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In this work, we present the first-ever calculation of the isovector flavor combination of the twist-3
parton distribution function gTðxÞ for the proton from lattice quantum chromodynamics (QCD). We use
an ensemble of gauge configurations with two degenerate light, a strange, and a charm quarks
(Nf ¼ 2þ 1þ 1) of maximally twisted mass fermions with a clover improvement. The lattice has a
spatial extent of 3 fm and lattice spacing of 0.093 fm and reproduces a pion mass of 260 MeV. We use the
quasidistribution approach and employ three values of the proton momentum boost, 0.83, 1.25, and
1.67 GeV. We use a source-sink separation of 1.12 fm to suppress excited-states contamination. The lattice
data are renormalized nonperturbatively. We calculate the matching equation within Large Momentum
Effective Theory, which is applied to the lattice data in order to obtain gT . The final distribution is presented
in the MS scheme at a scale of 2 GeV. We also calculate the helicity distribution g1 to test the Wandzura-
Wilczek approximation for gT. We find that the approximation works well for a broad range of x. This work
demonstrates the feasibility of accessing twist-3 parton distribution functions from novel methods within
lattice QCD and can provide essential insights into the structure of hadrons.
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I. INTRODUCTION

More than 99% of the mass of the visible world resides in
atomic nuclei and, therefore, in nucleons, that is, protons
and neutrons. Nucleons, in turn, are complicated bound
states of quarks and gluons (partons), which are the
fundamental degrees of freedom of QCD, the microscopic
theory of the strong interaction. Trying to understand the
rich parton structure of nucleons has been among the most
important and active research areas in hadronic physics for
several decades.
The first experimental evidence of a partonic substruc-

ture of the proton emerged from measurements of deep-
inelastic electron-proton scattering (DIS), ep → eX, in the
late 1960s [1,2]. These experiments were, in fact, instru-
mental for the discovery of QCD. The DIS cross section
can be parametrized in terms of four terms (structure
functions)—two for unpolarized initial-state electron and
proton and two if both are polarized, where the latter are

often denoted by gs:f:1 and gs:f:2 [3]. QCD factorization
theorems allow one to separate the structure functions into
a perturbatively calculable part and a nonperturbative part
that contains information about the parton structure of the
proton [4]. The nonperturbative contribution is given by
parton distribution functions (PDFs), which are, therefore,
fundamental quantities characterizing the parton structure
of the proton [5].
PDFs can be classified according to their twist, which

describes the order in 1=Q at which they appear in the
factorization of the structure functions, with Q denoting
the large energy scale of the process. (For DIS, Q is the
momentum transfer between the initial and final elec-
trons.) The leading-power PDFs appearing in the factori-
zation are labeled twist-2 PDFs. They can be considered
probability densities for finding, inside the proton, a
parton which carries the fraction x of the proton momen-
tum. Twist-3 PDFs are very important as well. They are
not necessarily smaller than twist-2 PDFs. While they do
not have a density interpretation, twist-3 PDFs contain
information about quark-gluon-quark correlations [6,7]
and, as such, characterize the structure of hadrons in a new
way. They appear in QCD factorization theorems for a
variety of hard scattering processes and have interesting
connections with transverse momentum dependent parton
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distributions, thus offering essential insights into the
latter; see, e.g., Refs. [3,8,9].
In this work, we present the first-ever calculation of the

twist-3 PDF gTðxÞ using lattice QCD. This PDF enters the
aforementioned structure functions gs:f:1 and gs:f:2 . Therefore,
our calculation is a crucial step forward to fully understand
the DIS process from first principles in QCD. It also
complements efforts to extract information about gT from
experiment [10,11]. Generally, measurements related to
twist-3 PDFs are part of the ongoing 12 GeV program at
Jefferson Laboratory and will be important for the planned
Electron-Ion Collider [12,13]. However, measuring twist-3
PDFs is difficult due to their (suppressed) Oð1=QÞ kin-
ematical behavior.
Specifically, we discuss the calculation of the isovector

flavor combination gu−dT ðxÞ. (For ease of notation, we omit
the superscript u − d in the remainder of this paper.) We
make use of the so-called quasi-PDF approach suggested
by Ji [14,15]. While standard (light-cone) PDFs are
defined through light-cone correlation functions, quasi-
PDFs and related quantities [16–18] are given by spatial
correlation functions accessible in lattice QCD, which
gave rise to an intensive surge of studies; see, e.g.,
Refs. [19–50] and the recent reviews in Refs. [51–53].
Because quasi-PDFs and light-cone PDFs have the same
infrared (nonperturbative) physics [18,54–56], they can be
related using perturbative QCD, in a procedure called
matching; see Refs. [34,38,57–60] for related recent work.
The matching equations are known only for twist-2
operators, and within this work, we address the one-loop
matching kernel for gT.
Our calculation also allows us to address the validity of

the Wandzura-Wilczek (WW) approximation for gTðxÞ
[61]. The Mellin moments (x-moments) of gTðxÞ receive
contributions from twist-2 operators and twist-3 operators
(whose moments we denote by dn). Therefore, gTðxÞ can be
written as gWW

T ðxÞ þ gtwist−3T ðxÞ, with gtwist−3T ðxÞ the con-
tribution from twist-3 operators [9]. In the WW approxi-
mation, one sets dn ¼ 0, implying that gTðxÞ is fully
determined by the twist-2 operators which define twist-2
helicity PDF g1ðxÞ. Thus, the study of the WW approxi-
mation gives direct information about the importance of
twist-3 operators. Here, we present the first check in lattice
QCD of how relevant the twist-3 operators are for the
x-dependence of gTðxÞ.

II. METHODOLOGY

The calculation is based on matrix elements of a nonlocal
operator, with spacelike separated fermion fields, which are
connected via a straight Wilson line (WL) of length z. The
operator has a Dirac structure γjγ5, and the matrix element
is defined in position (z) space as

MgT ðP; zÞ ¼ hPjψ̄ð0; zÞγjγ5WðzÞψð0; 0ÞjPi: ð1Þ

The proton is boosted in a spatial direction, and the
quasidistributions approach requires that it is in the same
direction as the WL, i.e., P ¼ ðiE; 0; 0; P3Þ. To obtain the
twist-3 distribution, γj must be γx or γy, each requiring a
parity projector ð1þ γ0Þiγ5γj=4. In this work, we average
over the two operators to increase the statistical accuracy.
For the proper evaluation of gT , one must extract the

ground-state contribution from MgT . This is achieved by a
large time separation between the initial (source) and final
(sink) state of the proton, Tsink, as well as by a current
insertion that is away from the source and the sink. Once
these conditions are satisfied, we identify the ground state
using a fit to a constant (plateau region). The desired
quantity, FgT , is extracted based on the continuum decom-
position,

FgT ðP3; zÞ ¼ −i
E
m
ZgT ðzÞMgT ðP3; zÞ; ð2Þ

in Euclidean space. The kinematic factor is obtained based
on the normalization conventions on the lattice. E is the
proton’s energy, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

3

p
, m is its mass, and ZgT is

the renormalization function, and it is also calculated in
this work.
The so-called quasidistribution, g̃T , is defined as the

Fourier transform of FgT ðP3; zÞ over z. It is, thus, given in
the momentum representation, x,

g̃Tðx;Λ; P3Þ ¼ 2P3

Z þ∞

−∞

dz
4π

e−ixP3zFgT ðP3; zÞ; ð3Þ

where Λ ∼ 1=a is a UV cutoff. Our definition of g̃T is such
that its lowest x-moment is independent of P3; see also
Ref. [62]. As the momentum P3 increases, the quasidis-
tribution g̃T can be matched to the light-cone distribution
gT using a perturbative formula obtained within Large
Momentum Effective Theory [14,15].

III. COMPUTATIONAL SETUP

In this work, we use one Nf ¼ 2þ 1þ 1 ensemble of
twisted mass fermions [63,64] with clover improvement
[65] and Iwasaki gluons [66]. The lattice spacing is
0.093 fm, its volume is 323 × 64 (L ≈ 3 fm), and the pion
mass is around 260 MeV.
We focus on the isovector combination, which receives

contributions only from the connected diagram. Tsink is
taken to be above 1 fm (Tsink ¼ 1.12 fm), for which
excited-states contamination is assumed to be suppressed
for the values of P3 we employ [38]. We apply stout
smearing [67] to the links of the operator, which is known
to reduce statistical uncertainties in matrix elements of
nonlocal [38] and gluonic [68,69] operators.
In this work, MgT is calculated for three values of

momentum boost, P3 ¼ 0.83, 1.25, 1.67 GeV. The stat-
istical uncertainties increase with the momentum, and
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therefore the number of measurements must increase by
around one order of magnitude with each additional
momentum unit to achieve similar statistical errors. We
use the momentum smearing method [70] on the proton
interpolating field, which offers a better overlap of the
interpolator and the ground state. The momentum smearing
parameter has been tuned following the procedure described
in Ref. [38] and leads to a significant reduction of statistical
uncertainties. We achieve similar accuracy for each boost
with 1552, 11696, and 105216 measurements at P3 ¼ 0.83,
1.25, and 1.67 GeV, respectively. Using the same ensemble,
simulation parameters, and statistics, we also obtain the
leading-twist helicity PDF, g1ðxÞ. More details on the lattice
calculation can be found in the supplemental material [71].
The dependence of the bare FgT on P3 at each z=a value is
shown and discussed in Fig. S2.

IV. RENORMALIZATION

One of the crucial aspects of the calculation is the
renormalization of the bare matrix elements. Nonlocal
operators containing a WL require an evolved renormaliza-
tion procedure, in contrast to the local fermion operators.
The presence of the WL is associated with a power
divergence with respect to the lattice spacing [72,73].
Such divergencemust be removed alongwith all logarithmic
divergences so that physical meaning can be attributed to
lattice data. Considering that this is the first study of twist-3
distributions and that the main focus is on the extraction of
the matrix elements, we do not take into account anymixing
with other twist-3 operators (e.g., with quark-gluon-quark
operators). It is expected that the only nonlocal UV
divergence in the quasidistributions is the power divergence
due to the presence of the Wilson line. This has been
discussed and confirmed for the case between the quark
singlet and gluon PDFs [34,74]. Consequently, the quasi-
counterpart of gT does not mix with quark-gluon-quark
nonlocal operators. Such a mixing manifests itself in the
matching formalism. It is useful to consider that the effects
due to mixing are often small (less than 10%), and, in many
cases, within the reported uncertainties. Such cases are, for
example, the mixing in the singlet quark and gluon
momentum fractions [69], but also in a more complicated
mixing pattern involving multiparton operators [75]. Of
course, much more work is needed to pin down the
numerical significance of the mixing nature in the present
case. However, based on the above and on the overall size of
matching effects (see below), there is an indication that the
mixing is within the reported precision of the final results.
We employ the renormalization procedure developed for

straight-WL nonlocal operators [24,76] and is also used for
twist-2 distributions (see, e.g., Ref. [38]). We calculate
nonperturbatively the renormalization functions in the
regularization independent (RI0) scheme [77] at each value
of z=a separately. We use a set of five Nf ¼ 4 ensembles
[78] produced specifically for the renormalization functions

of the ensemble used in this work. The renormalization
procedure is outlined in the supplemental material [71]. We
eliminate possible systematic uncertainties in the renorm-
alization functions by an advanced program, in which we i)
perform a chiral extrapolation on the five ensembles, ii) use
a wide range of RI0 renormalization scales and fit the MS
estimates to eliminate any dependence on the initial scale,
and iii) remove discretization effects utilizing results in
lattice perturbation theory [79]. The renormalization factors
are complex functions due to the presence of the WL, and
thus the renormalized matrix elements are obtained from

the complex multiplication ZMS
gT ðzÞ ·MgT ðP; zÞ. The renor-

malized matrix elements are given in the modified MS
scheme (MMS) [38] at the scale of 2 GeV.

V. RECONSTRUCTION OF x-DEPENDENCE

The lattice calculation provides determinations of
FgT ðP3; zÞ for discrete values of z≤zmax, with zmax∼L=2.
Thus, Eq. (3) needs to be discretized and becomes subject
to an ill-defined inverse problem, as discussed in Ref. [33].
One of the methods advocated to solve this problem is the
Backus-Gilbert method [80], which maximizes the stability
of the solution with respect to the statistical variation of the
data. Thus, it provides a model-independent assumption
allowing one to obtain a unique reconstructed quasidis-
tribution from the available set of matrix element evalua-
tions. We employ the Backus-Gilbert method for the results
presented here.

VI. MATCHING TO LIGHT-CONE gTðxÞ
Another novel aspect of this work is the calculation of

gTðx; μÞ ¼
Z

∞

−∞

dξ
jξjC

�
ξ;

μ

xP3

�
g̃T

�
x
ξ
; μ; P3

�
; ð4Þ

which connects g̃TðxÞ to the light-cone gTðxÞ. C is the
matching kernel, which is calculated within one-loop
perturbation theory in momentum space. Matching for
twist-3 distributions has never been addressed in the
literature. We present here the first matching formula for
the twist-3 PDF gT. We repeat that Eq. (4) does not take into
account mixing with quark-gluon-quark operators, which
would change the general structure of the equation. We
explore two schemes for the matching, which use the same
bare matrix elements, but the renormalization functions are

converted to different schemes. The first one usesZMS,while
the second one uses the so-called modified MS scheme,

ZMMS. The latter preserves the normalization, unlike theMS
scheme, through an extra renormalization in the “unphys-
ical” jξj > 1 region. More details on the perturbative
calculation for the matching kernel can be found in a
separate publication [81]. For the results presented here,
we employ the MMS scheme for the quasidistributions, for
which C takes the form
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CMMS

�
ξ;

μ

xP3

�
¼ δðξ − 1Þ − αs

2π
CF

8>>>>>>>>><
>>>>>>>>>:

�
ξ2 − 2ξ − 1

1 − ξ
ln
ξ − 1

ξ
þ ξ

1 − ξ
þ 3

2ξ

�
þ

ξ > 1;

�
−ξ2 þ 2ξþ 1

1 − ξ

�
ln
4ðxP3Þ2

μ2
þ lnðξð1 − ξÞÞ

�
þ ξ2 − ξ − 1

1 − ξ

�
þ

0 < ξ < 1;

�
−ξ2 þ 2ξþ 1

1 − ξ
ln
ξ − 1

ξ
−

ξ

1 − ξ
þ 3

2ð1 − ξÞ
�
þ

ξ < 0. ð5Þ

The numerical effect of the above matching is found to
be of similar magnitude as for twist-2 PDFs (see, e.g.,
Fig. 31 of Ref. [38]). Note that the light-cone gTðxÞ results
are always in the MS scheme, regardless of the scheme
used for g̃TðxÞ. In deriving the matching coefficient, we did
not consider potential mixing with quark-gluon-quark
operators.

VII. RESULTS ON gTðxÞ
The various steps described above are combined to

provide the final estimates for the twist-3 distribution
gTðxÞ. The renormalized ground-state contributions to
the matrix elements, FgT , are transformed to x-space using
the Backus-Gilbert method and then matched using Eq. (4).
In Fig. 1, we plot the dependence of gTðxÞ on the proton
momentum P3 for the quark (x > 0), and antiquark (x < 0)
regions. With red, green, and blue bands, we show the
distributions for P3 ¼ 0.83, 1.25, and 1.67 GeV, respec-
tively. The width of each band represents the uncertainties.
We consider statistical errors and systematic effects due to
the x-dependence reconstruction. To account for this, we
add an uncertainty, which is computed by varying the
maximum value of z entering the reconstruction. The final
error is chosen based on the quasi-PDFs’ maximum
variation using 25 combinations of the z interval. This
procedure is applied for both gT and g1. Statistical and

systematic uncertainties are added in quadrature, and these
combined errors are used for all the results presented here.
Note that neglecting the mixing mentioned above with
quark-gluon-quark correlators also gives rise to systematic
uncertainties in all our numerical results for gT. At present,
we do not expect this point to alter any of our general
conclusions. We find that the distribution in the region
x < 0.4 becomes slightly more narrow as the momentum
increases, but within the included systematic uncertainties.
Besides, we find convergence between the two largest
momenta for all regions of x. Regarding antiquarks, we
observe similar functional forms for these momenta.
Since gT is a subleading contribution, it is interesting to

compare it with the leading-twist PDF. To this end, we
calculate the twist-2 helicity PDF g1ðxÞ on the same
ensemble and using the same values for P3 and Tsink. In
Fig. 2, we show the results for the highest momentum,
P3 ¼ 1.67 GeV. One observes that g1 and gT mostly differ
in the positive-x region. While g1 has a smaller value than
gT in the low-x region, it has a much smaller slope at
x ≈ 0.1–0.3. As a consequence, it becomes dominant in the
region 0.2≲ x≲ 0.5. The two distributions are in agree-
ment in the antiquark region within uncertainties and the
large positive x region. We note that the quasidistributions
do not have the canonical support, while the distribution
after the matching is found to vanish outside of the physical
region.

-1 -0.5 0 0.5 1
-2

0

2

4

6

8

10

12

FIG. 1. Results for gTðxÞ as a function of x for three nucleon
momenta. P3 ¼ 0.83, 1.25, and 1.67 GeV are shown with red,
green, and blue bands, respectively.
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FIG. 2. Comparison of x-dependence of gT (blue band) and g1
(orange band) at P3 ¼ 1.67 GeV.
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The light-cone PDFs gT and g1 (and the corresponding
quasi-PDFs) are connected via the Burkhardt-Cottingham
sum rule [82],

Z
1

−1
dxg1ðxÞ −

Z
1

−1
dxgTðxÞ ¼ 0; ð6Þ

which serves as an important check for the lattice data.
We find, without any additional input, that Eq. (6) gives
0.01(20) and therefore the sum rule is satisfied. This check
also suggests that effects due to operator mixing could be
relatively small.

VIII. WANDZURA-WILCZEK
APPROXIMATION

The lattice data of this work for gT and g1 may be used to
test the WW approximation [61]. For the first time, we
present a check of the full x-dependence of the WW
approximation in lattice QCD. As already discussed above,
in this approximation, the twist-3 gTðxÞ is fully determined
by the twist-2 g1ðxÞ (and denoted by gWW

T ),

gWW
T ðxÞ ¼

Z
1

x

dy
y
g1ðyÞ: ð7Þ

We evaluate gWW
T using the lattice data for a wide range

of x. The resulting x-dependence can be compared to the
data for gTðxÞ, as shown in Fig. 3 for P3 ¼ 1.67 GeV.
A similar study for all momenta shows compatibility of
gWW
T in all x regions for all momenta (see Fig. S3 of the
supplemental material [71]). The focus is on the quark
region (x > 0), which is less susceptible to systematic
uncertainties, as compared to the antiquark region. We find
that for a considerable x-range, our numerical results for

gTðxÞ are consistent with gWW
T ðxÞ. However, given the

uncertainties of the final distributions, a violation of the
WW approximation is still possible at the level of up to
40% for x≲ 0.4. Interestingly, a check of the WW
approximation based on experimental data leads to a
similar possible violation at the level of 15%–40%,
depending on x [9]. It is also notable to mention that,
while the slopes of gT and g1 differ (see Fig. 2), the slopes
of gT and gWW

T are the same up to x ≈ 0.4. It should be
noted that the distribution functions in the small-x region
(x≲ 0.1) cannot be extracted reliably from the current
lattice parameters due to enhanced higher-twist effects.
The same holds for the large-x region. For more details,
see Ref. [51]. The difference of gT and gWW

T for large x
could be due to systematic uncertainties, yet to be
investigated. However, it may also indicate larger viola-
tions of the WW approximation in this region.
As an additional consistency check, we calculate the rhs

of Eq. (7) using g1 from global fits by the NNPDF [83] and
JAM [84] collaborations. We find good agreement with
lattice-extracted gWW

T up to x ≈ 0.3. Above this x value, the
discrepancy again indicates possible systematic effects.

IX. SUMMARY AND PROSPECTS

We presented a pioneering ab initio calculation of the
proton twist-3 distribution gTðxÞ, using numerical simu-
lations of lattice QCD, within the quasidistribution method.
The work comprised multiple nontrivial steps, i.e., calcu-
lation of matrix elements of fast-moving protons and
nonlocal operators in position space, elimination of diver-
gences, reconstruction of the x-dependence, as well as
matching to the light-cone distribution. For the quasidis-
tribution reconstruction, we used the Backus-Gilbert
method, which improves the results by providing a unique
solution to the inverse problem. Another novel result of this
work is the calculation of a matching kernel for the case of
gT . Details on the extraction of the matching formula can be
found in Ref. [81].
The light-cone gT was obtained for three values of the

momentum boost, P3 ¼ 0.83, 1.25, 1.67 GeV, and is
presented in Fig. 1. We found that gT decays much faster
than the leading-twist g1, as shown in Fig. 2. A critical
aspect of this work is the implementation of the
Wandzura-Wilczek approximation, using both lattice data
and data from global fits. We find gT consistent with its
WW approximation for x≲ 0.4, but within uncertainties,
one cannot exclude its violation at the level of up to 40%,
which is consistent with earlier studies based on exper-
imental data. A possibly larger violation is conceivable at
larger x according to our results. Nevertheless, careful
investigation of systematic uncertainties is needed for
more precise quantitative statements, particularly at
high x. The role of systematics in this region is confirmed
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FIG. 3. Comparison of our gTðxÞ (blue band) with its WW
approximations: lattice-extracted gWW

T (red band) and calculated
from global fits (NNPDF1.1pol [83], orange band, and JAM17
[84], purple band). The proton momentum is P3 ¼ 1.67 GeV.
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by our consistency check comparing lattice-extracted gWW
T

with the ones from global fits, where agreement is
observed for x≲ 0.3.
We are considering several directions to extend this

calculation. Detailed investigations are required to quantify
systematic uncertainties, such as excited-states contamina-
tion, reconstruction of x-dependence, finite volume, and
discretization effects. The latter two require a minimum of
two and three ensembles, respectively. Also, simulations
with quark masses fixed to their physical values (physical
point) are now feasible within the available computational
resources. We will move in that direction once systematic
uncertainties for twist-3 distributions are understood.
Operator mixing must be studied as well, which requires
a new level of analytical and numerical work.
Finally, the possible breaking of the WW approximation

at large x signals a sizeable contribution from the dn terms.
The connection between lattice estimates and results from
experiments and phenomenology is more immediate for
these quantities because of recent measurements (see, e.g.,
Ref. [10]) of d2. The latter has a semiclassical interpretation
of the average transverse force acting on the struck quark in
a transversely polarized proton in DIS, right after it has
been hit by the virtual photon [85]. Our work generally
shows that the calculation of the poorly known twist-3
PDFs of the proton within lattice QCD is within reach. We
anticipate that the present study will stimulate further
investigations in that area.

ACKNOWLEDGMENTS

M. C. would like to thank Matthias Burkardt for useful
discussions. The work of S. B. and A. M. has been
supported by the National Science Foundation under
Grant No. PHY-1812359. A. M. has also been supported
by the U.S. Department of Energy, Office of Science,
Office of Nuclear Physics, within the framework of the
TMD Topical Collaboration. K. C. and A. S. are supported
by the National Science Centre (Poland) grant SONATA
BIS, Grant No. 2016/22/E/ST2/00013. F. S. was funded by
DFG Project No. 392578569. M. C. acknowledges finan-
cial support by the U.S. Department of Energy, Office of
Nuclear Physics, Early Career Award under Grant No. DE-
SC0020405. Computations for this work were carried out
in part on facilities of the USQCD Collaboration, which
are funded by the Office of Science of the U.S. Department
of Energy. This research was supported in part by PLGrid
Infrastructure (Prometheus supercomputer at AGH
Cyfronet in Cracow). Computations were also partially
performed at the Poznan Supercomputing and Networking
Center (Eagle supercomputer), the Interdisciplinary Centre
for Mathematical and Computational Modelling of the
Warsaw University (Okeanos supercomputer), and at the
Academic Computer Centre in Gdańsk (Tryton supercom-
puter). The gauge configurations have been generated by
the Extended Twisted Mass Collaboration on the KNL (A2)
Partition of Marconi at CINECA, through Prace Project
No. Pra13_3304 “SIMPHYS.”

[1] E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969).
[2] M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D.

Bloom, D. Coward, H. DeStaebler, J. Drees, L. W. Mo, and
R. E. Taylor, Phys. Rev. Lett. 23, 935 (1969).

[3] R. L. Jaffe, in The Spin Structure of the Nucleon (1995)
(1996), pp. 42–129.

[4] J. C. Collins, D. E. Soper, and G. F. Sterman, Factorization
of Hard Processes in QCD (World Scientific, 1989), Vol. 5,
pp. 1–91.

[5] J. C. Collins and D. E. Soper, Nucl. Phys. B194, 445 (1982).
[6] I. Balitsky and V. M. Braun, Nucl. Phys. B311, 541 (1989).
[7] K. Kanazawa, Y. Koike, A. Metz, D. Pitonyak, and

M. Schlegel, Phys. Rev. D 93, 054024 (2016).
[8] J. Cammarota, L. Gamberg, Z.-B. Kang, J. A. Miller, D.

Pitonyak, A. Prokudin, T. C. Rogers, and N. Sato, Phys.
Rev. D 102, 054002 (2020).

[9] A. Accardi, A. Bacchetta, W.Melnitchouk, and M. Schlegel,
J. High Energy Phys. 11 (2009) 093.

[10] D. Flay et al. (Jefferson Lab Hall A Collaboration), Phys.
Rev. D 94, 052003 (2016).

[11] W. Armstrong et al. (SANE Collaboration), Phys. Rev. Lett.
122, 022002 (2019).

[12] D. Boer et al., arXiv:1108.1713.

[13] A. Accardi et al., Eur. Phys. J. A 52, 268 (2016).
[14] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).
[15] X. Ji, Sci. Chin. Phys. Mech. Astron. 57, 1407 (2014).
[16] V. Braun and D. Mueller, Eur. Phys. J. C 55, 349 (2008).
[17] A. V. Radyushkin, Phys. Rev. D 96, 034025 (2017).
[18] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. Lett. 120, 022003

(2018).
[19] H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys. Rev. D

91, 054510 (2015).
[20] C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos, K.

Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese, Phys.
Rev. D 92, 014502 (2015).

[21] J.-W. Chen, S. D. Cohen, X. Ji, H.-W. Lin, and J.-H. Zhang,
Nucl. Phys. B911, 246 (2016).

[22] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, F. Steffens, and C. Wiese,
Phys. Rev. D 96, 014513 (2017).

[23] A. J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. E. L.
Rakow, G. Schierholz, A. Schiller, K. Somfleth, R. D. Young,
and J.M. Zanotti, Phys. Rev. Lett. 118, 242001 (2017).

[24] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, H. Panagopoulos, and F.
Steffens, Nucl. Phys. B923, 394 (2017).

SHOHINI BHATTACHARYA et al. PHYS. REV. D 102, 111501 (2020)

111501-6

https://doi.org/10.1103/PhysRevLett.23.930
https://doi.org/10.1103/PhysRevLett.23.935
https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1016/0550-3213(89)90168-5
https://doi.org/10.1103/PhysRevD.93.054024
https://doi.org/10.1103/PhysRevD.102.054002
https://doi.org/10.1103/PhysRevD.102.054002
https://doi.org/10.1088/1126-6708/2009/11/093
https://doi.org/10.1103/PhysRevD.94.052003
https://doi.org/10.1103/PhysRevD.94.052003
https://doi.org/10.1103/PhysRevLett.122.022002
https://doi.org/10.1103/PhysRevLett.122.022002
https://arXiv.org/abs/1108.1713
https://doi.org/10.1140/epja/i2016-16268-9
https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1007/s11433-014-5492-3
https://doi.org/10.1140/epjc/s10052-008-0608-4
https://doi.org/10.1103/PhysRevD.96.034025
https://doi.org/10.1103/PhysRevLett.120.022003
https://doi.org/10.1103/PhysRevLett.120.022003
https://doi.org/10.1103/PhysRevD.91.054510
https://doi.org/10.1103/PhysRevD.91.054510
https://doi.org/10.1103/PhysRevD.92.014502
https://doi.org/10.1103/PhysRevD.92.014502
https://doi.org/10.1016/j.nuclphysb.2016.07.033
https://doi.org/10.1103/PhysRevD.96.014513
https://doi.org/10.1103/PhysRevLett.118.242001
https://doi.org/10.1016/j.nuclphysb.2017.08.012


[25] K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos,
Phys. Rev. D 96, 094503 (2017).

[26] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu, and S. Yoshida, Phys.
Rev. D 96, 094019 (2017).

[27] X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Rev. Lett. 120,
112001 (2018).

[28] A. Radyushkin, Phys. Rev. D 98, 014019 (2018).
[29] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A.

Scapellato, and F. Steffens, Phys. Rev. Lett. 121, 112001
(2018).

[30] J.-H. Zhang, J.-W. Chen, L. Jin, H.-W. Lin, A. Schfer, and Y.
Zhao, Phys. Rev. D 100, 034505 (2019).

[31] C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,
A. Scapellato, and F. Steffens, Phys. Rev. D 98, 091503
(2018).

[32] Y.-S. Liu et al. (Lattice Parton), Phys. Rev. D 101, 034020
(2020).

[33] J. Karpie, K. Orginos, and S. Zafeiropoulos, J. High Energy
Phys. 11 (2018) 178.

[34] J.-H. Zhang, X. Ji, A. Schfer, W. Wang, and S. Zhao, Phys.
Rev. Lett. 122, 142001 (2019).

[35] Z.-Y. Li, Y.-Q. Ma, and J.-W. Qiu, Phys. Rev. Lett. 122,
062002 (2019).

[36] R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W.
Qiu, and D. G. Richards, Phys. Rev. D 99, 074507
(2019).

[37] J. Karpie, K. Orginos, A. Rothkopf, and S. Zafeiropoulos, J.
High Energy Phys. 04 (2019) 057.

[38] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens,
Phys. Rev. D 99, 114504 (2019).

[39] T. Izubuchi, L. Jin, C. Kallidonis, N. Karthik, S. Mukherjee,
P. Petreczky, C. Shugert, and S. Syritsyn, Phys. Rev. D 100,
034516 (2019).

[40] K. Cichy, L. Del Debbio, and T. Giani, J. High Energy Phys.
10 (2019) 137.

[41] B. Joo, J. Karpie, K. Orginos, A. Radyushkin, D. Richards,
and S. Zafeiropoulos, J. High Energy Phys. 12 (2019)
081.

[42] A. V. Radyushkin, Phys. Rev. D 100, 116011 (2019).
[43] B. Joo, J. Karpie, K. Orginos, A. V. Radyushkin, D. G.

Richards, R. S. Sufian, and S. Zafeiropoulos, Phys. Rev. D
100, 114512 (2019).

[44] C. Alexandrou, K. Cichy, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, A. Scapellato, and F. Steffens,
Proc. Sci., LATTICE2019 (2019) 036 [arXiv:1910.13229].

[45] Y. Chai et al., Phys. Rev. D 102, 014508 (2020).
[46] X. Ji, Nucl. Phys. B960, 115181 (2020).
[47] V. M. Braun, K. G. Chetyrkin, and B. A. Kniehl, J. High

Energy Phys. 07 (2020) 161.
[48] M. Bhat, K. Cichy, M. Constantinou, and A. Scapellato,

arXiv:2005.02102.
[49] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K.

Jansen, and F. Manigrasso, arXiv:2009.13061.
[50] J. Bringewatt, N. Sato, W. Melnitchouk, J.-W. Qiu, F.

Steffens, and M. Constantinou, arXiv:2010.00548.
[51] K. Cichy and M. Constantinou, Adv. High Energy Phys.

2019, 3036904 (2019).

[52] X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, arXiv:
2004.03543.

[53] M. Constantinou, arXiv:2010.02445.
[54] X. Xiong, X. Ji, J.-H. Zhang, and Y. Zhao, Phys. Rev. D 90,

014051 (2014).
[55] Y.-Q. Ma and J.-W. Qiu, Phys. Rev. D 98, 074021

(2018).
[56] R. A. Briceño, M. T. Hansen, and C. J. Monahan, Phys. Rev.

D 96, 014502 (2017).
[57] I. W. Stewart and Y. Zhao, Phys. Rev. D 97, 054512

(2018).
[58] T. Izubuchi, X. Ji, L. Jin, I. W. Stewart, and Y. Zhao, Phys.

Rev. D 98, 056004 (2018).
[59] W. Wang, J.-H. Zhang, S. Zhao, and R. Zhu, Phys. Rev. D

100, 074509 (2019).
[60] I. Balitsky, W. Morris, and A. Radyushkin, Phys. Lett. B

808, 135621 (2020).
[61] S. Wandzura and F. Wilczek, Phys. Lett. 72B, 195

(1977).
[62] S. Bhattacharya, C. Cocuzza, and A. Metz, Phys. Rev. D

102, 054021 (2020).
[63] R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz (Alpha

Collaboration), J. High Energy Phys. 08 (2001) 058.
[64] R. Frezzotti and G. C. Rossi, J. High Energy Phys. 08

(2004) 007.
[65] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572

(1985).
[66] C. Alexandrou et al., Phys. Rev. D 98, 054518 (2018).
[67] C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501

(2004).
[68] C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K.

Jansen, H. Panagopoulos, and C. Wiese, Phys. Rev. D 96,
054503 (2017).

[69] C. Alexandrou, S. Bacchio, M. Constantinou, J.
Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou,
H. Panagopoulos, and G. Spanoudes, Phys. Rev. D 101,
094513 (2020).

[70] G. S. Bali, B. Lang, B. U. Musch, and A. Schfer, Phys. Rev.
D 93, 094515 (2016).

[71] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.102.111501 for a descrip-
tion of the methodology, technical aspects and additional
figures.

[72] V. S. Dotsenko and S. N. Vergeles, Nucl. Phys. B169, 527
(1980).

[73] R. A. Brandt, F. Neri, and M.-a. Sato, Phys. Rev. D 24, 879
(1981).

[74] W. Wang, S. Zhao, and R. Zhu, Eur. Phys. J. C 78, 147
(2018).

[75] M. Constantinou, M. Costa, R. Frezzotti, V. Lubicz, G.
Martinelli, D. Meloni, H. Panagopoulos, and S. Simula (ETM
Collaboration), Phys. Rev. D 97, 074501 (2018).

[76] M. Constantinou and H. Panagopoulos, Phys. Rev. D 96,
054506 (2017).

[77] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A.
Vladikas, Nucl. Phys. B445, 81 (1995).

[78] C. Alexandrou et al., Phys. Rev. D 101, 034519
(2020).

INSIGHTS ON PROTON STRUCTURE FROM LATTICE QCD: … PHYS. REV. D 102, 111501 (2020)

111501-7

https://doi.org/10.1103/PhysRevD.96.094503
https://doi.org/10.1103/PhysRevD.96.094019
https://doi.org/10.1103/PhysRevD.96.094019
https://doi.org/10.1103/PhysRevLett.120.112001
https://doi.org/10.1103/PhysRevLett.120.112001
https://doi.org/10.1103/PhysRevD.98.014019
https://doi.org/10.1103/PhysRevLett.121.112001
https://doi.org/10.1103/PhysRevLett.121.112001
https://doi.org/10.1103/PhysRevD.100.034505
https://doi.org/10.1103/PhysRevD.98.091503
https://doi.org/10.1103/PhysRevD.98.091503
https://doi.org/10.1103/PhysRevD.101.034020
https://doi.org/10.1103/PhysRevD.101.034020
https://doi.org/10.1007/JHEP11(2018)178
https://doi.org/10.1007/JHEP11(2018)178
https://doi.org/10.1103/PhysRevLett.122.142001
https://doi.org/10.1103/PhysRevLett.122.142001
https://doi.org/10.1103/PhysRevLett.122.062002
https://doi.org/10.1103/PhysRevLett.122.062002
https://doi.org/10.1103/PhysRevD.99.074507
https://doi.org/10.1103/PhysRevD.99.074507
https://doi.org/10.1007/JHEP04(2019)057
https://doi.org/10.1007/JHEP04(2019)057
https://doi.org/10.1103/PhysRevD.99.114504
https://doi.org/10.1103/PhysRevD.100.034516
https://doi.org/10.1103/PhysRevD.100.034516
https://doi.org/10.1007/JHEP10(2019)137
https://doi.org/10.1007/JHEP10(2019)137
https://doi.org/10.1007/JHEP12(2019)081
https://doi.org/10.1007/JHEP12(2019)081
https://doi.org/10.1103/PhysRevD.100.116011
https://doi.org/10.1103/PhysRevD.100.114512
https://doi.org/10.1103/PhysRevD.100.114512
https://arXiv.org/abs/1910.13229
https://doi.org/10.1103/PhysRevD.102.014508
https://doi.org/10.1016/j.nuclphysb.2020.115181
https://doi.org/10.1007/JHEP07(2020)161
https://doi.org/10.1007/JHEP07(2020)161
https://arXiv.org/abs/2005.02102
https://arXiv.org/abs/2009.13061
https://arXiv.org/abs/2010.00548
https://doi.org/10.1155/2019/3036904
https://doi.org/10.1155/2019/3036904
https://arXiv.org/abs/2004.03543
https://arXiv.org/abs/2004.03543
https://arXiv.org/abs/2010.02445
https://doi.org/10.1103/PhysRevD.90.014051
https://doi.org/10.1103/PhysRevD.90.014051
https://doi.org/10.1103/PhysRevD.98.074021
https://doi.org/10.1103/PhysRevD.98.074021
https://doi.org/10.1103/PhysRevD.96.014502
https://doi.org/10.1103/PhysRevD.96.014502
https://doi.org/10.1103/PhysRevD.97.054512
https://doi.org/10.1103/PhysRevD.97.054512
https://doi.org/10.1103/PhysRevD.98.056004
https://doi.org/10.1103/PhysRevD.98.056004
https://doi.org/10.1103/PhysRevD.100.074509
https://doi.org/10.1103/PhysRevD.100.074509
https://doi.org/10.1016/j.physletb.2020.135621
https://doi.org/10.1016/j.physletb.2020.135621
https://doi.org/10.1016/0370-2693(77)90700-6
https://doi.org/10.1016/0370-2693(77)90700-6
https://doi.org/10.1103/PhysRevD.102.054021
https://doi.org/10.1103/PhysRevD.102.054021
https://doi.org/10.1088/1126-6708/2001/08/058
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1088/1126-6708/2004/08/007
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1103/PhysRevD.98.054518
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.96.054503
https://doi.org/10.1103/PhysRevD.96.054503
https://doi.org/10.1103/PhysRevD.101.094513
https://doi.org/10.1103/PhysRevD.101.094513
https://doi.org/10.1103/PhysRevD.93.094515
https://doi.org/10.1103/PhysRevD.93.094515
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
http://link.aps.org/supplemental/10.1103/PhysRevD.102.111501
https://doi.org/10.1016/0550-3213(80)90103-0
https://doi.org/10.1016/0550-3213(80)90103-0
https://doi.org/10.1103/PhysRevD.24.879
https://doi.org/10.1103/PhysRevD.24.879
https://doi.org/10.1140/epjc/s10052-018-5617-3
https://doi.org/10.1140/epjc/s10052-018-5617-3
https://doi.org/10.1103/PhysRevD.97.074501
https://doi.org/10.1103/PhysRevD.96.054506
https://doi.org/10.1103/PhysRevD.96.054506
https://doi.org/10.1016/0550-3213(95)00126-D
https://doi.org/10.1103/PhysRevD.101.034519
https://doi.org/10.1103/PhysRevD.101.034519


[79] C. Alexandrou, M. Constantinou, and H. Panagopoulos
(ETM Collaboration), Phys. Rev. D 95, 034505 (2017).

[80] G. Backus and F. Gilbert, Geophys. J. Int. 16, 169
(1968).

[81] S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A.
Scapellato, and F. Steffens, Phys. Rev. D 102, 034005
(2020).

[82] H. Burkhardt and W. N. Cottingham, Ann. Phys. (N.Y.) 56,
453 (1970).

[83] E. R. Nocera, R. D. Ball, S. Forte, G. Ridolfi, and J. Rojo
(NNPDF Collaboration), Nucl. Phys. B887, 276 (2014).

[84] J. J. Ethier, N. Sato, and W. Melnitchouk, Phys. Rev. Lett.
119, 132001 (2017).

[85] M. Burkardt, Phys. Rev. D 88, 114502 (2013).

SHOHINI BHATTACHARYA et al. PHYS. REV. D 102, 111501 (2020)

111501-8

https://doi.org/10.1103/PhysRevD.95.034505
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1103/PhysRevD.102.034005
https://doi.org/10.1103/PhysRevD.102.034005
https://doi.org/10.1016/0003-4916(70)90025-4
https://doi.org/10.1016/0003-4916(70)90025-4
https://doi.org/10.1016/j.nuclphysb.2014.08.008
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevD.88.114502

