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We study the chiral vortical effect far from equilibrium in a strongly coupled holographic field theory.
Rotation is represented as a perturbation via a gravito-magnetic field on top of a five-dimensional charged
AdS Vaidya metric. We also introduce a momentum relaxation mechanism by linear scalar field
backgrounds and study the chiral vortical effects (CVE) dynamics as function of the charges, temperature
and momentum relaxation. The far from equilibrium behavior shows that the CVE builds up with a
significant delay in time compared to the quasi instantaneous equilibration of the background metric. We
also pay special attention to the effects of the gravitational contribution to the axial anomaly in the CVE of
the axial current. We develop an analytic estimate of this delay and also compute the quasinormal modes
near equilibrium which determine the late time ring down.
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I. INTRODUCTION

Anomaly induced transport phenomena such as the
chiral magnetic (CME) and chiral vortical (CVE) effects
are extremely active areas of research (see [1,2] for
reviews). They play important roles in high energy as well
as in condensed matter physics. In high energy physics the
search for signatures of anomaly induced transport in heavy
ion collisions is an on-going endeavor and has culminated
in the isobar program at RHIC [3]. The CVE can also be
important in heavy ion collisions especially due to the
proven presence of large vorticity [4].
In condensedmatter physics theCME is at the origin of the

observed large enhancement of the longitudinal conductivity
ofWeyl- andDirac semimetals subject to amagnetic field [5].
The CVE has so far played a minor role in condensed matter
physics. It is conceivable however, that future experiments
will search for the CVE in these materials. If these materials
are also in a strongly coupled or near hydrodynamic regime
(as happens in the Weyl semimetals WP2 [6]) our findings
will also be relevant in that case.
While formally both CME and CVE can be derived in

mathematical models of equilibrium quantum field theory,
both are in a subtle waymanifestations of out-of-equilibrium
physics. For the CME it is now well established that it

vanishes in strict equilibrium [7–9]. Theoretically it is due to
a nontrivial contribution coming from the vacuum of the
filled Dirac sea giving rise to the so-called Bardeen counter-
terms [10]. For the CVE the situation is slightly different.
While it is possible to derive it in away completely analogous
to the CME it often relies formally on a thermal ensemble at
fixed angular velocity. In the context of the CVE it has been
noted very early on that an equilibrium thermal ensemble
with fixed angular velocity is not possible in a relativistic
context. The tangential velocity necessarily exceeds the
speed of light at some finite distance from the axis of rotation
[11]. A useful tool to study the CVE is restricting to
infinitesimal angular velocity which implies linear response
theory.1 In this regime it has been established that a useful
wayof thinking about theCVE is not directly as a rotation but
as a gravito-magnetic analogue of the CME [12]. In this
approach one studies a fluid at rest in an (infinitesimally
small) gravitational field involving a mixed time-space
component of the metric. This approach gives rise to the
Kubo formula for the CVE and lies also at the heart of its
study in holographic models [13–15].
The theoretical tools described above allow to compute

the response of anomalous field theories to a magnetic field
or rotation in near (or local) equilibrium captured by
hydrodynamics. This leads naturally to the question of
anomalous transport in situations far from equilibrium.
Especially with a view toward heavy ion physics this is not
only of high theoretical interest but promises also to be of
central importance for interpretation of experimental data.
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1An equivalent approach is to consider an ensemble in a finite
cylinder of radius R and compute the response at the axes of
rotation in the limit of T=R → 0.
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Theoretical studies of far from equilibrium behavior of
strongly correlated quantum systems can be modeled
efficiently with holographic methods [16]. Holography is
therefore also an ideal tool to theoretically investigate
anomaly induced transport far from equilibrium. Up to
now the focus has been on the chiral magnetic effect
[17–20]. Field theoretic studies of out-of-equilibrium chiral
magnetic effect based on a variety of methods have been
presented in [21–23]. Out-of-equilibrium anomalous trans-
port in a gradient expansion in kinetic theory has been
studied in [24]. In contrast in the present study we focus on
the chiral vortical effect. One particular interesting aspect is
that the chiral vortical effect receives a contribution from a
mixed gauge-gravitational Chern-Simons term that can be
interpreted as the holographic dual of the gravitational
contribution to the axial anomaly [25]. Further studies of
the connection between the chiral vortical effect and the
gravitational contribution to the chiral anomaly have been
presented in [26–28].
We will follow in our setup the previous study [20] based

on AdS Vaidya type metrics. A holographic model based on
Vaidya type metrics can be used to study the out of
equilibrium CVE as well. The metric is sourced by infalling
null dust (with rotation) and the linear response due to the
anomalies (the Chern-Simons) terms can be calculated from
well-known holographic methods. While this is not of prime
interest for possible applications to heavy ion physicswe also
introduce a momentum relaxation parameter via a linear
scalar field background [29]. In (local) equilibrium the
anomaly induced currents are dissipationless and therefore
are not affected by the translation symmetry breaking
[30,31]. Translation symmetry breaking does however affect
the anomaly induced transport out of equilibrium. In par-
ticular translation symmetry implies conservation of the
energy-momentum tensor. For the momentum this simply
means that it does not change if no additional momentum is
injected. In general the momentum density and energy
current have dissipative and anomaly induced nondissipative
contributions. If translation symmetry is broken the dissi-
pative part will eventually vanish leaving only the anomaly
induced part. As in [20] this allows us to study nontrivial
response in the energy-momentum currents.
The paper is organized as follows. In Sec. II we introduce

the model and discuss its properties. In Sec. III we briefly
recall the (near) equilibrium hydrodynamics of the CVE. In
Sec. IV we present the results for the out-of-equilibrium
response as computed in our holographic model. We
emphasize the role of the gravitational contribution to
the anomaly and the subtle interplay of the pure gauge
and the gravitational contributions. We summarize our
findings and present conclusion in Sec. V.

II. HOLOGRAPHIC MODEL

The holographic model is constructed following a
bottom-up approach. The dual field theory is assumed to

have two Abelian symmetries which we denote by
Uð1ÞA ×Uð1ÞV . In our gravity side this is achieved via
the inclusion of two Abelian gauge fields A and V, with
field strengths F ¼ dV and F5 ¼ dA respectively. The
model also contains Einstein gravity with negative cosmo-
logical constant.
The action will have the usual Maxwell kinetic terms

plus some Chern-Simons terms accounting for the anoma-
lies. These terms are topological and gauge invariant up to a
total derivative. Therefore, under a gauge transformation
they give a nontrivial boundary contribution which repro-
duces the chiral anomaly on the boundary. We will work
with a consistent form of the anomaly that preserves the
classical Ward identities for the energy-momentum tensor
and the vector current. In other words, we are shifting all
the vector and gravitational anomalies into the axial part.2

We also include three massless scalar fields to allow for
translation symmetry breaking [29]. The action of our
model is

S¼ 1

2κ2

Z
M
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

2
∂μXI∂μXI −

1

4
F2−

1

4
F2
5

þα

3
ϵμνρστAμð3FνρFστþF5

νρF5
στÞþλϵμνρστAμRα

βνρRβ
αστ

�

þ 1

κ2

Z
∂M

d4x
ffiffiffiffiffiffi
−γ

p
KþSnf; ð2:1Þ

where I ¼ 1, 2, 3, κ2 is the Newton constant, L the AdS
radius, and α, λ are the Chern-Simons couplings. The Levi-
Civita tensor is defined as ϵμνρστ ¼ ϵðμνρστÞ= ffiffiffiffiffiffi−gp

. The
boundary term corresponds to the Gibbons-Hawking
action, which is required to have a well-defined variational
problem.3 As usual γ is the induced metric on ∂M and K
the extrinsic curvature. Finally, Snf represents the contri-
bution of a null fluid sourcing the Vaidya-like solutions.
In order to allow for nontrivial response in the energy-

current we should break translational invariance. With a
view toward possible applications to condensed matter
physics translation symmetry breaking is a more realistic
scenario. The free scalar fields will be given a profile of the
form XI ¼ kxi for some constant k, where xi ∈ fx; y; zg
are the three spatial coordinates. Because the scalar fields
only enter through derivatives the background will still be
translation invariant. In particular the metric and gauge
field backgrounds will be xi independent. Translation
breaking will be manifest however in higher point

2Also referred to as mixed gauge-gravitational anomaly. In a
quantum field theory one can always add convenient Bardeen
counterterms to get a classically conserved energy-momentum
tensor [32].

3One could also introduce a Chern-Simons boundary term
depending on the extrinsic curvature. In asymptotically AdS
spaces this terms does not contribute to the on-shell action.
Therefore we do not include it here [33].
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correlation functions or equivalently by probing the back-
ground with perturbations such as the magnetic field or by
rotation. In this construction the graviton will acquire an
effective mass [34]. The parameter k can be thought of as
encoding the presence of a uniformly distributed density of
impurities in the dual field theory. Our setup corresponds to
an explicit breaking of translation symmetry. While we
chose a particular realization via massless scalar fields we
expect our results to be qualitatively unchanged if other
forms of explicit translation symmetry breaking were
implemented. It is also possible to break translation
symmetry in a spontaneous manner in holography [35–37].
In that case there are additional light Goldstone modes
(the phonons) which could qualitatively alter the response
patterns. We will not pursue the effects of spontaneous
translation symmetry breaking in this work.
The corresponding equations of motions are

2κ2YI
ðnfÞ ¼

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μXIÞ ð2:2Þ

2κ2JμðnfÞ ¼ ∇νFνμ þ 2αϵμνρστFνρF5
στ ð2:3Þ

2κ2Jμ
5;ðnfÞ ¼ ∇νF

νμ
5 þ αϵμνρστðFνρFστ þ F5

νρF5
στÞ

þ λϵμνρστRα
βνρRβ

αστ ð2:4Þ
κ2TðnfÞ

μν ¼ Gμν −
6

L2
gμν −

1

2
∂μXI∂νXI þ 1

4
∂ρXI∂ρXIgμν

−
1

2
FμρFν

ρ þ 1

8
F2gμν −

1

2
F5
μρF5

ν
ρ þ 1

8
F2
5gμν

− 2λϵλρστðμj∇β½Fρλ
5 R

β jνÞστ�: ð2:5Þ

We are ultimately concerned with computing the currents
and the energy momentum tensor in the quantum field
theory. Those can be obtained through the standard holo-
graphic prescription: varying the on-shell action with
respect to the boundary value of the dual field [38,39]

YI ¼ ffiffiffiffiffiffi
−γ

p
nμ∂μXIj∂M ð2:6Þ

Jα ¼ ffiffiffiffiffiffi
−γ

p
nμ½Fαμ þ 4αϵμαβγδAβFγδ�j∂M ð2:7Þ

Jα5 ¼
ffiffiffiffiffiffi
−γ

p
nμ

�
Fαμ
5 þ 4α

3
ϵμαβγδAβF5

γδ

�����∂M ð2:8Þ

Tαβ ¼ 2
ffiffiffiffiffiffi
−γ

p �
−Kαβ þ γαβK − 4λnμϵμðαjγδϵ

�
1

2
FγδR̃jβÞ

ϵ þDηAγR̃ηjβÞ
δϵ

������∂M; ð2:9Þ

with nμ a normalized orthonormal vector to the surface that
defines the boundary.4 R̃ is the intrinsic curvature the
boundary andD the intrinsic covariant derivative. Note that
the action has not been renormalized and appropriate
counterterms have to be added to get finite expression.
As we will see the chiral vortical responses are finite by
themselves.

A. Background solution

Wewant to explore the out of equilibrium behavior of the
CVE in the linear response regime and in the presence of
momentum relaxation. Our background must then re-
present a thermal time-evolving homogeneous and iso-
tropic charged state. The rotation will be included later as a
perturbation on top of this background. The simplest setup
satisfying these requirements is a black brane with time
dependent blackening factor. In Eddington-Finkelstein
coordinates we have

ds20 ¼ −fðv; rÞdv2 þ 2drdvþ r2δijdxidxj: ð2:10Þ

The boundary is located at r → ∞ and the apparent horizon
at some r ¼ rH which is the largest real root of fðv; rÞ. For
numerical convenience we work with the variable u ¼ 1=r.
Our background solution should also have a nonvanish-

ing chemical potential. We therefore take the field strengths
to be of the form Fuv ¼ −uq and F5

uv ¼ −uq5. We will
work in the radial gauge Au ¼ Vu ¼ 0. The equations of
motion (2.3) and (2.4) reveal that charges can only vary
with time via an external source

2κ2JuðnfÞ ¼ − _qu5; 2κ2Ju
5;ðnfÞ ¼ − _q5u5 ð2:11Þ

where we represent v derivatives with a dot. AVaidya-like
solution for the blackening factor is found analytically5:

fðv;uÞ ¼ 1

L2u2
−
1

4
k2 − 2mðvÞu2 þ 1

12
½qðvÞ2 þ q5ðvÞ2�u4;

ð2:12Þ4We note that there are additional terms in the holographic
stress tensor depending on the extrinsic curvature stemming from
the gravitational Chern-Simons term. These terms have been
identified in [31,40]. They contribute to the chiral magnetic
response in the energy-current. One can check that these terms do
not contribute to the chiral vortical response in our setup.

5In a model with spontaneous translation symmetry breaking
the parameter “k” does not appear explicitly in the blackening
factor [37].
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where we can set L to 1 without altering the physics.
The Einstein equations are sourced by the bulk energy-
momentum tensor of infalling null dust

k2TðnfÞ
vv ¼ 3 _mu3 −

q _q
4
u5 −

q5 _q5
4

u5: ð2:13Þ

The chemical potential of the field theory is dual to the
temporal component of thegauge field at the boundaryminus
its value at the apparent horizon, whereas the temperature is
that of the black brane. Hence,

μ ¼ q
2
u2H; μ5 ¼

q5
2
u2H ð2:14Þ

and

T ¼ 1

2π

�
−
u2

2
∂ufðv; uÞ

�����
u¼uH

¼ 1

4π

�
k2

2
uH þ 8mu3H −

1

2
ðq2 þ q25Þu5H

�
; ð2:15Þ

wherewe have used that by definitionfðv; u ¼ uHÞ ¼ 0.We
stress that these expression can be interpreted as chemical
potentials and temperatures only in equilibrium. It is never-
theless useful to define them in this way since the form of the
background metric and gauge fields is suggestive of instan-
taneous thermalization. We can then compare the hydro-
dynamic response based on these definitions take it as a
benchmark for the actual out-of-equilibrium response.6

B. Linear perturbation regime

The chiral vortical effect is a current generated in a
rotating system as a consequence of the chiral anomaly.
Modeling it in holography requires to encode rotating
boundary conditions in the gravity dual. This has been
successfully achieved via the inclusion of a mixed time-
spatial component in the metric, corresponding to slowly
rotating objects which induce by themselves rotation
through the frame dragging effect. In particular we intro-
duce a gravito-magnetic field via

dv → dvþ ϵA⃗gðv; x; y; zÞdx⃗ ð2:16Þ

in (2.12). We choose the vector to be A⃗g ¼ ðBgy; 0; 0Þ
without loss of generality. In the gravito-magnetic formal-
ism A⃗ is regarded as a gauge field and our choice generates
a gravito-magnetic field B⃗g ¼ ð0; 0; BgÞ. One can construct
a precise map to a classical rotating system through 2ω⃗ ¼
B⃗g with ω⃗ the angular velocity. Upon the above shift, the
metric turns into

ds2¼ ds20−2ϵfðv;uÞBgydvdx−
2ϵ

u2
Bgydudxþ�� � ð2:17Þ

The dots containing higher order terms in ϵ. Let us now
switch on the minimal set of fluctuations required by
consistency.
A charged rotating system will by itself present a current

following the movement of the particles due to that
rotation, even if no anomaly is present, and a magnetic
field should be induced perpendicular to the plane of
rotation. This classical behavior can be parametrized with
a perturbation in the gauge fields

δAx ¼ ϵBgyaxðv; uÞ; ð2:18Þ

δVx ¼ ϵBgyvxðv; uÞ: ð2:19Þ

We have used the notion of classical physics to factor out
the y dependence.
We also count with the ad hoc knowledge that a rotation

on the x–y plane combined with the pure chiral anomaly
should generate a time and energy dependent current in the
z direction, which can be accounted for with another
perturbation of the gauge field and of the metric.

δAz ¼ ϵazðv; uÞ; ð2:20Þ

δVz ¼ ϵvzðv; uÞ; ð2:21Þ

δgvz ¼ ϵ
hðv; uÞ
u2

: ð2:22Þ

Finally, one should notice that this modification of space-
time prevents us from giving the simple profile to the scalar
field X3 that we were considering before. The condition is
too stringent and one should allow the field to vary with v
and u at OðϵÞ.

δX3 ¼ ϵZðv; uÞ: ð2:23Þ

Recall that the scalar fields were breaking translation
invariance and thus effectively damping momentum
through a homogeneous distribution of impurities. The
inclusion of this new term necessarily has a different effect,
as it does not modify the explicit breaking. The perturbation
may be seen then as the effective dynamics for the
impurities in the presence of rotation. This is far from a

6We note that we will only study the apparent horizon in our
setup. The event horizon reacts acausally to the infalling matter
such that its precise location will depend even on events that
might happen long after our numerical simulations have stopped.
A study of causal response and its relation to apparent and event
horizons can be found in [41]. In our case energy and charge react
instantaneously. Therefore effective temperatures and chemical
potentials can be defined through the location of the apparent
horizon. On the other hand we will show that the anomaly
induced current has a significant delay in its response.
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rigorous statement but it is nice to have an intuitive picture
of the situation.
Combining this information with the equations of

motion for the x component of the gauge fields we find
a simple solution for δAx and δVx, namely

δAx ¼ −
u2q5
2

ϵBgy; ð2:24Þ

δVx ¼ −
u2q
2

ϵBgy: ð2:25Þ

Allowing the charges to vary with time requires once again
the inclusion of external sources:

2κ2Jx
5;ðnfÞ ¼

_q5u5

2
ϵBgy; ð2:26Þ

2κ2JxðnfÞ ¼
_qu5

2
ϵBgy: ð2:27Þ

The vx component for the gravitational field equations are
sourced by the external energy-momentum tensor

κ2TðnfÞ
vx ¼ ϵBgy

�
4 _mu3 −

q5 _q5
4

u5 −
q _q
4
u5
�
: ð2:28Þ

We interpret these as the effects on frame dragging on the
infalling null dust. This is not surprising, in order to source
a Vaidya type metric with rotation the infalling null dust
also has to be corotating.
After these preliminaries the dynamics of the system can

be obtained. Substitution of previous results gives the
following set of differential equations

d0Z −
3

2u
dZ þ 3uf

4
Z0 þ 3k

2u
h −

k
2
h0 ¼ 0; ð2:29Þ

d0vz−
1

2u
dvzþ

uf
4
v0zþ

1

2
uqh0−4αBgu4qq5¼ 0; ð2:30Þ

d0az −
1

2u
daz þ

uf
4
a0z þ

1

2
uq5h0

− 2αBgu4ðq2 þ q25Þ − Bgλu½ðu2fÞ02�0 ¼ 0; ð2:31Þ

d0hþ 5uf þ u2f0

2
h0 − q5u3daz − qu3dvz − kdZ þ k2h

− Bgλu5q5½−12_f − 12u _f0 − 2u2 _f00 þ ufð12f þ 24uf0 þ 10u2f00 þ u3f000Þ�
þ 2Bgλu5 _q5½6f þ 6uf0 þ u2f00� ¼ 0; ð2:32Þ

supplemented with the time independent constraint

−
�
h0

u3

�0
þq5a0zþqv0z−

k
u3

Z0

−2Bgq5λu½12fþ24uf0 þ10u2f00 þu3f000� ¼ 0: ð2:33Þ

Derivatives with respect to u are denoted with a prime.
Time derivatives have been replaced by a directional
derivative on the direction of ingoing null geodesics that
simplifies the form of the equations of motion. In particular

d ¼ ∂v −
u2f
2

∂u; ð2:34Þ

and accordingly

d0 ¼ ∂2
vu −

u2f
2

∂2
uu − uf∂u −

1

2
u2f0∂u: ð2:35Þ

The whole system of equations and constraints needs to be
consistent. One can check that

− _q5a0z − _qv0z ¼ dðeqII.33Þ − ∂u

�ðeqII.32Þ
u3

�

− ∂u

��
u2f
2

�
ðeqII.33Þ

�
−
2k
u3

ðeqII.29Þ;

ð2:36Þ

which should vanish exactly on shell. In general this
can only happen if both charges are constant in time. As
in [20] we will from now on restrict to solutions with
_q ¼ _q5 ¼ 0.

III. NEAR EQUILIBRIUM CHIRAL
VORTICAL EFFECT

The equilibrium configuration will provide us with the
initial profiles of the fields. We shall assume that the system
is originally at thermal equilibrium and perform a quench in
the mass. The evolution of the system can be compared to
that of hydrodynamics, so that deviations from it signal out
of equilibrium behavior.
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A. Hydrodynamics

The constitutive relations for the currents are

Jμ ¼ ρuμ þ σωμ; ð3:1Þ

Jμ5 ¼ ρ5uμ þ σ5ω
μ; ð3:2Þ

Tμν ¼ ðϵþ pÞuμuν þ pημν þ ξðuμων þ uνωμÞ: ð3:3Þ

Usually, in relativistic hydrodynamics, there is an ambi-
guity in the choice of frame, which gets mapped into an
ambiguity in the choice of boundary conditions in holog-
raphy. However, regularity of the solution in the apparent
horizon imposes one more condition: the metric perturba-
tion hðv; uÞ has to vanish there. The system chooses thus a
preferred frame. This only happens when k ≠ 0, so we can
state it is a consequence of momentum relaxation in this
model [31]. In a completely analogous way this also
happens in a purely hydrodynamic model with impurities
[30]. Physically there is a preferred frame in which the
impurities are at rest. In this frame the coefficients are

σ ¼ 16αμμ5; ð3:4Þ

σ5 ¼ 8αðμ2 þ μ25Þ þ 64π2λT2; ð3:5Þ

ξ ¼ 16

3
αμ5ð3μ2 þ μ25Þ þ 128π2λμ5T2: ð3:6Þ

Both axial and energy currents acquire a quadratic temper-
ature dependence directly related to the mixed gauge-
gravitational anomaly. Deviations from these 1-point
functions will be taken as signature of out of equilibrium
dynamics.
The leading terms in the hydrodynamic expansion also

deserve further attention. These describe a convective flow
which is subject to momentum relaxation so long as k ≠ 0.
Consequently, its contribution eventually fades and the
final equilibrium state is described in terms of (3.4)–(3.6)
only. The situation dramatically changes for k ¼ 0, i.e. for
unbroken translation symmetry. Now momentum is con-
served and the convective flow arising from the dynamics
of the system will not vanish, modifying the near equilib-
rium evolution and, in particular, the final equilibrium state.
We can exploit momentum conservation to find the fluid
velocity. We specialize here to the case where the rotation is
around the z axis:

hT0ziin ¼ ξinω
z ¼ ðϵþ pÞvz þ ξωz ¼ hT0zi; ð3:7Þ

so that

vz ¼
ωz

ðϵþ pÞ ðξin − ξÞ: ð3:8Þ

Therefore, both the axial and vector currents become

Jzð5Þ ¼
ρð5Þωz

ðϵþ pÞ ðξin − ξÞ þ σð5Þωz: ð3:9Þ

Finally, we resort to the holographic dictionary to deter-
mine

ϵ ¼ hT00i ¼ 6m; ð3:10Þ

p ¼ hTiii ¼ 2m; ð3:11Þ

ρð5Þ ¼ hJ0ð5Þi ¼ qð5Þ: ð3:12Þ

B. Boundary behavior

According to the holographic dictionary the vacuum
expectation values of the operators in the dual field theory
can be read off from the asymptotic expansion of the AdS
bulk fields near the boundary (u → 0). The leading terms in
this expansion are interpreted as the sources for the
operators. The expectation values of the operators are
related to the subleading terms in the expansion. In our
problem we are only interested in the expectation values of
the currents, and we do not want our operators to be
sourced. Therefore we set the leading boundary modes to
zero. Doing the asymptotic analysis we find:

vz ≃ V2u2 þ _V2u3 þOðu4Þ; ð3:13Þ

az ≃ A2u2 þ _A2u3 þOðu4Þ; ð3:14Þ

Z ≃ Z4u4 þ
5 _Z4 − kh4

5
u5 þOðu6Þ; ð3:15Þ

h ≃ h4u4 −
4kZ4

5
u5 þOðu6Þ: ð3:16Þ

Besides, from the constraint one finds _h4 ¼ −kZ4, which is
related to the non-conservation of the energy current for
k ≠ 0. This information can now be put into (2.7)–(2.9) to
find

hJzi ¼ 2V2ϵ; ð3:17Þ

hJz5i ¼ 2A2ϵ; ð3:18Þ

hTvzi ¼ −4h4ϵ: ð3:19Þ

The subleading modes are indeed giving us the expectation
values of the operators. Our goal then reduces to find the
time evolution of the asymptotic coefficients.
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C. Equilibrium in holography

The anomaly induced equilibrium response in hologra-
phy with momentum relaxation has been studied in [31].
The response coefficients are precisely given by (3.4)–(3.6)
and completely determined by chemical potentials and
temperature and no explicit dependence on the momentum
relaxation parameter k.

IV. OUT OF EQUILIBRIUM CVE

In all the cases we studied a quench on the mass of the
form

m ¼ m0 þ
mf −m0

2

�
1þ tanh

�
v
τ

��
; ð4:1Þ

with the masses conveniently chosen so that at initial and
final times the apparent horizon lies at uinh ¼ 1 andufinh ¼ 0.8
respectively. As for the topological Chern-Simons couplings
we choose them so that they reproduce the chiral anomaly for
a quantum field theory with Nf Dirac fermions, those are
α ¼ Nfð16π2Þ−1 and λ ¼ Nfð384π2Þ−1. At the linear level,
the system is only sensitive to the ratio α=λ, as rescalings of
both coefficients at a time can be reabsorbed into Bg. For
practical purposes we can effectively set α ¼ Bg ¼ 1

and λ ¼ 32=768.

A. Dependence on translation symmetry breaking

In this section we keep both charges fixed to unity and
study the evolution of the currents for different values of the
momentum relaxation parameter k. The quench parameter
is set to τ ¼ 0.05. The results for vector, axial, and energy
current are shown in Figs. 1,2 and 3 respectively.

When translation symmetry is not broken the convective
flow does not dissipate. As a consequence, the response of
the system in the final state is the sum of a convective term
due to flow and the anomalous contribution. With trans-
lation symmetry breaking the flow will eventually stop and
the currents take the values determined by the anomalies.
As functions of the translation breaking parameter k the
vector and axial currents (Figs. 1 and 2 respectively) show
two qualitatively different regimes. For small k values the

FIG. 1. Momentum relaxation dependence for the vector
current. We fix q ¼ q5 ¼ 1.0 and τ ¼ 0.05. The dashed lines
show the response due to the anomaly only while the continuous
line is taking into account the effect of collective flow in the
momentum conserving case k ¼ 0. We can observe a transition
between oscillating and purely damped behavior.

FIG. 2. Momentum relaxation dependence for the axial current.
We plot the axial current normalized to its initial value. We fix
q ¼ q5 ¼ 1.0 and τ ¼ 0.05. Dashed lines show the anomaly
response only and the continuous black line is the hydrodynamic
result taking flow into account. Again there is a transition
between oscillating and continuously decreasing behavior.

FIG. 3. Momentum relaxation dependence for the energy
current. We fix q ¼ q5 ¼ 1.0 and τ ¼ 0.05. The current is plotted
normalized to its initial value, so that one sees the percentage of
energy current that remains at each time. As expected the
response in the momentum preserving case k ¼ 0 is trivial, the
anomalous response is completely compensated by the dissipa-
tive flow. For k ≠ 0 the flow eventually dissipates and only the
anomalous nondissipative response is left over for large times.
Contrary to the responses in the charge currents there is no regime
of oscillating behavior.
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current has a local minimum, raises again and then
decreases to its equilibrium value. For larger k values
the time evolution of the current is monotonically decreas-
ing to the equilibrium value. As wewill see, the study of the
quasinormal modes in Sec. IV F also suggests a transition
between two regimes. Around k ≃ 1.5 both currents
develop a plateau before finally relaxing. We interpret this
difference as a sign that no significant flow is built up for
larger k values.
For the axial and energy currents the quadratic depend-

ence on temperature has important consequences. Since in
our setup we only inject energy but charge and axial charge
are conserved it means that the corresponding chemical
potentials have to decrease. The temperature also depends
on the momentum relaxing parameter k and therefore the
initial value will now also depend on it. In order to account
for this we normalize the plots for axial and energy currents
to their respective initial values.
Let us concentrate now on the purely anomalous axial

response denoted by the dashed lines in Fig. 2. The axial
current shows a tiny minimum in equilibrium shortly before
the quench is finished. The reason is that we have
increasing temperature (the infalling matter at the horizon
enters the black brane raising its temperature) and decreas-
ing chemical potentials. The rate at which these two change
is different, leading to the observed behavior. For the actual
response including flow and its relaxation the picture is
quite different. We see that the response is much slower and
for the momentum preserving case the anomalous contri-
bution is partially compensated by the flow. Again we see
the transition from oscillating behavior to continually
decreasing. In the actual response, just as in [20], we have
two different timescales. The first one governs the quench
evolution, whereas the second one is linked to dissipation
of the flow when momentum relaxation is present.
Now let us analyze the response in the energy current 3.

First we notice that in the purely anomalous response
(dashed lines) the small minimum before equilibration
appearing in the axial current is absent for the energy
current. This is related to the particular choice of charge
values. We can check that indeed the minimum appears for
a different choice of charges (see Fig. 13). With no
momentum relaxation the response is trivial as expected.
Once translation symmetry is lost, this current relaxes faster
for increasing k up until k ≃ 2.4. After that it bounces back
and relaxes later. As we will see this is also in agreement
with the quasinormal mode analysis.

B. Quench dependence

In this section we keep both charges fixed to unity and
study how different quenches affect the currents. What one
expects to find is that for slower quenches, i.e. larger values
of τ, the system never goes far from thermodynamic
equilibrium at each time step and the result will approach
the hydrodynamic description. For faster quenches it

should deviate more and more and it is not clear a priori
how it behaves in the limit where the quench is instanta-
neous: τ ¼ 0. This will be clarified when we study the
delay in the build up of the anomalous current. Our results
are shown in Figs. 4 and 5 for the momentum conserving
case and in Figs. 6, 7 and 8 with momentum relaxation.
We first discuss the momentum conserving case. The

response pattern for vector and axial currents turn out to be
quite different. The vector current never crosses below the
pure anomalous result that would be obtained by ignoring
the effect of the convective flow. In contrast the axial
current goes considerably below this value. Note that is also
different from what was found for the CME in [20]. The

FIG. 4. Quench dependence for the vector current with con-
served momentum. We fix q ¼ q5 ¼ 1.0 and k ¼ 0.0. We
observe that the slower the quench, the closer the current is to
equilibrium. Momentum conservation induces a flow in the
system which lifts the final stationary state.

FIG. 5. Quench dependence for the axial current with con-
served momentum. We fix q ¼ q5 ¼ 1.0 and k ¼ 0.0. The
interplay between the axial and gravitational anomalies leads
to an absolute minimum in the current shortly before the quench
has finished. This effects gets amplified out of equilibrium.
Momentum conservation induces a flow in the system which lifts
the final stationary state.
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obvious difference is that the axial current receives the new
contribution due to the gravitational anomaly.
We have also studied the corresponding behavior with

momentum relaxation. In fast quenches the currents
(Figs. 6 and 7) almost reach the equilibrium value with
flow before starting to relax toward the purely anomalous
equilibrium. This is most prominent in the vector current
whereas for the axial current the behavior is oscillatory
even for slow quenches. Again this has to be attributed to
the presence of the gravitational anomaly.
Finally the energy current is shown in Fig. 8. The current

relaxes down to the pure anomaly induced value in
monotonous fashion.

C. Charge dependence

Once we have decided to perform a quench in the mass,
the parameter space of the model reduces to ðτ; k; q; q5Þ.
More generically we should also include the Chern-Simons
couplings in the parameter space, but we have decided to sit
on the point where those reproduce the chiral anomaly as
we explained at the beginning of this section. Having
studied the effect of k and τ, we will now explore the
behavior for different charges. The results are shown in
Figs. 11, 12 and 13. We begin by discussing the limiting
configurations. First of all, setting q5 ¼ 0 one can check in
the equations of motion (2.28)–(2.32) that all the pertur-
bation except az decouple and can be consistently set to

FIG. 7. Quench dependence for the axial current. We fix q ¼
q5 ¼ 1.0 and k ¼ 1.0. Again the equilibrium peaks get amplified.
Contrary to the vector current, even the slow quench seems to get
close to the stationary state with convective flow.

FIG. 9. Regions of the parameter space which lead to higher or
lower final value of the axial current as compared to its initial
value. The black line correspond to the limit where both values
are equal. The upper half region give a final axial current below
the initial value. Accordingly, in the lower half region one finds
the final axial current above its initial value.

FIG. 8. Quench dependence for the energy current. We fix q ¼
q5 ¼ 1.0 and k ¼ 1.0. The faster the quench the more the current
deviates from equilibrium.

FIG. 6. Quench dependence for the vector current. We fix q ¼
q5 ¼ 1.0 and k ¼ 1.0. Now that momentum is no longer
conserved, the current takes more time to relax. In fast quenches,
say τ ¼ f0.05; 0.2g, the current almost reaches the lifted equi-
librium state of Fig. 4; after that momentum starts to relax. For the
slow quench, the characteristic time for momentum relaxation is
smaller than the timescale of the quench and so it dominates the
evolution.
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zero. Only the axial current is present. On the other hand for
q ¼ 0 only vz decouples.
As we discussed previously, there is in general an

interplay between an increasing temperature and a decreas-
ing chemical potential which is particularly relevant for the
axial current. Already from equilibrium (3.5) we observe
that one can have a final state with less or more current than
the original one depending on the relative strength of both
terms involved, which is determined by the point we are
sitting on the parameter space. In Fig. 9 we show the
regions on the parameter space that lead to each behavior.
The black limiting line corresponds to configurations in
which the initial and final currents are the same:

hJz5iin ¼ ðq2 þ q25Þ þ
1

12

�
4−

k2

2
−
1

6
ðq2 þ q25Þ

�
2

¼ 256

625
ðq2 þ q25Þ þ

1

12

�
5−

2k2

5
−

512

9375
ðq2 þ q25Þ

�
2

¼ hJz5iend; ð4:2Þ

where we have already substituted the values of
α; λ; Bg; μð5Þ and T at the initial and final states. The
previous equation is not valid for k ¼ 0, as one then needs
to include the convective flow.
Sitting on the upper (green) half of the plane one finds a

final axial current below its initial value. Accordingly, the
lower (pinkish) region will give a final axial current above

FIG. 11. Vector current for various charges. We fix τ ¼ 0.05
and k ¼ 1.0. We observe a transition between two regimes,
distinguishable by the slight bounce on the current, or equiv-
alently by the existence of a local minimum during the
evolution.

FIG. 10. Regions of the parameter space which lead to higher or
lower final value of the energy current as compared to its initial
value. Contour lines correspond to the limiting regions for fixed
k. The inner regions produce enhancement of the energy current,
whereas the outer regions lead to decrease of the energy current.

FIG. 12. Axial current for various charges. We fix τ ¼ 0.05 and
k ¼ 1.0. We pick values on the parameter space for the three
different regions of Fig. 9, where the current globally diminishes,
increases or maintains its initial value.

FIG. 13. Energy current for various charges. We fix τ ¼ 0.05
and k ¼ 1.0. We plot the energy current normalized to its initial
value. The interplay between the axial and gravitational anoma-
lies allows for configurations where the final value of the energy
current is above the initial value.
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its initial value. Similarly, Eq. (3.6) also enjoys the inter-
play between the axial and gravitational anomaly. We can
play the same game as before to find configurations where
the final state has more energy current than its initial state.
The regions of the parameter space displaying each
behavior are shown in Fig. 10.

D. The role of the gravitational anomaly

We have already seen that the inclusion of the gravita-
tional anomaly gives a much richer structure, especially for
the axial current. Even though in practice one has to deal
with all anomalies at once, theoretically one can study the
effect of each anomaly separately simply setting the
remaining topological couplings to zero. The form of
the equations of motion at linear order further implies that
the currents can be constructed as the sum of the solutions
only with α and only with λ. In the first case the equations
of motion show that both axial and vector currents display
similar behaviors, and no new interesting features are
observed. Thus we focus in the situation where only the
mixed gravitational anomaly is active. From the equilib-
rium predictions we know that the axial current can only
increase, for the temperature is also increasing. On the
contrary, the vector current vanishes identically in equilib-
rium. Any nontrivial response in the vector current must be
interpreted as a sign of collective flow of the medium. The
equations of motion reveal that it indeed couples to the
energy current which is sensitive to the gravitational
anomaly. We study the effect of the gravitational anomaly
for different values of the quench time and for different
values of the charges.
In Fig. 14 we show the response of the vector current due

to the gravitational anomaly. Even though the purely
anomalous contribution vanishes identically, the dissipative
convective flow is expected to participate, giving rise to a
nontrivial vector current. The upper plot shows dependence
with the quench parameter. The vector current gains
relevance for faster quenches. As the full response is the
sum of both anomalies separately, we can compare with
Fig. 6. The contribution from the gravitational anomaly is
then two orders of magnitude below the total value. The
lower plot of Fig. 14 shows dependence with both charges.
In all of them we fix k ¼ 2 except for one of the currents,
where we fix k ¼ 0. The momentum conserving case
allows us to explicitly see the contribution of the convective
flow to the vector current. As a consequence we end up
with a nontrivial value for this current. Notice also that the
vector current is symmetric under the exchange q ↔ q5. In
equilibrium this is a trivial statement, whereas out of
equilibrium the situation is more delicate. The equation
of motion driving the dynamics of the vector current (2.29)
manifestly shows this symmetry except for the qh0 con-
tribution. We should take a closer look at the dynamical
equation for h (2.32). The constraint (2.33) allows us to
replace qdvz þ q5daz in (2.32). Along with the dynamical

equation for Z (2.28) this leaves us with a system of
equations for h and Z whose source is proportional to q5.
Thus, we can rescale both fields as h ¼ q5h̃ and Z ¼ q5Z̃
so that the prefactor q5 cancels out and the equation of
motion for the tilde functions are now symmetric under the
exchange of charges. Therefore qh0 ¼ qq5h̃

0 and the
symmetry in the vector current is manifest. The previous
discussion remains valid even when the axial anomaly is
active (α ≠ 0). The reason why the symmetry does not
show up with axial anomaly is that the initial equilibrium
configuration breaks it [see Eq. (3.6)].
In Figs. 15 and 16 we show the corresponding results for

the axial and energy currents respectively. The axial

FIG. 14. Vector current arising from the gravitational anomaly.
We fix both charges to unity in the upper plot, τ ¼ 0.05 for the
lower plot, and k ¼ 2.0 for both of them. In the lower figure we
have also included one case with k ¼ 0, which shows that the
vector current response to the gravitational anomaly is mainly
driven by the convective flow. As predicted, a vector current
builds up even though the purely anomalous equilibrium pre-
diction is that it should vanish at all times. The magnitude of this
effect is very sensitive to the values of the charges. It is also
affected by the value of the quench parameter in the usual
manner, this is, the faster the quench the more it deviates from
equilibrium. When momentum is conserved we end up with a
nontrivial value for the vector current.
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“gravitational” current is again symmetric under q ↔ q5
but only in equilibrium. Out of it, the deviation from
equilibrium is more significant for configurations with
q5 > q. Finally, the “gravitational” energy current is also
symmetric under the interchange of charges in and out
of equilibrium but only once one has divided by its
initial value.

E. Response delay

Another feature that the chiral vortical effect shares with
the chiral magnetic effect in this construction is the delay
for the onset of response after the quench. We follow the
same criteria of [20] for the sake of comparison and
compute the delay for the vector current. In particular,
the quench is considered to be finished when the value of
4αμμ5Bg with μð5Þ as in (2.14) deviates less than 0.1% from
the final equilibrium value. The time at which the quench

finishes is denoted by tquench and can be computed
analytically. Analogously, the build-up in the current is
considered to start when its value deviates more than 0.1%
from the initial value. We denote this time tbuild up. The
delay is defined thus as the difference between those two
instants: Δ ¼ tbuild up − tquench. Here we also expect the
delay to depend mainly on the momentum relaxation k and
the quench parameter τ.
The results obtained are shown in Figs. 17 and 18. Not

very surprisingly, the result is qualitatively very similar to
that for the CME obtained in [20]. We observe that Δ
approaches a finite well defined value for τ → 0. For high
enough values of τ we can find that the delay becomes
negative. This is an artifact of our definition and simply
means that the current starts to build before the quench has
finished. While the overall behavior is very similar for CVE
and CME the physical consequences in heavy ion collisions
might be quite different. The magnetic field is generally
believed to be very short lived. On the contrary vorticity is

FIG. 16. Energy current arising from the gravitational anomaly
normalized to its initial value. We fix both charges to unity in the
upper plot, τ ¼ 0.05 for the lower plot, and k ¼ 2.0 for both of
them. The effect of the gravitational anomaly is to increase the
energy current. The normalized current is also symmetric under
q ↔ q5 in and out of equilibrium, even though this is not true for
the unnormalized one.

FIG. 15. Axial current arising from the gravitational anomaly.
We fix both charges to unity in the upper plot, τ ¼ 0.05 for the
lower plot, and k ¼ 2.0 for both of them. As temperature is
increasing in our construction, so does the axial current. We
observe that even though the equilibrium current is symmetric
under q ↔ q5, out of equilibrium this is no longer true. Bigger
axial charge results in a behavior that departs more significantly
from equilibrium.
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an intrinsic property of the quark gluon plasma and
therefore is likely to be present during all of its lifetime.

1. Theoretical estimate

A natural question to ask is whether (and how) one can
extract the time delay in the build up of the current directly
from the equations of motion, or more generically, from the
model we have set up. To understand the origin of the delay
we shall assume the quench is instantaneous (tquench ¼ 0).
We are quenching the mass of the black brane, or
equivalently the blackening factor of the metric.
Obviously, this is an object that lives in the bulk, whereas

the (holographic) currents naturally live on the boundary.
Besides, as the mass enters the blackening factor through
mu2, the boundary (u → 0) cannot feel the change instan-
taneously. Thus, if we change abruptly m at some time vq,
the current should not immediately change. The change in
m is however relevant in the bulk, so the question is how
much time does it take for this information to reach the
boundary. Intuitively this is what gives tbuild up. In AdS,
only massless particles can get to the boundary in a finite
time vb, and so the relevant piece of information should
travel along a null geodesic. This allows us to find vb as a
function of the depth u. Specifically,

vbðuÞ ¼ −
Z

0

u

2

u2�fðu�Þ
du�; ð4:3Þ

where we have assumed that the quench is instantaneous
and that we are only interested in vb after the quench has
finished, so that the blackening factor remains constant
in time.
The definition of the delay is somewhat arbitrary. This

arbitrariness translates into the choice of u in (4.3). We can
state that when a photon located at some ui reaches the
boundary, enough information has arrived to produce the
desired change in the current. The point ui should not be
taken near the boundary because the change in fðv; uÞ is
not significant, and nor should it be near the horizon, as by
the time the signal arrives at the boundary the current must
have felt the change already. We can pick ui so that the
delay matches that of Fig. 18 for k ¼ 0, τ → 0. This would
give ui ≃ 0.53. The relative change produced in the black-
ening factor is then

δf
f

≡
���� ffin − fin

fin

����
ui;k

¼
���� −2ðmfin −minÞu2i
u−2i − 1

4
k2 − 2minu2i þ 1

12
ðq2 þ q25Þu4i

���� ≃ 0.11 ð4:4Þ

where the subscripts fin and in denote the final and initial
states respectively and we have evaluated the expression at
ðui; kÞ ¼ ð0.53; 0Þ. We keep δf=f fixed to 0.11, as this
value is the one producing the desired 0.1% deviation in the
current. Consequently the integration point ui must depend
on k to satisfy this constraint.
This is enough to find the k-dependence of the delay

when the quench is instantaneous. The result is shown
again in Fig. 17. The numerical agreement is remarkable,
even though the estimation worsens for increasing k.
The dependence of the delay with τ is a bit trickier. As

soon as τ ≠ 0 we must also have tquench ≠ 0. We compute
tquench analytically from its definition. On the other hand
tbuild up is also present. We compute it through (4.3), which
means that we are neglecting the effect of a finite τ in

FIG. 18. Time delay as a function of the quench parameter τ for
fixed k ¼ 0. The “instantaneous quench approximation” we are
using seems enough to reach agreement between the analytical
estimate and the numerical data. For higher values of τ the
approximation ceases to work satisfactorily and one needs to
include the effects of the smooth quench.

FIG. 17. Time delay as a function of the momentum relaxing
parameter k for fixed τ ¼ 2 × 10−4. In the analytical estimate, the
integration point for each k has been chosen so that the relative
change in the blackening factor is δf=f ¼ 0.11. The estimation
deviates for increasing k.
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tbuild up.
7 As a consequence, our estimation is reliable for

fast quenches only. The result is shown in Fig. 18. Both
numerical and analytical results show remarkable agree-
ment in all the region where the delay stays positive, i.e. the
current does not build up before the quench is finished.

F. Quasinormal modes

The linear dependence of the equations of motion on the
fields makes it reasonable to think that the temporal
evolution may be well described in terms of the quasinor-
mal modes, which are the intrinsic excitations of the
system. However, the explicit time dependence on the
blackening factor hinders this task, as the nonlinear modes
stemming from it should be included. A reasonably simpler
question to ask is how fast a perturbation to the system will
decay once we are at the final equilibrium state. In
holography, the quasinormal modes are defined as the
poles of the Green functions. We find them implementing
numerically the determinant method [42]. In short, one
replaces ∂v ¼ −iω in the equations of motion with Bg ¼ 0
(because we are looking for intrinsic excitations). Then one
finds linear independent solutions, arranges them in a
matrix and solves for the frequencies that give a vanishing
determinant on the boundary. We compute the QNM in the
conventions relevant for the final state and we set
q ¼ q5 ¼ 1.0. For this choice of charges at k ¼ 3.5 the
horizon becomes extremeness with vanishing temperature.
Therefore we stop our analysis there.
As the system of equations to solve is coupled, the

quasinormal modes will be collective excitations, affecting
all the fields the same in principle. However, in our
particular case one can redefine the fields as

ϕ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ q25

q ðqaz − q5vzÞ

ϕ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ q25

q ðq5az þ qvzÞ: ð4:5Þ

The equations for the quasinormal modes are then

uðufϕ0
1Þ0 − iω

�
ϕ1

u
− 2ϕ0

1

�
¼ 0;

uðufϕ0
2Þ0 − iω

�
ϕ2

u
− 2ϕ0

2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q25

q
uh0 ¼ 0;

u3
�
1

u
fZ0

�0
− iω

�
3
Z
u
− 2Z0

�
− 3k

h
u
þ kh0 ¼ 0;

h00 − 3
h0

u
þ kZ0 − u3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q25

q
ϕ2 ¼ 0: ð4:6Þ

Clearly ϕ1 decouples from the system, so independent
quasinormal modes can be defined for it. They are shown in
Fig. 19. Around k ≃ 2.3 two branches of modes collide and
we keep track only of the long-lived ones. The other field

ϕ2 stays coupled and an effective charge qeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ q25

q
can be defined for it. The collective quasinormal modes are
depicted in Fig. 20. We have focused only in the modes
with lowest imaginary time in absolute value, which are the
ones governing the late time physics. Now the result is
completely analogous to the excitations found for the CME.
As a matter of fact, under the redefinitions (4.5), the system
of equations for the quasinormal modes in the CME and
CVE coincide. Therefore the quasinormal modes spectrum
is essentially the same as in [20] up to a slightly different
value of the effective charge. In Figs. 21 and 22 we use the

FIG. 19. Quasinormal modes of the field ϕ1 for different values
of k. Around k ¼ 2.3, two branches of modes intersect one
another. We keep the modes with lowest imaginary part in
absolute value and shadow those which become less important.

FIG. 20. Collective quasinormal modes—those defined for ϕ2,
Z and h—for different values of k. We observe that all modes
have zero real part.The imaginary part reaches a minimum value
at k ≃ 2.5, implying that the system relaxes faster for this
particular k.

7Including the effect of τ ≠ 0 in tbuild up reduces to solve the
null geodesic equation for a time dependent blackening factor.
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same data of Sec. IVA and plot them in a logarithmic scale
so that the description in terms of quasinormal modes
becomes more evident.
The axial and vector currents get contributions from both

collective and decoupled quasinormal modes according to
(4.5). Then the transition between the two regimes in
Figs. 1 and 2 can be understood as the decoupled mode
(Fig. 19) loosing its real part at around k ≃ 2.3. The
relaxation times also agree with the collective quasinormal
modes.

V. CONCLUSION AND OUTLOOK

We have studied the far from equilibrium behavior of the
CVE in a strongly coupled holographic quantum field
theory. While similar studies have been reported before in
the case of the CME this is the first one that concentrates
on the CVE. A summary of the results is presented in
Tables I, II and III.
One distinguishing feature of the equilibrium CVE is the

temperature dependent term in the axial current. In our
holographic model it is a consequence of the presence
of a mixed gauge-gravitational Chern-Simons term, the
holographic implementation of the gravitational contribu-
tion to the axial anomaly. This has important consequences.
In our setup we keep the charges fixed and only introduce
additional energy into the system leading to an increase
in temperature and a decrease in chemical potentials.
Depending on the charges and momentum relaxation
parameter the axial (and energy) currents can therefore
either decrease or increase.
Another important effect is that even in the absence of

the purely gauge Chern-Simons term the vector current
reacts to the presence of the gravitational anomaly. In cases
with momentum conservation this can be understood as a
convective transport due to the flow that is induced during
the non-equilibrium evolution (similar to what has been
observed in [19]). With momentum relaxation the vector
current reacts only during the nonequilibrium stages and
returns to a trivial value once equilibrium is obtained.
We have also observed a delay in the build-up of the

CVE current. This is similar to what was found in for the

FIG. 22. Current associated to ϕ2 using the data from Sec. IVA.
In agreement with the quasinormal modes in figure 20, increasing
the value of k makes the current relax earlier up until k ¼ 2.5,
after which the tendency is inverted. This is why the cases k ¼
2.4 and k ¼ 2.6 have the same slope.

TABLE I. Summary of features displayed for vector, axial and energy currents as we vary the translation symmetry breaking parameter
k. All of them relax the fastest for k ≃ 2.4.

k–Dependence
k ¼ 0 0 < k < 1.5 k > 1.5

⟶Time delay Δ

Vector current ✓ ✗ ✓ ✓ ✗ ✓
Axial current ✓ ✗ ✓ ✓ ✗ ✓
Energy current ✗ ✗ ✗ ✓ ✗ ✓

Oscillatory
behavior

Convective
flow dissipation

Oscillatory
behavior

Convective
flow dissipation

Oscillatory
behavior

Convective flow
dissipation

FIG. 21. Current associated to ϕ1 using the data from Sec. IVA.
In agreement with the quasinormal modes in figure 19, for k ≤
2.3 the currents show the characteristic ringdown related to the
real part of the leading QNM. The slopes are related to the
imaginary parts, which are the same for k ≤ 2.3 and decreases
thenceforth.
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CME [19,20]. It can be taken as a sign that the CVE is
significant only if a system is sufficiently close to (local)
equilibrium. In the case of the CME this might have
important consequences for the interpretation of experi-
mental data in heavy ion collisions due to the short lifetime
of the magnetic field. In the case of the CVE this is
probably less relevant. In the quark gluon plasma vorticity
is an intrinsic quantity and therefore will in general be
present throughout the lifetime of the plasma.
The picture that arises from this and previous studies on

anomalous transport is that CVE (and CME) are effective
only if the system is sufficiently close to equilibrium. A
very important question is therefore if and how this can be
quantified. Another important point is to go beyond the
linear response regime. For the holographic models this

means that the back reaction of the magnetic field or
vorticity onto the metric has to be taken into account. We
plan to investigate these issues in future work.
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