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Even though the Standard Model has achieved great success, its application to the field of low energy
still lacks solid foundation due to our limited knowledge on nonperturbative QCD. Practically, all
theoretical calculations of the hadronic transition matrix elements are based on various phenomenological
models. There indeed exist some anomalies in the field that are waiting for interpretations. The goal of this
work is trying to solve one of the anomalies: the discrepancy between the theoretical prediction on the sign
of the up-down asymmetry parameter of Λc → Σπ and the experimental measurement. In the literatures
several authors calculated the rate and determined the asymmetry parameter within various schemes, but
there exist obvious loopholes in those adopted scenarios. To solve the discrepancy between theory and data,
we suggest that not only the direct transition process contributes to the observed Λc → Σπ, but also other
portals such as Λc → Λρ play a substantial role via an isospin-conserving rescattering Λρ → Σπ. Taking
into account the effects induced by the final state interaction, we reevaluate the relevant quantities. Our
theoretical prediction based on this scenario involving an interference between the direct transition of
Λc → Σπ and the portalΛc → Λρ → Σπ can make both the decay rate and sign of the asymmetry parameter
to be consistent with data.
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I. INTRODUCTION

Even though the Standard Model (SM) has achieved
great success, its application to the field of low energy still
lacks solid foundation due to our limited knowledge on
nonperturbative QCD. Practically, all theoretical calcula-
tions of the hadronic transition matrix elements are based
on various phenomenological models. There indeed exist
some anomalies in the field that are waiting for interpre-
tations. One of the anomalies is the discrepancy between
the theoretical prediction on the sign of the up-down
asymmetry parameter of Λc → Σπ and the experimental
measurement. In fact, besides the meson case, for baryons
that contain three ingredients, their complexity makes a
thorough study on them more difficult than on mesons.
However from another aspect, the involved physics in the
transitions between baryons is also richer and by the
research one can get better understanding of the governing
mechanisms. An advantage of studying decays of baryons

involving heavy flavors is obvious just as one does on the
heavy mesons (structure, production, and decay).
Especially, the charmed hadrons are of special signifi-

cance because charm quark is heavier than the light quarks
(u, d, s), but at the same time is not as heavy as the bottom
quark, so that relativistic effects are not negligible at all.
The issue that the lifetimes of B�; B0, and Λb are close,
however, the lifetimes of D�; D0, and Λc are quite apart,
has been warmly discussed. It is believed that the Pauli
interference induces the lifetime difference between D�

andD0 [1,2], which is suppressed for the B hadrons, but for
Λc the question still exists.
Since 1990s, many decay channels of Λc have succes-

sively been measured by experimental collaborations [3–6],
and the field has attracted attentions of theorists. Its weak
decays have been carefully explored with different
approaches [7–15]. In this work, we would revisit the
old topic because much larger datasets with higher pre-
cision are available at BESIII, Belle, and even LHCb,
which make us hope to get a better understanding on the
charmed baryons.
Among the previous theoretical studies on the decay rate

of Λc → Σπ and the corresponding up-down asymmetry
parameter α, the pole model was adopted because of its
advantage. The pole model is simple and the relevant
parameters are adopted by fitting data, therefore one can
trust its effectiveness. A naïve conjecture would expect
that the prediction obtained with this model should be
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consistent with data even though an error is unavoidable in
this relatively rough picture. However, it is noticed that the
prediction on the up-down asymmetry parameter α is
positive while the measured value is negative. This appar-
ent discrepancy which is not a tolerable deviation, indicates
that there must be something wrong. Thus to solve this
“anomaly” there are two routes. One is that the method
adopted for the calculation should be modified whereas
another possibility is that besides the direct transition, there
exist other contributions to the observed data on Λc → Σπ.
As the first route, Cheng and his collaborators [12] went on
to use the current algebra calculating the transition matrix
element hΣjHeff jΛci and obtained a negative α. However,
the precondition of using the current algebra [16] is
properly extracting the pion field out from the matrix
element hπΣjH0

eff jΛci under the soft-pion approximation.
By contrast for the process Λc → Σπ, the three momentum
of the pion is not small to be “soft”; thus the whole scenario
is questionable.
Instead, we follow the second route; i.e., the obvious

loophole may suggest that there could be another mecha-
nism. We propose that other channels of Λc decays would
contribute to the observed Λc → Σπ via final state inter-
actions. The interference between the direct transition and
the new contribution may lead to the results consistent with
data. Considering the effective interaction and the decay
rate of Λc decays, the most possible two-step process is that
Λc first transits into Λρ then, by a rescattering, Λρ turns
into Σπ and its contribution would interfere with the
amplitude of direct transition Λc → Σπ.
As is well known, the weak decays of heavy hadrons

mainly occur via an emission of virtual W or Z bosons
which later turn into lepton or quark pairs, from the heavy
quark (antiquark). In our case, Λc is an isospin singlet,
therefore the u-d subsystem (one may call it as a diquark) in
Λc exists in an isospin singlet (I ¼ 0), and it is noted that
the u-d subsystem in Λ is also an isospin singlet, but in Σ0

the subsystem is an isospin-triplet (I ¼ 1). During the
transition of Λc → Λ the u-d subsystem serves generally as
a spectator and retains its isospin unchanged, whereas for
Λc → Σ0, the isospin of the u-d subsystem is forced to
change from a singlet into a triplet. Practically, for the
Λc → Σ0πþ transition, the W boson emitted by the charm
quark must be connected to the u-d subsystem, which is no
longer a real spectator. Although the weak interaction does
not conserve isospin, the isospin analysis may help us to get
an insight into what happens during the transition.

According to the analysis given in literature [11], the rate
of Λc → Λρ should be about twice larger than that of
Λc → Σπ, therefore a two-step process, Λc → Λρ → Σπ,
may substantiate and change the picture (especially the sign
of the asymmetry parameter). This is not a surprise to notice
the role of final interaction: in our earlier work, we studied
the case of D0 → K0K̄0, which has the same rate as
D0 → KþK−. In fact the former is strongly suppressed,
nevertheless the later is favored. The result is fully under-
stood asD0 → K0K̄0 is realized via a rescatteringKþK− →
K0K̄0 [17]. The rescattering mechanism also has been
successfully applied to explain some other anomalies
existing in low energy experiments, such as the decays
of ϒ and bottomed mesons [18–21], thus we have a full
confidence that the mechanism also works well here.
Therefore in this work we include the contributions from

both the direct transition and that induced by the final state
interaction, and their interference leads to the final result
which is experimentally measured. For a comparison, in
the following Table I, we list the results given in literature.
Concretely, all the coupled channels of Λc should contrib-
ute to the observed Λc → Σπ via final state interactions
(rescattering). In terms of the effective interaction, the
corresponding coupling constants and the first step of the
sequential Λc decays, the process Λc → Λρ → Σπ should
be dominant one.
This paper is organized as follows: after this introduction

we will consider the contribution to Λc → Σπ by including
the final state interactions. In Sec. III we present our
numerical results. Section IV is devoted to a brief summary.

II. THE SEQUENTIAL DECAY Λc → Λρ → Σπ

The amplitude of baryon decays Bi → BfP can be
written as [11]

MðBi → BfPÞ ¼ iŪBf
½A − Bγ5�UBi

; ð1Þ

where Bi (Bf) is the initial (final) baryon and P is a
pseudoscalar meson.
For the transition Bi → BfV, the amplitude is

MðBi → BfVÞ ¼ iŪBf
ε�μ½−A1γμγ5 − A2pfμγ5

þ B1γμ þ B2pfμ�UBi
; ð2Þ

where V is a vector meson with polarization ε and pf is the
momentum of Bf. It is noted that the sign of the γ5 term in

TABLE I. Decay width Γ (in units of ×10−14) and up-down asymmetry α of Λc → Σπ.

Ref. [7] Ref. [8] Ref. [9] Ref. [10] Ref. [11] Ref. [12] Ref. [13] Exp. [22]

Γ 1.10 3.03 1.34 1.17 2.48 6.07 4.62 4.08� 0.33
α 0.70 0.43 0.39 0.92 0.83 −0.49 −0.31 −0.45� 0.32
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Ref. [11] is opposite to the convention adopted in [15].
Here with this minus sign in front of every item involving
γ5 (conventional definition), all the values of B, A1, and A2

given in Ref. [11] do not need to be changed and we
directly adopt their formulas. Indeed. this provides us a
great convenience to derive relevant quantities.
For the decay Λc → Σπ the factors A and B should

include the contributions of all relevant Feynman diagrams.
At the quark level the transition does not occur via
factorizable Feynman diagrams but those of nonfactoriz-
able ones [7,11]. In Ref. [11] the authors employed the
simple pole-model to calculate the contributions of non-
factorizable Feynman diagrams. However the sign of the
up-down asymmetry α gained in this way is opposite
to data.
It is easy to conjecture that in this case, the contribution

from the rescattering of final state in some decays of Λc
might play an important role. The goal of this work is just to
check if the rescattering of the final products can change the
scenario, namely simultaneously producing results in the
required production rate for Λc → Σπ and a correct up-
down asymmetry α. In principle many coupled channels
would jointly contribute to the decayΛc → Σπ, for example
Λc → Λρ and Λc → Λπ etc. Considering the coupling
constants and the rates of the first step decay of Λc one
can decide that the main process is Λc → Λρ → Σπ, where
the second step is the isospin conserving rescattering
Λρ → Σπ.
The total amplitude of the practical transitionΛc → Σπ is

M ¼ MDIR þMFSI;

¼ iŪΣ½ADIR − BDIRγ5�UΛc
þ iŪΣ½AFSI − BFSIγ5�UΛc

;

¼ iŪΣ½A − Bγ5�UΛc
; ð3Þ

where MDIR and MFSI correspond to the contributions of
the direct transition Λc → Σπ and the two-step process
Λc → Λρþ → Σπþ, respectively, A ¼ ADIR þ AFSI and
B ¼ BDIR þ BFSI. The amplitude of the direct transition
MDIR was calculated in terms of the pole model [11] and we
will use their numerical results directly.
Now let us begin to study the processes whose corre-

sponding Feynmen diagrams are depicted in Fig. 1. We add
subscribea (b) to the amplitudes ofΛ → Σ0πþ (Λ → Σþπ0),
i.e., Ma, MDIR

a , and MFSI
a (Mb, MDIR

b , and MFSI
b ).

Generally, the absorptive part overwhelmingly domi-
nates and the contribution of the dispersive one can be
ignored, so that we only need to calculate the absorptive
part of the Feynmen diagrams in Fig. 1. where the
intermediate states ρ and Λ are on shell and the transition
amplitude of Λc → Λρ can also be written in terms of the
pole model. The relevant effective interactions are [23]

LΛΣπ ¼ gΛΣπψ̄Σγ5ψΛπ;

Lρππ ¼ gρππð∂μπ
0πþρ−μ − ∂μπ

þπ0ρ−μÞ: ð4Þ
It is noted that here for calculating the absorptive part of the
triangle, we adopt the pseudoscalar form for the coupling
LΛΣπ. In principle there also exists the axial-vector form
[24,25] for the ΛΣπ coupling. However, in our case, Λ
and Σ are on their mass shells, thus with help of the
Dirac equation, one can easily show that the pseudo-
scalar coupling and the axial-vector one are equivalent,
even though their coupling constants are different. We
just take the proper one that is phenomenologically fixed by
fitting corresponding data. By the Cutkosky rule, one can
factorize the transition into two parts as MðΛ → ΛρÞ×
MðΛρ → ΣπÞ. Let us first calculate the amplitude corre-
sponding to diagram Fig. 1(a):

MFSI
a ¼ 1

2

Z
dp1

ð2πÞ32E1

dp2

ð2πÞ32E2

ð2πÞ4δðp − p1 − p2ÞMDIR½Λc → Λρ�M½Λρ → Σπ�;

¼ 1

2

Z
dp1

ð2πÞ32E1

dp2

ð2πÞ32E2

ð2πÞ4δðp − p1 − p2ÞiŪΛ½−ADIR
1 γμγ5 − ADIR

2 p1μγ5γμ

þ BDIR
1 þ BDIR

2 p1μ�UΛc
gΣΛπŪΣγ5UΛgρππð−iÞðp4 þ qÞν

�
−gμν þ pμ

2p
ν
2

m2
ρ

�
i

q2 −m2
π
F2ðq2; m2

πÞ;

¼ i
Z jp1jdΩ

32π2E
ŪΛ½−ADIR

1 γμγ5 − ADIR
2 p1μγ5 þ BDIR

1 γμ þ BDIR
2 p1μ�UΛc

ŪΣγ5UΛ

× gΣΛπgρππðp4 þ qÞν
�
−gμν þ pμ

2p
ν
2

m2
ρ

�
F2ðq2; m2

πÞ
q2 −m2

π
;

¼ i
Z jp1jdΩ

32π2E
ŪΣγ5ðp1=þmΛÞ½−ADIR

1 γμγ5 − ADIR
2 p1μγ5 þ BDIR

1 γμ þ BDIR
2 p1μ�UΛc

× gΣΛπgρππðp4 þ qÞν
�
−gμν þ pμ

2p
ν
2

m2
ρ

�
F2ðq2; m2

πÞ
q2 −m2

π
; ð5Þ
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where E, E1, andE2 are the energies ofΛc,Λ, and ρ, with p,
p1,p2,p3, andp4 being themomenta ofΛc,Λ, ρ,Σ, and π, q
is the momentum of the exchanged intermediate pions. Since
in practice meson and baryon are not point particles, a form
factor at each effective vertex should be introduced. The form
factor suggested by many researchers is in the form:

Fðq2; m2
PÞ ¼

Λ2
1 −m2

P

Λ2
1 − q2

; ð6Þ

where Λ1 is a cutoff parameter andmP is equal tomπ. Since
the form factor is not derived from a fundamental principle,
and the concerned cutoff parameter is neither determined
theoretically, actually so far we know little about the cutoff
parameter Λ1. Generally Λ1 is about 1 GeV for the exchange
of light mesons [19,21].
Using the four-momentum relations p4 ¼ p − p3,

q ¼ p1 − p3, p2 ¼ p − p1 and contracting the indices μ
and ν, these notations =p, =p1, =p3, p2, p2

1, p
2
3, p · p1, p · p3,

and p1 · p3 appear in the expression of MFSI
a . One can

employ Dirac equations =pUΛc
¼ mUΛc

and =p3UΣ ¼ m3UΣ
to simply the expression. Since Λc, Σ, and Λ are on shell,
p2, p2

1, p
2
3, p · p1, p · p3, and p1 · p3 can be expressed in

terms of observable physical quantities. At last, one needs
to deal with =p1. In our calculation we choose p3 in the z
direction, and the angle spanned between p1 and p3 is θ.
Since there exists an integration over azimuth one can

find =p1 ¼ C1=pþ C2=p3 with C1 ¼ E1jp3j−jp1jE3 cos θ
mjp3j and

C2 ¼ jp1j cos θ
jp3j . Finally we obtain

MFSI
a ¼ iŪΣ½AFSI − BFSIγ5�UΛc

; ð7Þ

with AFSI ¼ gΣΛπgρππ
R Cajp1j sin θF2ðq2;m2

PÞdθ
16πE and BFSI ¼

gΣΛπgρππ
R Cbjp1j sin θF2ðq2;m2

PÞdθ
16πE . The detailed expressions of

Ca and Cb are

Ca ¼ −ADIR
1 ½m3m1 þm2m1

2 −m1
4 − 2E3mm1ðmþm1Þ þm1

2m2
2 þ 2m1m2

2m3

−mm1ðm1
2 þm2

2 − 2p1 · p3Þ þ 2m1
2p1 · p3 − 4m2

2p1 · p3�=½m2
2ðmπ

2 − q2Þ
− ADIR

2 m1½−2E3mm1
2 þm2m1

2 −m1
4 þm1

2m2
2 þ E1mð2E3m −m2 þm1

2

þm2
2 − 2p1 · p3Þ þ 2m1

2p1 · p3 − 2m2
2p1 · p3�=½m2

2ðmπ
2 − q2Þ�

þ ðmC1 þm3C2ÞADIR
1 ½−m3 −m2m1 þm1

3 þ 2E3mðmþm1Þ −m1m2
2 þ 2m2

2m3

þmðm1
2 þm2

2 − 2p1 · p3Þ − 2m1p1 · p3�=½m2
2ðmπ

2 − q2Þ�
− ðmC1 þm3C2ÞADIR

2 ½−2E3mm1
2 þm2m1

2 −m1
4 þm1

2m2
2 þ E1mð2E3m

−m2 þm1
2 þm2

2 − 2p1 · p3Þ þ 2m1
2p1 · p3 − 2m2

2p1 · p3�=½m2
2ðmπ

2 − q2Þ�;
Cb ¼ BDIR

1 ½2E3mm1ðm −m1Þ −m3m1 þm2m1
2 þmm1ðm1

2 þm2
2 − 2p1 · p3Þ −m1

4

þm1
2m2

2 þ 2m1
2p1 · p3 þ 2m1m2

2m3 − 4m2
2p1 · p3�=½m2

2ðmπ
2 − q2Þ�

þ BDIR
2 m1½E1mð2E3m −m2 þm1

2 þm2
2 − 2p1 · p3Þ − 2E3mm1

2 þm2m1
2 −m1

4

þm1
2m2

2 þ 2m1
2p1 · p3 − 2m2

2p1 · p3�=½m2
2ðmπ

2 − q2Þ�
þ ðmC1 −m3C2ÞBDIR

1 ½2E3mðm −m1Þ −m3 þm2m1 þmðm1
2 þm2

2 − 2p1 · p3Þ
−m1

3 þm1m2
2 þ 2m1p1 · p3 − 2m2

2m3�=½m2
2ðmπ

2 − q2Þ�
þ ðmC1 −m3C2ÞBDIR

2 ½E1mð2E3m −m2 þm1
2 þm2

2 − 2p1 · p3Þ − 2E3mm1
2 þm2m1

2

−m1
4 þm1

2m2
2 þ 2m1

2p1 · p3 − 2m2
2p1 · p3�=½m2

2ðmπ
2 − q2Þ�; ð8Þ

(a) (b)

FIG. 1. The main final state interaction for Λc → Σ0πþ (a) and Λc → Σþπ0 (b).
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wherem,m1,m2,m3, andm4 are the masses of Λc, Λ, ρ, Σ,
and π, respectively, E3 is the energy of Σ.
The decay rates of Bi → BfP and up-down asymmetries

are [11]

Γ ¼ jpcj
8π

�ðmi þmfÞ2 −m2
P

m2
i

jAj2 þ ðmi −mfÞ2 −m2
P

m2
i

jBj2
�
;

α ¼ 2κReðA�BÞ
jAj2 þ κ2jBj2 ; ð9Þ

where pc is the three-momentum of Bf in the rest frame of

Bi and κ ¼ jpcj
Efþmf

.

The amplitude of the direct transition Λc → Σ0πþ is
straightforward calculated in terms of the pole model which
was shown in the early works, so that we omit the details of
the calculations in this section.
By the same process one can calculate the amplitudes of

Λc → Λρþ → Σþπ0, i.e., MFSI
b [the absorptive part of the

Feynman diagram, Fig. 1(b)]. We notice the sign ofMFSI
b is

opposite to that of MFSI
a but their magnitudes are same,

which make the total amplitude Mb is equal to −Ma so the
asymmetry parameters and decay widths of both Λc →
Σþπ0 and Λc → Σ0πþ are same.

III. THE THEORETICAL PREDICTIONS AS THE
CONTRIBUTION FROM THE FINAL STATE
INTERACTION IS TAKEN INTO ACCOUNT

In a new work, the authors restudied the Cabibbo-
suppressed decays of Λc [15] where the 30-year-old work
[11,12] was cited. It indicates, the fundamental framework
does not change and therefore we can employ their
numerical results directly. Moreover, Λc → Λρ has also
been investigated [11], thus we just directly use their results
about the first step transitions MðΛc → ΛρÞ. Then we
concentrate our attention on exploring the rescattering
process Λρ → Σπ and analyze the consequences especially
how inclusion of the final state interaction results in an

opposite sign for the up-down asymmetry parameter from
that determined by the direct transition.
We list the theoretical predictions given by the authors of

Ref. [11] in Tables II and III for a clear reference. It is noted
that the authors corrected their values about Λc → Λρ later
and we employ the new ones for our numerical compu-
tations [line (a) in Table III]. Since the effective color-
favored Wilson coefficient (∼1.315) used in Ref. [11] is
larger than the present values (∼1.26) [15], we set it to be
1.26 and repeated the calculations. The values we obtained
are listed in line (b) of Table III.
In order to perform the numerical computations we need

to determine the coupling constant gΣΛπ and gρππ . Using the
data in particle data book [22] we fix gρππ ¼ 6.01 and
another factor gΣΛπ ¼ 11.8 was given in Ref. [11].
Generally the cutoff parameter Λ1 is about 1 GeV for a
light exchanged meson. In our calculation we set it to be 0.8
and 1 GeV, respectively to make more sense. Using the
formula derived above AFSI and BFSI are calculated with
ADIR
1 ¼ Afac

1 þ Apole
1 , ADIR

2 ¼ Afac
2 þ Apole

2 , BDIR
1 ¼ Bfac

1 þ
Bpole
1 , and BDIR

2 ¼ Bfac
2 þ Bpole

2 and their numerical values
are presented in Table IV. Using the values in Table II, one
can obtain ADIR ¼ Afac þ Apole and BDIR ¼ Bfac þ Bpole.
Summing up the contributions of the direct transition and
that involving final state interaction we have A and B in the
total amplitudeMa and our theoretical results are presented
in Table IV where the values in front of (or between) the
parentheses are corresponding to those in Table III (a) (or
(b)). The experimental results on ΓðΛc → Σ0πþÞ and α are
ð4.08� 0.33Þ × 10−14 GeV [22] and −0.73� 0.17ðstatÞ �
0.07ðsystÞ [26].
In this scenario, we have made a theoretical prediction on

the up-down asymmetry α whose value resides within the
error tolerance of the data and its sign is consistent with the
experimental measurement. The predicted decay width of
ΓðΛc → ΣπÞ is also closer to data than that made in
Ref. [11]. Apparently final state interaction changes the
naïve results of Ref. [11]. From Table II one can find that
the signs of Apole and Bpole are the same so the sign of α
calculated in pole model is positive. As the final state
interaction are taken into account the interference between
the direct transition and the final state interaction would
induce a conversion of the sign of the asymmetry param-
eter. Namely A and B (Table V) possess opposite signs, so
the sign of α in is negative. It is noticed that, in this work,
only the contribution from the decay Λc → Λρ as an
intermediate state is accounted, and certainly in principle,

TABLE II. Theoretical results of Λc → Σ0πþ in pole model
where Afac, Apole, Bfac, Bpole are in units of GFVcsVud ×
10−2 GeV2 and Γ is in units of 10−14 GeV.

Afac Apole Bfac Bpole α Γ

Λc → Σ0πþ 0 2.24 0 14.63 0.83 2.48

TABLE III. Theoretical results of Λc → Λρþ in pole model where Afac
1 , Apole

1 , Afac
2 , Apole

2 , Bfac
1 , Bpole

1 , Bfac
2 , Bpole

2 are
in units of GFVcsVud × 10−2 GeV2 and Γ is in units of 10−14 GeV.

Λc → Λρþ Afac
1 Apole

1 Afac
2 Apole

2 Bfac
1 Bpole

1 Bfac
2 Bpole

2 α Γ

(a) −8.64 0 −0.71 0 13.33 0 −2.99 0 −0.30 14.13
(b) −8.28 0 −0.68 0 12.77 0 −2.87 0 −0.30 12.97
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other decay portals of Λc should also contribute to the
same process via rescattering. A careful analysis indicates
that those contributions are not as important as that of
Λc → Λρ → Σπ, therefore, we ignore those coupled chan-
nels in this work.

IV. SUMMARY

At the quark level the decay Λc → Σπ receives only the
nonfactorizable W-exchange and internal W-emission con-
tributions. Based on the valence quark model [7,8] or the
pole-model [9–11] these nonfactorizable diagrams were
calculated while the resultant sign of the up-down asym-
metry conflicts with data. Employing current algebra the
authors [13,14] obtained a negative up-down asymmetry as
required by data. Generally current algebra can be applied
to study the decays where a soft pseudoscalar meson is
emitted. However the pion in Λc → Σπ is far from being
soft so it is not natural to explain the data by using the
current algebra. Following the approach in the referen-
ces [18–21] we suggest that a final state interaction (or
rescattering) in the decays of Λc can contribute to the
observed Λc → Σπ. In terms of the effective interactions,

coupling constants we calculate the contribution of the
subprocess Λc → Λρ → Σπ to the observed Λc → Σπ. We
notice (see the Table II), with the pole model, that the
contribution to both ADIR and BDIR in Eq. (1) are positive
while the contributions originating from the rescattering to
AFSI destructively interferes with that of ADIR of the direct
transition whereas BFSI constructively interferes with BDIR;
thus, as a consequence, the sign of the asymmetry param-
eter is reversed due to the destructive interference.
For our concrete calculations, generally considering, if

there exists an absorptive part, it should dominate the rate.
Thus we only calculate the absorptive part of the triangle
(see the Feynman diagrams) where in the intermediate step
Λ and ρ are on shell and we can factorize the two steps
Λc → Λρ and Λρ → Σπ. Including the contribution of the
direct transition Λc → Σπ calculated using pole model and
the subprocess Λc → Λρ → Σπ which involves rescattering
effects, we obtain a negative up-down asymmetry α and the
resultant decay width of ΓðΛc → ΣπÞ is also closer to data
than the original results of Ref. [11]. It is also noted that the
rescattering of Λρ to other products may reduce the
observed rate of Λc → Λρ. We predict the observed width
of Λc → Λρ would be somehow smaller than the theoreti-
cally predicted value given in Table III.
In this paper we study the contribution of final state

interaction to the transition Λc → Σπ and confirm that the
final state interaction plays an important role in many
hadronic transitions. In fact there still exist some discrep-
ancies between theoretical estimations and data for other
decays of Λc, and we hope the mechanism can also be
applied to studying those “anomalies.”
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