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We obtain the gravitational form factors (GFFs) and investigate their applications for the description of
the mechanical properties, i.e., the distributions of pressures, shear forces inside proton, and the mechanical
radius, in a light-front quark-diquark model constructed by the soft-wall AdS/QCD. The GFFs, AðQ2Þ and
BðQ2Þ are found to be consistent with the lattice QCD, while the qualitative behavior of the D-term form
factor is in agreement with the extracted data from the deeply virtual Compton scattering (DVCS)
experiments at JLab, the lattice QCD, and the predictions of different phenomenological models. The
pressure and shear force distributions are also consistent with the results of different models.
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I. INTRODUCTION

The mechanical properties of the nucleon, namely how
the mass, spin and pressure are distributed among the
quarks and gluons inside the nucleon is a topic of intense
interest in recent days [1–26]. These information are related
to the gravitomagnetic form factors, which are expressed as
the matrix elements of the energy-momentum tensor in the
proton state. The components of the energy-momentum
tensor give how matter couples to the gravitational field.
Thus these form factors can be obtained by direct meas-
urement of the interaction of the proton with a strong
gravitational field, for example, a neutron star. An indirect
way to obtain information on them is from hard exclusive
processes for example deeply virtual Compton scattering
(DVCS) that is sensitive to the gravitational form factors
(GFFs) through generalized parton distributions (GPDs)
[3]. The GFFs are functions of t ¼ −Q2, which is the
squared momentum transfer from the initial to final proton

in DVCS experiment. The GFFs AðQ2Þ and BðQ2Þ are
related to the mass and spin of the proton. The Ji’s sum [27]
rule relates the second Mellin’s moment of the GPDsH and
E to the quark contribution to the angular momentum J.
First experimental results relevant for the extraction of
GPDs were provided by HERA [28–31], HERMES [32],
COMPASS [33], and JLab [34,35]. These are also being
investigated at JLab 12 GeV upgrade and COMPASS at
CERN, and will be accessed at the future electron-ion
collider (EIC) [36].
The GFFs A and B are related to the generators of the

Poincaré group, which gives constraints on them at zero
momentum transfer, that helps in the extraction of these
form factors from the experimental data. In contrast the
GFF CðQ2Þ (also called the D-term) is unconstrained at
zero momentum transfer. This form factor is related to the
internal properties of the nucleon like the pressure and
stress distribution [1,2]. This form factor contributes to the
DVCS process when the skewness ξ is nonzero, or when
there is nonzero momentum transfer in the longitudinal
direction. C form factor has been calculated in several
models in the literature. It depends on the correlations
between the quarks and gluons in the nucleon. The GFFs
of the nucleon have been investigated in the framework of
lattice QCD [14,15,37–40], chiral perturbation theory
(χPT) [41–43], Skyrme model [10,11], chiral quark
soliton model (χQSM) [7,44–47], light-cone QCD sum
rules at leading order (LCSR-LO) [4], dispersion relation
(DR) [16], instanton picture (IP) [17], and instant and
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front form (IFF) [2], while the asymptotic behavior of the
GFFs has been discussed in Refs. [24,25]. TheD-term of a
free spinless boson is −1 whereas for a free fermion it is
zero [1]. In fact for an interacting system, stability requires
that the form factor C is negative. This form factor has
been calculated in MIT bag model [21]. It has also been
extracted from JLab data [3]. The bag model under-
estimates the data while the Skyrme model overestimates
it. On the other hand predictions from dispersion relation
and χQSM are more close to the data. Renewed interest in
the form factor CðQ2Þ was generated after a recent result
from JLab showed that the pressure distribution is
repulsive at the center of the nucleon and confining
towards the outer region [3,12]. At the center, it exceeds
the pressure estimated for the most dense object in the
universe that are the neutron stars. The anisotropy of
highly dense nuclear matter has been investigated in the
literature. This depends on the interaction of nuclear
matter inside neutron stars and cannot be explained by
the equation of state (see Ref. [2] and the references
therein). Thus the study of the anisotropic pressure
distribution inside the nucleon through the GPDs provides
an indirect way to investigate such properties in highly
dense astronomical objects [22]. Initial theoretical studies
of the pressure distribution have been formulated in the
Breit frame. The distributions defined in this frame are
subject to relativistic corrections. In [2], the pressure and
energy distributions inside a nucleon are defined in
different frames, including the Breit frame and infinite
momentum frame or light-front formalism. The latter has
the advantage that because of the fact that transverse
boosts are Galilean in light-front framework, one can
obtain a relativistic description of the form factors in terms
of the light-front wave functions. In Ref. [2], the energy
and pressure distributions are investigated by assuming a
simple multipole model for the GFFs. In this work we use
a quark-diquark model based on AdS/QCD to calculate
the GFFs as well as the pressure distributions and compare
with other model results in the literature. The light-front
wave functions in this model are constructed from the two
particle effective wave functions obtained in soft-wall
of AdS/QCD [48,49]. This model is consistent with
DrellYanWest relation [50] and has been successfully
applied to describe many interesting properties of nucleon
e.g., electromagnetic form factor, parton distribution
functions, GPDs, transverse momentum dependent parton
distribution functions, Wigner distributions, transverse
densities, etc. [50–58].
The paper is organized as follows. In Sec. II, we give

brief introductions to the nucleon LFWFs of the quark-
diquark model. The GFFs of proton have been evaluated
in this model and discussed in Sec. III. We study the
mechanical properties of proton, e.g., the pressures, energy
density distributions, shear forces, and the mechanical
radius in Sec. IV. Summary is given in Sec. V.

II. LIGHT-FRONT QUARK-DIQUARK MODEL

Here we adopt the generic ansatz for the light-front
quark-diquark model for the nucleons [50] where the
light-front wave functions are modeled from the solution
of soft-wall AdS/QCD. In this model, one contemplates the
three valence quarks of the nucleons as an effective system
composed of a quark (fermion) and a composite state of
diquark (boson), where the spin of the diquark is assumed
to be zero (scalar) only. Then the 2-particle Fock-state
expansion for proton spin components, Jz ¼ � 1

2
in a frame

where the transverse momentum of proton vanishes, i.e.,
P≡ ðPþ; 0⊥; M

2

PþÞ, is written as

jP;↑ð↓Þi ¼
X
q

Z
dxd2k⊥

2ð2πÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

×

�
ψ↑ð↓Þ
þq ðx;k⊥Þ

����þ 1

2
; 0; xPþ;k⊥

�

þ ψ↑ð↓Þ
−q ðx;k⊥Þ

���� − 1

2
; 0; xPþ;k⊥

��
: ð1Þ

However, for nonzero transverse momentum of proton, i.e.,
P⊥ ≠ 0, the physical transverse momenta of quark and
diquark are pq

⊥ ¼ xP⊥ þ k⊥ and pD⊥ ¼ ð1 − xÞP⊥ − k⊥,
respectively, where k⊥ represents the relative transverse
momentum of the constituents. ψλN

λq
ðx;k⊥Þ are the light-

front wave functions with nucleon helicities λN ¼ ↑ð↓Þ and
for quark λq ¼ �; plus and minus correspond to þ 1

2
and

− 1
2
, respectively. The light-front wave functions (LFWFs)

at an initial scale μ20 ¼ 0.32 GeV2 are given by

ψ↑
þqðx;k⊥Þ ¼ φð1Þ

q ðx;k⊥Þ;

ψ↑
−qðx;k⊥Þ ¼ −

k1 þ ik2

xM
φð2Þ
q ðx;k⊥Þ;

ψ↓
þqðx;k⊥Þ ¼

k1 − ik2

xM
φð2Þ
q ðx;k⊥Þ;

ψ↓
−qðx;k⊥Þ ¼ φð1Þ

q ðx;k⊥Þ; ð2Þ

where the wave functions φði¼1;2Þ
q ðx;k⊥Þ are the modified

form of the soft-wall AdS/QCD prediction constructed by

introducing the parameters aðiÞq and bðiÞq for quark q [49,50],

φðiÞ
q ðx;k⊥Þ ¼ NðiÞ

q
4π

κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=xÞ
1 − x

r
xa

ðiÞ
q ð1 − xÞbðiÞq

× exp

�
−
k2⊥
2κ2

logð1=xÞ
ð1 − xÞ2

�
: ð3Þ

φðiÞ
q ðx;k⊥Þ reduces to the original AdS/QCD solution when

aðiÞq ¼ bðiÞq ¼ 0 [49]. It should be mentioned here that the
modification of the soft-wall AdS/QCD prediction in
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Eq. (3) is not unique, while a generic reparametrization
function wðxÞ, which unifies the description of polarized
and unpolarized quark distributions in the proton, has been
introduced in Refs. [59,60]. In this work, we take the
AdS/QCD scale parameter κ ¼ 0.4 GeV, obtained by
fitting the nucleon form factors in the soft-wall model
of AdS/QCD [61,62]. The quarks are assumed to be

massless and the parameters aðiÞq and bðiÞq with the constants

NðiÞ
q are obtained by fitting the electromagnetic properties

of the nucleons: Fq
1ð0Þ ¼ nq and Fq

2ð0Þ ¼ κq, where
nu ¼ 2 and nd ¼ 1, the number of valence u and d quarks
in proton and the anomalous magnetic moments for the u
and d quarks are κu ¼ 1.673 and κd ¼ −2.033 [51,52].
Since no isospin or flavor symmetry is imposed, the
parameters for u and d quarks in the model are different.

The parameters are given by að1Þu ¼ 0.020; að1Þd ¼ 0.10;

bð1Þu ¼ 0.022; bð1Þd ¼ 0.38; að2Þu ¼ 1.033; að2Þd ¼ 1.087; bð2Þu ¼
−0.15; bð2Þd ¼ −0.20; Nð1Þ

u ¼ 2.055;Nð1Þ
d ¼ 1.7618; Nð2Þ

u ¼
1.322;Nð2Þ

d ¼ −2.4827, and the quarks are assumed to be
massless. We estimate a 2% uncertainty in the model
parameters. The model inspired by soft-wall AdS/QCD
has been extensively used to investigate and reproduce
many interesting properties of the nucleons [50–58].

III. GRAVITATIONAL FORM FACTORS

The matrix elements of local operators like electromag-
netic current and energy momentum tensor have exact
representation in light-front Fock state wave functions of
bound states such as hadrons. The gravitational form
factors (GFFs) are related to the matrix elements of the
energy-momentum tensor, Tμν, while the second moment
of the GPDs also provides the GFFs. For a spin 1=2 target,
the standard parametrization of Tμν involving the GFFs
reads [63,64]

hP0; S0jTμν
i ð0ÞjP; Si

¼ ŪðP0; S0Þ
�
−Biðq2Þ

P̄μP̄ν

M
þ ðAiðq2Þ

þ Biðq2ÞÞ
1

2
ðγμP̄ν þ γνP̄μÞ

þ Ciðq2Þ
qμqν − q2gμν

M
þ C̄iðq2ÞMgμν

�
UðP; SÞ; ð4Þ

where P̄μ ¼ 1
2
ðP0 þ PÞμ, qμ ¼ ðP0 − PÞμ, UðP; SÞ is the

spinor, and M is the system mass. In the Drell-Yan frame
with qþ ¼ 0, the light-front four momenta are defined as:

P ¼ ðPþ; P⊥; P−Þ ¼
�
Pþ; 0;

M2

Pþ

�
;

P0 ¼ ðP0þ; P0⊥; P0−Þ ¼
�
Pþ; q⊥;

q2⊥ þM2

Pþ

�
;

q ¼ P0 − P ¼
�
0; q⊥;

q2⊥
Pþ

�
: ð5Þ

By calculating the (þþ) component of energy-momentum
tensor, one can obtain

hPþ q;↑jTþþ
i ð0ÞjP;↑i ¼ 2ðPþÞ2AiðQ2Þ; ð6Þ

hPþ q;↑jTþþ
i ð0ÞjP;↓i ¼ −2ðPþÞ2 ðq

1⊥ − iq2⊥Þ
2M

BiðQ2Þ;
ð7Þ

with Q2 ¼ −q2 ¼ q⃗2⊥. AiðQ2Þ and BiðQ2Þ are very similar
to the Dirac and Pauli form factors which are obtained from
the helicity nonflip and helicity flip matrix elements of the
vector current. Meanwhile, the form factors CiðQ2Þ and
C̄iðQ2Þ can be extracted from the helicity flip matrix
elements of T−⊥ and Tþ− components. The matrix ele-
ments of T−⊥ and Tþ− give:

hPþ q;↑jT−2
i ð0ÞjP;↓i þ hPþ q;↓jT−2

i ð0ÞjP;↑i

¼ 1

Pþ ½2AiðQ2ÞM2 − ðBiðQ2Þ − 4CiðQ2ÞÞQ2�−iðq
2⊥Þ2

2M
;

ð8Þ

hPþ q;↑jTþ−
i ð0ÞjP;↓i þ hPþ q;↓jTþ−

i ð0ÞjP;↑i

¼
�
AiðQ2Þð2MÞ − BiðQ2ÞQ

2

M
þ CiðQ2Þ 4Q

2

M

þ C̄iðQ2Þð4MÞ
�
ð−iq2⊥Þ: ð9Þ

We consider the energy momentum tensor of a free quark
inside the proton to evaluate the form factors:

Tμν ¼ i
2
½ψ̄γμð∂⃗ν

ψÞ − ψ̄γμ∂⃖ν
ψ �; ð10Þ

where ψ is the quark field. Using the two particle Fock
states, Eq. (1), and the LFWFs given in Eq. (2), we evaluate
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the matrix elements of Tþþ, T−⊥, and Tþ−, and extract the
GFFs AðQ2Þ, BðQ2Þ, CðQ2Þ, and C̄ðQ2Þ from Eqs. (6)–(9).
We obtain

AqðQ2Þ ¼ Iq
1ðQ2Þ; ð11Þ

BqðQ2Þ ¼ Iq
2ðQ2Þ; ð12Þ

CqðQ2Þ ¼ −
1

4Q2
½2M2Iq

1ðQ2Þ −Q2Iq
2ðQ2Þ − Iq

3ðQ2Þ�;

ð13Þ
C̄qðQ2Þ ¼ −

1

4M2
½Iq

3ðQ2Þ − Iq
4ðQ2Þ�; ð14Þ

where the explicit expressions of the structure integrals
Iq
i ðQ2Þ are given by

Iq
1ðQ2Þ ¼

Z
dxx

�
N1

2x2a1ð1 − xÞ2b1þ1 þ N2
2x2a2−2ð1 − xÞ2b2þ3

1

M2

�
κ2

logð1=xÞ −
Q2

4

��
exp

�
−
logð1=xÞ

κ2
Q2

4

�
; ð15Þ

Iq
2ðQ2Þ ¼ 2

Z
dxN1N2xa1þa2ð1 − xÞb1þb2þ2 exp

�
−
logð1=xÞ

κ2
Q2

4

�
; ð16Þ

Iq
3ðQ2Þ ¼ 2

Z
dxN2N1xa1þa2−2ð1 − xÞb1þb2þ2

�
4ð1 − xÞ2κ2
logð1=xÞ þQ2ð1 − xÞ2 − 4m2

�
exp

�
−
logð1=xÞ

κ2
Q2

4

�
; ð17Þ

Iq
4ðQ2Þ ¼ −2

Z
dxN2N1xa1þa2−2ð1 − xÞb1þb2þ2

�
κ2ð1 − xÞ2
logð1=xÞ þQ2ð1 − xÞ2

4
þm2

�
exp

�
−
logð1=xÞ

κ2
Q2

4

�
: ð18Þ

The expressions of Iq
i ðQ2Þ in terms of the overlap of the

LFWFs are listed in the Appendix. Although the GFFs
AðQ2Þ and BðQ2Þ are well defined for all regions of Q2 in
our model, it can be noticed from Eq. (13) that the form
factor CðQ2Þ is not well defined at Q2 ¼ 0. Thus, it is not
reachable for the region of small Q2. We observe that the
partial cancellation between 2M2Iq

1ðQ2Þ and Iq
3ðQ2Þ in

Eq. (13) provides a nonzero constant [coefficient of
ðQ2Þ0], which brings the 1=Q2 singularity in the form

factor CðQ2Þ. Since, the GFFs are physical observables
and therefore finite, we emphasize that the singularity
appearing in Eq. (13) is a shortcoming of the actual
holographic model used in this work but not an artifact of
the light-front framework. However, following the
approach adopted in Ref. [4], we approximately fit this
form factor in the large Q2ð≥ 0.1 GeV2Þ region and
then employ an analytical continuation of our result to
0 ≤ Q2 < 0.1 GeV2 domain.

(a) (b)

FIG. 1. The plots of GFFs (a) AuþdðQ2Þ, and (b) BuþdðQ2Þ as functions ofQ2. The dashed green lines with green bands are the results
at the initial scale, while the solid magenta lines with magenta bands and the dash-dotted blue lines with purple bands represent the
results at μ2 ¼ 4 GeV2 evolved from the initial scales μ20 ¼ 0.32 GeV2 and μ20 ¼ 1.00 GeV2, respectively. The error bands correspond
to 2% uncertainty in the model parameters. Our results are compared with the lattice results (red circle and black square) at scale
μ2 ¼ 4 GeV2 [38].
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Similar to the electromagnetic densities, one can inter-
pret the two-dimensional Fourier transform of the GFF
AðQ2Þ as the longitudinal momentum density in the
transverse plane [6,53,57,65–69], while the GFF BðQ2Þ
provides an anomalous contribution to the longitudinal
momentum densities in a transversely polarized target. In
Fig. 1, we show the GFFs AuþdðQ2Þ and BuþdðQ2Þ. Our
results are compared with the lattice QCD prediction [38].
Lattice data are available at the scale μ2 ¼ 4 GeV2. Thus,
in order to compare with lattice QCD prediction, we obtain
AqðQ2Þ and BqðQ2Þ at the relevant scale by performing the
QCD evolution of the integrands of Eqs. (15) and (16),
which represent GPDs xHqðx;Q2Þ and xEqðx;Q2Þ,

respectively. We adopt the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) equations [70–72] of QCD with
next-to-next-to-leading order for the scale evolution.
Explicitly, we evolve the GPDs from the model’s scale
μ20 ¼ 0.32 GeV2 to the relevant lattice scale μ2 ¼ 4 GeV2

using the higher order perturbative parton evolution toolkit
(HOPPET) [73]. We find that after QCD evolution,
AuþdðQ2Þ and BuþdðQ2Þ are consistent with the lattice
QCD results. We also choose a higher initial scale
μ20 ¼ 1.0 GeV2 and perform the analysis of our results.
We observe that the lower initial scale is preferable after
comparing our results with the lattice QCD predictions.
The form factor 4CuþdðQ2Þ, also known as D-term is

displayed in Fig. 2, where after scale evolution, we find
that the qualitative behavior of our result is compatible
with lattice [38] and the experimental data from JLab [3]
as well as other theoretical predictions from the KM15
global fit [23], dispersion relation [16], χQSM [7],
Skyrme model [10], and bag model [26]. The error

(a) (b)

FIG. 2. The plots of GFF Duþd
q ðQ2Þ ¼ 4Cuþd

q ðQ2Þ as a function of Q2. The dashed green line with green band, the solid magenta line
with magenta band, and the dash-dotted blue line with purple band in plot (a) represent the results at the initial scale and at scale
μ2 ¼ 4 GeV2 evolved from the initial scales μ20 ¼ 0.32 GeV2 and μ20 ¼ 1.00 GeV2, respectively. We show the result at μ2 ¼ 4 GeV2

evolved from μ20 ¼ 0.32 GeV2 and μ20 ¼ 1.00 GeV2 separately in plot (b). The error bands correspond to 2% uncertainty in the model
parameters. The red circles are the experimental data from the Jefferson Lab [3] and the cyan triangles and black squares correspond to
the lattice results [38]. Our results are compared with KM15 global fit [23] (solid black), dispersion relations [16] (dashed red), chiral
quark soliton [7] (dash-dotted green), Skyrme model [10] (big dashed magenta), and bag model [26] (dashed blue).

FIG. 3. The plot of GFF Duþd
q ðQ2Þ ¼ 4Cuþd

q ðQ2Þ at low Q2

region. The solid magenta lines with magenta bands and the dash-
dotted blue lines with purple bands represent the results at μ2 ¼
4 GeV2 evolved from the initial scales μ20 ¼ 0.32 GeV2 and
μ20 ¼ 1.00 GeV2, respectively. The error bands correspond to 2%
uncertainty in the model parameters.

TABLE I. Parameters for the fitted function Dq
fit given in

Eq. (19) at high Q2. Dfit
0 is the distribution at the initial scale,

while Dfit
1 and Dfit

2 are the distributions at the scale μ2 ¼ 4 GeV2

evolved from the initial scale μ20 ¼ 0.32 GeV2 and μ20 ¼
1.00 GeV2, respectively. Here, ½μ20 → μ2� represents the evolution
from μ20 to μ2.

Parameters μ2 ðGeV2Þ aq bq cq

Dfit
0

Initial scale −18.8359 −2.2823 2.7951
Dfit

1
½0.32 → 4� −5.5861 −0.29724 11.6641

Dfit
2

½1.00 → 4� −7.77884 0.291081 11.884
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bands in our results are due to a 2% uncertainty in
the model parameters. The uncertainty in the DqðQ2Þ
reflects that the form factor is highly sensitive to our
model parameters. The actual uncertainty of the model
parametrization in the lowQ2 region, 0.01≤Q2≤0.1GeV2,
is shown in Fig. 3.
It turns out that the form factor DuþdðQ2Þ can be

sufficiently described by the following multipole function
defined as

Dq
fitðQ2Þ ¼ 4Cq

fitðQ2Þ ¼ aq
ð1þ bqQ2Þcq ; ð19Þ

where the parameters aq, bq, and cq are given in the
Table I. In Fig. 4, we compare the model data of theD-term
form factor and the multipole function given in Eq. (19).
The form factor C̄ðQ2Þ in the quark-diquark model is
illustrated in Fig. 5. In accord with the bag model [26]
and the multipole model [2], C̄ðQ2Þ in the present model
is negative at low Q2 (<0.22 GeV2); however, we
observe a distinctly different behavior in the region of
Q2 > 0.22 GeV2, where it exhibits positive distribution,
while in other models C̄ðQ2Þ is always negative. The
positive distribution decreases with QCD evolution. We
remark that the D-term and C̄ðQ2Þ form factors presented
in Figs. 2, 3, and 5, respectively, directly follow from
Eqs. (13) and (14) computed using the model wave
functions and are not the results of any independent
parametrization.
We present a comparison of the GFFs at Q2 ¼ 0

with those of the various phenomenological models,
lattice QCD and existing experimental data for Dqð0Þ
in Table II. For the Aqð0Þ and Jqð0Þ form factors, our
estimation is in more or less agreement with the pre-
dictions of Refs. [2,14,15,37–41] at renormalization scale
of μ2 ¼ 4 GeV2. The QCD sum rule (QCDSR) (I and II)
gives a higher value of Aqð0Þ, since the scale is relatively
low μ2 ¼ 1 GeV2 [8]. Note that in the χQSM and Skyrme
models, there are only quarks and antiquarks to carry the
nucleon’s angular momentum and they must carry 100%
of it, and thus 2 Jqð0Þ ¼ Aqð0Þ ¼ 1. The results in AdS/
QCD models are presented at model scale, where u and d
quarks together carry ∼90% of nucleon momentum. For
the form factor Dqð0Þ, our extrapolated value is overesti-
mated when we compare it with lattice QCD results
[15,37,38] and the predictions of Refs. [7,8,74] as well
as the experimental data from JLab [3] but they differ from
the other predictions presented in the Table II. Our
predictions for C̄qð0Þ accords with IFF [2] and the

(a) (b)

FIG. 4. Comparison between the model data (black lines) and the fitting function in Eq. (19) for Duþd
q ðQ2Þ (dashed red). Left panel is

before QCD evolution at the initial scale and right panel is after the QCD evolution at μ2 ¼ 4 GeV2 evolved from μ20 ¼ 0.32 GeV2 and
μ20 ¼ 1.00 GeV2, respectively. The solid lines represent the actual model results, while the dashed lines correspond to the fits using
Eq. (19) with the parameters given in Table I.

FIG. 5. The GFF C̄uþd
q ðQ2Þ as a function of Q2. The dashed

green lines with green bands are the results at the initial scale,
while the solid magenta lines with magenta bands and the dash-
dotted blue lines with purple bands represent the results at μ2 ¼
4 GeV2 evolved from the initial scale μ20 ¼ 0.32 GeV2 and
μ20 ¼ 1.00 GeV2, respectively. The error bands correspond to
2% uncertainty in the model parameters. Our results are com-
pared with the bag model [26] (dash-dotted red) and the multipole
model [2] (dashed black).
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asymptotical value at three loops level reported in
Ref. [24], however, substantially differ from the predic-
tions of QCDSR [8] and IP [17]. Note that the intrinsic
spin sum rule for a transversely polarized nucleon not
only involves the form factors Aq and Bq but also C̄q

[24,63,75,76].

IV. MECHANICAL PROPERTIES

The pressure and the energy density in the center of
nucleon are directly related to the GFFs as [1]

p0 ¼ −
1

24π2Mn

Z
∞

0

dQ2Q3DðQ2Þ;

E ¼ Mn

4π2

Z
∞

0

dQ2

�
AðQ2Þ þ Q2

4M2
n
DðQ2Þ

�
; ð20Þ

respectively, while themechanical radius can be obtained by

hr2mechi ¼ 6Dfitð0Þ
�Z

∞

0

dQ2DðQ2Þ
�
−1
: ð21Þ

TABLE II. The GFFs of valence quark combination at Q2 ¼ 0 compared with other predictions and JLab data.
The Skyrme and χQSM models predictions have been obtained by considering both the quark and the gluon
contributions and these are scale independent. Here, ðμ0 → μÞ represents the evolution from the initial scale μ0 to the
final scale μ.

Approaches/Models Auþd
q ð0Þ Jqð0Þ ¼ 1

2
½Auþd

q ð0Þ þ Buþd
q ð0Þ� Duþd

fit ð0Þ ¼ 4Cuþd
fit ð0Þ C̄uþd

q ð0Þ
This work (

ffiffiffiffiffiffiffiffiffi
0.32

p
GeV → 2 GeV) 0.593 0.269 −5.586 −0.109

This work (1.00 GeV → 2 GeV) 0.825 0.369 −7.778 −0.159
LQCD (2 GeV) [14] 0.675 0.34 � � � � � �
LQCD (2 GeV) [15] 0.547 0.33 −0.80 � � �
LQCD (2 GeV) [37] 0.553 0.238 −1.02 � � �
LQCD (2 GeV) [38] 0.520 0.213 −1.07 � � �
LQCD (2 GeV) [39] 0.572 0.226 � � � � � �
LQCD (2 GeV) [40] 0.565 0.314 � � � � � �
χPT (2 GeV) [41] 0.538 0.24 −1.44 � � �
IFF (2 GeV) [2] 0.55 0.24 −1.28 −0.11
Asymptotic (∞GeV) [24] � � � 0.18 � � � −0.15
QCDSR-I (1 GeV) [8] 0.79 0.36 −1.832 −2.1 × 10−2

QCDSR-II (1 GeV) [8] 0.74 0.30 −1.64 −2.5 × 10−2

Skyrme [10] 1 0.5 −3.584 � � �
Skyrme [11] 1 0.5 −2.832 � � �
χQSM [7] 1 0.5 −1.88 � � �
χQSM [9] 1 0.5 −4.024
χQSM [44] � � � � � � −3.88 � � �
AdS/QCD Model I [6] 0.917 0.415 � � � � � �
AdS/QCD Model II [6] 0.8742 0.392 � � � � � �
LCSR-LO [4] � � � � � � −2.104 � � �
KM15 fit [74] � � � � � � −1.744 � � �
DR [16] � � � � � � −1.36 � � �
JLab data [3] � � � � � � −1.688 � � �
IP [17] � � � � � � � � � 1.4 × 10−2

TABLE III. The mechanical properties: pressure, energy density, and mechanical radius of nucleon.

Approaches/Models p0 [GeV=fm3] E [GeV=fm3] hr2mechi [fm2]

This work (
ffiffiffiffiffiffiffiffiffi
0.32

p
GeV → 2 GeV) 0.29 3.21 0.74

This work (1.00 GeV → 2 GeV) 0.40 4.58 0.74
QCDSR set-I (1 GeV) [8] 0.67 1.76 0.54
QCDSR set-II (1 GeV) [8] 0.62 1.74 0.52
Skyrme model [10] 0.47 2.28 � � �
modified Skyrme model [11] 0.26 1.445 � � �
χQSM [7] 0.23 1.70 � � �
Soliton model [9] 0.58 3.56 � � �
LCSM-LO [4] 0.84 0.92 0.54
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Here, Mn denotes the mass of nucleon. We compute
the pressure, energy densities in the proton and the
mechanical radius using the GFFs evaluated in the
quark-diquark model. Our results on the mechanical
quantities p0, E, and hr2mechi of the proton compared to
other existing theoretical predictions are shown in the
Table III. It can be seen from Table III that our prediction
on the p0 is underestimated but comparable with χQSM
model [7] and the modified Skyrme model [11]. Note that
the available theoretical predictions differ considerably
from each other. Our results on E in quark-diquark model
is close to the predictions of the soliton model [9], but
overestimated compared to the other presented predictions
[7–11]. However, different approaches/models demonstrate
considerable deviations from each other while predicting E.
Meanwhile, our predictions on the mechanical radius,
hr2mechi, are larger than the prediction of Refs. [4,8].

A. Pressure and shear force distributions

The distributions of pressure and shear forces inside the
nucleon are given by

pðbÞ ¼ 1

6Mn

1

b2
d
db

b2
d
db

D̃ðbÞ;

sðbÞ ¼ −
1

4Mn
b
d
db

1

b
d
db

D̃ðbÞ; ð22Þ

where

D̃ðbÞ ¼
Z

d2q⃗⊥
ð2πÞ2 e

iq⃗⊥:b⃗⊥DðQ2Þ: ð23Þ

Here, b ¼ jb⃗⊥j represents the impact parameter. The
pressure distribution pðbÞ must satisfy the stability con-
dition, also known as the von Laue condition [77],

Z
∞

0

dbb2pðbÞ ¼ 0: ð24Þ

This is a consequence of the energy momentum tensor
conservation and allows us to understand how the internal
forces balance inside a composed system [1,18]. We
illustrate the distribution b2pðbÞ as a function of b in
Fig. 6(a). We compare our result with the distribution
evaluated in leading order light-cone sum rule [4] and the
distribution obtained from the fitting functions of the
experimental data for DðQ2Þ at JLab [3]. The distribution
must have at least one node to comply with the von Laue
condition, Eq. (24). It can be noticed that the distribution
has a positive core and a negative tail. This pattern ensures
the mechanical stability arguments: the repulsive forces
are required in the inner domain to prevent collapse and
the attractive forces in the outer region to bind the system.
Our pressure distribution crosses the zero-line (zero-
crossing) near 0.9 fm (central line), whereas this zero-
crossing appears at 0.7 fm in the result based on light-cone
sum rule [4] and near 0.6 fm in the JLab distribution [3].
Overall, the qualitative behavior of the pressure distribu-
tion evaluated in the quark-diquark model is found to be in
agreement with the experimental observation [3] as well
as other theoretical predictions [4,7,9–12]. The shear force
distribution, b2sðbÞ has been displayed in Fig. 6(b). sðbÞ
has a connection to surface tension and surface energy,
which are positive in stable hydrostatic systems [1]. We
find that sðbÞ (central line) is positive in all region of b.
The positivity of this distribution was observed in all
studies so far. We again notice that the qualitative nature
of our result is in accordance with other approaches
[4,7,9–12].
On the other hand, the spherical shell of radius b in the

nucleon experiences the normal and tangential forces: Fn
and Ft, respectively, which are defined as [4]

(a) (b)

FIG. 6. Plots of (a) the pressure distribution 4πMnb2pðbÞ, and (b) the shear force distribution 4πMnb2sðbÞ as a function of b. Our
results are compared with results based on LCSR evaluated in Ref. [4] (black line) and using the fitting function of DðQ2Þ based on
experimental data [3] (red dashed line). The solid magenta lines with magenta bands and the dash-dotted blue lines with purple bands
represent the results at μ2 ¼ 4 GeV2 evolved from the initial scale μ20 ¼ 0.32 GeV2 and μ20 ¼ 1.00 GeV2, respectively.
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FnðbÞ ¼ 4πMnb2
�
pðbÞ þ 2

3
sðbÞ

�
;

FtðbÞ ¼ 4πMnb2
�
pðbÞ − 1

3
sðbÞ

�
: ð25Þ

We show the estimated normal and tangential forces for
the valence quark combination in Fig 7(a) and Fig 7(b),
respectively. One notices that FnðbÞ is always positive,
whereas FtðbÞ has a positive core (repulsive force)
surrounded by a negative tail (attractive force) with a
zero-crossing near b ∼ 0.7 fm. The repulsive force has the
peak near b ∼ 0.4 fm, and the maximum of the negative
force that is responsible for the binding occurs near
b ∼ 1.1 fm. However, the binding force is stronger than
the repulsive force. The qualitative behavior of the forces
in the quark-diquark model is fairly consistent with the
light-cone sum rule [4], estimated distribution from JLab
fitting function for DðQ2Þ [3], and chiral quark-soliton [7]
model as well.

We also compute the two-dimensional Galilean energy
density, radial pressure, tangential pressure, isotropic pres-
sure, and pressure anisotropy, which in Drell-Yan-West
frame are defined as [2]

μaðbÞ ¼ Mn

	
AaðbÞ
2

þ C̄aðbÞ

þ 1

4M2
n

1

b
d
db

�
b
d
db

�
BaðbÞ
2

− 4CaðbÞ
��


σr;aðbÞ ¼ Mn

	
−C̄aðbÞ þ

1

M2
n

1

b
dCaðbÞ
db




σt;aðbÞ ¼ Mn

	
−C̄aðbÞ þ

1

M2
n

d2CaðbÞ
db2




σaðbÞ ¼ Mn

	
−C̄aðbÞ þ

1

2

1

M2
n

1

b
d
db

�
b
dCaðbÞ
db

�


ΠaðbÞ ¼ Mn

	
−

1

M2
n
b
d
db

�
b
dCaðbÞ
db

�

; ð26Þ

(a) (b)

FIG. 7. Plots of (a) the normal forces Fn, and (b) the tangential forces Ft as a function of b. Our results are compared with results based
on LCSR evaluated in Ref. [4] (black line) and using the fitting function ofDðQ2Þ based on experimental data [3] (red dashed line). The
solid magenta lines with magenta bands and the dash-dotted blue lines with purple bands represent the results at μ2 ¼ 4 GeV2 evolved
from the initial scale μ20 ¼ 0.32 GeV2 and μ20 ¼ 1.00 GeV2, respectively.

(a) (b)

FIG. 8. Plots of the two-dimensional Galilean energy density (a) μqðbÞ, and (b) 2πbμqðbÞ. The solid magenta lines with magenta bands
and the dash-dotted blue lines with purple bands represent the results at μ2 ¼ 4 GeV2 evolved from the initial scale μ20 ¼ 0.32 GeV2 and
μ20 ¼ 1.00 GeV2, respectively. Our results are compared with the results in a multipole model (black dashed line) [2].
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respectively, where the form factors in position space are
given by their Fourier transform:

χðbÞ ¼
Z

d2q⃗⊥
ð2πÞ2 e

iq⃗⊥:b⃗⊥χðq2Þ: ð27Þ

The distributions defined in Eq. (26) are illustrated in
Figs 8, 9, 10, 11, and 12. We observe that the energy
density μqðbÞ in Fig. 8 and the radial pressure σr;qðbÞ in

Fig. 9 are always positive having the peaks at center of the
proton (b ¼ 0). On the other hand, in Fig. 10, the tangential
pressure σt;qðbÞ is positive at low b with maxima at the
center but it shows negative distribution when b > 0.55 fm.
The isotopic pressure σqðbÞ in Fig. 11 exhibits a similar
behavior as the radial pressure; however, it also shows a
slightly negative distribution at large b (>1.7 fm). The
pressure anisotropy in Fig. 12 vanishes at the center of the
proton, as required by spherical symmetry, and is positive

(a) (b)

FIG. 11. Plots of the two-dimensional isotopic pressure (a) σqðbÞ, and (b) 2πbσqðbÞ. The legends are same as mentioned in Fig. 8.

(a) (b)

FIG. 9. Plots of the two-dimensional radial pressure (a) σr;qðbÞ, and (b) 2πbσr;qðbÞ. The legends are same as mentioned in Fig. 8.

(a) (b)

FIG. 10. Plots of the two-dimensional tangential pressure (a) σt;qðbÞ, and (b) 2πbσt;qðbÞ. The legends are same as mentioned in Fig. 8.
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anywhere else, indicating that the radial pressure is always
larger than the tangential one. Our predictions on the
energy density, radial pressure, tangential pressure, iso-
tropic pressure, and pressure anisotropy are compared
with the results in a simple multipole model [2]. The
qualitative behavior of those distributions in Figs. 8–12,
within the error bands, are found be consistent with the
multipole model reported in Ref. [2]. We have also
observed that the qualitative behavior remains the same
going from μ20 ¼ 0.32 GeV2 to μ20 ¼ 1.0 GeV2.

V. SUMMARY

Gravitational form factors provide us with knowledge
on different aspects of the nucleon’s structure, e.g., the
pressure and energy distributions, the distribution and
stabilization of the strong force inside the nucleon as well
as quantities related to its geometric shape. One can also
get the information on the fractions of the longitudinal
momenta carried by the constituents and the total angular
momentum from the GFFs. In this paper, we have evaluated
the GFFs of the proton in a light-front quark-diquark model
with AdS/QCD predicted wave functions. We have showed
explicitQ2 behavior of the gravitational form factors in this
model and observed that the GFFs AðQ2Þ and BðQ2Þ are
comparable with lattice QCD results [38]. We have found
that the GFF DðQ2Þ of proton can be described by a
multipole fit function. We have observed that the qualitative
nature of DðQ2Þ in the quark-diquark model is in accord
with the experimental data extracted from DVCS process
at JLab [3] and lattice QCD predictions [38]. We have
compared the values of the GFFs at Q2 ¼ 0 with the
existing theoretical predictions and the data from JLab.
Our results on Aqð0Þ and Jqð0Þ were found to be in fair
agreement with the lattice QCD and chiral perturbation
theory predictions. Meanwhile, our prediction on Dqð0Þ
appeared to be larger while comparing with the JLab data as
well as the available theoretical predictions. It should also
be noted that there are large discrepancies among the
theoretical predictions on the Dqð0Þ. We have extracted

the value of C̄qð0Þ which is comparable with that in
Refs. [2,24] but larger than those values reported in
Refs. [8,17].
We have employed the GFFs to evaluate the pressure and

energy density distributions inside the proton as well as the
mechanical radius of the proton and compared them with
the existing theoretical predictions. We have observed that
the pressure in the center of the proton p0 in quark-diquark
model is underestimated with respect to QCDSR [8],
LCSR-LO [4], Soliton model [9] and Skyrme model [10]
but close to that in χQSM [7] and modified Skyrme
model [11], while our prediction on the energy density
E is close to that in the soliton model [9]. However, there
are large discrepancies among the theoretical predictions on
p0 and E. Mechanical radius, hr2mechi, has been found to be
somewhat larger compared to the existing predictions
provided by LCSR-LO [4] and QCDSR [8].
We have demonstrated the pressure pðbÞ and shear force

sðbÞ distributions inside the proton in the quark-diquark
model. We have noticed that pðbÞ has a positive core and
a negative tail, while sðbÞ is always positive which is
consistent with the experimental observation and other
theoretical predictions. On the other hand, we also found
that the normal force FnðbÞ is always repulsive but the
tangential force FtðbÞ is repulsive near the center but
attractive for b > 0.5 fm. These behaviors are again in fair
agreement with experimental observation and other theo-
retical predictions. We have also computed the two-dimen-
sional Galilean energy density, radial pressure, tangential
pressure, isotropic pressure, and pressure anisotropy in this
present model, which qualitatively have been found to be
consistent with a multipole model.
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APPENDIX A: MATRIX ELEMENTS OF Tμν

1. Matrix elements of T ++

hPþ q;↑jTþþ
q jP;↑i ¼ 2ðPþÞ2

Z
d2k⊥dx
16π3

x½ψ↑�
þ1

2

ðx; k⃗0⊥Þψ↑
þ1

2

ðx; k⃗⊥Þ þ ψ↑�
−1
2

ðx; k⃗0⊥Þψ↑
−1
2

ðx; k⃗⊥Þ�

¼ 2ðPþÞ2
Z

dxx

�
N2

1x
2a1ð1 − xÞ2b1þ1 þ N2

2x
2a2−2ð1 − xÞ2b2þ3

1

M2

�
κ2

logð1=xÞ −
Q2

4

��

× exp

�
−
logð1=xÞ

κ2
Q2

4

�

¼ 2ðPþÞ2Iq
1ðQ2Þ; ðA1Þ

where k⃗0⊥ ¼ k⃗⊥ þ ð1 − xÞq⃗⊥. Using the matrix elements Eq. (4),

hPþ q;↑jTþþ
q jP;↑i ¼ 2ðPþÞ2AqðQ2Þ: ðA2Þ

Therefore,

AqðQ2Þ ¼ Iq
1ðQ2Þ: ðA3Þ

hPþ q;↑jTþþ
q jP;↓i þ hPþ q;↓jTþþ

q jP;↑i ¼ 2ðPþÞ2
Z

d2k⊥dx
16π3

x½fψ↑�
þ1

2

ðx; k⃗0⊥Þψ↓
þ1

2

ðx; k⃗⊥Þ þ ψ↑�
−1
2

ðx; k⃗0⊥Þψ↓
−1
2

ðx; k⃗⊥Þg

þ fψ↓�
þ1

2

ðx; k⃗0⊥Þψ↑
þ1

2

ðx; k⃗⊥Þ þ ψ↓�
−1
2

ðx; k⃗0⊥Þψ↑
−1
2

ðx; k⃗⊥Þg�

¼ 2ðPþÞ2ðiq2⊥Þ2
Z

dxN1N2

1

Mn
xa1þa2ð1 − xÞb1þb2þ2 exp

�
−
logð1=xÞ

κ2
Q2

4

�

¼ 2ðPþÞ2
Mn

ðiq2⊥ÞIq
2ðQ2Þ: ðA4Þ

Using the matrix elements Eq. (4),

hPþ q;↑jTþþ
q jP;↓i þ hPþ q;↓jTþþ

q jP;↑i ¼ BðQ2Þ 2ðP
þÞ2

M
ðiq2⊥Þ: ðA5Þ

Therefore,

BqðQ2Þ ¼ Iq
2ðQ2Þ: ðA6Þ
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APPENDIX B: T + − : UP GOING TO DOWN PLUS DOWN GOING TO UP MATRIX ELEMENTS

hPþ q;↑jTþ−
q jP;↓i þ hPþ q;↓jTþ−

q jP;↑i ¼
Z

d2k⊥dx
16π3

ðk2⊥ þm2Þ
x

½fψ↑�
þ1

2

ðx; k⃗0⊥Þψ↓
þ1

2

ðx; k⃗⊥Þ þ ψ↑�
−1
2

ðx; k⃗0⊥Þψ↓
−1
2

ðx; k⃗⊥Þg

þ fψ↓�
þ1

2

ðx; k⃗0⊥Þψ↑
þ1

2

ðx; k⃗⊥Þ þ ψ↓�
−1
2

ðx; k⃗0⊥Þψ↑
−1
2

ðx; k⃗⊥Þg�

¼ 2ðiq2⊥Þ
Z

dxN1N2

1

Mn
xa1þa2−2ð1 − xÞb1þb2þ2

×

�
κ2ð1 − xÞ2
logð1=xÞ þQ2ð1 − xÞ2

4
þm2

�
exp

�
−
logð1=xÞ

κ2
Q2

4

�

¼ ðiq2⊥Þ
M

Iq
4ðQ2Þ: ðB1Þ

Here m is the quark mass which is zero in the present model. Using the matrix elements Eq. (4),

hPþ q;↑jTþ−
q jP;↓i þ hPþ q;↓jTþ−

q jP;↑i¼
�
AðQ2Þð2MÞ − BðQ2ÞQ

2

M
þ CðQ2Þ 4Q

2

M
þ C̄ðQ2Þð4MÞ

�
ð−iq2⊥Þ: ðB2Þ

Therefore,

�
AðQ2Þð2MÞ − BðQ2ÞQ

2

M
þ CðQ2Þ 4Q

2

M
þ C̄ðQ2Þð4MÞ

�
¼ Iq

4ðQ2Þ
M

: ðB3Þ

APPENDIX C: T − 2: UP GOING TO DOWN PLUS DOWN GOING TO UP MATRIX ELEMENTS

hPþ q;↑jT−2
q jP;↓i þ hPþ q;↓jT−2

q jP;↑i ¼ −
4

Pþ

Z
d2k⊥dx
16π3

�
k⊥2 ð−ðk⊥1 Þ2 þ ðk⊥2 Þ2 þm2Þ

xð1 − xÞ
�
½ψ↑�

þ1
2

ðx; k0⊥Þψ↓
þ1

2

ðx; k⊥Þ

þ ψ↑�
−1
2

ðx; k0⊥Þψ↓
−1
2

ðx; k⊥Þ þ ψ↓�
þ1

2

ðx; k0⊥Þψ↑
þ1

2

ðx; k⊥Þ þ ψ↓�
−1
2

ðx; k0⊥Þψ↑
−1
2

ðx; k⊥Þ�

¼ −
1

Pþ iðq2⊥Þ2
Z

dxN1N2

1

M
xa1þa2−2ð1 − xÞb1þb2þ2

�
1

x

�
−Q2

4κ2

×

�
4ðx − 1Þ2κ2
logð1=xÞ þ ðQ2ðx − 1Þ2 − 4m2Þ

�

¼ −
1

Pþ
iðq2⊥Þ2
2M

Iq
3ðQ2Þ: ðC1Þ

Using the matrix elements Eq. (4),

hPþ q;↑jT−2
q jP;↓i þ hPþ q;↓jT−2

q jP;↑i ¼ −
1

Pþ
iðq2⊥Þ2
2M

½2AðQ2ÞM2 − ðBðQ2Þ−4CðQ2ÞÞQ2�: ðC2Þ

Therefore,

2AðQ2ÞM2 − ðBðQ2Þ − 4CðQ2ÞÞQ2 ¼ Iq
3ðQ2Þ: ðC3Þ
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APPENDIX D: T − 1: UP GOING TO DOWN PLUS DOWN GOING TO UP MATRIX ELEMENTS

hPþ q;↑jT−1
q jP;↓i þ hPþ q;↓jT−1

q jP;↑i ¼ −
4

Pþ

Z
d2k⊥dx
16π3

�
k⊥1 ð−ðk⊥1 Þ2 þ ðk⊥2 Þ2 þm2Þ

xð1 − xÞ
�
½ψ↑�

þ1
2

ðx; k0⊥Þψ↓
þ1

2

ðx; k⊥Þ

þ ψ↑�
−1
2

ðx; k0⊥Þψ↓
−1
2

ðx; k⊥Þ þ ψ↓�
þ1

2

ðx; k0⊥Þψ↑
þ1

2

ðx; k⊥Þ þ ψ↓�
−1
2

ðx; k0⊥Þψ↑
−1
2

ðx; k⊥Þ�

¼ −
1

Pþ iq1⊥q2⊥
Z

dxN1N2

1

M
xa1þa2−2ð1 − xÞb1þb2þ2

�
1

x

�
−Q2

4κ2

×

�
4ðx − 1Þ2κ2
logð1=xÞ þ ðQ2ðx − 1Þ2 − 4m2Þ

�

¼ −
1

Pþ
iq1⊥q2⊥
2M

Iq
5ðQ2Þ: ðD1Þ

Using the matrix elements Eq. (4),

hPþ q;↑jT−1
q jP;↓i þ hPþ q;↓jT−1

q jP;↑i ¼ −
1

Pþ
iq1⊥q2⊥
2M

½2AðQ2ÞM2 − ðBðQ2Þ − 4CðQ2ÞÞQ2�: ðD2Þ

Therefore,

2AðQ2ÞM2
n − ðBðQ2Þ − 4CðQ2ÞÞQ2 ¼ Iq

5ðQ2Þ ¼ Iq
3ðQ2Þ: ðD3Þ
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