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We investigate the phenomenological consequences of a strict gauge-invariant formulation of the Higgs
particle. This requires a description of the observable scalar particle in terms of a bound state structure.
Although this seems to be at odds with the common treatment of electroweak particle physics at first
glance, the properties of the bound state can be described in a perturbative fashion due to the Fröhlich-
Morchio-Strocchi (FMS) framework. In particular a relation between the bound-state Higgs and the
elementary Higgs field is obtained within Rξ gauges such that the main quantitative properties of the
conventional description reappear in leading order of the FMS expansion. Going beyond leading order, we
show that the pole structure of the elementary and the bound-state propagator coincide to all orders in a
perturbative expansion. However, slight deviations of scattering amplitudes containing off-shell Higgs
contributions can be caused by the internal bound state structure. We perform a consistent perturbative
treatment to all orders in the FMS expansion to quantify such deviations and demonstrate how gauge-
invariant expressions arrange in a natural way at the one-loop level. This also provides a gauge-invariant
Higgs spectral function which is not plagued by positivity violations or unphysical thresholds.
Furthermore, the mass extracted from the gauge-invariant bound state is only logarithmically sensitive
to the scale of new physics at one-loop order in contrast to its elementary counterpart.

DOI: 10.1103/PhysRevD.102.113001

I. INTRODUCTION

The perturbative treatment of the Higgs boson is highly
successful in order to describe high-energy processes at
the LHC. The definition of electroweak observables, e.g.,
the mass and decay width of the Higgs, as well as the
computation of cross sections are commonly derived in
terms of properties of the elementary fields of the standard
model Lagrangian. However, this description, based on the
convenient picture of spontaneous electroweak symmetry
breaking, is paradoxical at various levels [1–8], for a review
see [9].
In order to avoid field theoretical inconsistencies, which

we will briefly sketch in a moment, we will use a strict
gauge-invariant definition of the Higgs particle/resonance
that was first introduced by Fröhlich, Morchio, and
Strocchi (FMS) [10,11]. They proposed to define electro-
weak observables as properties of gauge-invariant bound
state operators in a similar spirit to hadrons in QCD. At first

sight, this seems to be at odds with any textbook knowledge
about electroweak interactions. This seeming contradiction
is resolved by the fact that the bound states of the non-
Abelian electroweak theory precisely reproduce the usual
results based on the elementary fields at leading order in the
FMS framework. In particular, we will show that the pole
structure of the gauge-invariant bound state propagator and
the elementary Higgs propagator coincides to all orders in a
loop expansion. Higher-order contributions of the FMS
expansion result in loop suppressed modifications of off-
shell quantities, which further substantiates the usefulness
of the common procedure. Nonetheless, enhancements
above the two-Higgs threshold might be observable in
future precision measurements. Furthermore, the higher-
order FMS terms ensure a gauge-invariant, positive spectral
function for the Higgs bound state.
Although different approaches exist in the literature

to demonstrate gauge-parameter invariance of various
quantities describing physical observables, these statements
do not necessarily imply full gauge-invariance which is a
stronger statement. Within the setting of perturbative gauge
field theories, the Becchi-Rouet-Stora-Tyutin (BRST) sym-
metry is used to construct the physical (perturbative) gauge-
invariant state space. However, the BRST construction
breaks down from a comprehensive perspective due to the
Gribov-Singer ambiguity in a general non-Abelian gauge
theory [2,3,12,13] albeit the precise manifestation and
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implications for a theory with Brout-Englert-Higgs (BEH)
mechanism are not fully understood yet [14–16].
Furthermore, Elitzur’s theorem proves that the conventional
picture of spontaneous gauge symmetry breaking is inad-
equate in general [1]. From a technical perspective, the
breaking is merely caused by the gauge-fixing procedure
and not the form of the Higgs potential.
As a result, any nontrivial structure of the elementary

Higgs propagator is solely induced by the gauge fixing in a
continuum formulation of the theory. Strictly speaking, the
gauge fixing introduces a nontrivial coupling between the
boundary conditions and the expectation values of gauge
dependent operators as can be shown in gauge-fixed lattice
formulations [10,11]. Indeed, the propagator of the elemen-
tary Higgs field has a trivial form within a lattice approach
where no gauge fixing is performed [9]. In general any
Green’s function of a gauge dependent object such as the
Higgs or the gauge bosons will vanish as long as an action
and measure invariant under local gauge transformations
is used.
These considerations immediately lead to an apparent

contradiction. On the one hand, we have the tremendous
success of the perturbative continuum formulation to
explain current and past collider experiments. On the other
hand, basic field theoretical arguments call the validity of
the conventional approach into question. The solution to
this problem was found by the pioneering work of Fröhlich,
Morchio, and Strocchi via their aforementioned reformu-
lation of electroweak observables as properties of gauge-
invariant bound state operators [10,11]. Additionally, the
FMS approach provides the field theoretical foundation
why the standard perturbative gauges and the investigations
of gauge-dependent elementary fields are able to reflect the
underlying physics appropriately.
That this is possible can be traced back to two points.

First, the usual class of Rξ gauges allows for a nonvanishing
vacuum expectation value (VEV) of the scalar doublet.
Doing such a gauge fixing provides a mapping from a
gauge-invariant bound state operator to an object of the
remaining symmetry group. Second, from a group theo-
retical point of view, the weak sector of the standard model
is special as it contains besides the non-Abelian SUð2Þgauge
gauge structure a global SUð2Þglobal symmetry acting
nonlinearly on the scalar doublet. Within the conventional
picture, both groups are broken to a global diagonal
subgroup SUð2Þgauge × SUð2Þglobal → SUð2Þdiag. The fact
that these groups coincide allows a one-to-one mapping
of gauge-invariant bound state operators and elementary
fields within the electroweak standard model at leading
order in the FMS formalism.1

Within the perturbative description, the original gauge
structure is then partly encoded in the BRST symmetry
which manifests in the Nielsen or Slavnov-Taylor iden-
tities. For instance, the Nielsen identities ensure that the
pole mass of the elementary Higgs field is independent of
the gauge-fixing parameter [22,23]. But this does not imply
full gauge invariance [22]. It merely shows the gauge
(parameter) independence of certain quantities within this
particular class of gauges. As a counterexample one may
consider the weak sector of the standard model in the
temporal gauge. In this gauge, it can be shown that the VEV
of the scalar field vanishes even if the scalar potential is
of Mexican-hat type. The “restoration of symmetry,” i.e.,
hϕi ¼ 0, can be understood from the impact of topological
defects. Common perturbative techniques are blind to these
nonperturbative field configurations with nontrivial top-
ology but their importance can be proven within non-
perturbative approaches even at weak coupling [11].
Furthermore, not all quantities of interest are constrained
by the virtue of the Nielsen or other identities. Although it
can be shown that the pole of the propagator is gauge-
parameter free, its residuum is not. Also other properties of
the elementary Higgs propagator depend on the gauge.
Further, the Lehmann-Källèn spectral density is in general
not positive definite which prohibits a physical interpreta-
tion of the Higgs two-point function and demonstrates
the limitations of the use of elementary fields. See
Refs. [24–26] for a recent analysis within an Abelian-
Higgs model.
Of course, all these points do not contradict the useful-

ness of the Nielsen identities within those gauges that
provide a nonvanishing VEV, e.g., Rξ gauges, or the gauge-
fixing procedure in general. In particular the results of the
gauge-variant n-point functions of the elementary fields
computed in common gauges will be of central importance
in the FMS approach. Taking all such terms appearing on
the right-hand side of the FMS expansion into account will
allow us to enhance usual perturbative calculations to a
gauge-independent framework operating on in principle
nonperturbative bound states.
Although, these field theoretical facts are known for a

long time, the actual phenomenological consequences of
the higher-order terms induced by the FMS mechanism are
barely investigated in the literature. Here, we will improve
on this situation substantially. In the following, we will
analyze the structure of the bound state propagator of a
gauge-invariant description of the Higgs. In Sec. II, we will
first perform the FMS expansion to all orders. Then,
we employ a consistent loop expansion to all terms
obtained from the FMS expansion in Sec. III. After a brief
recapitulation of the renormalization procedure and the
(un)physical properties of the elementary Higgs propagator
in Sec. IV, we show in Sec. V that a gauge-invariant
structure arranges in a natural way among the different
terms of the FMS expansion albeit every individual term is

1As many beyond the standard model theories with an
extended BEH sector do not fulfill this special feature, the
duality relation imposed by the FMS mechanism is different
and may cause a qualitative different spectrum [17–21].
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gauge dependent. Subsequently, we demonstrate that phe-
nomenological deviations from the usual treatment of the
Higgs are present, but relatively small.
In Sec. VI, we benchmark the perturbative description

of the gauge-invariant bound state operator via the
FMS prescription with nonperturbative lattice simulations
within the gauge-Higgs subsector of the standard model.
Specifically, we test as to whether the perturbative treat-
ment of the right-hand side of the FMS expansion is able to
capture all relevant information of the bound state operator
or under which circumstances nonperturbative effects
might spoil the perturbative treatment.

II. GAUGE-INVARIANT DEFINITION OF THE
HIGGS EXCITATION AND FMS MECHANISM

A strict gauge-invariant formulation is desired for any
observable of a gauge theory. Over the past years, over-
whelming evidence has been accumulated that the scalar
particle with a mass of ∼125 GeV observed in 2012 can be
in some sense related to the standard model Higgs boson.
It is directly affected by electroweak processes but only
indirectly, e.g., via loop processes, to the strong interaction.
Field theoretically, however, the excess in the invariant
mass cross section cannot be caused by the elementary
Higgs field as this field necessarily carries an unobservable
non-Abelian gauge charge and some of its properties
depend on the gauge. Nevertheless, considering the
Higgs sector of the standard model, we can straightfor-
wardly build a scalar bound state operator from the usual
scalar doublet ϕ which is invariant with respect to the
standard model gauge group, namely ϕ†ϕ.
In general, a nonperturbative method is required to

analyze the properties of this genuinely nonperturbative
object. In contrast to QCD, however, the electroweak sector
is a non-Abelian gauge theory with a BEH mechanism,
which leads to a convenient simplification of this bound
state operator according to FMS [10,11]. Suppose the
potential of the scalar doublet has nontrivial minima.
Then, we introduce a shifted doublet φ to investigate
excitations around one of these minima as usual,

ϕðxÞ ¼ vffiffiffi
2

p ϕ0 þ φðxÞ; ð1Þ

where v is the modulus of the field configuration that
minimizes the Higgs potential and ϕ0 is some unit vector in
gauge space. Within the standard model, all minima belong
to the same gauge orbit. Picking one particular represen-
tative, e.g., the common choice ϕa

0 ¼ δa2, corresponds to a
gauge choice already at the classical level. Thus, also the
identification of hϕi ¼ vffiffi

2
p ϕ0, i.e., the identification of the

minimizing field configuration with the VEV of the scalar
field, corresponds to a gauge choice and is only meaningful
within this particular gauge. After the gauge is fixed, we
can extract the elementary Higgs field and the would-be

Goldstone modes which mix with the longitudinal parts
of the gauge bosons from the fluctuations φ around
the minimum. In a covariant formulation, they can be
expressed as h ¼ ffiffiffi

2
p

Reðϕ†
0φÞ and φ̆ ¼ ϕ − Reðϕ†

0ϕÞϕ0,
respectively. In the following, we will use the standard Rξ

gauge-fixing condition in which the minimum selection
process is already implemented by hand when it comes to
an actual calculation.
Choosing a gauge condition that implements a non-

vanishing VEV for the scalar field, leads to a convenient
treatment of electroweak bound state operators. Within
such a gauge, the scalar operator jϕj2 can be rewritten as

ϕ†ϕ ¼ v2

2
þ vhþ φ†φ ð2Þ

via the split defined in Eq. (1). Viewing the right-hand side
of Eq. (2) as an expansion in the fluctuations over the
characteristic scale of electroweak physics and ignoring
the unimportant constant term, we find that at nontrivial
leading order in the expansion parameter φ=v the properties
of the gauge-invariant operator jϕj2 are described by the
gauge-dependent elementary Higgs field h. In the follow-
ing, we will show that this term provides indeed the
dominant contribution from the phenomenological view-
point. However, the next-to-leading order term jφj2 is
important to render the full Green’s function structure
gauge invariant.
All physical information of the bound state operator jϕj2

is encoded in its n-point functions. Studying the FMS
expansion of the operator at the level of the propagator, we
are able to rewrite the connected two-point function,

hðϕ†ϕÞðxÞðϕ†ϕÞðyÞi ¼ v2hhðxÞhðyÞi þ 2vhhðxÞðφ†φÞðyÞi
þ hðφ†φÞðxÞðφ†φÞðyÞi; ð3Þ

where we have used that the propagators depend only on
the distance jx − yj. Thus, the FMS approach reduces the
problem of calculating the propagator of an involved bound
state operator to the computation of connected n-point
functions of elementary fields. In particular, this allows for
a perturbative access to bound state information by per-
forming a loop expansion on the right-hand side. Further
note that on the right-hand side every individual term is
gauge dependent and can only be defined within the
specifically chosen gauge. However, the sum of all the
terms has to be gauge invariant by construction. This will
be explicitly demonstrated at the one-loop level in the
next sections.
Based on the FMS expansion of the scalar operator jϕj2,

it is not surprising that the bound state propagator can be
approximated by the elementary Higgs propagator at
leading order. The two higher-order terms in Eq. (3), the
three-point function ∼v and the four-point function ∼v0,
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are neglected within conventional calculations. Their com-
putation can be done with similar effort. In the following,
we will concentrate on their importance regarding physical
properties of the Higgs boson.
Switching to momentum space, we parametrize the three

terms on the right-hand side of Eq. (3) as follows. The
connected Higgs two-point function can be written as a
geometric series where terms induced by quantum correc-
tions are encoded in the self-energy function Σ0,

hhðpÞhð−pÞi ¼ i
p2 −m2

h − Σ0ðp2Þ : ð4Þ

The subscript 0 at the Higgs self energy Σ0 denotes that this
term originates from the leading order term with respect to
the FMS expansion. In general, Σ0 not only contains one-
particle-irreducible (1PI) contributions but also tadpole
diagrams attached to the propagators due to the breaking
of local gauge invariance via gauge fixing. These emerge if
the split (1) of the scalar field does not properly take the
quantum corrections to the Higgs VEV into account, e.g.,
by choosing a minimum of the classical instead of the
quantum effective potential as an expansion point. In such a
case, the tadpole diagrams effectively shift the masses of
the elementary fields accounting for these loop effects and
contribute as momentum-independent terms that can be
trivially included in the self energy. Performing the split at
the minimum of the quantum effective potential removes
these contributions. Of course, this can always be achieved
by suitable renormalization conditions. In a scheme for
which hhi ¼ 0; i.e., the VEV is fixed to its classical value,
Σ0 contains the standard 1PI diagrams only. Leaving the
scheme for the moment unspecified, we will approximate
Σ0 by all diagrams up to a given loop order that are 1PI plus
corresponding tadpole attachments, cf. Eq. (8) for a one-
loop approximation.
The three-point function appearing at next-to-leading

order in the FMS expansion, can be viewed as the sum of all
tadpole diagrams with suitable insertions of the composite
operator φ†φ. It will be convenient to define

hhðpÞðφ†φÞð−pÞi ¼ i
p2 −m2

h − Σ0ðp2ÞΣ1ðp2Þ; ð5Þ

where the loop-induced function Σ1, encoding the ampu-
tated contributions, can be further divided into two sub-
groups of diagrams, Σ1 ¼ γð1;1Þ þ hhi, see Fig. 1. Within
the second subgroup (hhi), the (amputated) external h-field
propagator is directly attached to the composite operator
insertion 1

2
h2 (note: φ†φ ¼ 1

2
h2 þ φ̆†φ̆). Then, a tadpole

diagram has to be attached to the remaining line of the
operator insertion, see the second diagram in the second
line of Fig. 1. Thus, we obtain a momentum-independent
contribution to Σ1 from these diagrams given by hhið0Þ.
The other subgroup contains those diagrams where the

tadpole bubble contains at least one internal scalar line at
which we have a jφj2 insertion giving a nontrivial momen-
tum contribution. Using a scheme that implements hhi ¼ 0,
we only have to consider the subgroup of diagrams that are
1PI with an appropriate operator insertion; i.e., Γð1;1Þðp2Þ,
where Γ denotes the effective action (generating functional
of all 1PI diagrams) and we define the upperscripts
according to

Γðn1;n2Þ ¼
�

δ

δK
− vh −

1

2
v2
�

n2
�
δ

δh

�
n1
Γ
����
0

: ð6Þ

Here, we have introduced K as the source term for the
gauge-invariant composite operator jϕj2; i.e., we modify
the action according to SSM → SSM þ R

x Kϕ†ϕ. Thus,
the operator ðδK − vh − v2=2Þ generates the required
composite operator insertions jφj2. In a general scheme
where the 1PI tadpole diagrams hhi1PI ≡ Γð1;0Þ are non-
vanishing, we also have to take tadpole diagrams attached
to the internal lines of the diagrams generated by Γð1;1Þ into
account. We label these contributions by γð1;1Þ. Thus,
choosing the renormalization condition Γð1;0Þ ¼ 0 will
simplify the occurring structures as we have Σ1 ¼ Γð1;1Þ
in this particular case. Using this notation, we may
express γð2;0Þ ¼ p2 −m2

h − Σ0 as the full inverse propagator

FIG. 1. Diagrammatic sketch of the three Green’s functions
appearing due to the FMS expansion of the propagator of the
gauge invariant operator jϕj2, see Eq. (3). Small white blobs
denote jφj2 insertions. Gray circles encode tree level plus all
possible loop corrections. For instance, a gray circle with one or
two dashed lines attached indicates the sum of all tadpole
diagrams or the full elementary Higgs propagator, respectively.
Amputating the full external Higgs propagators at the two
diagrams in the second line, i.e., the diagrammatic representation
of hhjφj2i, gives the two contributions to Σ1 which are denoted by
γð1;1Þ and hhi.
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including tadpole graphs. Correspondingly, Σ0 ¼ Γð2;0Þ −
p2 þm2

h if Γð1;0Þ ¼ 0 is implemented.
In the same spirit, we may view the four-point function

hðφ†φÞðpÞðφ†φÞð−pÞi¼ iΣ2ðp2Þ;
¼ γð0;2Þðp2ÞþðΣ1hhhiΣ1Þðp2Þ ð7Þ

as the sum of all vacuum bubbles with at least one internal
scalar line to account for two insertions of the composite
operator jφj2. The subscripts at Σ1 and Σ2 indicate that these
loop contributions appear at next-to-leading and next-to-
next-to-leading order of the FMS expansion, respectively.
Also the function Σ2 can be divided into two contributions
originating from different classes of diagrams, see the
second line of Eq. (7). The first class described by γð0;2Þ

reduces to all diagrams generated by Γð0;2Þ if the renorm-
alization condition Γð1;0Þ ¼ 0 is chosen. If not, it encodes
all diagrams that are 1PI with two jφj2 insertions plus
potential tadpole diagrams attached to internal propagators

as in the previous cases. The second class is a non-1PI
contribution where we find the operator insertions sepa-
rated in two distinct structures given by Σ1 where both
are connected via an internal propagator. A diagrammatic
representation can be found in the third and fourth row of
Fig. 1. There, the first diagram describes γð0;2Þ while the
remaining three diagrams are given by ðΣ1Þ2hhhi. Further
note that only the first diagram contains a one-loop
contribution while the remaining diagrams start at two-
loop order. Implementing Γð1;0Þ ¼ 0 gives iΣ2ðp2Þ ¼
Γð0;2Þðp2Þ þ ðΓð1;1Þðp2ÞÞ2ðΓð2;0ÞÞ−1ðp2Þ.

III. ONE-LOOP APPROXIMATION

After these general formal considerations, we will
restrict actual computations to the one-loop level through-
out this paper. Using dimensional regularization, we obtain
for the three unrenormalized functions Σ0, Σ1, and Σ2

within this approximation:

Σ1l
0 ðp2Þ ¼ Γð1 − d

2
Þ

ð4πÞd2
1

v2

�
−3md

h − 4ðd − 1Þmd
W − 2ðd − 1Þmd

Z þ 3dγ
X
f

NCfmd
f − 2p2md−2

W − p2md−2
Z

�

þ 1

v2

�
−
9

2
m4

hlBðm2
hÞ − ðp4 − 4m2

Wp
2 þ 4ðd − 1Þm4

WÞlBðm2
WÞ

−
1

2
ðp4 − 4m2

Zp
2 þ 4ðd − 1Þm4

ZÞlBðm2
ZÞ þ ðd − 1Þdγ

X
f

NCfm2
flFðm2

f Þ
�

þ 1

v2

�
Γð1 − d

2
Þ

ð4πÞd2 ðp2 −m2
hÞ½2ðξm2

WÞ
d
2
−1 þ ðξm2

ZÞ
d
2
−1� þ ðp4 −m4

hÞ½lBðξm2
WÞ þ

1

2
lBðξm2

ZÞ�
�
; ð8Þ

Σ1l
1 ðp2Þ ¼ Γð1 − d

2
Þ

ð4πÞd2
1

2v

�
−3md−2

h − 4ðd − 1Þm
d
W

m2
h

− 2ðd − 1Þm
d
Z

m2
h

þ 2dγ
X
f

NCf
md

f

m2
h

�
−

1

2v
3m2

hlBðm2
hÞ

þ Γð1 − d
2
Þ

ð4πÞd2
1

2v
½−2ðξm2

WÞ
d
2
−1 − ðξm2

ZÞ
d
2
−1� þ 1

2v
m2

h½−2lBðξm2
WÞ − lBðξm2

ZÞ�; ð9Þ

Σ1l
2 ðp2Þ ¼ −

1

2
½lBðm2

hÞ þ 2lBðξm2
WÞ þ lBðξm2

ZÞ�: ð10Þ

Here, we have used the abbreviations

lBðm2Þ ¼ Γð2 − d
2
Þ

ð4πÞd2
Z

1

0

dxðm2 − ðx − x2Þp2Þd2−2;

lFðm2Þ ¼ −
Γð1 − d

2
Þ

ð4πÞd2
Z

1

0

dxðm2 − ðx − x2Þp2Þd2−1

to encode one-loop integrals containing two bosonic or
two fermionic lines, respectively. The sums over the index
f run over all fermion flavors and NCf ¼ 3 for quarks and

NCf ¼ 1 for leptons. For convenience, we have chosen the
same gauge-fixing parameter for the W and Z gauge field,
ξ≡ ξW ¼ ξZ. Of course, all following cancellation mech-
anisms work for distinct gauge-fixing parameters as well.
A diagrammatic representation of the one-loop approxi-
mations can be found in Fig. 2. The result for Σ1l

0 can, of
course, be found in the literature, e.g., see [27] where it is
expressed in terms of the Passarino-Veltman functions.
As we have not specified any renormalization scheme
yet, we explicitly included tadpole graphs. In order to
extract only the 1PI information, we may use the one-loop
relations Σ1l

0 ¼ iΓð2;0Þ1l − 3
v iΓ

ð1;0Þ1l − p2 þm2
h and Σ1l

1 ¼
Γð1;1Þ1l − 1

m2
h
iΓð1;0Þ1l where the tadpole contributions read,
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iΓð1;0Þ1l ¼ Γð1 − d
2
Þ

ð4πÞd2
1

v

�
3

2
md

h þ 2ðd − 1Þmd
W

þ ðd − 1Þmd
Z − dγ

X
f

md
f

þm2
hðξm2

WÞ
d
2
−1 þ 1

2
m2

hðξm2
ZÞ

d
2
−1
�
: ð11Þ

Terms that explicitly depend on the gauge-fixing parameter
ξ are separated in the last lines of Eqs. (8), (9), and (11)
as well as in the last two terms of Eq. (10). For later
purpose, we also define quantities with a tilde, which
denote the original quantity minus any contribution coming
from modes that carry a ξ-dependent mass term, i.e., Σ̃1l

0 ¼
Σ1l
0 -[last line of Eq. (8)], Σ̃1l

1 ¼ Σ1l
1 -[last line of Eq. (9)],

Σ̃1l
2 ¼ − 1

2
lBðm2

hÞ.

IV. ELEMENTARY HIGGS PROPAGATOR

Before we discuss the properties of the gauge-invariant
bound state operator in detail, we briefly recapitulate some
properties of the elementary Higgs propagator.

A. Renormalization

First, we have to introduce counterterms to absorb
the UV divergencies in the d → 4 limit. As dictated by
the general perturbative renormalization procedure, the

divergent parts only appear in powers of the external
momentum p2. At the level of the two-point function,
we expect terms being ∼p0cd−4 and ∼p2cd−4, where
cd−4 ¼ 2

d−4 − γE þ lnð4πÞ, which can be absorbed by the
mass and wave function counterterms, respectively.
Studying the one-loop contributions to Σ0 this is
certainly the case. At first sight, it seems that additional
divergent terms ∼p4 appear due to gauge boson loops, e.g.,
p4lBðm2

WÞ, p4lBðξm2
WÞ, � � �. However, the sum of all these

contributions is UV finite, i.e., the cd−4p4 dependence
cancels precisely for any ξ. This is expected as we work in a
perturbatively renormalizable gauge. As a side remark, the
whole term ∼p4 is absent in case of ξ ¼ 1 (Feynman–
’t Hooft gauge). Summarizing, the divergent part of Σ1l

0

reads

Σ1l
0;div ¼

cd−4
16π2v2

��
ð3 − ξÞð2m2

W þm2
ZÞ −

dγ
2

X
f

m2
f

�
p2

− ½3m4
h − ð2ξm2

W þ ξm2
ZÞm2

h�
	
:

The divergent term quadratic in the external momentum
can be removed by the renormalization parameter of the
scalar kinetic counterterm δZj∂μϕj2. For the momentum
independent part, we have more freedom due to the
breaking of the gauge structure via gauge fixing. In the

FIG. 2. Diagrammatic representation of Σ0, Σ1, and Σ2 at one-loop order given in Eqs. (8)–(10). The one-loop contributions to the
Higgs self-energy Σ0 are given in the first two rows. The first five diagrams in the last row depict Σ1l

1 while the last diagram shows Σ1l
2 .

Small white blobs denote φ†φ insertions.
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pure scalar sector, this breaking technically manifests in the
same way as for a scalar field theory with spontaneously
broken global symmetry. Thus, the mass and quartic
coupling counterterm δmϕ

†ϕ − δλ
2
ðϕ†ϕÞ2 can be fixed via

various Green’s functions as can be seen by inserting the
split (1) into the counterterm Lagrangian. Then, the
counterterm Lagrangian of the pure Higgs sector reads,

LH;c:t: ¼
�
δm −

v2

2
δλ

�
vhþ 1

2

�
δm −

3v2

2
δλ

�
h2

þ
�
δm −

v2

2
δλ

�
φ̆†φ̆ − δλvðh3 þ 2hφ̆†φ̆Þ

−
δλ
8
ðh2 þ 2φ̆†φ̆Þ2; ð12Þ

where we have omitted the kinetic term as it translates
trivially. Independently which two of the (n ≤ 4)-point
functions of the Higgs excitation h or the would-be
Goldstone bosons φ̆ we choose to determine the two
renormalization parameters δm and δλ, all of them will
become UV finite due to the underlying symmetry. As we
focus our analysis on the Higgs propagator as this is the
leading order term of the FMS expansion and the only
n-point function appearing on the right-hand side without
an additional operator insertion, it will be most convenient
for our purposes to fix one of the two parameters via hhhi.
Without loss of generality, we choose δm and leave δλ
arbitrary for the moment. Using this choice and including
the counterterms, the renormalized self-energy reads at the
one-loop level,

Σ0 ¼ Σ1l
0 − δZp2 −

�
δm −

3

2
v2δλ

�
þ 3

v

�
vδm −

1

2
v3δλ

�
;

¼ Σ1l
0 − δZp2 þ 2δm: ð13Þ

In the first line, we have explicitly illustrated the momen-
tum-independent counterterm contributions coming from
the 1PI diagram in square brackets, i.e., from the term ∼h2
in Eq. (12), and from the one-particle reducible tadpole
diagram [∼h in Eq. (12)] in parentheses.
Of course, the removal of the UV divergent parts can

be done via different renormalization strategies. Most
common for high-order computations are the MS and
MS scheme such that the counterterms remove the pole
∼ 1

d−4 or the terms ∼cd−4, respectively. For our purposes,
however, a pole/on-shell scheme is more appropriate.
Within these schemes, the finite parts of the counterterms
are chosen in such a way that the renormalized parameters
coincide with physical parameters. This can be achieved to
all orders in perturbation theory.
The on-shell scheme can be straightforwardly imple-

mented for stable particles. However, the extraction of the
mass and width of an unstable particle as the SM Higgs

boson is involved in a gauge theory. In particular, it can be
proven that the on-shell mass and width may become
gauge-dependent in next-to-next-to-leading order of the
perturbative expansion spoiling any physical interpretation
of the two quantities [28–31]. In order to circumvent this
obvious problem, different strategies have been developed.
A useful generalization is given by the complex mass
scheme that can be viewed as an analytical continuation of
the on-shell scheme by introducing complex renormaliza-
tion constants and choosing the complex pole of the
two-point function as a renormalization point [32–36].
This provides a gauge-parameter independent renormaliza-
tion condition for the mass of an unstable particle within the
class of Rξ gauges as the complex pole does not depend on
the gauge-fixing parameters.
More precisely, we demand Σ0ðp2 ¼ m2

hÞ ¼ 0 and
Σ0
0ðp2 ¼ m2

hÞ ¼ 0, m2
h ∈ C, to implement the complex

mass scheme where the prime denotes differentiation with
respect to p2.2 Defining m2

h ¼ M2
h − iMhΓh, and consider-

ing the real and imaginary part of the renormalized self
energy separately, the pole mass Mh and width Γh can be
obtained from

ReΣ0ðm2
hÞ ¼ 0 and MhΓh ¼ −ImΣ0ðm2

hÞ: ð14Þ

Using these two quantities to define the physical mass
and width of the unstable Higgs particle provides a gauge-
parameter independent definition within a perturbative
approximation.
An expansion of Σ0ðm2

hÞ around M2
h in Eq. (14) and

considering only terms up to OðΓhÞ leads to the definition
of the on-shell mass and width. Thus, the on-shell quan-
tities might be viewed as the narrow width approximation
of the pole quantities. In contrast to the complex mass
scheme, the on-shell scheme is defined by

Re½Σ0ðp2 ¼ m2
hÞ� ¼ 0; Re½Σ0

0ðp2 ¼ m2
hÞ� ¼ 0 ð15Þ

for real-valued m2
h ¼ M2

h ∈ R. Implementing this scheme,
we obtain for the inverse resummed elementary Higgs
propagator at the one-loop level

ihhhi−1ðp2Þ ¼ ð1þ ReΣ1l0
0 ðm2

hÞÞðp2 −m2
hÞ

− Σ1l
0 ðp2Þ þ ReΣ1l

0 ðm2
hÞ: ð16Þ

The extraction of either the mass for a stable particle
(Σ0ðm2

hÞ ∈ R) or of the mass and width of an unstable
particle is straightforward within this scheme. The physical

2Note that the imaginary parts of the renormalized parameters
and the counterterms are related to render the bare parameters
real valued and, thus, the action unitary. For instance, the mass
counterterm has to fulfill the consistency condition Im2δm ¼
−Imm2

h. Further note that the Cutkosky cutting rules are not valid
within this scheme [37].
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mass can be identified with the parametermh ¼ Mh and the
width is encoded in the imaginary part of the self energy,

Γh ¼ −
1

mh

ImΣ0ðm2
hÞ

1 − ReΣ0
0ðm2

hÞ
: ð17Þ

As the ratio Γh=Mh is indeed small for the standard-model
Higgs boson, Eqs. (16) and (17) are sufficiently good
approximations for its description at one-loop order.

B. Gauge-(in)dependent properties

As one can directly infer from the one-loop approxima-
tion, the pole of the Higgs propagator is gauge-parameter
independent at lowest order in the perturbative expansion as
∂ξΣ1l

0 ðm2
hÞ ¼ 0. That this statement holds to all orders in the

perturbative expansion is ensured by the Nielsen identities
[22,23]. This might lead to the conclusion that the mass
extracted from the Higgs propagator is gauge-invariant and
thus a physical observable. Nevertheless, we would like to
emphasize at this point that the Nielsen identities merely
show the gauge-parameter independence within a specific
(and widely used) class of gauges. Other gauges than Rξ

gauges can be chosen such that the elementary Higgs field
propagator does not show such particlelike properties and
nonperturbative methods are required to extract physical
information of the system [11]. Furthermore, the residue of
the pole of the Higgs is in general not gauge independent.
This is in contrast to the massive elementary gauge bosons
where it can be shown that the residues of the Z and W�
bosons are gauge parameter free to all orders and a
gauge parameter invariant definition of partial widths is
possible [38]. For the Higgs this is not the case as can be
directly inferred from the one-loop approximation, i.e.,
∂ξΣ1l

0
0ðm2

hÞ ≠ 0. A detailed discussion of this fact was
done within the context of an Abelian-Higgs model [24].
However, this is not a problem at a practical level as this
gauge-parameter dependence does not contribute to any
physical S-matrix element [39]. Moreover, it is possible to
fix a scheme such that the residue becomes ξ independent
by absorbing the ξ dependence in the wave function
counterterm as in the complex mass scheme.
In addition, other quantities that are extracted from the

two-point function and would define the properties of a
physical state are gauge dependent. For instance, let us
briefly discuss the characteristics of the spectral density ρ
defined via

hhðpÞhð−pÞi ¼
Z

∞

0

dm2
ρðm2Þ
p2 −m2

;

which will obviously depend on the gauge-fixing parameter
ξ. A detailed discussion of this feature can be found in
Refs. [24,25] for the Abelian Higgs model. Here, we

observe similar properties albeit having a more involved
structure due to the extended field content, see Fig. 3.
First of all, we observe an expected peak at the Higgs

mass whose width is dominated by the strength of the
bottom Yukawa coupling. Further, we find nontrivial
structures starting at the respective thresholds of the
various observed particle masses.3 However, we find addi-
tional unphysical structures associated with fluctuations of
mass

ffiffiffi
ξ

p
mW=Z which can be identified by varying the

gauge fixing parameter ξ. This effect is most apparent for
ξ < 1. In this case, we obtain one-loop contributions
already below the lowest physical mass threshold at
2mW within the pure bosonic sector of the standard model.
Even worse, for some values ξ the spectral function
becomes negative. Neglecting for a moment any fermionic
fluctuations, we find that the spectral density ρ becomes
negative at large momentum for a sufficient small gauge-
fixing parameter (ξ < 3). This is in agreement with the
situation in the Abelian Higgs model.4 Including fermionic
contributions, top quark fluctuations alleviate nonpositivity
issues in the large momentum regime. However, we still

FIG. 3. Spectral density of the elementary Higgs field for
different values of the gauge-fixing parameter ξ. We depict the
spectral function for ξ ¼ 1 (red dotted line), ξ ¼ 2 (green dash-
dotted line), and ξ ¼ 10 (blue dashed). The vertical gray dashed
lines indicate the mass thresholds at 2mW, 2mZ, 2mh, and 2mtop
from left to right.

3Note that these physical scales need a gauge-invariant
description as well. Again, the original FMS work showed that
gauge-invariant bound states can be constructed for the electro-
weak gauge bosons as well as the standard model fermions which
map to their elementary counterparts in the same spirit as for the
Higgs. Thus, the mass scales set by theW and Z bosons as well as
the leptons can be described in an appropriate fashion. For quarks
the situations is more involved due to the additional non-Abelian
color charge such that physical particle scales are set by
meson and baryon masses. Taking such nontrivial hadronization
effects into account is clearly beyond the scope of this work and
we only remain with electroweak gauge-invariant structures in the
following.

4During the completion of this work, another analysis of the
spectral function within an SU(2) Higgs model further substan-
tiates this fact [40].
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observe positivity violations at intermediate scales below
2mtop for ξ≲ 1.8. For gauges with larger ξ, top contributions
seem to cure positivity violations induced by longitudinal
gauge boson and Goldstone modes. This is due to the fact
that the dominant impact of these unphysical modes is only
over a sufficient small momentum range in this case. Belowffiffiffi
ξ

p
mW they decouple while the strong top Yukawa coupling

prevents the spectral density from becoming negative
above the top threshold, e.g., compare the red dotted
(ξ ¼ 1) and green dash-dotted line (ξ ¼ 2) in Fig. 3.
Nevertheless, we have to state the following: although the
elementary Higgs field propagator encodes some gauge
parameter independent contributions, a full momentum
dependent analysis reveals its unphysical nature spoiling
any physical interpretation as a single particle due to the
underlying non-Abelian gauge structure similar to the case
of quarks and gluons within QCD.
Of course, the gauge-parameter dependence of the

elementary Higgs propagator and the presence of unphys-
ical thresholds is known for a long time. However, this
seems not to be a problem at first sight. The Higgs is
unstable within the standard model and occurs only as an
intermediate resonance. Once a physical S-matrix element
is calculated, the gauge-parameter dependence of internal
Higgs propagators will be canceled by propagatorlike
pieces of certain vertex and box diagrams [41–43].
Taking these processes into account, a ξ-independent
definition of the Higgs self-energy can be defined via
the pinch technique [44,45]. Neglecting any contributions
with trivial external momentum dependence (tadpole and
seagull diagrams), the Higgs self-energy computed via the
pinch technique reads

Σ1l
0;pin ¼

1

v2

�
−
9

2
m4

hlBðm2
hÞ − ðm4

h þ 4m2
W þ 3ðd − 1Þm4

W

− 8m2
Wp

2ÞlBðm2
WÞ −

1

2
ðm4

h þ 4m2
Z þ 3ðd − 1Þm4

Z

− 8m2
Zp

2ÞlBðm2
ZÞ þ ðd − 1Þdγ

X
f

NCfm2
flFðm2

f Þ
�
:

ð18Þ

Obviously, the issue of unphysical thresholds of the
propagator/spectral density will be cured by this strategy.
In general, the pinch technique is a powerful tool to address
perturbative gauge-invariance of calculations within non-
Abelian gauge theories. Nonetheless, it still leaves some
unsatisfactory open questions from a field theoretical
perspective. First of all, the cancellation of the ξ-dependent
terms via the involved interplay of propagator, vertex, and
box diagrams works for any process where the elementary
Higgs appears as an intermediate state. However, consider a
model where the Higgs is a stable particle and the process
where we have a Higgs as an asymptotic in and out state
described by the (unpinched) elementary Higgs propagator.
This object would still have the usual gauge-parameter
dependence. Of course, this scenario is not realized within
the standard model but the pinch technique Higgs propa-
gator has another problem which is shared with its gauge-
dependent counterpart. The spectral density still has
negative contributions which appear in a similar fashion
as for the ξ ¼ 1 case in Fig. 3. In the following section we
will demonstrate that the gauge-invariant FMS formulation
of the Higgs particle in terms of a bound state will solve this
issue. Additionally, physical cross sections computed by
the FMS formalism and the (pinch technique) elementary
Higgs propagator are in good agreement for low momenta,
which is consistent with the success of the latter method to
describe present collider experiments.

V. BOUND STATE PROPAGATOR

After this recapitulation of the elementary Higgs propa-
gator, we will now consider the properties of the scalar
bound state operator ϕ†ϕ. First, we observe that the bound
state propagator is gauge parameter independent up to
one-loop order if we include all terms of the FMS
expansion, see Eq. (3). More precisely, we restrict the n-
point functions defined in Eqs. (4), (5), and (7) to their tree
and one-loop representations and plug them into Eq. (3).
Using the approximations (8)–(10) for the three functions
Σ0, Σ1, and Σ2 and inserting unities of the form ðp2−m2

hÞn=
ðp2−m2

hÞn in front of the terms ∼Σn, we obtain

hðϕ†ϕÞðpÞðϕ†ϕÞð−pÞi ¼ i
p2 −m2

h

þ
�
Γð1− d

2
Þ

ð4πÞd2
�
−3p2md−2

h − 2p2

�
1þ 2ðd− 1Þm

2
W

m2
h

�
md−2

W −p2

�
1þ 2ðd− 1Þm

2
Z

m2
h

�
md−2

Z

þ dγ
X
f

NCf

�
md

f þ 2p2
md

f

m2
h

��
−
1

2
ðp2 þ 2m2

hÞ2lBðm2
hÞ− ðp4 − 4m2

Wp
2 þ 4ðd− 1Þm4

WÞlBðm2
WÞ

−
1

2
ðp4 − 4m2

Zp
2 þ 4ðd− 1Þm4

ZÞlBðm2
ZÞ þ ðd− 1Þdγ

X
f

NCfm2
flFðm2

f Þ
	

i
ðp2 −m2

hÞ2
þOðℏ2Þ;

ð19Þ
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where we have separated the tree-level contribution in the
first line while the one-loop contributions are given in the
remaining lines. This important but trivial result was
expected due to the construction of the bound state operator
as a gauge charge singlet with respect to the standard
model gauge group. Thus, all gauge-parameter dependent
contributions of each single term on the right-hand side
of the FMS expansion have to cancel within consistent
(non)perturbative approximation schemes. In particular,
we have 0¼∂ξhjϕj2jϕj2i¼∂ξðv2hhhiÞþ∂ξð2vhhjφj2iÞþ∂ξhjφj2jφj2i. Going to some fixed order on the right-hand
side, the gauge-parameter dependent terms have to be
constrained by this identity, ensuring gauge-invariance
once all terms of the FMS expansion are considered.

A. Renormalization

Considering the three terms on the right-hand side of the
FMS expansion, each term, the elementary Higgs propa-
gator as well as the two terms with composite operator
insertions, is separately UV divergent. Basically, we follow
the standard formalism to renormalize the higher-order
terms of the FMS expansion, i.e., n-point functions con-
taining composite operators. However, a few comments are
in order due to the symmetry breaking via gauge fixing that
relates counterterms as in the case of the elementary field.
A straightforward strategy to render the bound state

propagator hðϕ†ϕÞðϕ†ϕÞi finite within the FMS approach is
given by renormalizing each term appearing on the right-
hand side of the FMS expansion individually. The renorm-
alization procedure for the elementary Higgs propagator
hhhi was discussed in Sec. IVA. For the next term in the
expansion, hhjφj2i, we may use an additional counterterm/
wave function renormalization introduced in the source
term accounting for a composite operator insertion
Kϕ†ϕ → Zjϕj2Kϕ†ϕ ¼ ð1þ δjϕj2ÞKϕ†ϕ. Within a system
with vanishing v, one would fix this additional counter-
term by imposing a renormalization condition on
hϕðxÞϕ†ðyÞjϕj2ðzÞi. In case the scalar field acquires a
nonvanishing VEV, i.e., the O(4) symmetry of the pure
Higgs sector is broken via gauge-fixing, we may use any
n-point function containing the composite operator φ†φ
and either two elementary Goldstone fields or up to
two elementary Higgs fields, e.g., hhðxÞhðyÞjφj2ðzÞi,
hφ̆�=0ðxÞφ̆∓=0ðyÞjφj2ðzÞi, or hhðxÞjφj2ðyÞi. This is analo-
gous to the determination of δm and δλ for the elementary
Higgs propagator in the broken regime. Independently
which option we choose, all other n-point functions with
one composite operator insertion jφj2 are fixed and UV
finite due to the underlying symmetry.
For our purposes it is obviously most convenient to

choose hhjφj2i. Actually, the counterterm δjϕj2 only has to

absorb the UV divergency of the 1PI part Γð1;1Þ while the
common tadpole counterterms take care of possible tadpole
contributions attached to the 1PI diagrams if a scheme is

used where hhi ≠ 0. Nevertheless, in order to fix the
finite part of δjϕj2 , it does not matter if we impose the

renormalization condition on Γð1;1Þ or the function Σ1 on a
practical level as the finite parts of the tadpoles give only
momentum independent contributions to any order in the
loop expansion. A convenient choice is given by either
ReΣ1ðp2 ¼ m2

hÞ ¼ 0 or ReΓð1;1Þðp2 ¼ m2
hÞ ¼ 0 (on-shell

scheme, mh ∈ R). Extending the complex mass scheme
(mh ∈ C) to the case of composite operators, we could
also choose Σ1ðp2 ¼ m2

hÞ ¼ 0 or Γð1;1Þðp2 ¼ m2
hÞ ¼ 0.

Of course, other schemes such as MS are feasible as well.
Performing a one-loop approximation to make these

considerations more explicit, i.e., hhjφj2i ¼ i
p2−m2

h
Σ1l
1 þ

Oðℏ2Þ, we obtain

Σ1 ¼ Σ1l
1 þ vδjϕj2 þ

v
m2

h

�
δm −

v2

2
δλ

�
;

¼ Γð1;1Þ1l þ vδjϕj2 −
i
m2

h

�
Γð1;0Þ1l þ ivδm − i

v3

2
δλ

�
: ð20Þ

Here, we clearly see that the term in square brackets,
coming from the tadpole contributions attached to the
composite operator insertion, is already UV finite due
to the renormalization of the n-point functions without
any jφj2 insertion. In the following, we will impose
the renormalization condition ReΓð1;1Þðp2 ¼ m2

hÞ ¼ 0

within the on-shell scheme implying vδjϕj2 ¼ −ReΓð1;1Þ1l

ðp2 ¼ m2
hÞ. This is justified by the fact that we still have

Γh=Mh ≪ 1 and we do not expect any gauge-dependent
artifacts which usually spoil the applicability of the on-shell
scheme at higher loop orders.
Finally, we have to discuss the renormalization of the

highest order term of the FMS expansion, hjφj2jφj2i. The
function Σ2 or rather Γð0;2Þ is divergent already in free field
theory. Therefore, we need an additional renormalization.
Following our previous strategy, we impose the renormal-
ization condition ReΓð0;2Þðp2 ¼ m2

hÞ ¼ 0 which is consis-
tent with the tree level approximation. Thus, we have at the
one-loop level (Σ1l

2 ¼ Γð0;2Þ1l),

Σ2ðp2Þ ¼ Σ1l
2 ðp2Þ − ReΣ1l

2 ðm2
hÞ: ð21Þ

This procedure is sufficient to renormalize all the
structures by treating the gauge-invariant bound state
propagator within the FMS approach. Therefore, we could
proceed to extract physical information. Before doing so,
however, we want to discuss a few particularities which
are not present in other systems (due to the lack of the
FMS expansion/BEH mechanism) by slightly changing the
perspective on the calculation.
For this, let us plainly write down all counterterms say at

the one-loop level and ignoring that they originated from
three individual contributions.

AXEL MAAS and RENÉ SONDENHEIMER PHYS. REV. D 102, 113001 (2020)

113001-10



hðϕ†ϕÞðpÞðϕ†ϕÞð−pÞi ¼ iv2

p2 −m2
h

þ iv2

p2 −m2
h

Σ1l
0 − δZp2 þ 2δm

p2 −m2
h

þ i2v
p2 −m2

h

�
Σ1l
1 þ vδjϕj2 þ

v
m2

h

�
δm −

v2

2
δλ

��
þ iðΣ1l

2 − δ̃jϕj2Þ þOðℏ2Þ;

¼ ðrhs of Eq ð19ÞÞ þ i
ðp2 −m2

hÞ2
�
ðv4δλ − 2v2m2

hδjϕj2 −m4
hδ̃jϕj2Þp0

þ
�
−v2δZ þ 2

v2

m2
h

δm −
v4

m2
h

δλ þ 2v2δjϕj2 þ 2m2
hδ̃jϕj2

�
p2 − δ̃jϕj2p4

�
; ð22Þ

where we have introduced δ̃jϕj2 , which accounts for the
renormalization of hjφj2jφj2i within our previous consid-
eration, i.e., we had δ̃jϕj2 ¼ ReΣ1l

2 ðm2
hÞ but leave this

renormalization constant unfixed for the moment. From
the unrenormalized result given in Eq. (19), we know that
we obtain UV divergencies of the form cd−4ðd2p4 þ
d1p2 þ d0Þ=ðp2 −m2

hÞ2 at the one-loop order for the
perturbative treatment of the FMS expanded bound state
propagator. The renormalization constants originating from
the split of the bare quantities into renormalized quantities
and counterterms can be regrouped into the same momen-
tum structure, see Eq. (22). Therefore, we could equally
impose renormalization conditions defining our scheme not
in terms of the gauge-dependent Green’s functions hhhi,
hhjφj2i, and hjφj2jφj2i on the right-hand side of the
expansion but on n-point functions of gauge-invariant
physical (composite) fields, e.g., here the bound state
propagator hjϕj2jϕj2i. The latter carry the relevant infor-
mation of the system as they are needed to define physical
processes in a field-theoretical suitable manner. Thus from
a pragmatical point of view, it is sufficient to properly
renormalize the gauge-invariant n-point functions of the
bound states as the elementary fields are anyhow only
auxiliary quantities within our description.5 Taking this
viewpoint, we would like to emphasize some particularities
that appear at least at one-loop order but also discuss the
question how this might extend beyond the one-loop
approximation.

First, imposing renormalization conditions on the bound
state propagator, e.g., via some modified on-shell/complex
mass scheme, we obtain definitions of the finite parts of the
renormalization constants that are gauge-parameter inde-
pendent as any fluctuation induced contribution is gauge-
parameter independent by definition, see Eq. (19). This is in
contrast to the above discussed strategy where we renorm-
alize each (gauge-dependent) term appearing at different
orders of the FMS expansion separately. Equivalently, we
could do this at the level of the gauge-dependent elemen-
tary n-point functions by ignoring finite contributions
that depend on ξ throughout the renormalization process.
As to whether this can be also done for the UV divergencies
arising from these contributions is an interesting but
intricate question. If so, we could completely avoid the
necessity of considering Goldstone, ghost, and unphysical
gauge boson modes and all their corresponding involved
issues in order to extract physical information of a BEH
model, although we still deal with an underlying non-
Abelian gauge structure.
In fact, this strategy can be implemented at the level

of the one-loop approximation but we have to be more
careful at higher orders. In case all diagrams contributing to
elementary n-point functions would only carry divergen-
cies that are expected by power counting, i.e., UV diver-
gencies ∼p0 for all three functions Σ0, Σ1, and Σ2 as well as
a UV divergence ∼p2 for Σ0, the elementary counterterms
would take care of any UV divergence and we could
directly implement this scheme to any loop order. However,
we also observed that some diagrams of the elementary
Higgs propagator have a local divergence ∼p4. This can be
traced back to the presence of massive elementary vector
bosons within the gauge-fixed formulation. Nonetheless,
if we renormalize the n-point functions on the rhs of the
FMS expansion separately, the unusual divergencies origi-
nating from terms ∼p4lBðm2

W=ZÞ were canceled by terms

∼p4lBðξm2
W=ZÞ at the level of the one-loop elementary

Higgs propagator as we work in a renormalizable gauge.
Although the latter terms get canceled by higher-orders of
the FMS expansion to ensure gauge-invariance such that
the UV divergence cancellation ∼p4 of Σ0 is no longer
intact, the fixing of δ̃jϕj2 by putting a renormalization

5Of course, this does not deny the usefulness of the elementary
Higgs, weak gauge bosons, and left-handed fermions which play
a similar role as quarks and gluons within QCD. None of them are
physical observables but appropriate bound states with these
auxiliary fields as constituents are. However, there is a difference
to the strong interaction. Within QCD, it is most convenient to
imposes renormalization conditions at the level of the elementary
fields in order to perform any continuum calculation in a gauge-
fixed setup and the actual bound state formation is an involved
issue. In case of the weak sector, the BEH mechanism provides a
duality relation explained by the FMS framework which links the
elementary fields with the bound states in a completely different
way such that the renormalization constants introduced for the
gauge-dependent fields can straightforwardly be used to fix the
gauge-invariant bound states within suitable gauges.
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condition on Σ2 that contains lBðξm2
W=ZÞ, and a reshuffling

of the terms at the level of the bound state propagator
guarantees UV finiteness.
Also in case we either fully ignore any contribution of

loops that include internal lines of modes with ξ-dependent
mass terms such that we do not obtain a cancela-
tion between the divergencies of p4lBðm2

W=ZÞ and

p4lBðξm2
W=ZÞ or we directly work at the level of the

bound state propagator where the latter terms are not
present, δ̃jϕj2 can be used to take care of the divergencies
coming from the terms ∼p4lBðm2

W=ZÞ at the one-loop level
as can be seen in Eq. (22). However, this will not be the
case at higher orders where we obtain terms of the form
ðp4cd−4Þn=ðp2 −m2

hÞnþ1 while δ̃jϕj2 ¼ δ̃jϕj2ðp2 −m2
hÞnþ1=

ðp2 −m2
hÞnþ1. Such divergencies originate from terms of

the form ðΣ̃1l
0 =ðp2 −m2

hÞÞn where Σ̃1l
0 was defined at the end

of Sec. III. Thus, the highest power of the external
momentum in the numerator for the UV divergence and
the renormalization constant coincides only in the n ¼ 1
loop case.
Nevertheless, one should keep in mind that we consid-

ered so far only a subclass of non-1PI n ≥ 2 loop diagrams
and a plenty of further higher loop diagrams will contribute
as well. It is an interesting question to examine if such
divergencies that are canceled between ξ-dependent and
ξ-independent loops for the two-point function hhhi such
as p4cd−4 can be canceled by the higher-order terms of the
FMS expansion in a strict gauge-parameter invariant setup
and thus making any modes with ξ-dependent mass term
obsolete or if these modes are needed to obtain a renor-
malizable field theory. At the one-loop level this can
obviously be done but a general proof is beyond the scope
of this simple analysis. Even if this is not the case, the FMS
approach allows at least for a ξ-independent definition of
the finite parts of the renormalization constants.6

Second, as the interplay of all terms of the FMS
expansion is responsible for gauge-invariance, the counter-
terms originating from the different orders of the expansion
become related. Thus, we need in fact only three of them
instead of five to render the perturbative one-loop structures
encoded in hjϕj2jϕj2i finite.
Third, the renormalization of the bound-state mass

term shows an interesting behavior that is different from
the renormalization of the mass parameter of the elemen-
tary field, at least at the one-loop level. Analyzing the

counterterm structure ∼p0 in Eq. (22), we observe that it
does not depend on δm. Using a momentum cutoff
regularization instead of dimensional regularization, δm
is responsible for absorbing the quadratic cutoff depend-
ence within the Higgs sector. More precisely, we find the
usual Λ2 dependency for the elementary Higgs self-energy,
i.e.,

Σ1l
0 ¼ −

3Λ2

8π2v2

�
m2

h þm2
Z þ 2m2

W −
X
f

NCfdγ
3

m2
f

�
þ � � � ;

ð23Þ

where � � � denote terms that are∼ lnΛ or∼Λ0. Including the
higher-order terms of the FMS expansion for the bound
state, we find that only δλ, δjϕj2 , and δ̃jϕj2 which are ∼ lnΛ
contribute to the mass term renormalization, indicating
that the renormalization of the bound state mass is only
logarithmically sensitive to the cutoff scale. Indeed, we can
explicitly show that terms quadratic in the UV cutoff get
canceled by the higher-order terms of the FMS expansion
being consistent with the counterterm structure. Going to
the deep Euclidean region by neglecting mass thresholds
and the impact of external momentum, we obtain at next-to-
leading order of the FMS expansion

Σ1l
1 ¼−

3Λ2

16π2vm2
h

�
m2

hþm2
Zþ2m2

W−
X
f

NCfdγ
3

m2
f

�
þ��� :

ð24Þ

Plugging Eqs. (23) and (24) into the one-loop approxima-
tion for the bound state propagator and noting that Σ1l

2 is
only logarithmically divergent, we find that all Λ2 depend-
encies precisely cancel,

v2Σ1l
0 þ 2vð−m2

hÞΣ1l
1 þm4

hΣ1l
2 ¼ OðlnΛÞ: ð25Þ

Thus, the observable Higgs mass where we view the Higgs
actually as the gauge-invariant bound state ϕ†ϕ is not
quadratically sensitive to the scale of new physics at a one-
loop order from an effective field theory viewpoint. This is
obviously different to the usual treatment where all proper-
ties of the Higgs are identified with the gauge-dependent
elementary field whose infrared mass is extremely sensitive
the bare mass parameter. However, accepting the point that
the elementary field is rather a useful mathematical concept
for particular classes of gauges and not an observable
quantity and thus viewing experimental data from the
gauge-invariant bound state viewpoint, it is not surprising
that the mass runs logarithmically. The FMS approach
allows us to treat hjϕj2jϕj2i in a perturbative manner. From
that perspective, we study a four-point function for which
we expect that any divergency ∼p0 goes like lnΛ and the
Λ2 dependence is shifted to the terms ∼p2.

6This extends also to a possible renormalization of the tadpole
contributions. In order to simplify the computational effort, it will
be convenient to force Γ̃ð1;0Þ ¼ 0 as we might anyhow ignore the
ξ-dependent contributions to Γð1;0Þ by the above strategy. Alter-
natively, one may fix δλ or δm to obtain Γð1;0Þ ¼ 0. However, this
automatically implies that one of these renormalization constants
becomes ξ dependent which has to be reabsorbed by another
renormalization parameter, e.g., δjϕj2 or δZ.
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However, whether this behavior will persist beyond our
one-loop approximation requires a full two-loop analysis.
Furthermore note that even if the Λ2 dependence would
cancel to all orders, it is not guaranteed that the hierarchy
problem will be solved in a strict sense. In order to do so,
similar effects have to manifest in all physical quantities
that are related to the electroweak scale which is orders
of magnitude smaller than the Planck scale. Exploring this
direction might lead to new insights. If other physical
observables show similar properties, a rethinking of the
hierarchy problem will be mandatory. Once the classical
scale is set via processes of strict gauge-invariant quantities
in such a scenario, it only receives quantum corrections that
do not alter the scale by several orders of magnitude.

B. Resummation

In order to extract the mass and the width from a simple
pole of the propagator, a proper summation of self-energy
diagrams is required for any elementary field. As the FMS
mechanism allows us to project some of the nonperturba-
tive bound state information on perturbatively accessible
information, an appropriate resummation of certain con-
tributions is required as well. At first glance, one may be
tempted to resum the entire one-loop structure or rather its
finite part stemming from all orders of the FMS expansion
given in Eqs. (22) and (19). This is motivated by the fact
that we obtain the standard form which can be written as

i
p2−m2

h

fðp2Þ
p2−m2

h
where fðp2Þ is the expression in curly brackets

in Eq. (19) plus appropriate renormalization constants.
Thus, one could naïvely conclude that i=ðp2 −m2

h − fÞ is a
proper approximation for the bound state propagator in
analogy to the one-loop resummation of the elementary
propagator. However, one should keep in mind that we have
chosen this particular one-loop structure by hand via
inserting unities of the form 1 ¼ ðp2 −m2

hÞn=ðp2 −m2
hÞn

for reasons of convenience to explicitly show the gauge-
parameter cancelation among the different terms of the
FMS expansion at this particular loop order. Realizing
the different structures of the three different terms,
cf. Eqs. (4), (5), and (7) or their diagrammatic representa-
tion in Fig. 1, it becomes evident that a summation of the
plain one-loop structure of the bound state is not a valid
approximation as we would not treat the operator insertions

in a correct manner. For instance, the terms i
p2−m2

h
ð fðp2Þ
p2−m2

h
Þn

cannot appear at (n ≥ 2)-loop order as exponentiating f
would imply n to 2n composite operator insertions. The
FMS expansion is a finite series in φ=v for the scalar bound
state operator jϕj2 as it contains only a finite amount of
elementary scalar doublets and thus the number of potential
operator insertions is bounded from above by definition,
which is two for the current Higgs bound state operator.
Alternatively, we could use the definitions of Eqs. (4), (5),

and (7), plug them into Eq. (3) and use the approximation

Σi → Σ1l
i . This would account for the jφj2 insertions

properly and leads to a straightforward perturbative treat-
ment of the bound state propagator. It is given by the
resummed elementary propagator in leading order. Slight
modifications due to the higher-order terms of the FMS
expansion account for the more involved internal structure.
Unfortunately, this comes with another grain of salt. Suppose
we perform an n-loop approximation for the three contri-
butions Σ0, Σ1, and Σ2 in the gauge-fixed setup. Then the
resummed bound state propagator is indeed gauge-parameter
independent up to n-loop order, but it will now explicitly
depend on ξ as we do not take (nþ 1)-loop diagrams
appropriately into account. The resummation is simply
flawed by the fact that we consider only a subgroup of
all possible diagrams with loop order nþ 1 or higher. Thus,
the gauge-parameter cancelation mechanism is not at work
at these higher orders and we introduce an artificial gauge
dependence due to our approximation.
To circumvent this technical problem, we propose to only

resum those contributions that are explicitly ξ independent,
i.e., to neglect any loop contributions that include at least one
internal Goldstone, ghost, or longitudinal weak gauge boson
line. This procedure is justified by the fact that the loop
diagrams containing modes with masses ∼

ffiffiffi
ξ

p
m2

W=Z have
to cancel order by order in the perturbative expansion by
construction. More precisely, we simply use the identity

hðϕ†ϕÞðpÞðϕ†ϕÞð−pÞi

¼ i
p2 −m2

h − Σ0

ðv2 þ 2vΣ1Þ þ Σ2;

¼ i

p2 −m2
h − Σ̃0

ðv2 þ 2vΣ̃1Þ þ Σ̃2; ð26Þ

where a function with a tilde Σ̃i is given by Σi minus
ξ-dependent contributions as defined at the end of Sec. III
for the one-loop approximations. Using now approximations
for the functions Σ̃i instead of Σi and plug them into the last
line of Eq. (26), we obtain a ξ-independent resummed bound
state propagator that accounts for jφj2 insertions in the correct
way. Thus, a consistently resummed one-loop approximation
for the bound state propagator reads,7

hðϕ†ϕÞðpÞðϕ†ϕÞð−pÞi

¼ i

p2 −m2
h − Σ̃1l

0

ðv2 þ 2vΣ̃1l
1 þ ðΣ̃1l

1 Þ2Þ þ Σ̃1l
2 : ð27Þ

7We suppress the counterterms for better readability in the
following. We would like to emphasize here that they have to be
treated on the same footing. In case the renormalization constants
are fixed via the gauge-dependent n-point functions, any
ξ-dependent contribution of the finite part has to be neglected
as well. Equivalently, we can choose a scheme that does not
include the ξ-dependent (finite) parts in the fixing procedure, see
the discussion in Sec. VA.
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Here, we have treated the resummation of diagrams contrib-
uting to Σ2 on the same footing as for Σ0 and Σ1; i.e., we
included the sum of any diagram containing an arbitrary
number of one-loop diagrams connected via tree propagators.
This implies that we have Σ̃2 ¼ Σ̃1l

2 þ i
p2−m2

h−Σ̃
1l
0

ðΣ̃1l
1 Þ2 with

Σ̃1l
2 ≡ Γ̃ð0;2Þ1l. Equivalently, one could impose a resummation

scheme that only resums elementary Higgs self-energy
contributions up to a given order and truncate the functions
coming from higher orders of the FMS expansion in the
numerator at the same loop order. Implementing this resum-
mation strategy implies that we would neglect the term
ðΣ̃1l

1 Þ2 in Eq. (27) as we would assign it to the two-loop
approximation.
These two strategies provide a useful treatment of the

bound state propagator that are valid in any renormalization
scheme. For particular schemes, further options are fea-
sible, e.g., within the on-shell or complex mass scheme
where renormalized parameters are identified with meas-
urable quantities. For instance, we could consider a
resummation that treats all terms in the numerator at the
same loop order, i.e.,

i
h
v2 Σ̃1l

0

p2−m2
h
þ 2vΣ̃1l

1 þOðℏ2Þ
i

p2 −m2
h − Σ̃1l

0

þ Σ̃1l
2

¼ i
v2 Σ̃1l

0

p2−m2
h
þ 2vΣ̃1l

1 þ ðp2 −m2
hÞΣ̃1l

2 þOðℏ2Þ
p2 −m2

h − Σ̃1l
0

ð28Þ

at the one-loop level and more sophisticated expressions at
higher loop orders. It is clear that such a strategy can only
be valid in those particular schemes where mh is identified
with the Higgs mass as it would otherwise introduce
additional RG scale dependent fake poles, e.g., within
the MS scheme.
At our current level of approximation, it does not matter

which of the different options we choose as the modifica-
tions are negligible for our present purpose. We have tested
this by comparing the extracted spectral functions of the
different resummation options whose general properties are
discussed below. Nevertheless, depending on the actual
objectives and the requirements on the precision of the
calculation for more sophisticated investigations, some of
the proposed strategies on how to deal with the diagrams
of the higher-order FMS terms might be more useful
than others.8 For the present case, we merely used them
as a nontrivial test to evaluate our one-loop approximation.
The different options only give different results for the
resummed propagator if the self-energy functions Σ̃i are

calculated within a given approximation. In case Σ̃approx:
i →

Σ̃, this seeming ambiguity will vanish and the properly
resummed propagator is uniquely defined.
Before we analyze the physical information encoded in

the resummed bound state propagator, we have to discuss a
further issue. The finite part of Σ̃1l

0 behaves as p4 lnp2 for
large p2. Thus naively summing the one-loop approxima-
tion of the self energy, Σ̃1l

0 =ðp2 −m2
hÞ becomes noncon-

vergent for sufficiently large p2. This problem already
appears at the level of the elementary Higgs propagator,
unless we choose ξ ¼ 1. Due to the interplay of the
different modes, however, jΣ1l

0 =ðp2 −m2
hÞj < 1 over a

sufficiently large range of the external momentum p2 if
the gauge-fixing parameter is sufficiently small. For ξ < 40
this requirement is fulfilled for any energy range accessible
by present and near-future colliders. For the bound state
propagator, we have jΣ̃1l

0 =ðp2 −m2
hÞj < 1 only up to

≈1 TeV. Thus, the naïve resummation of terms ∼ p4 lnp2

p2−m2
h

is only meaningful below this scale.
In order to take this into account, we could either restrict

our study only to this energy range or simply exclude this
particular contribution from the resummation and keep it at
an appropriate loop level.9 The latter option can straight-
forwardly be implemented at the one-loop level if the
on-shell/complex mass scheme is used. In this case, we are
able to use

hðϕ†ϕÞðpÞðϕ†ϕÞð−pÞi ¼ i½v2 þ 2vΣ̃1l
1 þ ðΣ̃1l

1 Þ2�
p2 −m2

h −
ˆ̃Σ1l
0

þ Σ̃1l
2 þ v2

iΣ̃1l
0;p4

ðp2 −m2
hÞ2

; ð29Þ

where Σ̃1l
0;p4¼− p4

2v2½2lBðm2
WÞþlBðm2

ZÞ� and ˆ̃Σ1l
0 ¼Σ̃1l

0 −Σ̃1l
0;p4 .

For any other scheme, we would spoil the calculation by
introducing additional poles. This might be cured by
introducing Heaviside step functions or smooth regulator
functions such that the resummation of the problematic
terms can be switched on and off at appropriate momentum
scales above the pole but below the energy range where
the resummation breaks down. Alternatively, one may
follow the strategy of Ref. [25] where a partial resummation
is proposed. Using the identity p4 ¼ ðp2 −m2

hÞ2 þ
2m2

hp
2 −m4

h, we can split the one-loop contribution
p4 lnðp2Þ=ðp2 −m2

hÞ2 into a pure logarithm, which will
not be resummed and only features the common branch
cuts as well as a remaining term that will be included into

8A word of caution. We have outlined different resummation
strategies which follow from the FMS expansion in a natural way.
Following these strategies in a consistent manner is important to
obtain reliable results as slight deviations from these expansions
can give inadequate convergence properties.

9Technically, one expects similar issues from terms being
∼ p2 lnp2

p2−m2
h
for large p2. On a practical level, however, these terms do

not spoil resummation at any relevant physics scale as they
become Oð1Þ far beyond the Planck scale.
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the resummation. Within our accuracy, we did not find
any significant numerical deviation between this method
and Eq. (29) for the on-shell or complex mass scheme.
Nevertheless, we have to state that the (one-)loop approxi-
mation is not able to capture the external momentum
dependence properly at large energies. In order to gain a
glimpse of the potential behavior slightly above 1 TeV, we
will use Eq. (29). However, we emphasize that improve-
ments are necessary to make a conclusive statement at
TeV scales, e.g., via Padé approximations or resummation
techniques that include large logarithms. As we are mainly
interested in the properties near the pole, where the
summation converges as substantiated by the fact that
the methods of Ref. [25] and Eq. (29) give same results,
and not the high-energy momentum tail of the propagator,
we will use our simple summation in the following.

C. Mass, width, and spectral function

After this preparatory work, we are now able to discuss
the phenomenological consequences of the perturbative
treatment of the Higgs bound state via the FMS formalism.
First of all, we find that the mass of the bound state ϕ†ϕ
is identical to the mass of the elementary Higgs field h
within gauges that allow for a nonvanishing VEV. This is
explicitly demonstrated in terms of a one-loop approxima-
tion, by comparing the pole structure of Eq. (27) with its
elementary counterpart hhhi ¼ i=ðp2 −m2

h − Σ1l
0 Þ. Most

importantly, this feature will also be present at any loop
approximation as can be seen by the general structure of the
FMS expanded but properly loop-order resummed bound
state propagator, see Eq. (26). Within a perturbative treat-
ment, the higher order terms of the FMS expansion do
not alter the mass and width extracted from the position of
the pole which is consistent with the Nielsen identities.
Furthermore, they will also most likely not introduce any
new pole structure that is not already contained within the
elementary propagator.
The latter fact can be made transparent by recognizing

that any diagram of hhjφj2i and hjφj2jφj2i can be converted
into a diagram contributing to hhhi by replacing the
operator insertion via a hφ†φ vertex and an external h
line, see Fig. 4. This has important consequences. It shows
that even if some internal excitation of the bound state exist
due to the complex interplay of the constituents, it cannot
be addressed in a gauge with nonvanishing v unless it is

encoded in the elementary Higgs propagator as all appear-
ing structures are constrained by the FMS expansion. In
general, this argument can also be used for all other SU(2)
gauge-invariant descriptions of standard model particles.
Of course this is not a weakness of the FMS formalism as it
still describes all occurring structures in a gauge-invariant
manner. It is rather that the standard Rξ gauges would not
be able to properly reflect the entire physical information of
the system. They would describe the ground state but
additional information might be missing. Nonetheless,
nonperturbative lattice simulations confirm that at least
within the SU(2)-Higgs subsector the perturbative descrip-
tion seems to capture all relevant information [46,47]. In
particular the one-loop approximation is decent for the
lattice results, see the next Sec. VI.
Although the pole position of the bound state and the

elementary field is identical, we do obtain phenomeno-
logical implications as cross sections get altered due to the
higher-order terms of the FMS expansion. For the sake of
illustration, let us consider the square of the transition
amplitude of 1-to-1 scattering. We have

jMh→hj2 ¼
1

jp2 −m2
h − Σ0j2

; ð30Þ

and

jMϕ†ϕ→ϕ†ϕj2 ¼
1þ 4

vReΣ̃1 þ 4
v2 jΣ̃1j2

jp2 −m2
h − Σ̃0j2

þ jΣ̃2j2

þ 2Re

�
1þ 2

v Σ̃1

p2 −m2
h − Σ̃0

Σ̃2

�
ð31Þ

for the elementary field and the bound state transition,
respectively. Note that we used an appropriate nor-
malization of the bound state propagator, hjϕj2jϕj2i →
1
v2 hjϕj2jϕj2i, which is equivalent to considering the rescaled
operator 1

vϕ
†ϕ, to provide a comparison with the elemen-

tary field transition amplitude.
The transition amplitudes are depicted in the one-loop

approximation for s ¼ p2 in the left panel of Fig. 5. The
black solid curve shows jMjϕj2→jϕj2 j2 while dashed lines
depict jMh→hj2 for ξ ¼ 1 (red), ξ ¼ 10 (blue), ξ ¼ 100
(cyan). For ξ < 1 as well as for the pinch technique
propagator we do not observe any deviation from the
red dashed curve that is visible by eye. In the right panel,
we plotted the ratio of the bound state operator with the
elementary field for different values of the gauge-fixing
parameter. For illustration, we also included ξ ¼ 0.1
(orange) as well as the ratio of the bound state amplitude
and the amplitude obtained from the pinch technique
propagator (purple solid line). In the small external
momentum regime, we find good agreement of all different
functions. At

ffiffiffi
s

p ¼ 125 GeV all transition amplitudes

FIG. 4. Diagrammatic sketch that all diagrams contributing to
next-to-leading and higher orders of the FMS expansion can be
converted into a subgroup of all diagrams that contribute to the
leading order term, i.e., the propagator of the elementary field.
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coincide as they should due to the ξ independence of the
pole of the propagator. However, note that we technically
get a tiny displacement of the location of the maximum of
the peak of the relativistic Breit-Wigner distribution and its
width away from the pole position for the transition
amplitude of the bound state operator. This shift is caused
by the modified structure in the numerator due to the
higher-order contributions of the FMS expansion. On a
practical level, however, we do not obtain an observable
alteration of the peak for standard model parameters.
Away from the narrow peak, we have deviations of

Oð1%Þ for ξ ¼ 1 below the two-Higgs threshold. The
deviation increases with increasing ξ in this momentum
region, e.g., up to 7% at the two-Higgs threshold for
ξ ¼ 100. The transition amplitude computed from the
pinch technique Higgs propagator stays close to the
bound-state transition amplitude below any bosonic thresh-
old and gets ≈2% suppressed at theW and Z thresholds. In
the energy range up to 1 TeV, we obtain an enhancement
of the bound-state transition amplitude compared to
Mh→h. We find that this enhancement first decreases
with increasing ξ at fixed s up to ξ ≈ 17. For larger ξ the
enhancement increases. The result obtained from the
pinch technique is close to the result of the Feynman–t’
Hooft gauge. In the energy region of 600 to 800 GeV,
we observe an enhancement of the transition amplitude of
the bound state Higgs compared to the pinch technique
propagator by a factor of 2.
As the results of the bound state computation shows

deviations from the results conventionally obtained by the
pinch technique, processes that involve an intermediate
Higgs would be a possible test ground to examine the
phenomenological impact of the FMS formulation.
However, note that our current results need further
improvements as we purely considered propagatorlike
diagrams so far but neglected any contributions from vertex

or box diagrams, which are important within the pinch
technique treatment.
Finally, let us consider the spectral function of the bound

state propagator, which is depicted in Fig. 6. The most
important result is the fact that it is non-negative. This is a
basic requirement for a physical interpretation which is not
possible for the spectral function of the elementary field.
For comparison, we also plotted as thin black dashed line
the spectral function from a toy propagator that contains the
ξ-independent Higgs self-energy Σ̃0 but all other effects
coming from the higher-order terms of the FMS expansion
ignored. Comparing the thin black dashed and thick solid

FIG. 5. Left panel: transition amplitude of “1-1 scattering” for the bound state (black solid line) and elementary Higgs (dashed lines).
The red dashed line denotes the elementary transition amplitude for ξ ¼ 1, while the blue line denotes ξ ¼ 10 and the cyan line ξ ¼ 100.
Right panel: ratio of the bound state and elementary field transition amplitude. We also included the results for the pinch technique
propagator (solid purple line) and ξ ¼ 0.1 (orange dashed line). These two lines cannot be distinguished from the red curve in the left
panel by the eye.
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FIG. 6. Spectral density of the elementary Higgs field for
different values of the gauge-fixing parameter ξ and of the bound
state operator ϕ†ϕ (black solid line). We depict the spectral
function for ξ ¼ 1 (red dotted line), ξ ¼ 2 (green dash-dotted
line), and ξ ¼ 10 (blue dashed). The vertical gray dashed lines
indicate the mass thresholds at 2mW, 2mZ, 2mh, and 2mtop from
left to right. Further, we depicted the spectral function obtained
from the bound state propagator but all nontrivial effects from Σ̃1

and Σ̃2 ignored as a black dashed line. The thin black solid line
illustrates the result if we would had included terms ∼p4 lnp2

into the resummation.
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line, we find a relevant enhancement of the spectral
function due to the nontrivial internal properties of the
bound state operator described by the higher-order FMS
terms. The enhancement starts at the two-Higgs threshold.
This is expected as we only obtain in this energy range a
significant alteration of the imaginary part of the propagator
at the one-loop level due to the higher-order terms.
Additionally, we plotted as thin black solid curve the
spectral function extracted from a bound state propagator
where the p4 lnp2 terms of the self-energy Σ̃1l

0 are
resummed as well. This would provide a further enhance-
ment around 1 TeV and above this scale a fast decrease.
Nevertheless, we should not trust the one-loop approxi-
mation in this regime. Higher-order computations are
needed to make a conclusive statement in this energy range.

VI. LATTTICE

So far, we computed the bound state properties purely by
perturbative methods. The fact that this is possible is a
particularity of gauge theories with a BEH mechanism due
to the FMS relation in certain classes of gauges. In the
following, we will test whether a perturbative treatment of
the FMS expansion is able to capture most of the relevant
information of the Higgs particle in the weak coupling
regime or nonperturbative bound state effects might occur
that lead to further phenomenological implications.
In order to examine the validity of the FMS expansion,

we compare our one-loop results with lattice simulations.
Therefore, we switch to Euclidean signature and focus the
analysis to the pure bosonic sector. The latter restriction is
due to the present unavailability of an efficient algorithm
to simulate gauged Weyl fermions. Furthermore, we take
the limit of coinciding W and Z boson masses, i.e., we
investigate a non-Abelian SU(2)-Higgs model as this
theory is extensively studied on the lattice, e.g., see [47–50]
or [9] for a review.
From a conceptual viewpoint it would be most conven-

ient for the sake of comparison to impose renormalization
conditions at vanishing Euclidean momentum for our one-
loop analysis and the lattice data. However, finite volume
effects are usually expected and have to be treated carefully
for lowmomenta within the lattice setup. For the analysis of
the elementary Higgs propagator it was thus chosen to
impose renormalization conditions at jpj ¼ mh such that
the lattice propagator is fixed to the tree-level one at this
scale [15]. As we extend the analysis to the bound state
propagator and examine various parameter sets, we use a
different strategy to avoid potential issues coming from
interpolation and discretization artifacts. For each propa-
gator, we choose the third lowest momentum obtained from
the lattice results under consideration as a reference point.
Then, we use the freedom of the finite parts of the mass and
wave function renormalization constants to impose renorm-
alization conditions such that the lattice propagator coin-
cides with the momentum-space propagator obtained from

the loop expansion at this point. By using this strategy, we
minimize a potential contamination of the intermediate and
large momentum regime from finite volume effects. At the
same time, we avoid a contamination of the low and
intermediate momentum regime from discretization arti-
facts above the lattice cutoff.
In Fig. 7, we compare lattice and analytical one-loop

results for the elementary (blue) and bound state (black)
propagator for different ratios of the scalar and vector
boson mass.10 For all results, we use mW ¼ 80 GeV.
Statistical error bars for the lattice data are suppressed as
they are at most at the one percent level and hardly visible
by eye. The three different plots show the Higgs propagator
for mh ¼ 88 GeV, mh ¼ 123 GeV, and mh ¼ 154 GeV.
Apart from finite volume effects, we obtain decent results
for the elementary propagator. For the two light Higgs
masses, the analytical and lattice results differ byOð1%Þ. In
the large momentum regime, p≳ 1000 GeV, we observe
differences of 5% but this momentum range is already
above the lattice cutoff scale (≈620 GeV for both datasets).
Thus, these differences are likely affected by discretization
artifacts [49,50,53]. At p ¼ 0, we get large differences of
∼25% (mh ¼ 123 GeV) and ∼40% (mh ¼ 88 GeV).
However, on top of the finite-volume artifacts [49] we
used the central values for the masses obtained from a
spectroscopic analysis in the scalar channel which have
similar uncertainties due to finite volume effects, mh ¼
123� 19 GeV and mh ¼ 88� 10 GeV, respectively.
Taking these aspects into account, the p ¼ 0 regime is
within this uncertainty in the mh ¼ 123 GeV case and at
least close to the lower value of the mass interval for
mh ¼ 88 GeV. We obtain a similar picture for the bound
state propagators. We find finite volume effects of Oð10%Þ
at p ¼ 0. At finite Euclidean momentum, but below the
lattice cutoff, we find deviations of a few percent between
the lattice and analytical results. In the large momentum
regime, this deviation increases to 10% (p ∼ 800 GeV) and
25–40% (p ∼ 1–1.2 TeV). Especially for the bound state
propagators, this is likely due to discretization artifacts, as
well as mixing with scattering states [9,50].
For the largest Higgs mass mh ¼ 154� 5 GeV, we

obtain similar results for the elementary propagator as
for the two lighter Higgs masses. At p ¼ 0, we have only a
slight deviation of 2% between the lattice and analytical

10While gauge-fixing on the lattice faces generically the
Gribov-Singer ambiguity, we do not expect that this will affect
the results here. On the one hand, it has been argued that Gribov
copies become quantitatively irrelevant in the BEH case [14],
which is corroborated by the fact that they seem to be essentially
absent in lattice simulations in this case, and even if present, they
do not affect the Higgs propagator measurably [15]. In addition,
even for the gluon, whose propagtor in Yang-Mills theory is
strongly affected by Gribov copies, its analytic properties as
encoded in its Schwinger function are essentially unaffected [51].
This is likely due to the case that Gribov copies live on a very
different length scale than those relevant for dynamics [52].
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results which is compatible with the uncertainty of the
scalar mass due to finite volume effects. In the intermediate
momentum regime, we have deviations of Oð1%Þ but
observe larger deviations of ∼4–10% above the lattice
cutoff at 429 GeV. For the bound state propagator, we
obtain good agreement between both methods sufficiently
below the lattice cutoff. At p≳ 300 GeV, however, we find
larger deviations. This may be caused by several facts. First,
the scalar self-coupling is stronger than in the other two
cases such that a simple one-loop approximation of the FMS
terms might not reflect all relevant bound state information.
Second, the mh ¼ 154 GeV is close to the two-W threshold
at 160 GeV. Thus, we might see stronger mixing effects with
scattering states than in the previous two cases, which alter
the high-momentum tail substantially [50].

VII. SUMMARY AND CONCLUSION

We investigated a strict gauge-invariant definition of the
standard model Higgs boson resonance given by the FMS
framework. Usually the properties of correlation functions
of the elementary Higgs field entering the Lagrangian
are considered to make contact with collider experiments.
The main advantage of this approach is the comparatively
straightforward computation of these quantities with

perturbative methods. However, these correlation functions
depend explicitly on the chosen gauge and the extraction of
gauge-parameter invariant information can be challenging.
By contrast, the main advantage of the FMS approach is
given by the explicitly gauge-invariant formulation of
all Green’s functions such that the extraction of gauge-
invariant physical quantities is (almost) trivial. This prop-
erty is based on the fact that composite local bound state
operators are considered instead of the elementary fields.
The price to be paid for explicit gauge-invariance from the
beginning is a more involved treatment of in principle
nonperturbative objects.
As shown by the original FMS work [10,11], some

properties of the gauge-invariant bound states can be
directly computed from the n-point functions of the
elementary fields if standard gauge-fixing procedures are
used that allow for a nonvanishing vacuum expectation
value of the scalar doublet. In particular, the bound state
operator ϕ†ϕ can be mapped in leading order on the usual
Higgs fluctuation mode h such that the main phenomeno-
logical consequences of both approaches coincide.
For the first time, we go beyond this and address the

impact of the higher order terms of the FMS expansion
for the standard model Higgs in detail. As a main result,

FIG. 7. Comparison between the momentum-space propagator extracted from nonperturbative lattice simulations and the Euclidean
one-loop approximation for different masses mh within an SU(2)-Higgs model. Blue circles and black squares represent lattice results
[49] for the elementary and bound state propagator, respectively. Accordingly, blue dashed lines show the elementary one-loop
propagator while black solid lines show the bound state propagator.
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we were able to show that the pole structure of the
elementary propagator coincides to all orders in the
perturbative expansion with the pole structure of the bound
state propagator which is given by all terms on the right-
hand side of the finite FMS expansion. Thus, the mass and
decay width of the gauge-invariant bound state operator is
indeed well described by its elementary counterpart. This
also gives a coherent picture with respect to the Nielsen
identities which demonstrate the gauge-parameter invari-
ance of the Higgs mass extracted from the elementary
propagator in particular classes of gauges. Albeit the
description of on-shell properties are the same within
our investigations, we identified potential deviations
regarding the Higgs off-shell properties if a virtual bound
state Higgs is created in some process. Considering only
propagatorlike diagrams, we find an enhancement of the
transition amplitude of the bound state Higgs compared
to the pinch technique propagator by a factor of 2 in the
energy range of 600 to 800 GeV. This might be an
interesting starting ground to test the FMS implications
besides other suggestions [50,54,55].
Additionally, the formulation and interpretation of the

Higgs resonance in terms of the FMS bound state operator
has further advantages. From a conceptual point of view,
various field-theoretical issues are circumvented. For in-
stance, no notion of a spontaneously broken electroweak
gauge symmetry is required. Furthermore, the Lehmann-
Källèn spectral density of the elementary Higgs field is
plagued by positivity violations that spoil any physical
interpretation of the elementary Higgs. This problem does
not occur at the bound state level whose spectral density is
gauge invariant, does not possess unphysical thresholds,
and is strictly nonnegative.
Further, we discussed the renormalization of the bound

state propagator in detail. A peculiar situation appeared
with respect to the bound state mass renormalization. In
contrast to the elementary Higgs mass renormalization, the
bound state mass term depends only logarithmically on the
scale of new physics if the standard model is viewed from

an effective field theory point of view. Thus, no fine-tuning
of the scalar mass parameter seems to be required to obtain
a Higgs mass orders of magnitude smaller than the Planck
scale. As to whether this feature extends beyond the one-
loop approximation is an open problem. Interestingly, this
finding is curiously reminiscent of observations made in
lattice simulations of the bosonic sector [9]. However, even
if this might be the case for the standard model Higgs mass,
the hierarchy problem might still manifest itself in other
physical quantities which are related to the electroweak
scale. Nonetheless, further investigations into this direction
might lead to novel insights into the underlying standard
model cutoff scale.
In order to obtain a nontrivial test for the validity of the

perturbative treatment of the FMS expansion, we compared
our one-loop approximations for the elementary Higgs field
propagator as well as for the bound state propagator against
nonperturbative lattice simulations within the weak SU(2)-
Higgs subsector of the standard model. We gained decent
results for Higgs masses sufficiently below the two-W
threshold scale where slight deviations could be traced back
to finite volume or discretization artifacts. In case the Higgs
mass comes close to the two-W threshold, the deviations of
the lattice data and the analytical bound state propagator
increased. This might be caused by the impact of mixing
with scattering states on the lattice or an insufficient
description of the propagator by the one-loop approxima-
tion at large momenta. Nevertheless, in case of a physical
Higgs-to-W mass ratio, we find a good agreement between
lattice and analytical results. Therefore, a perturbative
description of all terms appearing within the FMS expan-
sion seems to be indeed a useful approximation for the
standard model.
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