig are the spherical coordinates
corresponding to xi. With the hyperspherical coordinates,
the Schrödinger equation governing the relative wave
function Φðρ;ΩÞ can be written as

�
1

2μ

�
−

d2

dρ2
−
8

ρ

d
dρ

þ K̂2
3

ρ2

�
þ Vðρ;ΩÞ

�
Φ ¼ ErΦ; ð5Þ
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where K̂3 is the hyperangular momentum operator, and Er
the relative energy (binding energy).
As shown in (2), the potential Vðρ;ΩÞ depends on the

color and spin degrees of freedom. We start with con-
structing the color and spin sector of the wave-function,
based on the symmetry properties. We follow the analysis
in Ref. [50]. The Pauli exclusion principle requires the
wave-function to be anti-symmetric when exchanging two
identical fermions, i.e., two quarks or two antiquarks. From
the decomposition in color space,

ð3c ⊗ 3cÞ ⊗ ð3̄c ⊗ 3̄cÞ ¼ 3̄c ⊗ 3c ⊕ 6c ⊗ 6̄c

⊕ 3̄c ⊗ 6̄c ⊕ 6c ⊗ 3c; ð6Þ
there are two color-singlet states obtained from the first and
second terms on the right-hand side. We label them as

jϕ1i ¼ jðQQÞ3̄cðQ̄Q̄Þ3ci;
jϕ2i ¼ jðQQÞ6cðQ̄Q̄Þ6̄ci: ð7Þ

For the exchange between the two quarks or two anti-
quarks, jϕ1i is antisymmetric and jϕ2i symmetric.
The decomposition in spin-space is

2 ⊗ 2 ⊗ 2 ⊗ 2 ¼ 1 ⊗ 1 ⊕ 1 ⊗ 3 ⊕ 3 ⊗ 1 ⊕ 3 ⊗ 3: ð8Þ
There are two s ¼ 0 states,

jχ1i ¼jðQQÞ0ðQ̄Q̄Þ0i0;
jχ2i ¼jðQQÞ1ðQ̄Q̄Þ1i0; ð9Þ

three s ¼ 1 states,

jχ3i ¼jðQQÞ0ðQ̄Q̄Þ1i1;
jχ4i ¼jðQQÞ1ðQ̄Q̄Þ0i1;
jχ5i ¼jðQQÞ1ðQ̄Q̄Þ1i1; ð10Þ

and one s ¼ 2 state

jχ6i ¼ jðQQÞ1ðQ̄Q̄Þ1i2; ð11Þ
where the subscripts denote the spin of the subsystems QQ
and Q̄Q̄ and the whole system QQQ̄Q̄.
As we focus on the tetraquark states consist of identical

quarks and antiquarks, the flavor wave function is sym-
metric by definition. As a first step, we consider the
states with vanishing orbital angular momentum, the space
wave function is then symmetric. The Pauli exclusion
principle only allows the following combination of color
and spin wave functions: jϕ1χ2i and jϕ2χ1i for the states
with JPC ¼ 0þþ, jϕ1χ5i for JPC ¼ 1þ−, and jϕ1χ6i for
JPC ¼ 2þþ. While these states are orthogonal to each other,
the matrix element hϕ2χ1jðλai · λaj Þðsi · sjÞjϕ2χ1i ¼ −

ffiffiffiffiffiffiffiffi
3=2

p
should be particularly noted in the calculation of the
potential.

For the tetraquark states with JPC ¼ 0þþ, the color-spin
wave function is a mixture of jϕ1χ2i and jϕ2χ1i, and the
potential contains diagonal and off-diagonal elements in
color-spin space,

V1 ¼ hϕ1χ2j
X
i<j

Vijjϕ1χ2i

¼ 2

3
ðVc

12 þ Vc
34Þ þ

1

3
ðVc

13 þ Vc
14 þ Vc

23 þ Vc
24Þ

þ 1

6
ðVss

12 þ Vss
34Þ −

1

6
ðVss

13 þ Vss
14 þ Vss

23 þ Vss
24Þ;

V2 ¼ hϕ2χ1j
X
i<j

Vijjϕ2χ1i

¼ −
1

3
ðVc

12 þ Vc
34Þ þ

5

6
ðVc

13 þ Vc
14 þ Vc

23 þ Vc
24Þ

þ 1

4
ðVss

12 þ Vss
34Þ;

Vm ¼ hϕ1χ2j
X
i<j

Vijjϕ2χ1i

¼ hϕ2χ1j
X
i<j

Vijjϕ1χ2i

¼ −
ffiffiffi
6

p

8
ðVss

13 þ Vss
14 þ Vss

23 þ Vss
24Þ; ð12Þ

where for the potentials Vc
ij and Vss

ij we have explicitly
labeled the two quarks with indices i; j ¼ 1; 2 and the two
antiquarks with i; j ¼ 3; 4.
For the states with JPC ¼ 1þ− or JPC ¼ 2þþ, the color-

spin wave functions are the eigenstates of both ðλai · λaj Þ and
ðλai · λaj Þðsi · sjÞ, and the corresponding potentials are

V¼hϕ1χ5j
X
i<j

Vijjϕ1χ5i

¼2

3
ðVc

12þVc
34Þþ

1

3
ðVc

13þVc
14þVc

23þVc
24Þ

þ1

6
ðVss

12þVss
34Þ−

1

12
ðVss

13þVss
14þVss

23þVss
24Þ; ð13Þ

and

V ¼ hϕ1χ6j
X
i<j

Vijjϕ1χ6i

¼ 2

3
ðVc

12 þ Vc
34Þ þ

1

3
ðVc

13 þ Vc
14 þ Vc

23 þ Vc
24Þ

þ 1

6
ðVss

12 þ Vss
34Þ þ

1

12
ðVss

13 þ Vss
14 þ Vss

23 þ Vss
24Þ:
ð14Þ

The potential Vðρ;ΩÞ depends not only on the hyper-
radius but also the eight hyperangles. In this case, the
Schrödinger equation (5) cannot be further factorized into a

FULLY-HEAVY TETRAQUARKS IN A STRONGLY INTERACTING … PHYS. REV. D 102, 114001 (2020)

114001-3



radial part and an angular part. Instead, one expands the
wave function in terms of the hyperspherical harmonic
functions YκðΩÞ which are the eigenstates of the hyper-
angular momentum operator K̂2

3,

K̂2
3YκðΩÞ ¼ KðK þ 7ÞYκðΩÞ; ð15Þ

where κ stands for all the quantum numbers related to
the angels, and K is the quantum number describing
the magnitude of the angular momentum. Some pro-
perties of the hyperspherical harmonic functions YκðΩÞ
which will be used in the following calculation are
presented in Appendix A, and the details can be found
in Refs. [49,51,52].
With the above preparations, we now write down the

relative wave functions

Φðρ;ΩÞ ¼
X
κ

½Rð1Þ
κ ðρÞYκðΩÞjϕ1χ2i

þ Rð2Þ
κ ðρÞYκðΩÞjϕ2χ1i� ð16Þ

for the 0þþ states,

Φðρ;ΩÞ ¼
X
κ

RκðρÞYκðΩÞjϕ1χ5i ð17Þ

for the 1þ− states and

Φðρ;ΩÞ ¼
X
κ

RκðρÞYκðΩÞjϕ1χ6i ð18Þ

for the 2þþ states, where RκðρÞ is the radial wave function
corresponding to the hyperspherical harmonic function
YκðΩÞ. Substituting the above expansions into the relative
equation (5), one obtains the coupled radial equations,

−
1

2μ

�
d2

dρ2
þ 8

ρ

d
dρ

−
KðK þ 7Þ

ρ2

�
Rκ

þ
X
κ0
Vκκ0Rκ0 ¼ ErRκ ð19Þ

for 1þ− and 2þþ states, and

−
1

2μ

�
d2

dρ2
þ 8

ρ

d
dρ

−
KðK þ 7Þ

ρ2

�
Rð1Þ
κ

þ
X
κ0
Vκκ0
1 Rð1Þ

κ0 þ
X
κ0
Vκκ0
m Rð2Þ

κ0 ¼ ErR
ð1Þ
κ ;

−
1

2μ

�
d2

dρ2
þ 8

ρ

d
dρ

−
KðK þ 7Þ

ρ2

�
Rð2Þ
κ

þ
X
κ0
Vκκ0
2 Rð2Þ

κ0 þ
X
κ0
Vκκ0
m Rð1Þ

κ0 ¼ ErR
ð2Þ
κ ð20Þ

for 0þþ states, where Vκκ0 is the potential matrix element in
angular momentum space

Vκκ0 ¼
Z

Vðρ;ΩÞY�
κðΩÞYκ0 ðΩÞdΩ; ð21Þ

with the volume element

dΩ ¼ cos5α3sin2α3cos2α2sin2α2 sin θ1 sin θ2 sin θ3

× dα3dα2dθ1dθ2dθ3dϕ1dϕ2dϕ3: ð22Þ

It is worth noting that computing the potential matrix is
nontrivial. In the most general form, (21) is an eight
dimensional integral, which is computationally expensive.
However, taking the assumption that the total interaction
potential is the summation of two-body interaction
VijðjrijjÞ, one can reduce (21) into a one dimensional
integral by performing particle permutation. We show the
details of such simplification in Appendix B.
In real calculation, one can only include a finite number

of hyperspherical harmonics, a truncation shall be made
according to the symmetry properties of the system. Since
we focus in this work on the tetraquark states with
vanishing orbital angular momentum, the relevant hyper-
spherical harmonics are those corresponding to vanishing
total orbital angular momentum L and magnetic quantum
number M, i.e., L ¼ M ¼ 0. We choose all such hyper-
spherical harmonic functions with hyperangular quantum
number K ≤ 3. This leads to seven coupled differential
equations which are numerically solved by using the
inverse power method [53,54]. The main advantage to
take the inverse power method is its high precision for both
ground and excited states.

III. TETRAQUARKS IN VACUUM

We start with computing the ccc̄c̄ and bbb̄b̄ bound states
in vacuum. We employ the Cornell potential to describe the
spin independent central interaction Vc

ij between two
quarks and the lattice result [48] for the spin-spin coupling,

Vc
ijðjrijjÞ ¼ −

α

jrijj
þ σjrijj;

Vss
ij ðjrijjÞ ¼ βe−γjrijj: ð23Þ

The parameters α, σ, β, γ and the quark mass m in the
potential model are fixed by fitting the experimental data of
charmonium and bottomonium masses. We calculate the
quarkonium states QQ̄ via the two-body Schrödinger
equation with the potential

VQQ̄ ¼ 4

3
ðVc

ijðrÞ þ Vss
ij ðrÞsi · sjÞ; ð24Þ

where the factor 4=3 is the color factor for color-singlet
states. With the model parameters presented in Table I, we
obtain the quarkonium masses shown in Table II. One can
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see that, the potential model is effective in describing the
heavy quarkonia. With the known parameters, we then
solve the radial equations (19) and (20) for fully-heavy
tetraquarks. It should be worth noting that similar calcu-
lations have been done in literatures [20–24], by taking
different potentials and employing different numerical
method, e.g., variational method based on Gaussian expan-
sion [55–59].
The tetraquark mass comes from the summation of the

constituent masses M ¼ 4m and the binding energy Er
which is determined by the radial equations,

MT ¼ M þ Er: ð25Þ

The root-mean-squared radius of the tetraquark state can be
expressed as [34]

r2rms ¼
�
1

4

X4
i¼1

ðri −XÞ2
�

¼
�

μ

4m
ðx2

1 þ x2
2 þ x2

3Þ
�

¼ μ

4m

Z X
κ

jRκðρÞj2ρ10dρ: ð26Þ

The root-mean-squared radius is μ independent. Taking μ ¼
4m in our numerical calculationsmakes the prefactor be equal
to unity, and the hyperradius ρ can be considered as the radius
of the tetraquark state. The calculated mass and mean radius
for the ground and radial-excited states 1S, 2S and 3S with
quantum numbers JPC ¼ 0þþ; 1þ− and 2þþ are shown in
Table III, wherewe have used the orthogonal and normalized
condition for the hyperspherical harmonic functions YκðΩÞ
and the normalization

R P
κ jRκðρÞj2ρ8dρ ¼ 1 for the radial

functions RκðρÞ. The mass spectrum is also plotted in Fig. 1.
All the fully-heavy tetraquark states lay above the meson-
meson mass threshold, 2mJ=ψ or 2mϒ, shown as dotted lines
in Fig. 1. The JPC dependence of the mass is weak, and the
small difference comesmainly from the spin-spin interaction.
For the 0þþ tetraquarks, there are two possible color-spin

states jϕ1χ2i and jϕ2χ1i for any ground and radial-excited
state. The mixture between the two color-spin states, see the
coupling between the two radial functions Rð1Þ and Rð2Þ in
(20), will modify the tetraquark mass. The two modified
masses are listed in Table III and shown in Fig. 1. The left
and right ones in Fig. 3 and lower and higher ones in Fig. 1
correspond to the modified results based on the states
jϕ2χ1i in the representation 6c ⊗ 6̄c and jϕ1χ2i in 3̄c ⊗ 3c.
To see the modification from the coupling between the two
color-spin states, we show also the radial probability
fractions in Fig. 2 for the ground state 1S of the fully-
charmed tetraquark ccc̄c̄. The thick and thin lines represent

the fractions jRð1Þ
κ j2ρ8 and jRð2Þ

κ j2ρ8. The small difference
between the two shows a strong coupling, and the very
small contributions from larger κ indicate a very fast
convergence in the numerical calculation. It is easy to
understand that, for excited states the contributions from
larger κ should increase. To guarantee a good convergence
for both ground and excited states, κ runs from 1 to 7 in our
calculation.
A big problem in the study of multiquark states is to

distinguish the multiquark states from molecular states.

TABLE I. Potential model parameters.

mb mc α σ γ βb βc

4.7 GeV 1.29 GeV 0.308 0.15 GeV2 1.982 GeV 0.239 GeV 1.545 GeV

TABLE II. The experimental [60] and calculated quarkonium
masses.

State ηc J=ψ hcð1PÞ χcð1PÞ ηcð2SÞ ψð2SÞ χcð2PÞ
ME (GeV) 2.981 3.097 3.525 3.556 3.639 3.696 3.927
MT (GeV) 2.968 3.102 3.480 3.500 3.654 3.720 4.000

State ηb ϒð1SÞ hbð1PÞ χbð1PÞ ηbð2SÞ ϒð2SÞ χbð2PÞ
ME (GeV) 9.398 9.460 9.898 9.912 9.999 10.023 10.269
MT (GeV) 9.397 9.459 9.845 9.860 9.957 9.977 10.221

TABLE III. The calculated tetraquark massMT and the root-mean-squared radius rrms for the ground and radial-excited states, 1S; 2S
and 3S of ccc̄ c̄ and bbb̄ b̄ with quantum numbers JPC ¼ 0þþ, 1þ−, and 2þþ.

JPC 0þþ 1þ− 2þþ

State 1S 2S 3S 1S 2S 3S 1S 2S 3S

ccc̄ c̄ MT (GeV) 6.346 6.476 6.804 6.908 7.206 7.296 6.441 6.896 7.300 6.475 6.921 7.320
rrms (fm) 0.323 0.351 0.445 0.457 0.550 0.530 0.331 0.446 0.547 0.339 0.452 0.552

bbb̄ b̄ MT (GeV) 19.154 19.226 19.518 19.583 19.818 19.887 19.214 19.582 19.889 19.232 19.594 19.898
rrms (fm) 0.180 0.186 0.259 0.259 0.328 0.325 0.181 0.257 0.324 0.183 0.259 0.326
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In the case of tetraquarks, while jϕ1i and jϕ2i form a
complete and orthonormal set of color-singlet states, there
can be other representations, especially the meson-meson
states. For instance, a quark pair forms a meson state, and

the other pair the other meson state, and then the two
combine into a meson-meson state. Considering all the
possible combinations, there are two meson-meson states,

jϕ3i ¼ jðQ1Q̄3Þ1cðQ2Q̄4Þ1ci;
jϕ4i ¼ jðQ1Q̄4Þ1cðQ2Q̄3Þ1ci: ð27Þ

These two states are not orthogonal to each other but
orthogonal to one of the color-octet states

jϕ5i ¼ jðQ1Q̄3Þ8cðQ2Q̄4Þ8ci;
jϕ6i ¼ jðQ1Q̄4Þ8cðQ2Q̄3Þ8ci ð28Þ

with

hϕ5jϕ3i ¼ 0;

hϕ6jϕ4i ¼ 0: ð29Þ

The above four molecular states can be expressed as a
linear combination of the color-singlet states jϕ1i and jϕ2i,

jϕ3i ¼
ffiffiffiffiffiffiffiffi
1=3

p
jϕ1i þ

ffiffiffiffiffiffiffiffi
2=3

p
jϕ2i;

jϕ5i ¼ −
ffiffiffiffiffiffiffiffi
2=3

p
jϕ1i þ

ffiffiffiffiffiffiffiffi
1=3

p
jϕ2i; ð30Þ

and

jϕ4i ¼ −
ffiffiffiffiffiffiffiffi
1=3

p
jϕ1i þ

ffiffiffiffiffiffiffiffi
2=3

p
jϕ2i;

jϕ6i ¼
ffiffiffiffiffiffiffiffi
2=3

p
jϕ1i þ

ffiffiffiffiffiffiffiffi
1=3

p
jϕ2i: ð31Þ

Therefore, a tetraquark state with quantum number JPC ¼
0þþ can be expanded in color space in terms of either jϕ1i
and jϕ2i or jϕ3i and jϕ5i or jϕ4i and jϕ6i. The projection
probabilities of each 0þþ state are shown in Table IV.
Finally, we look at the exotic hadron Xð6900Þ recently

observed by the LHCb Collaboration [30]. The current
experiment measures only the mass and the width, and is
not able to determine the spin and parities JPC. Our
theoretical result indicates that, Xð6900Þ maybe the first
radial excited state 2S of ccc̄c̄ with JPC ¼ 0þþ (6908 MeV)
or 1þ− (6896 MeV). No matter what the quantum number
JPC is, Xð6900Þ is likely to be a tetraquark state, instead of a
meson-meson state.

IV. TETRAQUARKS IN HOT MEDIUM

It is widely accepted that there exists a deconfinement
phase transition from hadron gas to quark matter at high
temperature and baryon density. From the lattice QCD
simulations [61,62] and many effective model studies
[63,64], the critical temperature of the transition is about
Tc ¼ 165 MeV at zero baryon density. Considering the fact
that heavy-quark mass is much larger than the temperature
scale, the tightly bound states of heavy quarks, such as J=ψ
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FIG. 1. The calculated tetraquark masses for the ground and
radial-excited states, 1S; 2S and 3S of ccc̄ c̄ (upper panel) and
bbb̄ b̄ (lower panel) with quantum numbers JPC ¼ 0þþ, 1þ−

and 2þþ.
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FIG. 2. The radial probability fractions jRðiÞ
κ j2ρ8 for the ccc̄ c̄ 1s

state with quantum number JPC ¼ 0þþ. The upper and lower
panels correspond to the tetraquark mass MT ¼ 6.346 and

6.476 GeV, the thick and thin lines are the fractions jRð1Þ
κ j2ρ8

and jRð2Þ
κ j2ρ8, and the solid and dashed lines are with quantum

number κ ¼ 1 and 2.
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andϒ, can survive in the quark matter and be used to probe
the properties of the new matter. In this section, we study
the temperature dependence of the tetraquark properties
and their dissociation temperatures in the QGP.
In the color-deconfined QCD medium, the heavy-quark

potential is screened, and the long-range interaction is
strongly weakened when the temperature is high enough.
The lattice QCD simulations indicate that, the finite-
temperature potential between a pair of heavy quarks can
be approximated by the free energy Fðr; TÞ [34,65,66]. For
the heavy-quark bound-states in the hot QCD medium, we
take the free energy Fðr; TÞ as the central potential
Vc
ijðjrijj; TÞ, and neglect the finite-temperature corrections

to the spin-spin interaction,

Vc
ij ¼

1

Γð3=4Þ
σ

μ

�
Γð1=4Þ
23=2

−
ffiffiffiffiffiffiffiffiffiffi
μjrijj

p
23=4

K1=4ðμ2jrijj2Þ
�

− α

�
μþ e−μjrijj

jrijj
�
; ð32Þ

where Γ and K1=4 are the Gamma functions and modified
Bessel function of the second kind. The temperature
dependent screening mass μðTÞ is extracted from fitting
the lattice data.
We solve again the coupled radial equations (19) and

(20) with the central interaction (32) and obtain the binding
energy ErðTÞ and relative wave function Φðρ;Ω; TÞ as
functions of temperature. The radial probabilities for the
ground and excited states of the fully-charmed tetraquark
ccc̄c̄ with JPC ¼ 1þ− at the critical temperature and the
comparison with the vacuum result are shown in Fig. 3. At
finite temperature, the long range confinement force is
suppressed and the interaction strength is weakened due to
the color screening. As a result, the wave function expands
outward, and the averaged size of the tetraquark becomes
larger in comparison with vacuum, especially for the
excited states. The temperature effect changes also the
radial symmetry of the system. The random thermal motion
of the heavy quarks will smear the angle dependence of the
wave function, and the asymmetric components with larger
values of the hyperangular quantum number κ are

suppressed. These features for tetraquarks are consistent
with the properties of quarkonia and heavy-flavor baryons
at finite temperature [44,67].
From Fig. 3 the wave function for the second radial

excited state 3s expands with temperature very fast, and the
peaks in vacuum almost disappear at the critical temper-
ature Tc. This means that the bound state is close to the
disappearance. Similar to the definition for quarkonium
dissociation, the tetraquark dissociation temperature Td is
defined as the divergence of the size and the vanish of the
binding energy,

TABLE IV. The fraction of tetraquarks ccc̄ c̄ and bbb̄ b̄ with JPC ¼ 0þþ in different color configures.

ccc̄ c̄ bbb̄ b̄

State 1S 2S 3S 1S 2S 3S

MT (GeV) 6.346 6.476 6.804 6.908 7.206 7.296 19.154 19.226 19.518 19.583 19.818 19.887
jϕ1i 45.0% 54.2% 29.8% 72.0% 19.9% 65.6% 31.5% 67.7% 13.4% 86.9% 6.2% 94.1%
jϕ2i 55.0% 45.8% 70.2% 28.0% 80.1% 34.4% 68.5% 32.3% 86.6% 13.1% 93.8% 5.9%
jϕ3i 96.4% 6.3% 89.5% 21.2% 81.6% 39.0% 97.8% 3.6% 88.2% 16.6% 79.6% 25.8%
jϕ5i 3.6% 93.7% 10.5% 78.8% 18.4% 61.0% 2.2% 96.4% 11.7% 83.4% 20.4% 74.2%
jϕ4i 6.8% 91.0% 23.9% 64.1% 38.5% 50.6% 14.5% 84.6% 36.2% 58.8% 49.6% 44.8%
jϕ6i 93.2% 9.0% 76.1% 35.9% 61.5% 49.4% 85.5% 15.4% 63.8% 41.2% 50.4% 55.2%
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FIG. 3. The radial probabilities for the ground and radial
excited states, 1S; 2S and 3S of the tetraquark ccc̄ c̄with quantum
number JPC ¼ 1þ− in vacuum (thick lines) and at critical
temperature Tc (thin lines). The solid and dashed lines are with
quantum number κ ¼ 1 and 2.

FULLY-HEAVY TETRAQUARKS IN A STRONGLY INTERACTING … PHYS. REV. D 102, 114001 (2020)

114001-7



hρiðTdÞ → ∞;

ErðTdÞ → 0: ð33Þ

The dissociation temperatures for different tetraquark states
are shown in Table V. Considering the very weak JPC

dependence of the tetraquark massMT shown in Fig. 1, the
dissociation temperature is almost independent of the
quantum numbers JPC, and we have neglected this small
difference in Table V. Different from the ccc̄c̄ states which
are already dissociated a little bit above the critical temper-
ature, the bbb̄b̄ states can survive in the QGP phase at very
high temperature, due to the extremely large mass of b
quark. It is clear that the excited states will disappear first.

V. TETRAQUARK PRODUCTION
IN NUCLEAR COLLISIONS

The deconfinement phase transition can be realized in
the early stage of relativistic heavy-ion collisions at RHIC
and LHC when the temperature of the system is above the
critical temperature Tc. The appearance of QGP signifi-
cantly changes the production mechanism of hadrons. In
particular, the production of low-momentum hadrons are
dominantly contributed by the coalescence of partons when
the QGP cools down due to the expansion of the colliding
system and the temperature reaches Tc. The coalescence
model [35] has successfully described the light hadron
production in heavy-ion collisions, especially the quark
number scaling of the elliptic flow [36,37] and the enhance-
ment of the baryon to meson ratio [38,39]. Since heavy
quarks are rare particles in the QGP, their hadronization is
more in line with the spirit of the coalescence mechanism.
The production of quarkonia and multi-charmed baryons in
heavy-ion collisions are well studied in different coales-
cence models [45,46,68]. It shows that their production in
heavy-ion collisions is largely enhanced due to the combi-
nation of uncorrelated charm quarks in the QGP [43]. This
provides a most probable way to discover those multi-
charmed baryons like Ξcc and Ωccc in heavy-ion collisions
at the RHIC and LHC energies. On the other hand, the
previous studies on exotic hadron production in heavy-ion
collisions show that, the yields of exotic hadrons are
expected to be strongly affected by their structures
[69,70]. Considering the fact that, bottom quarks are rarely
created even in heavy-ion collisions at LHC energy, we
discuss only the production of fully-charmed tetraquark

ccc̄c̄ in this section. Taking into account the ccc̄c̄ dis-
sociation temperature which is almost the same as the
critical temperature, the initially produced tetraquarks via
nucleon-nucleon collisions will be dissociated in the QGP
phase and all the tetraquarks measured in the final state are
from the coalescence at the freeze-out of the QGP.
In the coalescence model, the differential production

cross section of a tetraquark state is given by

dσ
d2PTdy

¼ CσinelNNn
AA
QQQ̄Q̄

Z
Σ

PμdσμðRÞ
ð2πÞ3

Z
d9xd9p
ð2πÞ9

× fQ1
fQ2

fQ̄3
fQ̄4

Wðx;pÞ; ð34Þ

where Rμ ¼
P

iðti; riÞ=4 is the four dimensional center-of-
mass coordinate of the tetraquark, and Pμ represents its

four-momentum with P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

T þ P2
p

being the energy,
P ¼ P

i qi the total three-momentum, PT the transverse-
momentum, and y the rapidity. The nine-dimensional
coordinate and momentum x and p are the shorthands
of three relative coordinates and momenta xi and pi
(i ¼ 1; 2; 3). They are defined in the rest-frame of the
tetraquark. The factor C ¼ 1=1296; 1=432 and 5=1296 for
JPC ¼ 0þþ; 1þ− and 2þþ states are from the statistics
determined by the intrinsic symmetry, i.e., color, spin,
and isospin, and σinelNN is the inelastic cross section of the
corresponding nucleon-nucleon collisions.
In heavy-ion collisions at RHIC and LHC energies, the

heavy quarks in the QGP phase are almost all created
through the initial nucleon-nucleon collisions. For the four
heavy quarksQ,Q, Q̄ and Q̄ to form a tetraquark state, they
can be from two, or three or four binary collisions. In a
heavy-ion collision (AA) with fixed number Ncoll of binary
nucleon-nucleon (NN) collisions, the averaged number of
combinations to have four quarks reads

nAAQQQ̄Q̄ ¼ 2NcollðNcoll − 1ÞðnNN
QQ̄Þ2

þ 4NcollðNcoll − 1ÞðNcoll − 2ÞðnNN
QQ̄Þ3

þ NcollðNcoll − 1ÞðNcoll − 2ÞðNcoll − 3ÞðnNN
QQ̄Þ4;

ð35Þ

where nNN
QQ̄ represents the averaged pair number of

heavy quarks created in a nucleon-nucleon collision. At
the colliding energy

ffiffiffi
s

p ¼ 2.76 TeV, the inelastic cross
section is σinelNN ¼ 65 mb [71], and the production cross
sections of heavy quarks are dσcc̄=dy ¼ 0.7 mb [32] and
dσbb̄=dy ¼ 15 μb [72]. Therefore we have the averaged
number nNN

cc̄ ¼ ðdσcc̄=dyÞ=σinelNN ¼ 1.1 × 10−2 and nNN
bb̄

¼
ðdσbb̄=dyÞ=σinelNN ¼ 2.3 × 10−4. In the calculation we have
neglected the probability of producing two pairs of heavy
quarks in a nucleon-nucleon collision.
The integration region Σ in the coalescence model (34) is

the isothermal hadronization hypersurface controlled by the

TABLE V. The scaled dissociation temperatures Td for fully-
heavy tetraquarks. Tc is the critical temperature of the deconfine-
ment phase transition.

ccc̄ c̄ bbb̄ b̄

1S 2S 3S 1S 2S 3S

Td=Tc 1.08 1.02 1.0 2.40 1.85 1.30
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critical temperature TðRμ ∈ ΣÞ ¼ Tc, and the integration
element dσμ is the normal four-vector to Σ. Such an
isothermal hypersurface can be extracted from hydrody-
namic calculations.
The space-time evolution of the QGP phase can be

successfully described by relativistic hydrodynamics [73].
The theory is based on the conservation laws of the matter.
For ideal hydrodynamics without considering the dissipa-
tion of the fluid, the evolution of the QGP is governed by
the energy-momentum conservation and baryon number
conservation,

∂μTμν ¼ 0;

∂μnμ ¼ 0; ð36Þ

where Tμν ¼ ðϵþ PÞuμuν − Pgμν is the energy-momentum
tensor with ϵ being the energy density, P the pressure and
uμ the fluid velocity, and nμ ¼ nuμ is the baryon current
with n being the baryon number density. ϵ; P and n are
functions of temperature T and baryon number n, given by
the equation of state of the hot medium. To compute the
equation of state, we treat the deconfined phase at high
temperature as an ideal gas of gluons, massless u and d
quarks, as well as s quarks with mass ms ¼ 150 MeV, and
the hadron phase at low temperature as an ideal gas of all
known hadrons and resonances with mass up to 2 GeV
[74]. The phase transition temperature is chosen as
Tc ¼ 165 MeV. The initial condition of the Eq. (36) at
proper time τ0 ¼ 0.6 fm=c is determined by the colliding
energy and nuclear geometry, which lead to a maximum
initial temperature T0 ¼ 484 MeV for central Pb-Pb colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV. For such extremely high-
energy nuclear collisions, the baryon number density
approaches to zero. By solving the hydrodynamic equa-
tions, we obtain the space-time profiles of temperature
Tðt; rÞ and fluid velocity uμðt; rÞ. Based on the hydro-
dynamic profiles, we can determine the isothermal hadro-
nization hypersurface Σ and its normal four-vector dσμ at
the hadronization temperature Tc.
There are two key ingredients in the coalescence model

(34). One is the phase space distribution of heavy quarks
fQðt; r;qÞ and fQ̄ðt; r;qÞ, and the other is the coalescence
probability Wðx;pÞ (Wigner function) for four heavy
quarks to combine into a tetraquark. We first consider
fQ and fQ̄. Since fully-bottomed tetraquarks are extremely
rarely produced in heavy-ion collisions at RHIC and LHC
energies, we will only calculate here charmed tetraquarks.
In Pb-Pb collisions at energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, the
experimental measurement on D-meson elliptic flow [75]
indicates that, charm quarks reaches kinetic equilibrium
with the QGP. Therefore, we can take the normalized
Fermi-Dirac distribution fFDðqÞ ¼ A=ðeuμqμ=T þ 1Þ as the
charm quark and anti-quark momentum distribution, where
uμðt; rÞ is the local fluid velocity of the matter determined

by the hydrodynamics (36), and Aðt; rÞ is the normalization
factor. The number density ncðt; rÞ in coordinate space is
controlled by the charm conservation law for the charm
current nμc ¼ ncuμ,

∂μn
μ
c ¼ 0 ð37Þ

with the initial condition

ncðt0; rÞ ¼
σinelNN cosh y
Ncollτ0

TA

�
rT þ b

2

�
TB

�
rT −

b
2

�
; ð38Þ

where TAðrT þ b=2Þ and TBðrT − b=2Þ are thickness
functions of the two colliding nuclei, rT is the transverse
coordinate, and b the impact parameter of the collision.
Combining the momentum and spatial distributions, we
obtain the phase-space distribution function for charm
quarks

fcðt; r;qÞ ¼ ncðt; rÞfFDðt; r;qÞ: ð39Þ

We now come to the Wigner function which reflects the
dynamics of the hadronization of heavy quarks in hot
medium. For light hadrons and light-heavy systems, the
nonperturbative (confinement) properties of hadronization
makes it difficult to theoretically calculate the Wigner
function. It is usually to take a double Gaussian distribution
[35–39] in the phase space with adjustable parameters
which can be fixed by fitting the experimental data. For
fully-heavy tetraquark systems, however, one can non-
perturbatively solve the corresponding Schrödinger equa-
tion with confinement potential and obtain the wave
function Φðx; TÞ of the system and in turn the Wigner
function via a Fourier transformation,

Wðx;p; TÞ ¼
Z

d9ye−ip·yΦ
�
xþ y

2
; T

�
Φ
�
x −

y
2
; T

�
:

ð40Þ

Note that, the Schrödinger equation is solved in the QGP
phase, the medium properties are reflected in the Wigner
function.
Taking all the ingredients discussed above for the

coalescence model (34), we calculated numerically the
fully-charmed tetraquark ccc̄c̄ yield and transverse
momentum distribution in Pb-Pb collisions at LHC energy.
The results are shown in Figs. 4 and 5. Here we have
included all the tetraquark states 1S; 2S and 3S with JPC ¼
0þþ; 1þ− and 2þ−.
It is easy to understand the strong tetraquark enhance-

ment in heavy-ion collisions in comparison with nucleon-
nucleon collisions, because a nuclear collision consists of
Ncoll nucleon-nucleon collisions. In a most central Pb-Pb
collision, Ncoll reaches 1937. Let us consider the tetraquark
yield in a binary nucleon-nucleon collision. From the
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previous study [19,76,77], the tetraquark production cross
section in p-p collisions is dσccc̄c̄pp =dy ¼ 78 pb atffiffiffi
s

p ¼ 7 TeV. In a most central Pb-Pb collision the effective
cross section per binary collision is dσccc̄c̄AA =dy=Ncoll ¼
0.77 nb, which is almost 10 times larger than that in
corresponding p-p collisions. The reason for this nontrivial
enhancement is from the many combinations for having
four quarks to form a tetraquark state. It is highly nonlinear
in Ncoll, see (35).
The difference between nucleus-nucleus and nucleon-

nucleon collisions is not only the yield but also the
momentum distribution. In nucleon-nucleon collisions,
the initially created heavy quarks via hard processes carry
high momentum, and the produced tetraquarks will inherit
the high momentum. In nucleus-nucleus collisions, the
heavy quarks lose energy when they pass through the
medium and get thermalized before the hadronization.
Therefore, the formed tetraquarks via coalescence mecha-
nism are mainly distributed in low momentum region,
see Fig. 5.

VI. SUMMARY

In this paper, we solved the four-body Schrödinger
equation and investigated the properties of fully-heavy
tetraquark states ccc̄c̄ and bbb̄b̄ in vacuum and at finite
temperature. To increase the precision of solving the
equation, we expanded the wave functions in series of
hyperspherical harmonics and obtained the eigenstates and
eigenvalues by using an iteration algorithm based on the
inverse power method. This algorithm allows us to study
not only the ground but also excited tetraquark states.
In vacuum, we found that the masses of all the tetraquark

states 1S; 2S and 3S with JPC ¼ 0þþ; 1þ− and 2þþ are
above the 2mJ=ψ or 2mϒ threshold. The experimentally
observed exotic state Xð6900Þ is likely to be a tetraquark
state of ccc̄c̄, and the possible quantum number is JPC ¼
0þþ or 1þ−.
At finite temperature, we determined the tetraquark

dissociation temperatures due to the color screening effect
on the heavy-quark potential. bbb̄b̄ can survive in almost
all the QGP phase, while ccc̄c̄ is already melted at the
critical temperature Tc. Taking the wave function at finite
temperature, we constructed, without introducing any
adjustable parameter, the Wigner function in phase space
which is the key ingredient of the coalescence mechanism.
In the framework of the coalescence model, we calculated
the production cross section and transverse momentum
distribution for ccc̄c̄ in heavy-ion collisions. Compared to
p-p collisions, the production yield, not only for A‐A but
also for a binary collision, is extremely enhanced in heavy-
ion collisions, and the tetraquarks are mainly distributed at
low momentum.
Due to the complicated background in nuclear collisions,

it is challenging to search for rare particles with low/median
pT in heavy-ion collisions. However, for fully-heavy
tetraquarks, the four-lepton decay channel X → lþ1 l

−
2 l

þ
3 l

−
4

can be well separated from the bulk background and makes
it possible to find such exotic states in low pT region [19].
In central collisions, the production cross section of fully-
charmed tetraquarks is around three or four orders of
magnitude larger than that in p-p collisions, and the leptons
produced in the decay channel are energetic but do not
interact with the hot medium. Consequently, we expect that
the fully-charmed tetraquark shall be able to be measured
by lepton detectors at LHC. This calls for theoretical
predictions of the cross section for the four-lepton decay
[78,79], and a systematic study of both the total and
differential cross sections for all possible fully-heavy
tetraquarks is required. The results will be reported in
our future work.
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APPENDIX A: HYPERSPHERICAL HARMONIC
FUNCTIONS

For a four-body system with central two-body interac-
tion, the conserved quantities include the orbital angular
momenta l̂1; l̂2 and l̂3 corresponding to the relative coor-
dinates x1, x2 and x3 and L̂1 ¼ l̂1; L̂2 ¼ l̂1 þ l̂2 and L̂ ¼
L̂3 ¼ l̂1 þ l̂2 þ l̂3 for the 1-2 sub-system, 1-2-3 sub-system
and whole four-body system, and the projections L̂1z; L̂2z

and L̂3z. Any two of these operators are commutative and
their eigenvalues, L2; L;M2;M; l1; l2; l3; n2 and n3, form a
complete set of quantum numbers.
The hyperspherical harmonic functions YκðΩÞ are

defined as the eigenstates of the hyperangular momentum
K̂2

3 of the system,

K̂2
3YκðΩÞ ¼ KðKþ 7ÞYκðΩÞ;

K̂2
3 ¼ −

∂2

∂α23 þ
3− 7 cosð2α3Þ

sinð2α3Þ
∂
∂α3 þ

1

cos2α3
K̂2

2

þ 1

sin2α3
l̂23;

K̂2
2 ¼ −

∂2

∂α22 −
4 cosð2α2Þ
sinð2α2Þ

∂
∂α2 þ

1

cos2α2
l̂21 þ

1

sin2α2
l̂22

ðA1Þ

with the solution

K ¼ 2ðn2 þ n3Þ þ l1 þ l2 þ l3;

Yκ ¼
Y3
i¼2

Niðsin αiÞliðcos αiÞKi−1PniliKi
ðcos 2αiÞ

×
X

m1;m2;m3

Y3
j¼2

hLj−1Mj−1ljmjjLjMji

×
Y3
k¼1

Ylk;mk
ðθk;ϕkÞ; ðA2Þ

where Ni is the normalization coefficient

Ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Ki þ 4Þni!Γðni þ Ki−1 þ li þ 2Þ
Γðni þ li þ 3

2
ÞΓðni þ Ki−1 þ 3

2
Þ

s
; ðA3Þ

PniliKi
≡ Pliþ1=2;Ki−1þð3j−5Þ=2

ni is the Jacobi polynomial,
Ylk;mk

ðθk;ϕkÞ are the ordinary spherical harmonic func-
tions, and κ stands for all the quantum numbers.
Considering only the radial excited states with quantum

numbers L ¼ M ¼ 0, we explicitly list here the first seven
hyperspherical harmonic functions YκðΩÞ with quantum

numbers ðκ; K; n3; n2; l1; l2; l3Þ ¼ ð1; 0; 0; 0; 0; 0; 0Þ, (2, 2,
1, 0, 0, 0, 0), (3, 2, 0, 1, 0, 0, 0), (4, 2, 0, 0, 1, 1, 0), (5, 2, 0,
0, 1, 0, 1), (6, 2, 0, 0, 0, 1, 1) and (7, 3, 0, 0, 1, 1, 1) which
are used in our numerical calculations,

Y1 ¼
ffiffiffiffiffiffiffiffi
105

32

r
1

π2
;

Y2 ¼
ffiffiffiffiffiffiffiffi
385

6

r
3

16π2
ð3 cosð2α3Þ − 1Þ;

Y3 ¼
ffiffiffiffiffiffiffiffi
385

2

r
3

8π2
cosð2α2Þcos2ðα3Þ;

Y4 ¼ −
ffiffiffiffiffiffiffiffi
385

2

r
3

4π2
cos α2 sin α2cos2α3

× ½cos θ1 cos θ2 þ cosðϕ1 − ϕ2Þ sin θ1 sin θ2�;

Y5 ¼ −
ffiffiffiffiffiffiffiffi
385

2

r
3

4π2
cos α2 cos α3 sin α3

× ½cos θ1 cos θ3 þ cosðϕ1 − ϕ3Þ sin θ1 sin θ3�;

Y6 ¼ −
ffiffiffiffiffiffiffiffi
385

2

r
3

4π2
sin α2 cos α3 sin α3

× ½cos θ2 cos θ3 þ cosðϕ2 − ϕ3Þ sin θ2 sin θ3�;

Y7 ¼ i
ffiffiffiffiffiffiffiffiffiffi
5005

p 3

8π2
sin α2 cos α2 sin α3cos2α3

× ½cos θ3 sin θ1 sin θ2 sinðϕ1 − ϕ2Þ
− sin θ3 cos θ2 sin θ1 sinðϕ1 − ϕ3Þ
þ sin θ3 cos θ1 sin θ2 sinðϕ2 − ϕ3Þ�: ðA4Þ

APPENDIX B: COMPUTING THE
POTENTIAL MATRIX

The difficulty to calculate the potential matrix element
Vκκ0 (21) is the integration over the eight angels Ω ¼
ðα2;α3; θ1;ϕ1; θ2;ϕ2; θ3;ϕ3Þ. Let us first consider the
potential between the two quarks,

Vκκ0
12 ¼

Z
V12ðjr2 − r1jÞY�

κðΩÞYκ0 ðΩÞdΩ

¼
Z

V12ð
ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
ρ sin α3ÞY�

κðΩÞYκ0 ðΩÞdΩ

¼ N
Z

ðsin α3Þl3þl0
3ðcos α3ÞK2þK0

2

× Pl3þ1=2;K2þ2
n3 ðcos 2α3ÞPl0

3
þ1=2;K0

2
þ2

n0
3

ðcos 2α3Þ
× V12ð

ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
ρ sin α3Þdα3; ðB1Þ

where N is a trivial seven dimensional integration, and the
integration over α3 can be done easily. The above reduction
from eight to one dimensional integration comes from
the fact that jr2 − r1j is only a function of α3, by the
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definition (3). For the other interaction between a quark and
an antiquark or two antiquarks, there is no such reduction,
because in general case jrj − rij depends on more angels.
One way to effectively reduce the dimensions of the
integration is to make a rotation in the coordinate space
to guarantee jrj − rij ∼ sin α̃3. This rotation in coordinate
space is equivalent to a particle index permutation. We
extend the special Jacobi transformation (3) to a general one,

xðijÞ
1 ¼

ffiffiffiffiffiffiffi
3m
4μ

s �
rl −

ri þ rj þ rk
3

�
;

xðijÞ
2 ¼

ffiffiffiffiffiffiffi
2m
3μ

s �
rk −

ri þ rj
2

�
;

xðijÞ
3 ¼

ffiffiffiffiffi
m
2μ

r
ðrj − riÞ: ðB2Þ

The two groups of relative coordinates (3) and (B2) are
connected via a transformation,0

BB@
xð12Þ
1

xð12Þ
2

xð12Þ
3

1
CCA ¼ AðijÞ

0
BB@

xðijÞ
1

xðijÞ
2

xðijÞ
3

1
CCA; ðB3Þ

and the hyperspherical harmonic functions YκðΩijÞ corre-
sponding to (B2) are related to YκðΩÞ to (3) via a trans-
formation,

YκðΩÞ ¼
X
κ0
RðijÞ
κκ0 Yκ0 ðΩijÞ; ðB4Þ

where RðijÞ
κκ0 are called Raynal-Revai coefficients [80,81].

With the Raynal-Revai matrix, any potential element
Vκκ0
ij is simplified to the calculation of Vκκ0

12 ,

Vκκ0
ij ¼

Z
Vijðjrj − rijÞY�

κðΩÞYκ0 ðΩÞdΩ

¼
X
ωω0

ðRðijÞ
κω Þ�RðijÞ

κ0ω0

×
Z

Vijðjrj − rijÞY�
ωðΩijÞYω0 ðΩijÞdΩij

¼
X
ωω0

ðRðijÞ
κω Þ�RðijÞ

κ0ω0Vωω0
12 : ðB5Þ
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