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The anomalous magnetic moment of the tau lepton aτ ¼ ðgτ − 2Þ=2 strikingly evades measurement but
is highly sensitive to new physics such as compositeness or supersymmetry. We propose using
ultraperipheral heavy ion collisions at the LHC to probe modified magnetic δaτ and electric dipole
moments δdτ. We design a suite of analyses with signatures comprising one electron/muon plus track(s),
leveraging the exceptionally clean photon fusion γγ → ττ events to reconstruct both leptonic and hadronic
tau decays sensitive to δaτ; δdτ. Assuming 10% systematic uncertainties, the current 2 nb−1 lead-lead
dataset could already provide constraints of −0.0080 < aτ < 0.0046 at 68% C.L. This surpasses 15-year-
old lepton collider precision by a factor of 3 while opening novel avenues to new physics.
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I. INTRODUCTION

Precision measurements of electromagnetic couplings are
foundational tests of QED and powerful probes of beyond the
Standard Model (BSM) physics. The electron anomalous
magnetic moment ae ¼ 1

2
ðge − 2Þ is among the most pre-

cisely known quantities in nature [1–5]. The muon counter-
part aμ is measured to 10−7 precision [6] and reports a 3 − 4σ
tension from Standard Model (SM) predictions [7–9]. This
may indicate new physics [10–13], to be clarified at Fermilab
[14] and J–PARC [15]. Measuring al generically tests lepton
compositeness [16], while supersymmetry at energy scales
MS induces radiative corrections δal ∼m2

l=M
2
S for leptons

withmassml [10]. Thus, the tau τ can bem2
τ=m2

μ ∼ 280 times
more sensitive to BSM physics than aμ.
However, aτ continues to evade measurement because the

short tau proper lifetime of approximately 10−13 s precludes
use of spin precession methods [6]. The most precise single-
experiment measurement aexpτ is fromDELPHI [17,18] at the
Large Electron Positron Collider (LEP) but is remarkably an
order of magnitude away from the theoretical central value
apredτ;SM predicted to 10−5 precision [19]

aexpτ ¼ −0.018ð17Þ; apredτ;SM ¼ 0.00117721ð5Þ: ð1Þ

The poor constraints on aτ present striking room for
BSM physics, especially given other lepton sector tensions
[20–32], and motivate new experimental strategies.
This paper proposes a suite of analyses to probe

aτ using heavy ion beams at the LHC. We leverage
ultraperipheral collisions (UPCs) where only the electro-
magnetic fields surrounding lead (Pb) ions interact.
Tau pairs are produced from photon fusion PbPb →
Pbðγγ → ττÞPb, illustrated in Fig. 1, whose sensitivity
to aτ was suggested in 1991 [33]. We introduce the
strategy crucial for experimental realization and impor-
tantly show that the currently recorded dataset could
already surpass LEP precision. The LHC cross section
enjoys a Z4 enhancement (Z ¼ 82 for Pb), with over
1 million γγ → ττ events produced to date. Existing
proposals using lepton beams require future datasets
(Belle-II) or proposed facilities (CLIC and LHeC)
[34–41], while LHC studies focus on high lumino-
sity proton beams [42–47]. No LHC analysis of

FIG. 1. Pair production of tau leptons τ from ultraperipheral
lead ion (Pb) collisions in two of the most common decay modes:
π�π0ντ and lνlντ. New physics can modify tau-photon couplings
affecting the magnetic moment by δaτ.
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γγ → ττ exists, as the taus have insufficient momentum
for ATLAS/CMS to record or reconstruct.
Our proposal overcomes these obstructions in the clean

UPC events [48], enabling selection of individual tracks
from tau decays with no other detector activity akin to the
LEP [17]. We exploit recent advances in low momentum
electron/muon identification [49–51] to suppress hadronic
backgrounds. We then present a shape analysis sensitive to
interfering SM and BSM amplitudes to enhance aτ con-
straints. Our strategy also probes tau electric dipole
moments dτ induced by CP violating new physics. This
opens key new directions in the heavy ion program amid
reviving interest in photon collisions [52–54] for light-by-
light scattering [55–58], standard candle processes [59–63],
and BSM dynamics [64–74].

II. EFFECTIVE THEORY AND PHOTON FLUX

The anomalous τ magnetic moment aτ ¼ ðgτ − 2Þ=2 is
defined by the spin-magnetic Hamiltonian −μτ ·B ¼
−ðgτe=2mτÞS ·B. In the Lagrangian formulation of
QED, electromagnetic moments arise from the spinor
tensor σμν ¼ i½γμ; γν�=2 structure of the fermion current
interacting with the photon field strength Fμν,

L ¼ 1

2
τ̄Lσ

μν

�
aτ

e
2mτ

− idτγ5

�
τRFμν: ð2Þ

Here, γ5 satisfies the anticommutator fγ5; γμg ¼ 0, and τL;R
are tau spinors with L,R denoting chirality.
To introduce BSM modifications of aτ and dτ, we use

SM effective field theory (SMEFT) [75]. This assumes the
scale of BSM physics Λ is much higher than the probe
momentum transfers q, i.e., q2 ≪ Λ2. At scale q, two
dimension-6 operators in the Warsaw basis [76] modify aτ
and dτ at tree level, as discussed in Ref. [75],

L0 ¼ ðL̄τσ
μντRÞH

�
CτB

Λ2
Bμν þ

CτW

Λ2
Wμν

�
: ð3Þ

Here, Bμν and Wμν are the Uð1ÞY and SUð2ÞL field
strengths, H (Lτ) is the Higgs (tau lepton) doublet, and
Ci are dimensionless, complex Wilson coefficients. We fix
CτW ¼ 0 to parametrize the two modified moments
ðδaτ; δdτÞ using two real parameters ðjCτBj=Λ2;φÞ [40],

δaτ ¼
2mτ

e
jCτBj
M

cosφ; δdτ ¼
jCτBj
M

sinφ; ð4Þ

where φ is the complex phase of CτB, we define
M ¼ Λ2=ð ffiffiffi

2
p

v cos θWÞ, θW is the electroweak Weinberg
angle, and v ¼ 246 GeV.
In the SM, pair production of electrically charged

particles X from photon fusion γγ → XX have analytic
cross sections σγγ→XX [71,77,78]. For BSM variations, we

employ the flavor-general SMEFTsim package [79], which
implements Eq. (3) in FeynRules [80]. This allows a direct
interface with MadGraph2.6.5 [81,82] for cross section cal-
culation and Monte Carlo simulation. To model interfer-
ence between SM and BSM diagrams, we generate
γγ → ττ events with up to two BSM couplings CτB in
the matrix element.
Turning to the source of photons, these are emitted

coherently from electromagnetic fields surrounding the
ultrarelativistic ions, which is known as the equivalent
photon approximation [83]. We follow the MadGraph imple-
mentation in Ref. [84], which assumes the LHC exclusive

cross section σðPbPbÞγγ→XX is factorized into a convolution of
σγγ→XX with the ion photon fluxes nðxÞ,

σðPbPbÞγγ→XX ¼
Z

dx1dx2nðx1Þnðx2Þσγγ→XX; ð5Þ

where xi ¼ Ei=Ebeam is the ratio of the emitted photon
energy Ei from ion i with beam energy Ebeam. In this
factorized prescription, nðxÞ assumes an analytic form from
classical field theory [84,85],

nðxÞ ¼ 2Z2α

xπ

�
x̄K0ðx̄ÞK1ðx̄Þ −

x̄2

2
½K2

1ðx̄Þ − K2
0ðx̄Þ�

�
; ð6Þ

where x̄ ¼ xmNbmin, mN is the nucleon mass mN ¼
0.9315 GeV, and Z ¼ 82 for Pb. We set the minimum
impact parameter bmin to be the nuclear radius bmin ¼ RA≃
1.2A1=3 fm ¼ 6.09A1=3 GeV−1, where A ¼ 208 is the mass
number of Pb used at the LHC. We use Ref. [86] to
numerically evaluate the modified Bessel functions of the
second kind of first K0 and second K1 order.
We modify MadGraph to use the photon flux Eq. (6) for

evaluating σðPbPbÞγγ→XX. This prescription neglects a nonfactor-
izable term in Eq. (5), which models the probability of
hadronic interactions Pjb1−b2j, where bi is the impact
parameter of ion i. The SuperChic3.02 [87] program includes
a complete treatment of Pjb1−b2j, along with nuclear over-
lap and thickness. Using this, we validate that these
simplifications in MadGraph do not majorly impact distribu-
tions relevant for this work, namely tau pT. We generate
3 million γγ → ττ events for each coupling variation atffiffiffiffiffiffiffiffi
sNN

p ¼5.02TeV. For the SM, we find σðPbPbÞγγ→ττ ¼
5.7×105nb. To improve generator statistics, we impose
pτ
T > 3 GeV in MadGraph, which has a 21% efficiency.

Due to destructive interference, σðPbPbÞγγ→ττ falls to a mini-
mum of 4.7 × 105 nb at δaτ ≃ −0.04 before returning to
5.7 × 105 nb at δaτ ≃ −0.09. Further validation of these
effects is in the Appendix A. We employ PYTHIA8.230 [88]
for decay, shower, and hadronization, then use DELPHES3.4.1

[89] for detector emulation.
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III. PROPOSED ANALYSES

To record γγ → ττ events, dedicated UPC triggers are
crucial for our proposal. With no other detector activity,
the ditau system receives negligible transverse boost, and
each tau pT reaches a few to tens of GeV at most. Taus
always decay to a neutrino ντ, which further dilutes the
visible momenta, rendering usual hadronic tau triggers
pT(τ-jet) ≳20 GeV unfeasible [90,91]. However, UPC
events without pileup enable exceptionally low trigger
thresholds by vetoing large sums over calorimeter trans-
verse energy deposits

P
ET < 50 GeV [58]. Other mini-

mum bias triggers are also possible [92,93]. A recent UPC
dimuon analysis additionally requires at least one track and
no explicit pT requirement for the trigger muon [63]. The
light-by-light observation also considers ultralow ET >
1 GeV calorimeter cluster thresholds at trigger level [58],
which can similarly benefit electrons.
We design our event selection around two objectives.

First, we consider standard objects already deployed by
ATLAS/CMS to efficiently reconstruct tau decays with the
following branching fractions [18]:

Bðτ� → l�νlντÞ ¼ 35%; ð7Þ
Bðτ� → π�ντ þ neutral pionsÞ ¼ 45.6%; ð8Þ

Bðτ� → π�π∓π�ντ þ neutral pionsÞ ¼ 19.4%: ð9Þ
We develop signal regions (SRs) targeting these decays
based on expected signal rate and background mitigation
strategies. We impose the lowest trigger and reconstruction
thresholds pe=μ

T > 4.5=3 GeV, jηe=μj < 2.5=2.4 supported
by ATLAS/CMS [49,50]. Second, we optimize sensitivity
to different couplings δaτ; δdτ, where interfering SM and
BSM amplitudes impact tau kinematics, which propagates
to, e.g., lepton pT. The following analyses are considered:

Dilepton analysis. Requiring two identified leptons is
expected to give the highest signal-to-background
S=B, with half being different flavor eμ free of ee=μμ
backgrounds. But even using low pe=μ

T thresholds,

we find insufficient signal yields at 2 nb−1 to pursue
this further.

1 leptonþ 1 track analysis (SR1l1T). This requires
exactly one identified lepton and one other track that is
not “matched” to the lepton [the matched track is the
highest pT track with ΔRðl; trackÞ < 0.02]. Tracks
must satisfy the standard requirements ptrack

T >
500 MeV and jηtrackj < 2.5. With the DELPHES sim-
ulation, the requirement that the nonlepton track is not
identified as a lepton allows for a sufficiently strong
suppression of the dielectron/dimuon background,
but for the analysis of experimental data, additional
lepton veto selections may be considered to increase
the background rejection at a modest cost to signal
efficiency. This topology targets the high branching
ratio of the single charged pion decay mode and
background suppression from lepton identification.
The track also recovers events failing the dilepton
analysis, in which a lepton is too soft to be recon-
structed. We divide this SR into two bins pe=μ

T ∈
½≤6�; ½>6� GeV to exploit shape differences shown in
Fig. 2 (left). We require nonplanar lepton-track system
jΔϕðl; trkÞj < 3 to further suppress ee=μμ processes,
as demonstrated in Fig. 2 (right). We veto invariant
masses ml;trk ∉ ½3; 3.2�; ½9; 11� GeV to reject dilepton
decays of J=ψ and ϒ resonances.

1 leptonþmultitrack analysis (SR1l2=3T). We aug-
ment the previous analysis with three non-lepton-
matched tracks. This targets the decay topology with
three chargedpions.Wealso construct anorthogonal SR
requiring exactly two tracks to recovermisreconstructed
three-pion decays. By taking the vectorial sum over pT

for the non-lepton-matched tracks ptracks
T ¼ P

i p
track
T;i ,

we obtain the track system pT, whose distribution is
shown in Fig. 2 (center) for SR1l3T. This variable
shows discrimination power between modified mo-
ments and could be considered in future work.

Motivated by the background processes observed
by DELPHI in γγ → ττ analyses, we now outline our
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FIG. 2. Distributions of lepton pT in SR1l1T (left) and the three-track system pT in SR1l3T (center) for benchmark signals with
various δaτ, δdτ couplings. These are normalized to unit integral to illustrate shape changes with varying δaτ; δdτ. The lepton-track
azimuthal angle jΔϕðl; trkÞj in SR1l1T (right) is shown for backgrounds (filled) and signal δaτ ¼ δdτ ¼ 0 (line), illustrating powerful
discrimination against dilepton processes.
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considered backgrounds and mitigation strategies. Leptonic
backgrounds are dominated by dielectron/dimuon produc-
tion γγ → ll;l ∈ ½e; μ�. The single flavor cross section is

sizable σðPbPbÞγγ→ll ¼ 4.2 × 105 nb, which includes a generator
level jηlj < 2.5 requirement. The back-to-back leptons are
suppressed by requiring exactly 1 identified lepton in the
event and jΔϕðl; trkÞj < 3, which we verify by generating
1 million events per flavor. Photon radiation from leptons
l → lγ is only expected to modify the tails marginally.
Track impact parameters exploiting displaced tau decays
could further suppress this background.
Hadronic backgrounds arise fromdiquarkproduction γγ →

qq̄, and we generate 1 million events for each of the five
flavors. For q ∈ ½u; d; s�, assuming massless quarks gives a

cross section σðPbPbÞ
γγ→uūðdd̄;ss̄Þ ¼ 3.0 × 105 ð1.9 × 104Þ nb.

Parton showering produces more tracks than tau decays,
which we suppress using lepton isolation and requiring no
more than four tracks at most. For q ∈ ½c; b�, heavy flavor B
andDmesons undergo semileptonic decays, e.g.,D → π0lν.
The default MadGraph parameters assume massless charm
quarks (which is conservative as a finite mass decreases cross

sections), yielding σðPbPbÞγγ→cc̄ ¼ 3.0 × 105 nb. Bottom quarks
assume finite mass, resulting in a smaller cross section

σðPbPbÞ
γγ→bb̄

¼ 1.5 × 103 nb. The leptonic branching fraction

D → π0lν is of order a few percent and so is under control
and is further suppressed by isolation.
Smaller potential backgrounds include γγ → WW, but the

cross section σðPbPbÞγγ→WW ¼ 14 pb implies this is safely
neglected. Exchange of digluon color singlets (Pomerons)
also contributes to diquark backgrounds. These involve
strong interactions, and as the binding energy per nucleon
is very small at approximately 8 MeV [84], the Pb ions emit
more neutrons than QED processes, which can be vetoed by
the Zero Degree Calorimeter (ZDC) [94]. Soft survival for
Pomeron exchange is also lower [84], which gives greater
activity in the calorimeter and tracker, and is suppressed by
our stringent exclusivity requirements. We have cross-
checked our simulation with the dimuon rate observed by
a recent CMS analysis [95] when events with one or more
neutrons recordedby theZDCarevetoed, demonstrating that
nucleon dissociation effects are sufficiently under control.
Systematic uncertainties require LHC collaborations to

reliably quantify, but we discuss expected sources and
suggest control strategies. Experimental systematics from
current UPC PbPb dimuon measurements have systematics
of around 10%, dominated by luminosity and trigger [63].
Systematics from lepton reconstruction are pl

T dependent
and thus sensitive to δaτ. These are most significant at low
pT but are currently determined in high luminosity proton
collisions with challenging backgrounds from fakes [96,97]
and could be better controlled using clean γγ → ll events.
Theoretical uncertainties are expected to be dominated

by modeling of the photon flux, nuclear form factors, and

nucleon dissociation. Fortunately, these initial state effects
are independent of the QED process and final state. So,
experimentalists could use a control sample of γγ → ll
events to constrain these universal nuclear systematics
or eliminate them in a ratio analysis with dileptons

σðPbPbÞγγ→ττ =σ
ðPbPbÞ
γγ→ll. Hadronic backgrounds are susceptible to

uncertainties from modeling the parton shower but are
subdominant given S=B ≫ 1 in our analyses.

IV. RESULTS AND DISCUSSION

We now estimate the sensitivity of our analyses to
modified tau moments δaτ; δdτ. Assuming the observed
data correspond to the SM expectation, we calculate

χ2 ¼ ðSSMþBSM − SSMÞ2
Bþ SSMþBSM þ ðζsSSMþBSMÞ2 þ ðζbBÞ2

: ð10Þ

Here, B is the background rate, and SSM (SSMþBSM) is the
expected γγ → ττ yield assuming SM couplings (nonzero
δaτ; δdτ). At L ¼ 2 nb−1, we find SSM ¼ 1275.1, B ¼ 7.6
for SR1l1T before binning in pl

T; SSM ¼ 519.9, B ¼ 15.4
for SR1l2T; and SSM ¼ 370.5, B ¼ 4.0 for SR1l3T. We
denote the relative signal (background) systematic uncer-
tainties by ζs (ζb) and study ζs ¼ ζb ∈ ½5%; 10%� as
benchmarks. For simplicity, we assume identical ζs for
all couplings and combine the four SRs (SR1l1T has two
pl
T bins) using χ2 ¼ P

χ2SR assuming uncorrelated system-
atics. Note that, due to the high S=B for each of the SRs, the
systematic uncertainty on the background estimate has
limited impact. We define the 68% C.L. (95% C.L.) regions
as couplings satisfying χ2 < 1 (χ2 < 3.84). Appendix B
details cutflows for signals and backgrounds and χ2

distributions.
Figure 3 summarizes our projected aτ ¼ apredτ;SM þ δaτ

constraints (green) compared with existing measurements
and predictions. Assuming the current dataset L ¼ 2 nb−1

with 10% systematics, we find −0.0080 < aτ < 0.0046
at 68% C.L., surpassing DELPHI precision [17] (blue)
by a factor of 3. Negative values of δaτ are more difficult
to constrain, given destructive interference. We estimate
prospects assuming halved systematics giving −0.0022 <
aτ < 0.0037 (68% C.L.). A tenfold dataset increase for the
High Luminosity LHC reduces this to −0.00044 < aτ <
0.0032 (68% C.L.), an order of magnitude improvement
beyond DELPHI. Importantly, these advances start con-
straining the sign of aτ and become comparable to the
predicted SM central value for the first time.
Such precision indirectly probes BSM physics. In

nature, compositeness can induce large and negative
magnetic moments, e.g., the neutron [18]. As a benchmark,
we fix CτB ¼ −1; CτW ¼ 0; δdτ ¼ 0 in Eq. (3) to recast the
DELPHI limit into a 95% C.L. exclusion of Λ < 140 GeV.
The orange line in Fig. 3 shows 140 < Λ < 250 GeV,
where our 2 nb−1, 10% systematics proposal has 95% C.L.
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sensitivity, surpassing DELPHI by 110 GeV. In suitable
ultraviolet completions of SMEFTwith composite leptons,
one can interpret Λ as the confinement scale of tau
substructure [16]. Nonetheless, our analyses are highly
model independent, and we defer sensitivity to other BSM
scenarios for future work. It would be interesting to
correlate aτ with models that simultaneously explain
tensions in ae and aμ [20–23] or B-physics lepton univer-
sality tests [24–28].
Lepton electric dipole moments are highly suppressed in

the SM, arising only at four-loop jdpredτ j ∼ ðmτ=meÞjdprede j ∼
10−33 e cm [98]. Additional CP violation in the lepton
sector can enhance this, such as neutrino mixing [99] or
other BSM physics parametrized by φ in Eq. (4). Our
projected 95% C.L. sensitivity on dτ ¼ ðe=mτÞδdτ is
jdτj < 3.4 × 10−17 e cm, assuming δaτ ¼ 0 with 2 nb−1,
10% systematics. This is an order of magnitude better than
DELPHI jdτj < 3.7 × 10−16 e cm [17] and competitive
with Belle [100].
Our proposal opens numerous avenues for extension.

Lowering lepton/track thresholds to increase statistics
would enable more optimized differential or multivariate
analyses. Recently, ATLAS considered tracks matched to
lepton candidates failing quality requirements, allowing
ptrack
T ðe=μÞ > 1=2 GeV [51]. Moreover, the 500 MeV track

threshold is conservative, given ptrack
T > 100 MeV is suc-

cessfully used in ATLAS [58]. Reconstructing soft
calorimeter clusters could enable hadron/electron identi-
fication, or using neutral pions to improve tau momentum
resolution. Proposed timing detectors may offer more

robust particle identification in ATLAS/CMS [101], while
ALICE already has such capabilities [102]. Ultimate aτ
precision requires a coordinated worldwide program
led by LHC efforts combined with proton-lead collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 8.76 TeV, the Relativistic Heavy Ion Collider,
and lepton colliders.
To summarize, we proposed a strategy of lepton plus

track(s) analyses to surpass LEP constraints on tau
electromagnetic moments using heavy ion data already
recorded by the LHC. The clean photon collision
events provide excellent opportunities to optimize low
momentum reconstruction and control systematics further.
We encourage LHC collaborations to open these corner-
stone measurements and precision pathways to new
physics.
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APPENDIX A: SIMULATION VALIDATION

We present additional material to validate the technical
implementation of our simulation setup within the
scope of our work. This includes the photon flux we
implemented in MadGraph2.6.5 [81,82] and the interface with
SMEFTsim [79] for BSM modifications and interference
with the SM.
Figure 4 displays generator level differential distribu-

tions of pTðτÞ for γγ → ττ considering various photon
fluxes from protons and lead (Pb) beams. The distribution
generated in MadGraph with Pb uses our custom imple-
mentation of Pb ion photon flux. We validate this with the
corresponding distribution generated in SuperChic 3.02 [87].
The latter includes a full treatment of nuclear effects that
are neglected by the factorized prescription in MadGraph.
These two distributions are in reasonable agreement for
the scope of our work. Also shown are the corresponding
distributions for proton beams. This illustrates that the
impact of a nucleus with comparatively finite size is to
soften the pTðτÞ spectrum compared to using proton
beams.
Figure 5 shows the impact of the interference behavior

on the inclusive cross sections of σðPbPbÞγγ→ττ for coupling
variations δaτ using SMEFTsim. We account for the

FIG. 3. Summary of lepton anomalous magnetic moments
al ¼ ðgl − 2Þ=2. Existing single-experiment measurements of
ae [1], aμ [6], and aτ [17] are in blue. Our benchmark projections
(green) assume 2 nb−1 and 20 nb−1 for 5% and 10% systematic
uncertainties. For visual clarity, we inflate 1σ error bars on ae (aμ)

measurements by 109 (106) and 104 for the SM prediction apredτ

(orange) [19]. Collider constraints have thick (thin) lines denoting
68% C.L., 1σ (95% C.L, ∼2σ). The SMEFT predictions [75,76]
from Eq. (4) with CτB ¼ −1 displays BSM scales 140 < Λ <
250 GeV (thick orange).
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interference between SM and BSM γγ → ττ diagrams in
the matrix element M squared,

jMj2 ¼ jMSM þMð1Þ
BSM þMð2Þ

BSMj2 ðA1Þ

ðA2Þ

A BSM coupling is represented by (filled circle) in the
matrix element diagrams. Cross sections featuring just the
diagrams with only one BSM coupling (blue triangle) and
only two BSM couplings (blue square) are shown in Fig. 5

and correspond to the amplitudes Mð1Þ
BSM and Mð2Þ

BSM,
respectively. As δaτ deviates from zero in the negative

direction, σðPbPbÞγγ→ττ falls to a minimum at δaτ ≃ −0.04 due to

destructive interference from Mð1Þ
BSM. Then, the construc-

tively interfering Mð2Þ
BSM term begins to dominate for more

negative δaτ values, and σðPbPbÞγγ→ττ rises again.

APPENDIX B: CUTFLOWS AND χ 2

DISTRIBUTIONS

We provide technical material supporting the results
presented in the main text. These include signal and
background counts after sequentially applying kinematic
requirements (cutflow) and χ2 distributions as functions of
δaτ and δdτ used to derive the final constraints.
Table I presents the set of cutflows for the different

analyses, sequentially displaying the yields normalized to
2 nb−1 after each signal region requirement. Three bench-
mark signals are shown for the γγ → ττ samples at the
SM values ðδaτ; δdτÞ ¼ ð0; 0Þ and for values near the
threshold of 68% C.L. sensitivity ðδaτ; δdτÞ ∈ fð0.005; 0Þ;
ð−0.01; 0Þg.
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FIG. 4. Unit normalized generator level tau pT distributions for
γγ → ττ using SM couplings. These are generated in Super-
Chic3.02, which includes a full treatment of nuclear effects for
lead (Pb) ions (orange). Also shown is the corresponding sample
with protons (dark blue). The MadGraph2.6.5 samples use a
factorized photon flux prescription for protons (light blue) and
our implementation of Pb ion flux (red). The ratio panel is with
respect to the SuperChic Pb ions sample.

FIG. 5. Generator level cross sections for γγ → ττ sourced by our implementation of the Pb photon flux in MadGraph. This is
interfaced with SMEFTsim for BSM coupling variations in δaτ defined in Eq. (4) of the main text, fixing δdτ ¼ 0 at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.
The left shows the contribution from only one BSM coupling (light blue triangles), two BSM couplings (dark blue squares), and
their combined interference with the SM (red circles). The markers indicate the sampled points from δaτ. The right zooms in to the
δaτ values near zero with gray regions denoting the 95% C.L. exclusion by DELPHI, where the horizontal axis is linear scale for
δaτ ∈ ½−0.001; 0.001� and logarithmic elsewhere.
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Figure 6 shows the χ2 distributions as a function of δaτ
and δdτ assuming the other is zero for separate signal
regions. These are shown assuming 10% systematics,
2 nb−1 to allow comparison of constraining power between
the different analyses presented in the main text.
Figure 7 displays the combined χ2 ¼ P

i χ
2
i distribu-

tions. The combined χ2 distributions are shown for 10%
systematics at 2 nb−1 together with prospects using 5%

systematics and extrapolation to 20 nb−1. The red lines
show the results from combining the three track SRs. The
final combined χ2 for the results in the main text take the
green lines, which combine all four signal regions (SR1l1T
is divided into two orthogonal pl

T bins). The final 68% C.L.
and 95% C.L. intervals are defined by where the χ2

distributions intersect with χ2 ¼ 1 and χ2 ¼ 3.84,
respectively.

TABLE I. Cutflow of event yields after each requirement applied sequentially, normalized to L ¼ 2 nb−1 for the different analyses.
For the γγ → ττ signal processes, we show these for benchmark points with parameter values labeled by ðδaτ; δdτÞ displayed in the
column header. Backgrounds are shown for various dilepton μμ; ee and diquark processes where the letters denote the flavor. The initial
value in each cutflow is the cross section σ times luminosity L, followed by the efficiency ϵfilter of the filter applied at generator level to
the γγ → ττ samples.

Requirement ττ (0, 0) ττ (0.005, 0) ττ ð−0.01; 0Þ μμ ee bb cc ss uu dd

1 lepton þ1 track analysis (SR1l1T)
σ × L 1139800 1195060 1056400 844080 844080 2999 604080 37754 604080 37754
σ × L × ϵfilter 241140 253920 226300 844080 844080 2999 604080 37754 604080 37754
1l plus 1 track 20492.2 21619.3 19348.4 263443 3299.3 5.4 2905.0 0.3 5.4 0.2
pe=μ
T > 4.5=3 GeV, jηe=μj < 2.5=2.4 3659.9 3882.7 3582.8 79043 3118.9 1.1 4.8 0.0 0.0 0.0

ptrk
T > 0.5 GeV, jηtrkj < 2.5 3324.5 3535.9 3256.9 78973 3117.8 1.0 3.0 0.0 0.0 0.0

jΔϕðl; trkÞj < 3 1519.7 1605.7 1468.3 0.9 5.3 0.7 1.8 0.0 0.0 0.0
ml;trk ∉ f½3; 3.2�; ½9; 11�g GeV 1275.1 1353.6 1242.3 0.9 5.3 0.2 1.2 0.0 0.0 0.0

pl
T ≤ 6.0 GeV 1197.7 1262.3 1154.7 0.9 0.0 0.2 1.2 0.0 0.0 0.0

pl
T > 6.0 GeV 77.3 91.3 87.6 0.0 5.3 0.0 0.0 0.0 0.0 0.0

1 leptonþmultitrack analysis (SR1l2=3T)

σ × L 1139800 1195060 1056400 844080 844080 2999 604080 37754 604080 37754
σ × L × ϵfilter 241140 253920 226300 844080 844080 2999 604080 37754 604080 37754
1l plus 2 or 3 tracks 5945.1 6260.1 5572.2 33.8 23.2 43.8 8056.6 5.4 132.9 6.8
pe=μ
T > 4.5=3 GeV, jηe=μj < 2.5=2.4 1010.0 1073.3 978.6 12.2 4.2 1.8 13.3 0.0 0.0 0.0

lþ2 tracks, ptrk
T > 0.5 GeV, jηjtrk < 2.5 519.9 548.1 485.8 5.6 4.2 0.8 4.8 0.0 0.0 0.0

lþ3 tracks, ptrk
T > 0.5 GeV, jηjtrk < 2.5 370.5 398.3 381.1 0.0 0.0 0.4 3.6 0.0 0.0 0.0
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FIG. 6. The χ2 distributions as a function of δaτ assuming δdτ ¼ 0 (upper) and δdτ assuming δaτ ¼ 0 (lower) are displayed for 10%
systematics at L ¼ 2 nb−1. The left shows the results from the SR1l1T regions and the impact of binning in pl

T. The right shows the
results from the SR1l2=3T regions. The χ2 combining the four signal regions is shown by the green line for reference. The gray
horizontal lines correspond to 68% C.L. (χ2 ¼ 1) and 95% C.L. (χ2 ¼ 3.84). The unphysical spikes are due to limited Monte Carlo
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