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In the present study, we comment on Brans-Dicke scalar field cosmological model in Lyra’s geometry
[Maurya and Zia, Phys. Rev. D 100, 023503 (2019)]. In this comment, we investigate that there is no
acceleration in themodel proposed by the authors of Phys. Rev.D 100, 023503 (2019). Therefore, despite the
claims to the contrary the Brans-Dicke scalar field cosmological model in Lyra’s geometry with high Brans-
Dicke (BD) coupling parameter ω and constant β cannot produce late time acceleration in the universe.
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I. INTRODUCTION

Today, the general theory of relativity (GR) is credited
the most successful theory to describe the late time
acceleration with inclusion of some type of exotic/dark
energy in Einstein’s field equation. In 1915, Einstein
formulated GR and tried to give a satisfactory description
to Mach’s principle. But soon he realized that his theory
does not follow Mach’s principle. In the last century, some
theories of gravitation had been postulated to follow
Mach’s principle. In 1961, Brans and Dicke [1] had
proposed a scalar-tensor relativistic theory of gravitation
in which Mach’s principle is validated. With validation of
Mach’s principle, the proposed Brans-Dicke theory also
describes the inflation era but it requires extra dark matter
candidates to explain the galactic velocity profiles [2]. The
concept of geometrizing gravitation in the form of GR gives
a clue to researchers to think about the geometrizing
electromagnetic field also. Weyl [3] had proposed a
geometrized theory of electromagnetism and gravitation
which is based the on nonintegrability of length transfer. In
1951, Lyra [4] had proposed geometrized theory without
nonintegrability condition. In subsequent investigations,
several authors [5–8] have constructed cosmological model
in the framework of Lyra’s geometry. It is shown from these
investigations that the scalar-tensor treatment based on
Lyra’s geometry predicts the same effects, as GR, under
observational limits.

II. THEORETICAL MODEL AND
BASIC EQUATIONS

The Bianchi I space-time is read as [9]

ds2 ¼ −c2dt2 þ A2dx2 þ B2dy2 þ C2dz2 ð1Þ

where A, B, and C are directional scale factors and they are
functions of t only. In Ref. [9], c2 is missing from Eq. (16)
but appeared in subsequent equations.
The Einstein’s Brans-Dicke field equations in Lyra’s

manifold is read [9] as
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where Gij, ψ i, ω, and ϕ are Einstein’s curvature tensor,
displacement vector field of Lyra’s geometry, Brans-Dicke
coupling constant and scalar field respectively. Also
the timelike constant displacement vector is read as
ψ i ¼ ðβ; 0; 0; 0Þ. In Eq. (2), Tij denotes the energy-momen-
tum tensor of perfect fluid.
As given in Ref. [9], the gravitational field equations for

Bianchi I space-time are read as

_A _B
AB

þ
_B _C
BC

þ
_A _C
AC

−
3

4
β2¼8πρ

ϕc2
−
ω

2

_ϕ2

ϕ2
þ

_ϕ

ϕ

�
_A
A
þ

_B
B
þ

_C
C

�
ð4Þ

B̈
B
þ C̈
C
þ

_B _C
BC

þ3

4
β2¼−

8πp
ϕc2

þω

2

_ϕ2

ϕ2
þ

_ϕ

ϕ

�
_B
B
þ

_C
C

�
þ ϕ̈

ϕ
ð5Þ

Ä
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Note that Eqs. (4)–(8) are same as the Eqs. (17)–(20) in
Maurya and Zia [9]. It is worthwhile to note that the field
equations (17)–(20) in Maurya and Zia [9] are wrong (see
Refs. [1,10–13]). The correct field equations are as follows.
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Accordingly Eqs. (27)–(30) are not correct in Refs. [9]. The
procedure of solving the above equations is
described below:
Subtracting Eqs. (10) from (11), (11) from (12), and (12)

from (10), we obtain the following system of equations
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The Eqs. (13)–(15) are the system of three equations with
four unknown variables A, B, C, and ϕ. So, one cannot
solve these equations in general. To obtain the explicit
solution of above equations, we have to assume the
following relation among the directional scale factors as

B ¼ AD & C ¼ A
D

ð16Þ

where D ¼ DðtÞ measures the anisotropy in the universe.
Equations (14) and (16) lead to
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After the integration of equation (19), we obtain
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Now, the average scale factor is computed as

a3 ¼ ABC ¼ A3 ⇒ a ¼ A ð19Þ

In light of Eq. (16), Eqs. (9) and (10) take the following
form
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where _D
D ¼ k

A3ϕ
with k as the arbitrary constant.

The deceleration parameter q and Hubble’s parameter H
are defined as
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Differentiating Eq. (23), we obtain
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Now, deceleration parameter in terms of H is given by

q ¼ −1 −
_H
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: ð25Þ
Also, we define the matter energy density parameter Ωm,
anisotropy parameter Ωσ, β parameter Ωβ, and qϕ as [9]
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Using Eqs. (23)–(26) and after some algebra, Eqs. (20),
(21), and (8) lead to
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where Ψ ¼ _ϕ
ϕH.
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Solving Eqs. (27), (28) and (29), we obtain

q ¼ 2þ Ψ −
3½ð1 − γÞωþ 1�

2ωþ 3
Ωm ð30Þ

Also, it is easy to find that the main equations of the model
in standard BD cosmology by introducing two effective
parameters as

ρeff ¼ ρþ 3ϕc2
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peff ¼ pþ 3ϕc2
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Thus, Eqs. (20) and (21) are recast as
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For analysis of model, it is convenient to consider the
effective equation of state parameter ðωeffÞ as

ωeff ¼
peff

ρeff
¼ pþ 3ϕc2

32π β2

ρþ 3ϕc2

32π β2
:

In absence of matter, i.e., ρ ¼ p ¼ 0, the effective equation
of state parameter is equal to ωeff ¼ þ1. That is why the
displacement vector cannot play the role of a cosmological
constant in Brans-Dicke theory for which ωeff ¼ −1 is
required. It is worthwhile to note that in Ref. [9], ωeff ≠ −1.

III. DISCUSSION

It is well known that for accelerating cosmological
model q < 0. In the derived model, the fluid under

consideration is a perfect fluid therefore p ≥ 0. Also Ψ ¼
_ϕ

ϕH is positive.
Thus, from Eq. (30), for accelerating cosmological

model, we have
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From Eq. (33), we conclude that in the derived model
acceleration is only possible when 3½ð1−γÞωþ1�

2ωþ3
Ωm > 2

because 2þ Ψ is always greater than 2. The plot of

numerically computed values of 3½ð1−γÞωþ1�
2ωþ3

Ωm versus 0 ≤
γ < 1=3 for some particular values of ω is shown in Fig. 1.
We choose γ in the range 0 ≤ γ < 1=3 for numerical result
and analysis of model because the authors of Ref. [9] have
taken this range of γ in describing the late acceleration of
the universe. We observe that for ω ¼ 49590, the derived
model does not validate Eq. (33) because the value of
3½ð1−γÞωþ1�

2ωþ3
Ωm is less than 2 (see Fig. 1). From the numerical

result plotted in Fig. 1, we also observe that for small
negative values of BD coupling parameter (i. e. ω ¼ −1.55
and ω ¼ −1.60) the late time acceleration is possible in the
derived model. Therefore, in spite of mathematical errors in
Maurya and Zia [9], the late time acceleration is not
possible with large BD coupling parameter (ω ¼ 49590).
This result is in favor of investigations presented in
Refs. [12,14]. Recently Akarsu et al. [15] have investigated
some particular negative range of ω that lead acceleration in
massive Brans-Dicke gravity. The variation of Ψ versus q
and 0 ≤ γ < 1=3 forω ¼ 49590 and ω ¼ −1.55 is depicted
in Fig. 2. Since _ϕ > 0 therefore Ψ ¼ _ϕ

ϕH is always greater

FIG. 1. The plot of 3ð1−γÞðωþ1Þ
2ωþ3

versus γ for different numerical
values of ω.

FIG. 2. The plot of Ψ versus γ and q for ω ¼ 49590 and
ω ¼ −1.55.

COMMENT ON “BRANS-DICKE SCALAR FIELD … PHYS. REV. D 102, 108301 (2020)

108301-3



than zero in Brans-Dicke theory of gravitation (see
Ref. [10]). From Fig. 2, we observe that for ω ¼ 49590,
in Maurya and Zia [9], positive Ψ and negative q do not
exist simultaneously while ω ¼ −1.55 validates this
condition.
Therefore, in the derived model, the late time acceler-

ation is produced due to amalgamation of BD theory with
small negative BD coupling parameter (adverse of the
author’s finding in Ref. [9]). In the literature, BD theory is
invoked to fulfill the requirement of Mach’s principle
[1,10,16–18]. In Sen and Sen [12], the authors have
investigated that a perfect fluid cannot support acceleration
but a fluid with dissipative pressure can drive late time
acceleration of the current universe. The present cosmic
acceleration without resorting to a cosmological constant or
quintessence matter have been investigated in BD theory
but then Brans-Dicke coupling constant asymptotically
acquires a small negative value for an accelerating universe
at late time [14] while in Ref. [19], the authors have
obtained solution for accelerating universe with ϕ2 poten-
tial for large BD coupling constant without considering
positive energy condition for matter and scalar field both. In
the targeted paper [9], the authors have not clearly argued
that the late time acceleration is due to scalar field. They
focused on gauge function of Lyra’s geometry and hypo-
thetically assumed that β ¼ constant behaves like cosmo-
logical constant Λ. Further they argued that it may be a
suitable candidate of dark energy and removes the cosmo-
logical constant problems while the investigations in Lyra’s
geometry clearly established the fact that time varying
displacement vector βðtÞ have the similar nature as ΛðtÞ,
i.e., βðtÞ and ΛðtÞ both are decreasing functions of time
[20]. It is important to note that this decreasing behavior of
βðtÞ with time does not contribute late time acceleration in
the universe [21]. But in Maurya and Zia [9], it is
conveniently assumed that constant β play the role of
cosmological constant and leads the late time acceleration
of the universe without giving concrete mathematical
expression or exact physical reason behind it.
The continuity equation in Lyra’s geometry is read as

χ _ρþ 3

2
β _β þ 3

�
χðρþ pÞ þ 3

2
β2
�
H ¼ 0 ð34Þ

where χ ¼ 8π
c4 .

The Eq. (22) of the targeted paper is entirely different
from Eq. (34) of this comment. It seems that the authors

have assumed only the general relativity case in energy
conservation law. For β ¼ constant, Eq. (34) is given by

χ _ρþ 3

�
χðρþ pÞ þ 3

2
β2
�
H ¼ 0: ð35Þ

Thus, the energy conservation law given in Ref. [9] is not
correct in the context of Lyra’s geometry which in turn
implies that the matter energy density as given in Eq. (53)
of thetargeted paper, may have different expression. In
addition, we observe that for constant displacement vector,
i.e., β ¼ constant, there is a constant contribution to
Eqs. (4)–(7). Therefore, despite the claims to the contrary
made by the authors, the model cannot be consistent with
observations. Some important applications of Lyra’s geom-
etry with the time varying displacement vector are given in
the Refs. [21–26].

IV. CONCLUSION

In this comment, we have shown that the field equations
derived in Ref. [9], are not contributing late time accel-
eration with constant β and large ω but late time accel-
eration in the model may be the feature of universe due to
Brans-Dicke scalar field that have smal negative value of ω.
However, the actual physics of such acceleration with large
BD coupling constant is not elaborated in Maurya and Zia
[9]. It is convenient to assume β ¼ constant but this
constant displacement vector does not contribute the late
time acceleration of the universe with large ω. We have also
corrected the field equations and subsequent equations
which were wrong in Maurya and Zia [9]. It is worthwhile
to note that we neither avoid the coexistence of BD scalar
field with Lyra’s geometry nor decline the similarities
between time varying displacement vector βðtÞ and ΛðtÞ
as both ΛðtÞ and βðtÞ are decreasing functions of time. As a
final comment, we note that in spite of the good possibility
of scalar field cosmological model in Lyra’s geometry to
provide a theoretical foundation for relativistic cosmology,
the experimental point is yet to be considered and still the
theory needs a fair trial.
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