
 

Production of axial-vector mesons at e + e− collisions with double-tagging as
a way to constrain the axial meson light-by-light contribution to the muon

g-2 and the hyperfine splitting of muonic hydrogen
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We calculate cross sections for production of axial-vector f1ð1285Þ mesons for double-tagged
measurements of the eþe− → eþe−f1ð1285Þ reaction. Different γ�γ� → f1ð1285Þ vertices from the
literature are used. Both integrated cross section as well as differential distributions are calculated.
Predictions for a potential measurement at Belle II are presented. Quite different results are obtained for the
different vertices proposed in the literature. Several observables are discussed. The distribution in photon
virtuality asymmetry is especially sensitive to the γ�γ� → f1 vertex. Future measurements at eþe− colliders
could test and/or constrain the γ�γ� → f1ða1; f01Þ vertices and associated form factors, known to be
important ingredients for calculating contributions to anomalous magnetic moment of muon and hyperfine
splitting of levels of muonic atoms. In addition we present helicity amplitudes as a function of both photon
virtualities. Only some amplitudes are different from zero. Different models have different relative size of
LT, TL, and TT amplitudes.
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I. INTRODUCTION

The coupling of neutral mesons to two photons is an
important ingredient of mesonic physics. In Ref. [1]
tensorial coupling was discussed for different types of
mesons (pseudoscalar, scalar, axial-vector, and tensor). In
general, the amplitudes can be expressed in terms of
functions of photon virtualities often called transition form
factors. They were tested in details for pseudoscalar mesons
(π0, η, η0). Recently there was discussion how to calculate
such objects for pseudoscalar [2] and scalar [3] quarkonia.
The axial vector mesons and in particular their coupling

to photons [4] are very important in the context of their
contribution to anomalous magnetic moment of muon
[5–10].
The anomalous magnetic moment of muon is one of the

most fundamental quantities in particle physics (see, e.g.,
[11,12]). A first calculation of QED corrections to anoma-
lous magnetic moment was performed long ago [13].
Recent state of the art can be found, e.g., in [11,12,14].
The current precision of QED calculation is so high that

hadronic contributions to muon anomalous moment must
be included. The so-called light-by-light (LbL) contribu-
tions are very important but rather uncertain. The coupling
γ�γ� → f1ð1285Þ is one of the most uncertain ingredients.
Different couplings have been suggested in the literature.
Recently the contribution of the γ�γ� → f1ð1285Þ cou-

pling was identified and included in calculating hyperfine
splitting of levels of muonic hydrogen, and turned out to be
quite sizeable [15]. These are rather fundamental problems
and better constraints on γ�γ� coupling are badly needed.
In calculating δaf1μ one often writes:

δaf1μ ¼
Z

dQ2
1dQ

2
2 ρ

f1
μ ðQ2

1; Q
2
2Þ; ð1:1Þ

where ρf1μ ðQ2
1; Q

2
2Þ is the density of the f1 contribution to

the muon anomalous magnetic moment. The integrand of
(1.1) (called often density for brevity) peaks at Q2

1; Q
2
2 ∼

0.5 GeV2 and gives almost negligible contribution for
Q2

1; Q
2
2 > 1.5 GeV2, see, e.g., [7].

The γ�γ�f1ð1285Þ coupling can be also quite important
for hyperfine splitting of levels of muonic hydrogen [15].
It is also very important to calculate rare decays such
as f1ð1285Þ → eþe− [16,17]. There both spacelike and
timelike photons enter corresponding loop integral(s)
so one tests both regions simultaneously. The correspond-
ing branching fraction is very small (BF ∼ 10−8). The
same loop integral enters the production of f1 in
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electron-positron annihilation [16,17]. There is already a
first evidence of such a process from the SND collaboration
at VEPP-2000 [18]. The f1ð1285Þ was also observed in
γp → f1ð1285Þp reaction by the CLAS collaboration [19].
The experimental results do not agree with theoretical
predictions [20–22].
Figure 1 illustrates how different regions of the vertex

functions are tested in different processes. The square
ð0; Q2

0Þxð0; Q2
0Þ close to the origin shows the region where

the dominant contributions to g − 2 comes from. The
square ðQ2

0;∞ÞxðQ2
0;∞Þ marked in red represents the

region which can be tested in double-tagging experiments.
The short diagonal (Q2

1 ¼ Q2
2) line represents region

important for hyperfine splitting of levels of muonic
hydrogen. The narrow strips along the x and y axis shows
a possibility to study production of f1ð1285Þ in eþ A
collisions at EIC. Marked is also the region of photon
virtualities which contributes to f1 → eþe− or to the
production of f1ð1285Þ in eþe− annihilation.
In the present paper we suggest how to limit the

behavior of the γ�γ� → f1ð1285Þ coupling(s)1 at somewhat
larger photon virtualities accessible at double-tagged
eþe− → eþe−f1ð1285Þ measurements, where typically
Q2

1; Q
2
2 > Q2

0 ¼ 2 GeV2.

II. SOME DETAILS OF THE
MODEL CALCULATIONS

Figure 2 shows the Feynman diagram for axial-vector
meson production in eþe− collisions. The small circle in

the middle represents the γ�γ� → AV vertex tested in
double-tagging experiment.

A. γ�γ� → f 1ð1285Þ vertices
In the formalism presented, e.g., in [4] the covariant

matrix element for γ�γ� → f1ð1285Þ is written as:

Rμ;ν¼−gμνþ 1

X
½ðq1 _q2Þðqμ1qν2þqμ2q

ν
1Þ−q21q

μ
2q

ν
2−q22q

μ
1q

ν
1�;
ð2:1Þ

where

X¼ðq1 _q2Þ−q21q
2
2¼

M4
f

4

�
1þ2ðq21tþq22tÞ

M2
f

þðq21t−q22tÞ2
M4

f

�
:

ð2:2Þ

1. DKMMR2019 vertex

In Ref. [15] the vertex was written as:

Tμν
α ¼4παemϵρστα

�
Rμρðq1;q2ÞRνσðq1;q2Þ

×ðq1−q2ÞτνF0ðq21;q22Þ

þRνρðq1;q2Þ
�
qμ1−

q21
ν
qμ2

�
qσ1q

τ
2F

ð1Þðq21;q22Þ

þRμρðq1;q2Þ
�
qν2−

q22
ν
qν1

�
qσ2q

τ
1F

ð1Þðq22;q21Þ
�
; ð2:3Þ

where

ν ¼ ðq1q2Þ ¼
1

2
ððq1 þ q2Þ2 − q21 − q22Þ: ð2:4Þ

In the nonrelativistic model

Fð0Þð0; 0Þ ¼ −Fð1Þð0; 0Þ: ð2:5Þ

We use the normalization of form factors

FIG. 1. Possible tests of the γ�γ� → AV vertex in the ðQ2
1; Q

2
2Þ

space: contribution to g − 2, hyperfine splitting of muonic
hydrogen, EIC, f1 → eþe− or eþe− → f1 and DT in eþe−
collisions discussed in the present paper in extent.

FIG. 2. The generic diagram for eþe− → eþe−AV and kin-
ematical variables used in this paper.

1The same is true for other axial-vector ða1; f01Þ mesons.
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Fð0Þð0; 0Þ ¼ 0.266 GeV−2: ð2:6Þ

In [15] the vertex was supplemented by the following
factorized dipole form factor

FDKMMRðQ2
1; Q

2
2Þ ¼

Λ4
D

ðΛ2
D þQ2

1Þ2
Λ4
D

ðΛ2
D þQ2

2Þ2
: ð2:7Þ

The ΛD ≈ 1 GeV was suggested as being consistent with
the L3 collaboration data [23].
We will ascribe also the name NQM (nonrelativistic

quark model) to this vertex.

2. OPV2018 vertex

In Ref. [6] the vertex function for γ�γ� → f1 was
constructed based on an analysis of the f1ð1285Þ → ρ0γ
decay within NJL model with triangle pointlike quark-
antiquark meson coupling and using vector meson
dominance picture when passing from ρ0γ to γ�γ�. The
corresponding vertex for two-photon coupling there [see
their formula (40)] was derived to be

Tμνα ¼ iCOPVfϵμνσαðq1;σððq1q2Þ þ 2q21Þ
− q2;σððq1q2Þ þ 2q22ÞÞ
þ ϵρσναq2;ρq1;σðq2 þ 2q1Þμ
þ ϵρσμαq1;ρq2;σðq1 þ 2q2Þνg ð2:8Þ

when limiting to third powers of momenta. Above

COPV ¼ 5αemgρ
36πm2

q
; ð2:9Þ

wheremq is effective (constituent) quark mass. In [6] it was
set to mq ¼ 0.28 GeV. Of course the results strongly
depend on the value. The value of gρ is explicitly given
in [6].

In the OPV approach is based on calculation of the
triangle loop. In this approach the form factor is believed to
be included already in the amplitude given in [6] and the
extra form factor is in principle not needed. We will return
to the issue in the Result section, especially in the context of
double-tagging in eþe− → eþe−f1 reaction.

3. LR2019 vertex

Finally we consider also the vertex used very recently in
[9]. In this approach the vertex is

Tμνρ ∝ ϵαβρσfðq21δμα − q1;αq
μ
1Þqσ2δνβAðQ2

1; Q
2
2Þ

− ðq22δνβ − q2;βqν2Þqσ1δμαAðQ2
2; Q

2
1Þg: ð2:10Þ

The normalization was also given there. It was pointed out
that the AðQ2

1; Q
2
2Þ function does not need to be symmetric

under exchange of Q2
1 and Q2

2. Actually asymmetric form
factors calculated from the hard wall and Sakai-Sugimoto
models were used there. In our evaluation here we will use
hard wall (HW2) form factors as well as factorized dipole
symmetric/asymmetric form factors as specified below to
illustrate the effect of the holographic approach. The HW2
form factor can be sufficiently well represented as:

AðQ2
1; Q

2
2Þ ≈ Að0; 0ÞFSðQ2

1ÞFLðQ2
2Þ;

AðQ2
2; Q

2
1Þ ≈ Að0; 0ÞFLðQ2

1ÞFSðQ2
2Þ; ð2:11Þ

where

FSðQ2Þ ¼
�

Λ2
S

Λ2
S þQ2

�
2

;

FLðQ2Þ ¼
�

Λ2
L

Λ2
L þQ2

�
2

; ð2:12Þ

where ΛL > ΛS. We show the HW2 form factor and its
factorized dipole approximate representation as a function
of (log10ðQ2

1Þ; log10ðQ2
2Þ) in Fig. 3.

FIG. 3. Maps of the original (left panel) and parametrized (right panel) HW2 form factor AðQ2
1; Q

2
2Þ=Að0; 0Þ as a function of

[log10ðQ2
1Þ; log10ðQ2

2Þ]. In the latter case ΛS ¼ 0.8 GeV and ΛL ¼ 1.2 GeV.
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4. RS2019 vertex

In Ref. [8] a vertex based on RχT approach was
considered. In this approach one gets:

Tμνα ¼ e2FRSðq1; q2Þfiϵμταρq1;ρðqν2q2;τ − gντq22Þ
− iϵνταρq2.ρðqμ1q1;τ − gμτq21Þ
þ iϵμνρσq1;ρq2;σðqα1 − qα2Þg: ð2:13Þ

Above we have denoted:

FRSðq1; q2Þ ¼
2cA
MA

ðq21 − q22Þ
ðq21 −M2

VÞðq22 −M2
VÞ

: ð2:14Þ

The cA is defined in [8]. MV ≈mρ ≈mω ¼ 0.8 GeV. The
reader is asked to note vanishing of FRS at Q2

1 ¼ Q2
2. This,

as will be discussed below, has important consequences for
the double tagged measurements.
The form factor used in RS2019 are antisymmetric.

Additional symmetric form factors arising at higher order
were discussed in a revised version of [8] (see Appendix C
there). In the following we will use the lower order result to
illustrate the situation.
It was ascertained recently in [24] that the RχT approach

provides only purely transverse axial-vector meson
contributions.

5. MR2019 vertex

In Ref. [17] the following vertex was used (we change a
bit notation to be consistent with our previous formulae)

Tμνα ¼ i
m2

f1

ϵμνρσfFðq21; q22Þq2ρq1;σðq1 − q2Þα

− q22Gðq21; q22Þδαρq1;σ þ q21Gðq22; q21Þδαρq2;σg ð2:15Þ

to the production of f1ð1285Þ in the eþe− annihilation.
Since in this case both spacelike and timelike virtualities

enter the calculation of the relevant matrix element the form
factors had to be generalized. In [17] the form factors were
parametrized in the spirit of vector meson dominance
approach as:

Gðq21; q22Þ ¼
g2M5

f

qðq21 −m2
ρ þ imρΓρÞðq22 −m2

ρ þ imρΓρÞ
;

ð2:16Þ

Fðq21; q22Þ ¼
g1M3

fðq22 − q21Þ
qðq21 −m2

ρ þ imρΓρÞðq22 −m2
ρ þ imρΓρÞ

:

ð2:17Þ

One can see the characteristic ρ meson propagators. The
Fðq21; q22Þ form factor is asymmetric with respect to q21 and
q22 exchange to assure Bose symmetry of the amplitude. An
extra q in the denominator was attached to the VDM-like
vertex to assure “correct” behavior of the form factors at
large photon virtualities [1]. Of course, it is not obvious that
such a correction should enter in the multiplicative manner.
The coupling constant

g2 ¼ ð2.9� 0.4Þ × 10−4 ð2:18Þ

was found in [17]. It was allowed in [17] for g2 to be
complex. It was argue that jg1j ∼ g2 to describe the first
eþe− → f1ð1285Þ data from VEPP-2000 [18]. We shall
show in this paper how important is the interference of both
terms in the DT case.

6. LLNRS vertex

Recently we have proposed a new parametrization of the
ρ0ρ0 → f1 and ωω → f1 vertices [25] important for the
mechanism of f1 production in pp or pp̄ collisions at low
and intermediate energies. The corresponding vertex for
auxiliary angular momenta l,S = 2,2 reads:

iΓVV→f1
μνα ¼ 2gVVf1

M4
0

FVV→f1ðq1; q2Þ½ðq1 − q2Þρðq1 − q2Þσϵλσαβkβðq1κδλμ − qλ1gκμÞðqκ2gρν − q2ρδκνÞ þ ðq1 ↔ q2; μ ↔ νÞ�:

ð2:19Þ

In this parametrization M0 ¼ 1 GeV is set arbitrarily for
dimensional reasons.
The coupling constant gρ0ρ0f1 can be obtained, e.g., from

the decay of f1 → 2ðπþπ−Þ [26]. gρρf1 ≈ 20–30 is found
from adjusting to the experimental branching fraction for
f1 → 2ðπþπ−Þ. Much smaller value gρρf1 ≈ 10 is obtained
from f1 → ρ0γ decays. The difference is most probably due
to f1 → a�1 π

∓ → 2ðπþπ−Þ decay mode. Assuming SU(2)
flavor relation between ρ0 and ω flavor wave functions one
may expect gωωf1 ¼ gρ0ρ0f1 .

The form factor in (2.19) is parametrized in [26] as:

FVV→f1ðt1; t2Þ ¼
Λ4
D

Λ4
D þ ðt1 −m2

VÞ2
Λ4
D

Λ4
D þ ðt2 −m2

VÞ2
:

ð2:20Þ

or alternatively
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FVV→f1ðt1; t2Þ ¼ exp

�
t1 −m2

V

Λ2
E

�
exp

�
t2 −m2

V

Λ2
E

�
: ð2:21Þ

The form factor is normalized when V ¼ ρ, ω meson is on
mass shell. The form factor parameters ΛD or ΛE are in
general not well known.

When supplementing the hadronic vertices by the VDM
idea it can be used also for the γ�γ� → f1 production
discussed here.
Then one can write:

iΓγ�γ�→f1
μνα ¼

�
e
γρ

�
2

Fρρ→f1ðt1; t2ÞiΓρ0ρ0→f1
μνα

m2
ρ

m2
ρ þQ2

1

m2
ρ

m2
ρ þQ2

2

þ
�
e
γω

�
2

Fωω→f1ðt1; t2ÞiΓωω→f1
μνα

m2
ω

m2
ω þQ2

1

m2
ω

m2
ω þQ2

2

: ð2:22Þ

The γ�γ� → f1 can be then obtained by using γρ and γω
constants from [27]. The reader may recognize the VDM-

like factors m2
V

m2
VþQ2

1

and m2
V

m2
VþQ2

2

for each of the photon. We will

return to the issue when discussing helicity-dependent
matrix elements in the Result section.

B. General requirements

Any correct formulation of the γ�γ� → f1ð1285Þ vertex
must fulfill at least three general requirements:

(i) Gauge invariance requires:

q1μTμνα ¼ q2νTμνα ¼ 0; ð2:23Þ

(ii) Landau-Yang theorem [28] requires:

Tμνα → 0 when q21 → 0 and q22 → 0: ð2:24Þ

(iii) Bose symmetry implies

Tμναðq1; q2Þ ¼ Tνμαðq2; q1Þ ð2:25Þ

which for our reaction means, e.g.:

dσðt1; t2; y;ϕÞ
dt1dt2dydϕ

¼ dσðt2; t1; y;ϕÞ
dt1dt2dydϕ

ð2:26Þ

for each y;ϕ.
Some vertices fulfill also

Tμναpα ¼ 0; ð2:27Þ

where p is four-momentum of the axial-vector meson. This
automatically guarantees that only spin-1 particle f1 is
involved and unphysical states are ignored. A related
discussion can be found, e.g., in [27].

C. Form factors

Some of the FðQ2
1; Q

2
2Þ form factors can be constraint

from the so-called decay width into transverse and longi-
tudinal photon, some are poorly know as they cannot be
obtained as they do not enter the formula for the radiative

decay width. The radiative decay width is known [29]
and is

Γ̃γγ ¼ 3.5 keV: ð2:28Þ
Then some of the form factors are parametrized as:

FðQ2
1; Q

2
2Þ ¼

�
Λ2
M

Λ2
M þQ2

1

��
Λ2
M

Λ2
M þQ2

2

�
; ð2:29Þ

FðQ2
1; Q

2
2Þ ¼

�
Λ2
D

Λ2
D þQ2

1

�
2
�

Λ2
D

Λ2
D þQ2

2

�
2

; ð2:30Þ

FðQ2
1; Q

2
2Þ ¼

�
Λ2
M

Q2
1 þQ2

2 þ Λ2
M

�
; ð2:31Þ

FðQ2
1; Q

2
2Þ ¼

�
Λ2
D

Q2
1 þQ2

2 þ Λ2
D

�
2

: ð2:32Þ

Both monopole and dipole parametrizations of form factors
will be used in the following. We will call the first two as
factorized Ansatze and the next two as pQCD inspired
powerlike parametrizations.
In general, the form factors in Eqs. (2.10) do not need to

be symmetric with respect to Q2
1 and Q2

2 exchange [9]. For
example in Ref. [9] asymmetric form factor AðQ2

1; Q
2
2Þ

obtained in hard wall and Sakai-Sugimoto models were
used to calculate contribution to anomalous magnetic
moment of muon. Here we shall take a more phenomeno-
logical approach and try to parametrize the form factors in
terms of simple functional forms motivated by physical
arguments such as vector dominance model or asymptotic
pQCD behavior of transition form factors (see, e.g., [30]).
The behavior of transition form factors at asymptotic

may be another important issue [31]. Where the pQCD sets
in is interesting but still an open issue. It was discussed in
[2] that for γ�γ�ηc coupling this happens at very high
virtualities. We leave this issue for the γ�γ�f1 coupling for a
future study.

D. e+ e− → e + e − f 1 reaction

The amplitude for the eþe− → eþe−f1 reaction (see
Fig. 2) in high-energy approximation can be written as:
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Mα¼eðp1þp0
1Þμ1

�
igμ1ν1
t1

�
Tν1ν2α
γ�γ�→f1

eðp2þp0
2Þμ2

�
igμ2ν2
t2

�
:

ð2:33Þ

Above e2 ¼ 4παem. The four-momenta are defined in
Fig. 2. The Tν1ν2α vertex function responsible for the
γ�γ� → f1 coupling was discussed in detail in the previous
subsection.
The square of the matrix element, summed over polar-

izations of f1, can be obtained as:

jMj2 ¼
X
α1;α2

Mα1Mα2Pα1α2ðpf1Þ; ð2:34Þ

where P is spin-projection operator for spin-1 massive
particle:

Pα1α2 ¼ −gα1;α2 þ
pα1pα2

M2
f1

: ð2:35Þ

The cross section for the 3-body reaction eþe− →
eþe−f1ð1285Þ can be written as

dσ ¼ 1

2s
jMj2 · d3PS: ð2:36Þ

The three-body phase space volume element reads

d3PS ¼ d3p0
1

2E0
1ð2πÞ3

d3p0
2

2E0
2ð2πÞ3

d3PM

2EMð2πÞ3
· ð2πÞ4δ4ðp1 þ p2 − p0

1 − p0
2 − PMÞ: ð2:37Þ

The phase-space for the pp → ppf1 reaction has four
independent kinematical variables. In our calculation we
integrate over ξ1 ¼ log10ðp1tÞ, ξ2 ¼ log10ðp1tÞ, azimuthal
angle between positron and electron and rapidity of the
produced axial-vector meson (four-dimensional integra-
tion). Here p1t and p2t are transverse momenta of outgoing
positron and electron, respectively.
In the case of holographic approach first the AðQ2

1; Q
2
2Þ

form factor entering the central vertex function [see
Eq. (2.33)] is calculated on a two-dimensional grid and
then the grid is used for interpolation for each phase space
point [see (2.36)].

E. Helicity dependent γ�γ� → f 1 vertices

As will be discussed in the result section the cross
sections for the eþe− → eþe−f1 reaction presented in this
paper strongly depend on functional form of the γ�γ� → f1
vertices as well as corresponding form factor. This is partly
related to the helicity structure of vertices. In the following
we will present also helicity decomposition of the γ�γ� →
f1 vertices. The helicity-dependent matrix elements can be
calculated from

Vðλ1; λ2; λÞ ¼ ϵμðq1; λ1Þϵνðq2; λ2Þϵ�αðp; λÞTμναðq1; q2Þ:
ð2:38Þ

The polarization vectors used here fulfill the following
relations:

qμ1ϵμðq1; λ1Þ ¼ 0;

qν2ϵνðq2; λ2Þ ¼ 0;

pαϵαðp; λÞ ¼ 0: ð2:39Þ

Vðλ1; λ2; λÞ is in general a complex number. For virtual
photons both transverse and longitudinal photons are
possible.
The result simplify in the f1 rest frame for which:

q1ðE1; 0; 0; qÞ; q2ðE2; 0; 0;−qÞ ð2:40Þ

and q21 ¼ E2
1 − q2, q22 ¼ E2

2 − q2, ðq1 þ q2Þ2 ¼ m2
f1
.

In the result section we shall show Vðλ1; λ2; λÞ as a
function of Q2

1 ¼ −q21 and Q2
2 ¼ −q22 for a few models

discussed here.
From symmetry we expect only three independent

VTTðQ2
1; Q

2
2Þ, VLTðQ2

1; Q
2
2Þ and VTLðQ2

1; Q
2
2Þ two-

dimensional functions. One could also show:

RLTðQ2
1; Q

2
2Þ ¼ jVLTðQ2

1; Q
2
2Þ=VTTðQ2

1; Q
2
2Þj;

RTLðQ2
1; Q

2
2Þ ¼ jVTLðQ2

1; Q
2
2Þ=VTTðQ2

1; Q
2
2Þj: ð2:41Þ

III. NUMERICAL PREDICTIONS

A. Low Q2
1, Q

2
2 region

In Fig. 4 we show a two-dimensional distribution (ξ1, ξ2)
of the full phase space cross section. Quite large cross
sections are obtained for small ξ1 and/or ξ2. In addition, the
different models of the γ�γ�f1 couplings lead to very
different results for the total cross section. The measure-
ment of the total cross section is, however, rather difficult.
We show both results for the original OPV model [6] as
well as results modified by an extra form factor simulating
not included pQVD effects to be explained below.
In Fig. 5 we show distributions in ðt1; t2Þ (four-momenta

squared of the virtual photons as shown in Fig. 2). Clearly
some couplings generate strongly enhanced cross section at
small jt1j; jt2j. The original OPV model gives unexpectedly
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large cross section at large jt1j and jt2j especially when
compared to other models. The “modified OPV”means the
original OPV vertex multiplied by an extra form factor:

FextraðQ2
1; Q

2
2Þ ¼ M4

f1
=ðM2

f1
þQ2

1 þQ2
2Þ2: ð3:1Þ

Such a form factor may simulate pQCD effects related to
the quark-antiquark wave function not included in the
original NJL model. Such wave function effects were

included, e.g., for the pseudoscalar charmonium [3] and
are crucial to describe ηc transverse momentum distribution
measured recently by the LHCb collaboration. We will
continue the discussion on the wave function effect in the
context of double tagging.
Clearly those different vertices lead to different cross

sections even for very small photon virtualities where the
cross section is relatively large. Could one measure
inclusive cross section for production of axial-vector meson

FIG. 4. Distributions in ξ1 and ξ2 for
ffiffiffi
s

p ¼ 10.5 GeV. Here the original OPV, modified OPV, NQM, LLNRS, LR, and RS vertices
were used.
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without tagging ? Is then γ�γ� → f1ð1285Þ the dominant
mechanism ? If yes, such measurements would verify the
different vertices used in calculating δaμ (axial-vector
meson contribution to aμ). Small Q2

1 and Q2
2 means small

transverse momenta of f1ð1285Þ. Can one then identify
f1ð1285Þ. Which channel is the best ? This requires further
Monte Carlo studies. The resonant eþe− → f1ð1285Þ

production is very small [17] and important only at
resonance energies (

ffiffiffi
s

p
∼mf1). We are not aware

about other competitive reaction mechanisms in eþe−
collisions.
In general, one observes a strong enhancement of the

eþe− → eþe−f1ð1285Þ cross section at Q2
1; Q

2
2 → 0 which

is dictated by the singular behavior of photon propagators

FIG. 5. Distributions in t1 and t2 for
ffiffiffi
s

p ¼ 10.5 GeV. Here the original OPV, modified OPV, NQM, LLNRS (modified VDM), LR,
and RS vertices were used.
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in (2.33). To illustrate and explore the effect of Landau-
Yang vanishing of Tμνα vertex function for γ�γ� → f1 in
Fig. 6 we plot the following quantity:

ΩLYðQ2
1; Q

2
2Þ ¼

Q4
1Q

4
2

M4
0M

4
0

dσðQ2
1; Q

2
2Þ

dQ2
1dQ

2
2

: ð3:2Þ

The arbitrary scale M0 is chosen to be M0 ¼ 1 GeV in the
following.
One can clearly see vanishing of the special quantity

(3.2) at Q2
1 → 0 and Q2

2 → 0 which reflects Landau-Yang
theorem. Slightly different approach patterns to zero can be
observed for the different couplings. For the RS coupling
we observe deep valley around Q2

1 ¼ Q2
2 which is a direct

consequence of the specific form factor used there. In this
case ΩLY is much smaller than for other vertices in the
limited range of Q2

1 and Q2
2 shown in the figure.

B. Double-tagging case

In Table I we show integrated cross sections in nb for
different couplings discussed in the previous section. Here
we imposed only Lorentz invariant cuts Q2

1; Q
2
2 > 2 GeV2.

TABLE I. Integrated cross section in nb for the double-tagging
case with Q2

1; Q
2
2 > 2 GeV2. The MRþ, MR− below show the

effect of interference due to sign changing of a “subleading”
contribution.

Vertex Cross section Comment

LR 0.6892ð−04Þ Fact. dipole, Λ ¼ 1 GeV
0.3715ð−04Þ HW2 form factor

OPV 0.1514ðþ01Þ Formula (30) in [6]
OPV 0.9212ð−04Þ Extra pQCD dipole, Λ ¼ Mf1
NQM 0.4905ð−07Þ Factorized dipole Λ ¼ 1 GeV
RS 0.2138ð−02Þ Antisymmetric form factor,

Λ ¼ 0.8 GeV
MR þ 0.4327ð−07Þ Symmetric and antisymmetric

form factors
MR − 0.7410ð−07Þ Symmetric and antisymmetric

orm factors
MR first 0.3432ð−07Þ Antisymmetric form factors
MR second 0.2435ð−07Þ Symmetric form factor
LLNRS 0.2666ð−06Þ ΛD ¼ 1.2 GeV, gVVf1 ¼ 10.0,

naive VDM
LLNRS 0.1681ð−05Þ ΛD ¼ 1.2 GeV, gVVf1 ¼ 10.0,

modified VDM

FIG. 6. A two-dimensional maps of the special quantity ΩLY for
ffiffiffi
s

p ¼ 10.5 GeV. Here the OPV (left upper), NQM (right upper), LR
(left lower) and RS (right lower) vertices were used.
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Quite different values are obtained with different couplings
which show huge uncertainties of our predictions.
Surprisingly small cross sections are obtained with the
MR2019 couplings, where we show results with different
sign of the second term. Therefore we show also contri-
butions of individual terms for some couplings from the
literature. They give contributions of quite different
magnitude.
The results are strongly dependent on both the functional

form of the vertex and on the form factor used in the
calculation which is discussed below. For the OPV
approach the form factor comes from the evaluation of
the triangle diagram. In that approach meson couples to
quarks/antiquarks in a pointlike fashion. Such an approach
was questioned in [3] where it was shown that inclusion of
the meson wave function is crucial to describe the pp → ηc
data via gluon-gluon fusion. With the pointlike coupling we
get gigantic cross section for the proposed DT eþe−
experiment. Therefore we decided to “correct” this result
by an extra form factor which simulates the wave function
effects. Of course such a procedure is quite arbitrary but
including only the triangle loop at high photon virtualities
seems highly unsatisfactory, also for differential distribu-
tions. In Fig. 7 we show the result without (left panel) and
with (right panel) the extra form factor.

In Table II we show integrated cross section for a simple
LR2019 coupling [9] supplemented by the pQCD or
factorized dipole form factor with different values of the
form factor parameter Λ. The results dramatically depend
on the value of Λ. In addition for the same Λ the pQCD and
factorized dipole Ansätze give cross section for double
tagged case differing by an order of magnitude. In contrast
for single tagged case they give almost the same result.
Now we wish to show several differential distributions

for the double-tagged mode. In Fig. 8 we show distributions
in rapidity and transverse momentum of f1ð1285Þ, t1 or t2,
azimuthal angle between outgoing electrons, averaged
virtuality

Q2
a ¼ ðQ2

1 þQ2
2Þ=2 ð3:3Þ

and the asymmetry parameter

ω ¼ Q2
1 −Q2

2

Q2
1 þQ2

2

: ð3:4Þ

The Bose symmetry requires that:

dσ
dω

ðωÞ ¼ dσ
dω

ð−ωÞ: ð3:5Þ

Quite different distributions are obtained for the different
vertices used recently in the literature. Especially interest-
ing are distribution in relative azimuthal angle between
outgoing electrons and distribution in virtuality asymmetry
ω. For the RS2019 vertex [8] the vanishing of the cross
section for ω ¼ 0 is a consequence of the asymmetric form
factor which goes to 0 for Q2

1 ¼ Q2
2. With the RS2019

vertex axial vector mesons do not contribute to the hyper-
fine splitting of muonic atoms. It is obvious that the DT
measurements of distributions shown in Fig. 8 would

FIG. 7. The distribution in (t1, t2) for the OPV approach. The left panel shows result from formula (30) in [6] while the right panels
shows result modified by an extra form factor simulating the f1 wave function effects.

TABLE II. Integrated cross section in nb for eþe− →
eþe−f1ð1285Þ at

ffiffiffi
s

p ¼ 10.5 GeV for the vertex used in [9]
for arbitrarily changed form factors. We present results for
different values of form factor parameter.

pQCD
dipole Λ (GeV) σ (nb)

Factorized
dipole Λ (GeV) σ (nb)

0.8 0.4477ð−3Þ 0.8 0.4292ð−5Þ
1.0 0.2236ð−2Þ 1.0 0.6892ð−4Þ
1.2 0.7867ð−2Þ 1.2 0.5432ð−3Þ
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provide strong limitations on the vertices used in calculat-
ing fundamental quantities such as muon anomalous
magnetic moment aμ and/or hyperfine splitting of muonic
hydrogen.

C. Helicity dependent matrix elements

We have shown that the different models presented in the
literature give very different results, especially for larger
photon virtualities Q2

1 and/or Q
2
2. To illustrate the situation

better here we shall show also helicity-dependent matrix
elements for a few models.
In principle, there are many ðλ1λ2λÞ amplitudes that

depend on both photon virtualities. The symmetries and the
structure of the vertices infer that only a few are really
independent. For example we find:

jVðþ1; 0;þ1Þj ¼ jVð0;−1;þ1Þj
¼ jVð−1; 0;−1Þj
¼ jVð0;þ1;−1Þj: ð3:6Þ

The different matrix elements can be classified into TT, LT,
TL components, where T and L denote transverse and
longitudinal photons.
In Fig. 9 we show VLT, VTL, and VTT as a function of

photon virtualities Q2
1 and Q2

2 for a few examples of
models: OPV (upper row), NQM (middle row), and
LNSS (lower row). We observe very different dependence
of the matrix elements (supplemented by form factors) on
Q2

1 and Q2
2. Also the relative size of the LT, TL, and TT

terms depends on the model. While in the OPV model the
TLþ LT contributions are much larger than the TT
contribution for the NQM model all components are of
similar size.
In the LLNRS model there is not at all TT contribution.

We see that in this model only TL and LT terms occur. So
at least one photon is longitudinal. In this case the simple
formula (2.22) may not be appropriate. As discussed, e.g.,
in [32] the form factors for both terms in (2.22) should be
rather of the type:

m2
V

m2
V þQ2

1

· ξV

ffiffiffiffiffiffiffi
Q2

2

m2
V

s
m2

V

m2
V þQ2

2

;

ξV

ffiffiffiffiffiffiffi
Q2

1

m2
V

s
m2

V

m2
V þQ2

1

·
m2

V

m2
V þQ2

2

ð3:7Þ

for the first (TL) and second (LT) term, respectively,
different for each term. The constant ξV is known phe-
nomenologically to be of the order of 1. Therefore in our
calculation we shall use also result of the slightly modified
model inspired by the VV → f1 LLNRS vertex. The results
were already presented in Table 1 and Fig. 8. The cross
sections for the modified vertex are larger than the naive
one [see (2.22)] for the DT kinematics. The reader is asked
to note zeroing of VTT for Q2

1 ¼ Q2
2 for the presented

models. This is a general future related to the boson
symmetry.
In Fig. 10 we show LT and TL contributions for the

LNSS model for the two different VDM prescriptions. The
result for the modified prescription is very different from
that for the naive prescription.

FIG. 8. Several distributions for production of f1ð1285Þ in
double-tagging mode with Q2

1; Q
2
2 > 2 GeV2. The solid line is

for LR, the dashed line for modified OPV, the dotted line for
NQM, the dash-dotted line for RS vertex and the green dash-
dotted lines are for LLNRS vertices (lower—naive VDM,
upper—modified VDM).
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IV. CONCLUSIONS

In this paper the results of calculations of cross
sections and differential distributions for the eþe− →
eþe−f1ð1285Þ have been performed using different γ�γ� →
f1ð1285Þ couplings known from the literature. These
couplings were used previously to calculate hadronic
light-by-light axial-vector meson contributions to anoma-
lous magnetic moment of muon as well as for hyperfine
splitting of the muon hydrogen.
We have presented predictions relevant for future dou-

ble-tagged experiments for Belle II. The results strongly
depend on the details of calculation (type of tensorial
coupling and/or form factors used). The form factor cannot
be reliably calculated at present. We have presented several
differential distributions in photon virtualities, transverse
momentum of f1ð1285Þ, distribution in azimuthal angle
between outgoing electron and positron and so-called
asymmetry of virtualities (ω). Especially the latter observ-
able (asymmetry) seems promising for verifying the quite
different models of the γ�γ�AV coupling. The results
strongly depend on details of the coupling(s). The double
tagged measurement would therefore be very valuable to
constrain the couplings and form factors and in a conse-
quence would help to decrease uncertainties of their
contribution to anomalous magnetic moment of muon
and hyperfine splitting of muonic hydrogen.
To illustrate the differences between various models used

in the literature in the context of muon anomalous moment
FIG. 10. jVLT j and jVTLj for the naive LLNRS (upper low) and
modified LNNRS (lower row) models of the γγ → f1 coupling.

FIG. 9. jVLT j, jVTLj, and jVTT j for OPV (upper low) and NQM (lower row) models of the γγ → f1 coupling.
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we have presented also the helicity dependent matrix
elements for the γ�γ� → f1 vertex as a function of photon
virtualities. The matrix elements for different models
show very different behaviour on the two-dimensional
ðQ2

1; Q
2
2Þ plane. This is another interesting representation

of the models, however rather difficult for experimental
verification.
In the present models the form factors attached to

vertices are a bit arbitrary and can be reasonable only
for small values of Q2

1 and Q2
2. The Belle II experiment

could provide direct information how they look like as a
function of both photon virtualities. The nonlocal coupling
via triangle loop is, in our opinion, also not sufficient at
larger values ofQ2

1,Q
2
2 relevant for the DTexperiment. The

present situation calls for calculation of such form factors
using “realistic” momentum space quark-antiquark wave
function. This may be not an easy task and requires a
development of the relevant formalism.
Both ηπþπ− (as in [23]) as well as πþπ−πþπ− (used

recently at the LHC [33]) channels could be applied
experimentally to identify the f1ð1285Þ meson. The
ηπþπ− option is dangerous as there is another meson close
by which decays to the same decay channel: ηð1295Þ →
ηππ [34]. This meson may be also abundantly produced in
γγ fusion as Γη0→γγ ¼ 4.27 keV [35]. f1ð1285Þ → ρ0γ
with BR ¼ 5.3% [29] would be another possible choice.
The decays of light axial vector mesons were discussed,
e.g., in [36–38].

In the present paper we concentrated on production of
f1ð1285Þmeson. A similar analysis could be performed for
other axial-vector mesons such as a1ð1260Þ or f1ð1420Þ.
Then coupling constants and some form factors must be
changed in the calculation. On the experimental side, decay
channels specific for a given meson must be selected.
The production of isoscalar axial-vector mesons is very

interesting also in the context of central exclusive processes
pp → ppf1. There the unknown ingredient is Pomeron-
Pomeron-f1 vertex. This is discussed elsewhere [25].
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