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We develop an effective framework for the μ̄ scheme of holonomy corrections motivated by loop
quantum gravity for vacuum spherically symmetric space-times. This is done by imposing the areal gauge
in the classical theory and then expressing the remaining components of the Ashtekar-Barbero connection
in the Hamiltonian constraint in terms of holonomies of physical length lPl. The stationary solutions to
the effective Hamiltonian constraint can be found exactly, and we give the explicit form of the effective
metric in Painlevé-Gullstrand coordinates. This solution has the correct classical limit, the quantum gravity
corrections decay rapidly at large distances, and curvature scalars are bounded by the Planck scale,
independently of the black hole mass M. In addition, the solution is valid for radii x ≥ xmin ∼ ðl2

PlMÞ1=3
indicating the need for a matter field, with an energy density bounded by the Planck scale, to provide
a source for the curvature in the space-time. Finally, for M ≫ mPl, the space-time has an outer and also
an inner horizon, within which the expansion for outgoing radial null geodesics becomes positive again.
On the other hand, for sufficiently small M ∼mPl, there are no horizons at all in the effective metric.

DOI: 10.1103/PhysRevD.102.106024

I. INTRODUCTION

It is widely expected that the singularity at the center of a
black hole, predicted by classical general relativity, signals
the breakdown of the classical theory and indicates the need
to include quantum gravity effects. In addition, the black
hole information loss problem further underlines the
importance of understanding the role of quantum gravity
effects in black hole space-times, with modifications to the
causal structure of the quantum-corrected space-time being
especially relevant.
One approach to explore how quantum gravity could

affect black hole space-times is by modifying the metric of
the Schwarzschild space-time, often by hand, to provide
concrete examples of nonsingular space-times [1–11], that
can then be classed according to their geometry [12,13].
However, in principle, the best would be to start from a
specific theory of quantum gravity, to determine the states
that correspond to spherically symmetric space-times, and
to extract physical predictions from these states. While this
so far remains an outstanding challenge for all candidate
theories of quantum gravity, it is nonetheless possible to
include certain effects—predicted by particular theories—
and study their impact on black hole space-times. There has
been considerable work in this direction in a number of

quantum gravity theories (see, e.g., [14–16]), and in
particular in loop quantum gravity (LQG), a background-
independent and nonperturbative theory of quantum
gravity [17–19].
The work in LQG has built on earlier research that

studied LQG effects in cosmological space-times following
the loop quantum cosmology (LQC) procedure: first, the
symmetries of the space-time of interest are imposed at
the classical level, and second, the symmetry-reduced
classical theory is quantized using LQGmethods—notably,
the fundamental operators are holonomies of the connec-
tion and areas. For a review on LQC, see, e.g., [20];
this same procedure has since been applied to black hole
space-times as well.
There has been a considerable focus on the

Schwarzschild interior, using the isometry between the
interior and the Kantowski-Sachs space-time to more easily
import techniques from LQC [21–23]. Despite this effort,
as shall be discussed in Sec. II in more detail, it has turned
out to be difficult to handle holonomy corrections properly
in this framework. To ensure that the edges along which
the holonomies are evaluated have a physical length ∼lPl,
it is necessary to relate the physical length to a coordinate
length by the metric; this is called the “μ̄ scheme.”
However, it is not clear how to properly take into account
the μ̄ scheme near the horizon when using a set of
coordinates where a spatial coordinate becomes null at
the horizon and the physical length along that coordinate
tends to 0, as is the case for the Schwarzschild interior in
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Kantowski-Sachs coordinates [23]. There exist various
proposals in the literature to address this difficulty [24–35],
but here we suggest instead that the μ̄ scheme simply
cannot be implemented in terms of a particular set of
(spatial) coordinates if one of these coordinates becomes
null, e.g., at a horizon.
There has also been significant work studying the

dynamics of the full space-time—interior and exterior
together—with LQG-inspired corrections, whether holon-
omy effects [36–42] or inverse triad effects [43–47], and
there has also been some more recent work in this setting
where it has been shown how to implement the μ̄ scheme
[48,49], which raises the hope that by considering the
whole space-time at once it may be possible to avoid the
difficulties that arise when considering the Schwarzschild
interior only.
In this paper, we will further study the μ̄ scheme for

holonomy corrections in vacuum spherically symmetric
space-times and also extend earlier results in a manner so
that the extension to include matter fields will be quite
direct; in particular, it is straightforward to include pressur-
eless dust [50]. For previous work on including matter in
spherically symmetric space-times (although not in the μ̄
scheme), see [41,51–54].
By including matter, it is possible to study how quantum

gravity effects may arise during black hole collapse
and how they could modify the resulting space-time.
LQG effects on black hole collapse have previously been
explored in a number of settings [55–64], and extending
these studies to include the μ̄ treatment of the holonomies in
a way that provides a general framework that determines
the dynamics for both the interior and exterior regions will
set the stage for more detailed investigations into the role
of quantum gravity effects on gravitational collapse.
In particular, one possibility that has been suggested is

that when the energy density of the matter composing the
collapsing star reaches the Planck scale, quantum gravity
effects could generate a nonsingular transition to a slowly
expanding white hole solution [65–68], with potential
observational implications [69–71]. It turns out that this
general picture is explicitly realized in this framework
when a pressureless dust field is coupled to gravity; for
details, see [50].
We begin the paper with a general discussion on

holonomy corrections and some specific comments on
the difficulties that arise in black hole space-times in
Sec. II, then present the classical Hamiltonian framework
and impose the areal gauge in Sec. III, and finally construct
the effective theory with LQG holonomy corrections and
study its solutions in Sec. IV. Although the effective theory
is obtained by following a different path, the results are in
perfect agreement with [49], showing the robustness of the
results. We end with a discussion in Sec. V.
Our conventions are the following: space-time indices

are denoted by μ; ν; ρ; σ;…; spatial indices are denoted by

a; b; c;…; and internal indices are denoted by i; j; k;…We
use units where c ¼ 1, but leave G and ℏ explicit to clarify
the interplay of gravitational and quantum effects.

II. HOLONOMY CORRECTIONS

To develop an effective framework for vacuum spheri-
cally symmetric black holes following the standard LQC
procedure, it is necessary to incorporate holonomy correc-
tions in an appropriate fashion. In this section, we will
briefly review the main steps, offer an explanation on why
it has been found to be difficult to properly implement the μ̄
scheme for holonomy corrections in the Schwarzschild
interior, and explain the procedure we will follow in this
paper to avoid these difficulties.

A. Holonomies

The holonomy of the Ashtekar-Barbero connection
Aa ¼ Ai

aτi along a path l is given by

hlðAÞ ¼ P exp

�Z
l
Aa

�
; ð2:1Þ

where P denotes path-ordering, while the τi are a basis of
the suð2Þ Lie algebra. There are two points here that are
important to understand for what follows.
First, the connection is usually expressed in terms of

some coordinates, in which case the length of the edge as
calculated in terms of these coordinates will necessarily
be a coordinate length Lc. So, to calculate the holonomy
along a path that has a specific physical length Lp, it will be
necessary to use the space-time metric gμν to relate the
coordinate and physical lengths to calculate the required
coordinate length Lc.
Second, the path-ordered exponential of an integral is

defined by a series of nested integrals which, in general, are
typically difficult to evaluate. In the simple case when the
connection is independent of a particular coordinate, then
the path-ordering trivializes for holonomies in that direc-
tion and (2.1) can be evaluated much more directly. This is
relevant for spherically symmetric space-times: holonomies
in the radial direction will be difficult to evaluate, while
holonomies along paths where only the angular coordinates
vary will be much easier to calculate.

B. Black holes and the near-horizon region

In LQC, the holonomies are taken along paths of
physical length

ffiffiffiffi
Δ

p
, where the area gap Δ is the minimum

nonzero area eigenvalue in LQG [72]. As explained in the
first point above, it is necessary to use the metric to relate
this physical length to a coordinate length, and the result
of doing this gives what is called the μ̄ scheme. If the
coordinate and physical lengths are not related properly,
it is well known in cosmological space-times that the
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resulting theory is not physically viable and does not have a
good classical limit [20].
To avoid the difficulty of evaluating holonomies in the

inhomogeneous radial direction (as described in the second
point above), it is possible to consider the Schwarzschild
interior only, whose geometry can be expressed in terms of
the Kantowski-Sachs cosmological metric

ds2¼−
�
RS

T
−1

�
−1
dT2þ

�
RS

T
−1

�
dR2þ t2dΩ2; ð2:2Þ

where RS ¼ 2GM is the Schwarzschild radius, dΩ2 ¼
dθ2 þ sin2 θdϕ2, and T is the radial coordinate that
becomes timelike inside the horizon; this coordinate system
is valid for T ∈ ½0; RSÞ.
For this choice of coordinates, the metric (and the

connection) is independent of any spatial coordinate, and
therefore holonomies in all spatial directions can be
evaluated rather directly [21,22]. Despite this advantage,
close to the horizon it is difficult to relate the coordinate
length of a radial path in the R direction with the physical
length—as required by the μ̄ scheme—because R becomes
null at the horizon and ds → 0. Requiring that the physical
length nonetheless be finite leads to unacceptably large
quantum gravity effects near the horizon [23].
Due to this problem, several alternate forms of holonomy

corrections have been proposed [28,30,32,33], but what
this discussion suggests is that the problem lies in the
choice of coordinates that become null and that, to avoid
these issues, it is necessary to use coordinates where there
is a clean separation between timelike and spacelike
coordinates everywhere in the space-time.
As an aside, note also that the isometry between the

Schwarzschild interior and the Kantowski-Sachs space-
time depends on the dynamics of the space-time and is
not guaranteed to hold once quantum gravity effects are
included. Among other possibilities, if there is an inner
horizon in the LQG-corrected space-time, then the
Kantowski-Sachs metric could not describe the innermost
region of the black hole lying within the inner horizon.
For an example of a modified gravity theory where
Kantowski-Sachs is not isometric to the Schwarzschild
interior, see [73].
Therefore, in the following, we will only consider

choices of coordinates where the spatial coordinates always
remain spacelike, whether inside the horizon or out; the
Painlevé-Gullstrand coordinates are one such example that
we will use here. The results in this paper can be adapted to
several different coordinate choices, but the coordinates
should always have the property that the spatial coordinates
remain spacelike everywhere. Then, we will follow the
general prescription for the μ̄ scheme that was first laid
out in [23], except here we will use coordinates that are
everywhere spacelike.

This approach has also been considered in some previous
works [48,49]. In this case, when considering coordinate
choices such that the radial coordinate is always spacelike,
the challenge is to either evaluate holonomies in the radial
direction (a difficult problem, in general) or to find a viable
way to avoid doing so. In the first work [48], the holonomies
in the radial direction were evaluated in a “pointwise”
fashion; this is an approximation where the path-ordering
is dropped. However, the constraints of the resulting theory
did not close, showing that this approximation is not viable.
More recently, this problem was reconsidered using an
Abelianized version of the constraints (see [42]) in which
case only holonomies in the angular directions are needed to
construct the Hamiltonian constraint operator [49]; this
resulting theory is well defined.
Here we will consider a complementary approach, where

we will fix a gauge in the classical theory before introducing
holonomy corrections, instead of using the Abelianized set
of constraints as in [42,49]. Although the procedure that is
followed here is slightly different, the end result is the same.
Specifically, wewill gauge fix the diffeomorphism constraint
by imposing the areal gauge (which imposes that the
prefactor to dΩ2 in the metric be x2, with x the radial
coordinate). This is a very simple gauge choice, which can
always be chosen in spherical symmetry no matter the
gravitational dynamics. The areal gauge also has the addi-
tional property that the gauge-fixed Hamiltonian constraint
only depends on the angular components of the Ashtekar-
Barbero connection: as a result, the only holonomies that
need to be evaluated are holonomies along paths that lie
on spheres of constant radius—this avoids the difficulty of
needing to evaluate holonomies in the radial direction and
makes it possible to include holonomy corrections in a rather
straightforward manner. In Sec. III, we will go through this
gauge-fixing procedure in detail, before continuing to the
effective theory with LQG holonomy corrections in Sec. IV.

III. CLASSICAL THEORY

The metric of any spherically symmetric space-time can
be expressed in the form

ds2 ¼ −N2dt2 þ f2ðdxþ NxdtÞ2 þ g2dΩ2; ð3:1Þ

where the lapse Nðx; tÞ, shift vector Nxðx; tÞ, and the
functions fðx; tÞ; gðx; tÞ all depend on time t and the radial
coordinate x, while dΩ2 ¼ dθ2 þ sin2 θdϕ2. Note that we
denote the radial coordinate by x, since it is not necessarily
equal to the area radial coordinate r that satisfies
Ar ¼ 4πr2, with Ar being the surface area of the sphere
at radius r.

A. Basic variables

The spatial metric qab can be rewritten in terms of the
cotriads

EFFECTIVE LOOP QUANTUM GRAVITY FRAMEWORK FOR … PHYS. REV. D 102, 106024 (2020)

106024-3



e1x¼fðx;tÞ; e2θ¼ gðx;tÞ; e3ϕ¼gðx;tÞsinθ; ð3:2Þ

with qab ¼ eiae
j
bδij. The densitized triads are then given by

Ea
i ¼

ffiffiffi
q

p
eai , with the triads eai satisfying eiaebi ¼ δba and

eiaeaj ¼ δij, so

Ex
1 ¼ g2 sin θ ¼ Ea sin θ; Eθ

2 ¼ fg sin θ ¼ Eb sin θ;

Eϕ
3 ¼ fg ¼ Eb; ð3:3Þ

with Eaðx; tÞ and Ebðx; tÞ capturing the degrees of freedom
of the densitized triads. The metric can now be rewritten as

ds2 ¼ −N2dt2 þ ðEbÞ2
Ea ðdxþ NxdtÞ2 þ EadΩ2: ð3:4Þ

The Ashtekar-Barbero connection Ai
a ¼ Γi

a þ γKi
a is

the conjugate variable to the densitized triad, with the
spin-connection given by

Γi
a ¼

1

2
ϵijkebkð∂be

j
a − ∂ae

j
b þ ecjeam∂bemc Þ; ð3:5Þ

while the extrinsic curvature is Ki
a ¼ Kabebi, with Kab ¼

1
2
Ltqab, and γ is the Barbero-Immirzi parameter. Since the

spatial metric is diagonal, so is Kab and we parametrize it
by aðx; tÞ and bðx; tÞ,

γK1
x ¼ a; γK2

θ ¼ b; γK3
ϕ ¼ b sin θ; ð3:6Þ

while a short calculation gives

Γ3
θ ¼ −

∂xEa

2Eb ; Γ1
ϕ ¼ − cos θ; Γ2

ϕ ¼ ∂xEa

2Eb sin θ;

ð3:7Þ

all other components of the spin-connection are 0.

B. Constraints and dynamics

The dynamics follow from the gravitational action
[17–19]

S ¼
Z

dt
Z
Σ

�
_Ai
aEa

i

8πGγ
− NH − NaHa

�
; ð3:8Þ

where dots denote derivatives with respect to t; the scalar
constraint is

H ¼ −
Ea
i E

b
j

16πGγ2
ffiffiffi
q

p ϵijkðFab
k − ð1þ γ2ÞΩab

kÞ; ð3:9Þ

and the diffeomorphism constraint is

Ha ¼
1

4πGγ
Eb
kFab

k: ð3:10Þ

Here the field strength is Fab
k ¼ 2∂ ½aAk

b� þ ϵij
kAi

aA
j
b, while

the spatial curvature is given by Ωab
k¼2∂ ½aΓk

b� þϵij
kΓi

aΓ
j
b.

Using the coordinate choices for spherical symmetry
described in Sec. III A and integrating over dΩ give the
symmetry-reduced action

S ¼
Z

dt
Z

dx

�
_aEa þ 2_bEb

2Gγ
− NH − NxHx

�
; ð3:11Þ

with the scalar constraint

H ¼ −
1

2Gγ

�
2ab

ffiffiffiffiffiffi
Ea

p

γ
þ Eb

γ
ffiffiffiffiffiffi
Ea

p ðb2 þ γ2Þ − γð∂xEaÞ2
4Eb

ffiffiffiffiffiffi
Ea

p

− γ
ffiffiffiffiffiffi
Ea

p ∂x

�∂xEa

Eb

��
ð3:12Þ

and the diffeomorphism constraint

Hx ¼
1

2Gγ
ð2Eb∂xb − a∂xEaÞ: ð3:13Þ

Note that only the radial component of the diffeomorphism
constraint is nontrivial once coordinates that are explicitly
spherically symmetric have been chosen, as is the case here.
The action also shows that the symplectic structure of the

symmetry-reduced theory is given by

faðx1Þ; Eaðx2Þg ¼ 2Gγδðx1 − x2Þ; ð3:14Þ

fbðx1Þ; Ebðx2Þg ¼ Gγδðx1 − x2Þ: ð3:15Þ

Denoting C½N� ¼ R
dxNH and D½Nx� ¼ R

dxNxHx, it is
a straightforward, although long, calculation to verify that
the constraint algebra (for the symmetry-reduced theory) is

fC½N1�;C½N2�g¼D
�

Ea

ðEbÞ2 ðN1∂xN2−N2∂xN1Þ
�
; ð3:16Þ

fD½Nx
1�;D½Nx

2�g ¼ D½ðNx
2∂xNx

1 − Nx
1∂xNx

2Þ�; ð3:17Þ

fC½N�;D½Nx�g ¼ −C½Nx∂xN�: ð3:18Þ

The equations of motion, determined by _f ¼ ff; C½N�þ
D½Nx�g, are given by

_Ea ¼ 2Nb
γ

ffiffiffiffiffiffi
Ea

p
þ Nx∂xEa; ð3:19Þ

_Eb ¼ N

γ
ffiffiffiffiffiffi
Ea

p ðaEa þ bEbÞ þ ∂xðNxEbÞ; ð3:20Þ
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_a ¼ N

2γ
ffiffiffiffiffiffi
Ea

p
�
Eb

Ea ðb2 þ γ2Þ − 2ab

�

þ Nγ

2
ffiffiffiffiffiffi
Ea

p
�
∂x

�∂xEa

Eb

�
−
ð∂xEaÞ2
4EaEb

�
þ γ∂x

�∂xðN
ffiffiffiffiffiffi
Ea

p Þ
Eb

�

−
γ

2
∂x

�
N

∂xEa

Eb
ffiffiffiffiffiffi
Ea

p
�
þ ∂xðNxaÞ; ð3:21Þ

_b ¼ −
N

2γ
ffiffiffiffiffiffi
Ea

p ðb2 þ γ2Þ − γ

2

�
Nffiffiffiffiffiffi
Ea

p
�∂xEa

2Eb

�
2

− ∂xðN
ffiffiffiffiffiffi
Ea

p
Þ ∂xEa

ðEbÞ2
�
þ Nx∂xb: ð3:22Þ

After choosing a lapse and a shift, solutions to these
equations of motion and the constraints H ¼ 0 and
Hx ¼ 0 will give a metric (3.4) that satisfies the vacuum
Einstein equations.
One example that will be relevant here is the

Schwarzschild space-time for a black hole of mass M,
expressed in Painlevé-Gullstrand coordinates, for which

NPG ¼ 1; Nx
PG ¼

ffiffiffiffiffiffi
RS

x

r
; ð3:23Þ

where RS ¼ 2GM is the usual Schwarzschild radius.
Unsurprisingly, the solution is

aPG ¼ γ

ffiffiffiffiffiffiffi
RS

4x3

r
; Ea

PG ¼ x2;

bPG ¼ −γ
ffiffiffiffiffiffi
RS

x

r
; Eb

PG ¼ x; ð3:24Þ

corresponding exactly to the Painlevé-Gullstrand metric.

C. The areal gauge

In order to simplify the passage to the effective
Hamiltonian, and to avoid evaluating nontrivial path-
ordered exponentials to calculate holonomies in the radial
direction, we will perform a partial gauge fixing known as
the areal gauge. This corresponds to setting Ea ¼ x2 (or, in
the original metric (3.1), gðx; tÞ ¼ x2). Importantly, this
choice can be imposed without any reference to the
equations of motion (indeed, this is typically done in
textbook treatments of the Schwarzschild solution before
even deriving the Einstein equations), so long as the surface
area of spheres of constant x increases monotonically with
x, which can easily be checked once the solution is known.
The gauge-fixing condition χ ¼ Ea − x2 ¼ 0 is clearly

second class with the diffeomorphism constraintHx, and so
can be used to gauge fix Hx, giving

Ea ¼ x2; a ¼ Eb

x
∂xb: ð3:25Þ

Then, requiring that this gauge be preserved by the
equations of motion, i.e., _χ ¼ 0, imposes the condition
that _Ea ¼ 0 and therefore

Nx ¼ −
Nb
γ

: ð3:26Þ

Note that this implies that, after imposing the areal gauge-
fixing condition, b now appears in the metric through the
shift vector Nx which is no longer a Lagrange multiplier
that can be freely chosen, but is fully determined once the
lapse N has been chosen. On the other hand, the lapse
remains a Lagrange multiplier that can be freely chosen and
imposes the scalar constraint H ¼ 0.
This gauge significantly simplifies the action, which

becomes

SGF ¼
Z

dt
Z

dx

�
_bEb

Gγ
− NH

�
; ð3:27Þ

with

H¼ 1

2Gγ

�
3γx
Eb −

2γx2

ðEbÞ2∂xEb−
Eb

γx
∂x½xðb2þγ2Þ�

�
: ð3:28Þ

Note that the symplectic term _aEa in (3.11) becomes a total
time derivative ðaEaÞ⋅ since Ea is independent of time, and
so this term can be dropped.
The remaining Poisson bracket is

fbðx1Þ; Ebðx2Þg ¼ Gγδðx1 − x2Þ; ð3:29Þ

and the constraint algebra also simplifies, becoming

fC½N1�; C½N2�g ¼ C

�
−
1

γ
ðN1∂xN2 − N2∂xN1Þb

�
¼ C½Nx

1∂xN2 − Nx
2∂xN1�; ð3:30Þ

using (3.26) to obtain the second relation. The second
form of the constraint algebra in the areal gauge will give
some insight into what the correct form for the shift vector
Nx should be in the effective theory once LQG effects are
included.
Finally, the equations of motion are

_Eb ¼ b
γx

ðNEb − x∂xðNEbÞÞ; ð3:31Þ

_b ¼ γNx
2ðEbÞ2 þ

γx2

ðEbÞ2 ∂xN −
N
2xγ

∂xðxb2 þ γ2xÞ: ð3:32Þ

These equations can be obtained either by imposing the
conditions (3.25) on the original equations of motion
(3.19)–(3.22), or by deriving them directly from the
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simplified scalar constraint (3.28) via _f ¼ ff; R dxNHg.
As expected, the solution for N ¼ 1 is exactly the Painlevé-
Gullstrand metric.

IV. LQG EFFECTIVE DYNAMICS

The procedure to obtain the LQG effective dynamics for
vacuum spherically symmetric space-times is to take the
classical theory, described in Sec. III, then (i) replace the
components of the Ashtekar-Barbero connection by hol-
onomies and (ii) include correction functions multiplying
inverse powers of the densitized triad. The first step is
necessary since the basic operators in LQG are holonomies
and areas (there is no operator corresponding to the
connection itself), and it gives rise to “holonomy correc-
tions.” The second step arises because 0 is a discrete
eigenvalue of the area operator in LQG, so there is no well-
defined operator corresponding to, e.g., 1=Eb; introducing
well-defined operators corresponding to inverse powers of
Ea
i gives “inverse triad corrections.”
Here we will focus on holonomy corrections for two

reasons. First, in LQC, the dominant quantum gravity
effects come from holonomy corrections: these are the
source of the nonsingular bounce, and it seems reasonable
to expect that holonomy corrections will be dominant
compared to inverse triad corrections in spherical symmetry
as well. Second, there is considerable ambiguity in the
choice of inverse triad corrections, and in fact some choices
of inverse triad operators in LQC do not generate any
inverse triad corrections in the effective theory [74].
Therefore, in the following, we will assume that the inverse
triad operator in the underlying quantum theory has an
action such that there are no inverse triad corrections in the
effective theory and only consider holonomy corrections.
In LQC, the effective dynamics are known to provide an

excellent approximation to the full quantum dynamics for
states that are sharply peaked, and for which the expect-
ation value for the spatial volume is always much larger
than l3

Pl [75,76]. While it is not yet clear whether the
effective dynamics will also provide a good approximation
to the full quantum dynamics for black hole space-times, it
seems likely that the arguments in [76] can be generalized.
If this turns out to be the case, then the effective dynamics
could be used to approximate the quantum dynamics of
semiclassical states, at least for observables whose relevant
physical length scale is much larger than lPl. Based on this
expectation, we will focus on the effective theory here, but
we note that it is possible to construct the quantum theory
following an analogous procedure to the one given in [49].

A. Effective Hamiltonian

To include holonomy corrections, it is necessary to
replace in H the connection by holonomies. This is, in
the simplest cases, done by expressing the field strength
Fab

k in terms of the holonomy of the Ashtekar-Barbero

connection around a loop of minimal areaΔ, where the area
gap Δ ∼ l2

Pl is the smallest nonzero eigenvalue of the area
operator in LQG [72].
However, this procedure is not always viable in LQC

when the spatial curvature is nonvanishing (as is the general
case in spherical symmetry). This is because the holonomy
of Ai

a, evaluated around a loop of physical area Δ, cannot
be expressed as an operator on the LQC Hilbert space
(to be specific, the holonomy cannot be written in terms of
almost-periodic functions of the connection). For the case
of spherical symmetry, using the Cayley-Hamilton theo-
rem, it is possible to check that the holonomy of Ai

a around
a loop of minimal area is not almost periodic in b, and
therefore a different approach is necessary.
This is a difficulty that has already been addressed in

cosmological space-times with nonvanishing spatial cur-
vature, and in this case what is known as the “K” loop
quantization is preferred [74,77]. For the case of spherical
symmetry (and after imposing the areal gauge), this means
replacing b by holonomies of the extrinsic curvature one-
form γKi

a, evaluated in the dθ direction,1

hθðδbÞ ¼ exp

�Z
δb

0

γKi
θτidθ

�

¼ cos

�
δbb
2

�
I þ 2 sin

�
δbb
2

�
τ2; ð4:1Þ

where the τi are a basis in the (fundamental representation
of the) suð2Þ Lie algebra satisfying τiτj ¼ 1

2
ϵijkτ

k − 1
4
δijI,

and I is the 2 × 2 identity matrix.
Then, to extract a scalar quantity from the SUð2Þ-valued

expression (4.1), we replace

b → −2
Trðhθð2δbÞ · τ2Þ

2δb
: ð4:2Þ

Here the factor of 2 in 2δb is to ensure consistency between
the K loop quantization and the loop quantization based on
expressing the field strength in terms of holonomies [78].
The remaining task is to determine the appropriate value

for δb. The key heuristic argument from LQG, which guides
the choice of δb, is that the physical length of this edge
should be given by

ffiffiffiffi
Δ

p
. Since the holonomy was integrated

along the edge with respect to the coordinate θ, δb gives
the coordinate length of the path, not the physical length.
The coordinate and physical lengths are simply related by
the metric; for a path with constant x and ϕ (and constant t,
of course), the relation is just ds ¼ xdθ. So, for the physical
length to be

ffiffiffiffi
Δ

p
, the coordinate length must be taken to be

1We could equally well choose any path that follows a great
circle; we choose ϕ ¼ constant for simplicity.
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δb ¼
ffiffiffiffi
Δ

p

x
: ð4:3Þ

(In general, if the areal gauge is not imposed then ds ¼ffiffiffiffiffiffi
Ea

p
dθ and δb ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Δ=Ea

p
.) This result is in agreement with

what has earlier been argued in [23,48,49] (up to an overall
factor of 4π in some cases, which essentially implies a
slightly different choice for Δ). Then, (4.2) becomes

b →
xffiffiffiffi
Δ

p sin

� ffiffiffiffi
Δ

p

x
b

�
: ð4:4Þ

It is now possible to construct the effective Hamiltonian
by replacing all instances of b in (3.28) using (4.4), with the
result

HðLQGÞ ¼ −
1

2Gγ

�
Eb

γx
∂x

�
x3

Δ
sin2

ffiffiffiffi
Δ

p
b

x
þ γ2x

�

−
3γx
Eb þ 2γx2

ðEbÞ2 ∂xEb

�
: ð4:5Þ

A direct calculation of the Poisson bracket of the effective
scalar constraint with itself gives the following constraint
algebra:

fCðLQGÞ½N1�;CðLQGÞ½N2�g

¼CðLQGÞ
�
−

x

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
ðN1∂xN2−N2∂xN1Þ

�
:

ð4:6Þ

Note that although the constraint algebra has changed
compared to the classical form (3.30), the constraint
algebra for the effective scalar constraint is closed: there
are no anomalies.
Next, it is necessary to update the areal gauge relation

between the lapse and the shift, which is classically given
by (3.26), by replacing b by an appropriate expression in
terms of holonomies. A simple way to do this is in fact
suggested by comparing the classical constraint algebra
(3.30) and the constraint algebra in the effective theory
(4.6): the choice

Nx ¼ −
Nx

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
ð4:7Þ

ensures that the constraint algebra for the effective theory
will have exactly the classical form

fCðLQGÞ½N1�; CðLQGÞ½N2�g ¼ CðLQGÞ½Nx
1∂xN2 − Nx

2∂xN1�:
ð4:8Þ

This choice for the shift vector, although based on different
arguments, is the same as in [49].
As an aside, we mention that if a different modification

for b is preferred for the effective Hamiltonian, say b →
fðx; bÞ, then the constraint algebra will be fCf½N1�;
Cf½N2�g ¼ Cf½−γ−1ðN1∂xN2 − N2∂xN1Þðf∂bfÞ�, and by
redefining the lapse-shift relation to be Nx ¼
−Nðf∂bfÞ=γ, the constraint algebra becomes identical
with the classical case (and for a more general analysis
of modified constraint algebras in spherical symmetry for
the case of the diffeomorphism constraint not being gauge
fixed, see [79]).
For the choice (4.7) for the shift vector, the effective

metric will be

ds2 ¼ −N2dt2 þ ðEbÞ2
x2

ðdxþ NxdtÞ2 þ x2dΩ2: ð4:9Þ

Finally, from the scalar constraint and the basic Poisson
bracket relation (3.29), the equations of motion for Eb and
b are derived in the usual manner, giving

_Eb ¼ −
x2

2γ
ffiffiffiffi
Δ

p ∂x

�
NEb

x

�
sin

ffiffiffiffi
Δ

p
b

x
cos

ffiffiffiffi
Δ

p
b

x
; ð4:10Þ

_b ¼ γNx
2ðEbÞ2

�
1þ 2x

∂xN
N

�
−
γN
2x

−
N

2γΔx
∂x

�
x3 sin2

ffiffiffiffi
Δ

p
b

x

�
: ð4:11Þ

B. Solution in Painlevé-Gullstrand coordinates

A stationary solution to the equations of motion and to
the scalar constraint HðLQGÞ ¼ 0 can easily be found in
terms of Painlevé-Gullstrand-like coordinates for N ¼ 1.
For N ¼ 1, then _Eb ¼ 0 implies that2

Eb ¼ x; ð4:12Þ

while _b ¼ 0 gives

b ¼ xffiffiffiffi
Δ

p arcsin
C

x3=2
; ð4:13Þ

where C is a constant of integration.

2If _Eb ¼ 0, then either Eb ¼ x, or sin
ffiffiffi
Δ

p
b

x ¼ 0, or cos
ffiffiffi
Δ

p
b

x ¼ 0.
In the second case, _b ¼ 0 implies Eb ¼ x in agreement with the
first case, while in the third case sin

ffiffiffi
Δ

p
b

x ¼ �1 and _b ¼ 0 gives
E2
b ¼ γ2Δx2=ð3x2 þ γ2ΔÞ, which does not satisfy the scalar

constraint. Therefore, only the first two cases are viable and
both imply Eb ¼ x.
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It is immediately clear that C ¼ 0 gives Minkowski
space, ds2 ¼ −dt2 þ dx2 þ x2dΩ2. Note that there are no
quantum gravity effects in this case, which is not surprising
since the curvature is zero.
The black hole solutions are obtained for C ¼

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ΔRS

p
, where RS ¼ 2GM is the Schwarzschild

radius and M is the mass of the black hole. This is easily
verified by considering the solution at large x, in which case
arcsinðC=x3=2Þ ≈ C=x3=2 and the usual Painlevé-Gullstrand
solution (3.24) is recovered.
An important point, as already pointed out in [49], is that

this solution is only well defined for

x ≥ xmin ¼ ðγ2ΔRSÞ1=3: ð4:14Þ

This lower bound on x in vacuum space-times is not
surprising given the following argument. First, in spheri-
cally symmetric space-times there are no local gravitational
degrees of freedom (gravitational waves), so a matter
source is needed to generate any space-time curvature.
Second, studies in LQC show that quantum gravity effects
due to holonomy corrections generate an upper bound on
the possible energy density of any matter field. Therefore,
to generate a gravitational field corresponding to mass M,
a matter field with density ρ ∼M=R3 is needed, and if
ρ ≤ ρmax ∼ ρPl, then the matter field must extend to at least
a radius of ∼ðM=ρPlÞ1=3 ∼ xmin. This argument can be made
precise, and shown to be exact, in the case that the matter
field is pressureless dust field [50]. So, to describe the
solution for x < xmin, it is necessary to include matter
fields.
For the vacuum part of the space-time, the shift vector is

Nx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

x

�
1 −

γ2ΔRS

x3

�s
; ð4:15Þ

which gives the effective metric

ds2 ¼ −
�
1 −

RS

x
þ γ2ΔR2

S

x4

�
dt2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RS

x

�
1 −

γ2ΔRS

x3

�s
dtdxþ dx2 þ x2dΩ2:

ð4:16Þ

Note that in the limit Δ → 0, the effective metric tends to
the classical Schwarzschild metric in Painlevé-Gullstrand
coordinates, as expected. Also, the condition x ≥ xmin
ensures that the shift (4.15) is well defined for all
x ≥ xmin. Another interesting point is that in the limit
x → xmin, the effective line element tends to the Minkowski
metric. As we shall see, this is because the repulsive
quantum gravity effects exactly balance out the attractive
classical gravitational force at x ¼ xmin.

C. Curvature scalars and Killing horizons

To understand the geometry underlying the effective
metric (4.16), it is useful to examine curvature scalars and
look for horizons, with Killing horizons being particularly
easy to find in stationary space-times.
In the following, to simplify the notation we will express

the metric as ds2 ¼ −Fdt2 þ 2Nxdtdxþ dx2 þ x2dΩ2,
with

FðxÞ≡ 1 −
RS

x
þ γ2ΔR2

S

x4
ð4:17Þ

and Nx given by (4.15); note that F þ ðNxÞ2 ¼ N2 ¼ 1.
It is straightforward to calculate some simple curvature

scalars for (4.16), with the results

R ¼ −
6γ2ΔR2

S

x6
; RμνRμν ¼ 90γ4Δ2R4

S

x12
; ð4:18Þ

RμνρσRμνρσ ¼ 12R2
S

x6

�
1−

10γ2ΔRS

x3
þ 39γ4Δ2R2

S

x6

�
: ð4:19Þ

Note that these expressions for the curvature scalars are
exact. Also, setting Δ ¼ 0 in these equations gives the
expected classical expressions, in particular Rμν ¼ 0.
Further, as the lower bound xmin is approached, all of
these curvature scalars approach a critical value that is
independent of their mass, and which provides an upper
bound to the amplitude of each curvature scalar in the
vacuum region,

lim
x→xmin

R ¼ −
6

γ2Δ
; lim

x→xmin

RμνRμν ¼ 90

γ4Δ2
;

lim
x→xmin

RμνρσRμνρσ ¼ 360

γ4Δ2
: ð4:20Þ

These upper bounds agree with the results obtained in [49]
[up to overall factors of 4π due to what amounts to a
different choice by [49] for Δ in (4.3)].
Next, in an explicitly stationary space-time like this one,

ξμ ¼ ð1; 0; 0; 0Þ is necessarily a Killing vector field and
the Killing horizons are located where ξμξμ ¼ 0, which
corresponds to F ¼ 0. What is interesting here is that
(for M ≫ mPl) there are two Killing horizons3: an outer
Killing horizon near x ¼ RS and an inner Killing horizon
just outside xmin.
Specifically, to leading order in Δ=R2

S, the outer Killing
horizon is located at

3F ¼ 0 gives a fourth-order polynomial in x; two roots are
always complex and for M ≫ mPl the other two roots are real
and distinct. As will be explored next, there is a limiting case
M ¼ M⋆ where there is one repeated real root, and for M < M⋆
all four roots are complex, in which case there is no Killing
horizon.
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xouter ¼ RS −
γ2Δ
RS

þO

�
Δ4=3

R5=3
S

�
; ð4:21Þ

while the inner horizon is located at

xinner ¼ ðγ2ΔRSÞ1=3 þ
1

3

�
γ4Δ2

RS

�
1=3

þO

�
Δ4=3

R5=3
S

�
: ð4:22Þ

Note that the first term is exactly xmin. The location of the
Killing horizons as a function of the black hole mass is
shown in Fig. 1.
This shows that the outer Killing horizon is located (up

to small quantum corrections) at the classical horizon RS,
while the interior horizon is a new feature of the quantum
geometry that lies within the region where the space-time
curvature is Planckian. As depicted in Fig. 2, this shows
that there is a thin region inside the black hole where the
light cone flips again and outgoing null rays begin to
expand (with respect to the coordinate x) once again. Note
that the presence of an interior horizon is analogous to what
occurs in Reissner-Nordström black holes, although the
new term in the Reissner-Nordström metric with charge Q
goes as GQ2=x2 while here the quantum gravity correction
in the effective metric is proportional to ΔR2

S=x
4.

This result also emphasizes the importance of studying
the full space-time rather than using the classical isometry
between the Schwarzschild interior and the Kantowski-
Sachs space-time, which implicitly assumes that there is no
interior horizon. Also, note the existence of an interior
horizon is a necessary condition for a transition to occur
from a black hole collapse to an expanding white hole

solution [64]; for details in how such a transition is realized
in this effective framework for the case that the matter field
is pressureless dust, see [50].
The above results for the locations of the two horizons

assume M ≫ mPl, but if M is sufficiently small, there may
be only one or zero Killing horizons. The limiting case
occurs for M⋆ ¼ 8γ

ffiffiffiffi
Δ

p
=

ffiffiffiffiffi
27

p
G, when there is exactly one

Killing horizon, while ifM < M⋆, then there are no Killing
horizons at all. Although it is likely that the effective
description fails for small x < RS in a space-time with such
a small mass, the absence of Killing horizons in this case is
nonetheless interesting as it suggests that a minimal mass is
required to form a black hole, with a (Killing) horizon—if
M < M⋆, the space-time is indeed curved by the mass but
not sufficiently for a horizon to form. This is very different
from the situation in classical general relativity, where there
is always a horizon surrounding a sufficiently compact
matter source. Note that this also suggests that elementary
particles with m < mPl (like electrons, say) cannot form a
black hole alone; rather, many elementary particles must
be packed in a sufficiently small region for a black hole
to form.

D. Geodesics and apparent horizons

Further insight into the effective geometry of the
LQG-corrected black hole can be obtained by studying
geodesics. For the sake of simplicity, we will consider
radial motion only, but it is straightforward to extend these
results to include rotational motion as well.
Radial geodesics satisfy

−ϵ ¼ −FðxÞ_t2 þ 2Nx_t _xþ_x2 ð4:23Þ

for timelike geodesics, ϵ ¼ 1, and the dots denote deriv-
atives with respect to proper time τ, while for null geodesics

FIG. 2. Schematic diagram for M ≫ mPl showing the behavior
of the light cone in the presence of multiple horizons. The
shaded area is outside the domain of our solution and the
innermost region between xmin and xinner is a shell of thickness
∼ðγ4Δ2=RSÞ1=3.

FIG. 1. This figure shows the location of xmin (solid purple
line), xinner (dashed red line), and xouter (solid black line) as a
function of δ ¼ γ

ffiffiffiffi
Δ

p
=RS; the scale on the x-axis is in units

of x=RS. Region I corresponds to x > xouter, in Region II
xinner < x < xouter, and in Region III xmin < x < xinner. For a
black hole mass of M < M⋆ there are no horizons, this
corresponds to Region IV with δ > δh. Finally, the effective
solution is only valid for x > xmin; in Region V, the vacuum
solution is not well defined and it is necessary to include
matter fields. Note that in the limit of a large mass (δ → 0),
xinner → xmin while xouter → RS.
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ϵ ¼ 0 and dots denote derivatives with respect to an affine
parameter λ.
For timelike geodesics, it is convenient to use the

conserved energy associated with the timelike Killing
vector ξμ ¼ ð1; 0; 0; 0Þ to isolate _x; specifically,

E≡ ξμ _xμ ¼ −FðxÞ_tþ Nx _x: ð4:24Þ

Combining this with ϵ ¼ 1, the geodesic equation (4.23)
simplifies to

−FðxÞ ¼ −ðNx _x − EÞ2 þ 2NxðNx _x − EÞ_xþ F _x2; ð4:25Þ

giving

dx
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1þ RS

x

�
1 −

γ2ΔRS

x3

�s
: ð4:26Þ

Note that in the case E ¼ 1, corresponding to a particle that
starts at rest at infinity, this particle will again have _x ¼ 0
at x ¼ xmin. This is another way to see that x ¼ xmin is the
location where the quantum gravity repulsive effects cancel
out the classical gravitational attraction.
For null geodesics, the calculation is even simpler. Since

ϵ ¼ 0, dividing (4.23) by _t2 gives

0 ¼ −FðxÞ þ 2Nx dx
dt

þ
�
dx
dt

�
2

; ð4:27Þ

which has the solution

dx
dt

¼ −Nx � 1: ð4:28Þ

For dx=dt ¼ −Nx − 1, the ingoing null rays always have
decreasing x, but the situation is a little more complicated
for the outgoing rays with dx=dt ¼ 1 − Nx which will
depend on the location of the zeros of 1 − Nx; unsurpris-
ingly, these correspond exactly to the Killing horizons
found in Sec. IV C.
For M ≫ mPl, the x position of the outgoing rays will

increase for x > xouter and x < xinner, but decrease for
xinner < x < xouter. On the other hand, if M < M⋆, then
the outgoing null rays will satisfy dx=dt > 0 everywhere.
This is depicted in Fig. 3; once again the behavior is
analogous with that of a Reissner-Nordström black hole.
Next, it is possible to determine whether there are any

apparent horizons by considering congruences of null
geodesics. Due to spherical symmetry, it is sufficient to
consider congruences that are orthogonal to the surface
of concentric 2-spheres S defined by constant x and t.
Denoting the tangent vector to the outgoing null geo-
desics by lμ ¼ ð1; 1 − Nx; 0; 0Þ, then the other linearly
independent null vector that is also orthogonal to S is
kμ ¼ ð1;−1 − Nx; 0; 0Þ, which is the tangent vector to
ingoing null geodesics. Here the overall normalization of
these two vectors fields is such that lμkμ ¼ −2, so the
hypersurface metric for S is given by

hμν ¼ gμν þ
1

2
ðlμkν þ kμlνÞ: ð4:29Þ

The outgoing and ingoing expansions are, respectively,

θþ ¼ hμν∇μlν; θ− ¼ hμν∇μkν; ð4:30Þ

and a short calculation gives

FIG. 3. Behavior of outgoing radial null geodesics, dx=dt ¼ 1 − Nx, for the effective metric with shift (4.15) for black holes of
different mass. These three curves are characteristic of the different possible behaviors that the outgoing null rays may exhibit depending
on the mass of the black hole compared toM⋆. Here the red curve corresponds toM ¼ 0.3M⋆, the blue curve toM ¼ M⋆, and the green
to M ¼ 3M⋆. The abrupt end to each curve corresponds to x ¼ xmin for each of the three black hole masses; the vertical dashed black
lines depict the radial coordinate value at which this happens for each mass. In these plots, we set γ ¼ G ¼ 1 and Δ ¼ 10−2.
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θþ ¼ 2

x
ð1 − NxÞ; θ− ¼ −

2

x
ð1þ NxÞ: ð4:31Þ

The standard definition of a trapped surface S is one where
both expansions θ� are negative, and the boundary of the
total trapped region is called the apparent horizon—in this
case, since θ− < 0 for all x, the apparent horizon corre-
sponds to the surfaces where θþ ¼ 0. Interestingly, for
M ≫ mPl, in addition to the usual outer boundary to the
trapped region, there is also an interior boundary and there
are therefore two apparent horizons. As expected, these
apparent horizons are located at precisely the same location
as the Killing horizons, xinner and xouter. The expansion θþ
is plotted in Fig. 4 for different M and compared to the
classical result.
It is straightforward to calculate the surface gravity at the

outer horizon,

κ ¼ RS

2x2outer
−
2γ2ΔR2

S

x5outer
: ð4:32Þ

In the case that M ≫ mPl, then the outer horizon is given
by (4.21) and the surface gravity, to leading order in Δ, is
given by

κ ¼ 1

2RS
−
γ2Δ
R3
S

þO

�
Δ4=3

R11=3
S

�
: ð4:33Þ

It is also interesting to examine the surface gravity for
smaller masses which is shown in Fig. 5; of course, since
there is no horizon for M < M⋆, a surface gravity can be
associated to a horizon only forM ≥ M⋆. It is interesting to
note that the slope of κðMÞ is positive for small M, so the

specific heat of black holes becomes positive for suffi-
ciently small mass (assuming the black hole thermody-
namics correspondence between surface gravity and
temperature continues to hold in this setting).
Finally, for large M and keeping only the leading order

LQG correction, the black hole thermodynamics relation
for these effective (nonrotating, zero charge) black holes is
slightly modified to

κδAouter ¼ 8πG

�
1 −

2γ2Δ
RS

�
δM; ð4:34Þ

suggesting that, not too surprisingly, quantum gravity
effects will generate some departures from semiclassical

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

1.0

1.2

1.4

1.6

FIG. 5. This plot shows the (outer) horizon surface gravity κ as
a function of the black hole mass M for small M; the smallest
mass shown here is M ¼ M⋆, as there are no horizons for
M < M⋆. Note that the slope of the curve is positive for small M
close toM⋆, but κ rapidly tends to the classical result κ ¼ 1=2RS.
In this plot, we set γ ¼ G ¼ 1 and Δ ¼ 10−2.

FIG. 4. Comparison of the outgoing null expansion θþ ¼ 2x−1ð1 − NxÞ for the effective metric (4.16) (solid line) compared to the
classical limitΔ → 0 (dashed line). The three cases, from left to right, correspond to (i) a space-time with no apparent horizon (left), (ii) a
space-time with one sphere S that is marginally trapped sphere (where θþ ¼ 0) but no region with θþ < 0 (middle), and (iii) a space-time
with two apparent horizons (right). In the first two cases, θþ ≥ 0 throughout the entire space-time while in the large mass case of
M > M⋆, θþ is negative for xinner < x < xouter. Each of these examples is qualitatively different from the classical case where, in all
examples, at x ¼ RS the expansion θþ becomes negative and diverges to −∞ as x → 0. Note that θþ for the effective metric stops at
x ¼ xmin, whose location is denoted by the dotted vertical line. In the plots, we set γ ¼ G ¼ 1 and Δ ¼ 10−2.
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expectations based on quantum field theory on a classical
background. A more detailed exploration of this topic is left
for future work.

E. Other coordinate systems

While we have so far used the Painlevé-Gullstrand
coordinate system, it is also possible to express the
stationary solution in terms of other coordinate systems.
Leaving N free in (4.10) and (4.11), requiring _Eb ¼ 0

gives

N ¼ x
Eb ; ð4:35Þ

which can then be substituted into _b ¼ 0, with the result

x2

Δ
sin2

ffiffiffiffi
Δ

p
b

x
¼ γ2

�
x2

ðEbÞ2 − 1þ RS

x

�
; ð4:36Þ

where the constant of integration has been chosen to obtain
the correct classical limit at large x.
To make contact with [49], we will now consider the

specific example

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RS=x

p ; ð4:37Þ

for which it follows that

Eb ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RS=x

p
;

x2

Δ
sin2

ffiffiffiffi
Δ

p
b

x
¼ γ2R2

S

x2ð1þ RS=xÞ
;

ð4:38Þ
and so the resulting effective line element is

ds2 ¼ −
�
1 −

RS

x
þ γ2ΔR4

S

x6ð1þ RS=xÞ2
�
dt2 þ

�
1þ RS

x

�
dx2

þ 2
RS

xð1þ RS=xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γ2ΔR2
S

x4ð1þ RS=xÞ

s
dxdtþ x2dΩ2:

ð4:39Þ
This is precisely the effective metric found in [49], up to
some small discretization effects which are not included in
the analysis here. This shows that the different approaches
followed here and in [49] give the same effective metric and
are consistent with each other.
While the effective line elements (4.16) and (4.39) are

both solutions of the effective equations of motion (4.10)
and (4.11), these two effective metrics are not related by
coordinate transformations, as would be the case in
classical general relativity. Rather, there is a quantum
deformation to this classical symmetry; we leave a deter-
mination of the precise properties of this deformation for
future work. We emphasize that although the classical
symmetry is deformed due a modification of the structure

function in the effective algebra (4.6), the modified con-
straint algebra does close, thus ensuring the covariance of
the effective model considered here.
One way to verify that the two metrics are not related

by a coordinate transformation is to compare curvature
scalars. While R, RμνRμν, and RμνρσRμνρσ are all slightly
different for the effective line elements (4.16) and (4.39),
nonetheless these curvature scalars have a nearly identical
behavior (especially for large M, with differences only
becoming apparent near xmin for smallM) and in fact have
exactly the same upper bound that in both cases is
reached at x ¼ xmin.
The fact that the space-time geometry depends on the

coordinates—or, in other words, is observer dependent—is
(at least in hindsight) not surprising. It is well known in the
context of quantum field theory on curved space-times that
different observers see different states: one may observe the
quantum vacuum, while another (at the same location but
with a relative acceleration) sees a thermal state. Something
similar appears to occur here: the quantum gravity correc-
tions to the classical metric are observer dependent
(although some quantum gravity effects, like the presence
of a Planck-scale bound on curvature scalars, appear to be
observer independent). An in-depth study of this effect is
left for future work.

V. SUMMARY AND DISCUSSION

In this paper, we constructed an effective framework to
study quantum gravity holonomy effects in vacuum spheri-
cally symmetric space-times and studied the stationary
solutions to the effective theory. By imposing the areal
gauge, it was possible to implement the μ̄ loop quantization
scheme; in an important sign of the robustness of these
results, this gives results in perfect agreement with the μ̄
loop quantization based on the Abelianized version of the
constraints [49].
We explored the geometry of the solution mostly in

terms of the effective line element expressed in Painlevé-
Gullstrand-like coordinates and found that quantum gravity
effects (i) slightly shift the location of the outer horizon
from x ¼ RS by a term of the order Δ=RS, (ii) show that the
vacuum solution only holds for x ≥ xmin ¼ ðγΔRSÞ1=3, with
the implication that the presence of matter is necessary at
smaller x to curve the space-time, and (iii) there is now an
inner horizon located just outside xmin where the outgoing
expansion of radial null geodesics becomes positive again.
(In this effective space-time, Killing horizons and apparent
horizons are the same, so we simply refer to “horizons.”)
Note that the presence of an outer and inner horizon occurs
in many models of nonsingular black holes, including
the well-known Bardeen model [1]. Further, in agreement
with [49], the curvature scalars R, RμνRμν, and RμνρσRμνρσ

are all bounded by quantum gravity effects, with each
bound depending only on γ2Δ ∼ l2

Pl and independent ofM.
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Also, while this may lie outside the regime of validity of
the effective description, it is nonetheless interesting to
point out that the effective theory predicts that for suffi-
ciently small M ≲mPl there will not be any horizon at all:
although the mass will curve the space-time in the usual
way far from the source, the gravitational field will never be
strong enough to generate a trapped region, even for
x ≤ RS; this provides a quantum gravitational counterex-
ample to the hoop conjecture for sufficiently low mass
objects.
The static space-time solution that we derived as a

solution to the effective scalar constraint corresponds to
an eternal (vacuum) black hole. To describe physical black
holes, it will be important to extend these results to include
matter fields and to study the process of the formation of a
black hole. In addition, by including dynamical effects, it
will be possible to study the problem of mass inflation,
which appears to indicate that inner horizons in an eternal
black hole are unstable [80–82] (although this conclusion
has recently been challenged, see [83]). More generally, to
properly understand the properties of astrophysically rel-
evant black holes, it will be essential to include matter and
allow for fully dynamical space-times.
Importantly, the effective framework developed here can

be extended to include matter fields, and in particular it is
quite straightforward to include a pressureless dust field
[50]. Then, it is possible to study black hole collapse; e.g., it
can be shown that in the Oppenheimer-Snyder collapse
model, the dynamics of the interior of the “star” are given
by exactly the LQC effective Friedman equation, and
therefore the star bounces at the LQC critical density

ρc ∼ ρPl and then starts to expand, much like a white hole
[50]. This model is a first step toward a more complete
analysis of quantum gravity effects in a dynamical black
hole space-time, starting from the collapse of an in-falling
matter field. Interestingly, it provides an explicit realization,
derived from an effective LQG description of the full black
hole space-time, that shows how quantum gravity effects
can generate a transition from a collapsing black hole to an
expanding “white hole,” as suggested in [65].
There also remain several other important open ques-

tions, in addition to the inclusion of matter and the study
of the dynamics of evolving black hole space-times
starting from their initial formation. In particular, it is
important to explore the relation of the effective metric
expressed in terms of different coordinates and to under-
stand precisely how quantum gravity effects will differ
depending on the observer. While these questions are by
now quite well understood for quantum field theory on
curved space-times, this is not the case for quantum
gravity effects, even in relatively simple effective theories
like the one considered here. Finally, it will also be
important to go beyond the effective description in order
to study other quantum gravity effects in black holes,
most notably Hawking radiation and the black hole
information loss problem.
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