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We consider different ways of modifying the mass spectrum of a strongly coupled gauge theory with
confinement using the AdS=CFT correspondence. Single- and multitrace deformations are introduced,
such that the resulting theory has a mode lighter than the confinement scale. The multitrace deformation is
shown to be a possible way of achieving a light composite mode, unlike the single-trace deformation where
the light mode is an admixture of elementary and composite states.
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I. INTRODUCTION

Based on our experience with QCD, we know that the
composite states of a strongly coupled gauge theory have
masses around the confinement scale. Usually, exceptions
to this occur in the presence of an underlying symmetry as
in the case of pions. Spontaneously broken global sym-
metries might be introduced to have light states when the
symmetry is also broken explicitly. There have been
previous studies that argued the existence of a light scalar
from a five-dimensional perspective [1–3]. In this paper, we
explore alternative four-dimensional dual models for pro-
ducing scalars lighter than the confinement scale of the
theory in a simpler five-dimensional setup.
One can modify the theory with no light mode in

different ways such as coupling an elementary scalar to
a composite operator or introducing effective interactions in
the strong sector. These changes modify the mass spectrum
of the theory; however, it is not straightforward to compute
the effect due to the strong dynamics. Therefore, inspired
by the AdS=CFT correspondence [4], we can construct the
dual model in the extra-dimensional space where the
modifications of the mass spectrum are more tractable.
What is needed to have a light mode in the extra-
dimensional model is straightforward, so we try to under-
stand it from the four-dimensional perspective. In Sec. II,
we present the five-dimensional model dual to a composite
operator of a strongly coupled gauge theory with confine-
ment. In Sec. II A, we review the traditional dictionary,
where an elementary scalar is added to modify the mass
spectrum, and we discuss an alternative way of introducing

an elementary scalar for the same purpose. In Sec. II B, we
analyze the implications of an alternative dictionary that
does not include an elementary scalar. In Sec. III, we
explore the relationship between two dictionaries.

II. HOLOGRAPHY FOR A MASSLESS MODE

Consider the action for a real scalar field Φðx; yÞ,
propagating on the five-dimensional anti-de Sitter
(AdS5) background

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂MΦÞ2 − 1

2
ak2Φ2

�
; ð1Þ

where a ≥ −4 parametrizes the bulk mass and y is the
coordinate of the fifth dimension. The metric for this
background is

ds2 ¼ e−2kyημνdxμdxν þ dy2; ð2Þ
where k is the AdS curvature scale. Using the AdS=CFT
dictionary, we know that this five-dimensional field cor-
responds to an operatorO, of dimensionΔ (to be calculated
later) in the four-dimensional theory [5]. The equation of
motion derived from the variation of the action is

□Φþ e2ky∂yðe−4ky∂yΦÞ − ak2e−2kyΦ ¼ 0; ð3Þ
where □ ¼ ημν∂μ∂ν. The solution for Φ can be written in
momentum space as

Φðp; yÞ ¼ C1ðpÞe2ky
�
Jα

�
ip
ky

�
þ C2ðpÞYα

�
ip
ky

��
; ð4Þ

where ky ≡ ke−ky and α≡ ffiffiffiffiffiffiffiffiffiffiffi
4þ a

p
. C1ðpÞ and C2ðpÞ are

unknown functions that can be calculated once the boun-
dary conditions are imposed. The solution is presented in
this specific form just to be consistent with the solutions
which will be presented later. It behaves near the AdS
boundary y → −∞, as
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Φðp; yÞ → −C1ðpÞC2ðpÞ
2αΓðαÞ

π

�
ip
k

�
−α
eð2−αÞky

þ C1ðpÞ
2−α

Γð1þ αÞ
�
ip
k

�
α

eð2þαÞky; ð5Þ

which is consistent with Ref. [5]. Now, let us consider a
slice of AdS5, where the extra coordinate is compactified
on an S1=Z2 orbifold with UV and IR branes that exist at
the orbifold fixed points y0 and y1, respectively [6]. It is
customary to define a variable for the UV boundary value
of the bulk field as Φ̂ðpÞ≡Φðp; y0Þ. The solution then
becomes

Φðp; yÞ ¼ Φ̂ðpÞe2kðy−y0Þ Jαðip=kyÞ þ C2ðpÞYαðip=kyÞ
Jαðip=ky0Þ þ C2ðpÞYαðip=ky0Þ

;

ð6Þ

which minimizes the action in the bulk. Note that defining a
variable for the UV boundary value does not specify the
UV boundary condition yet. Minimizing the action on the
branes as well forces one to satisfy

½ðδΦÞ∂yΦ�y¼y0;y1
¼ 0; ð7Þ

and boundary conditions depend on whether the boundary
value is fixed, ½δΦ�y¼y0;y1 ¼ 0, or not. Usually, the IR
boundary value of the bulk field is not fixed, so the IR
boundary condition is determined using ½δΦ�y¼y1 ≠ 0. The
existence of an IR brane implies that the conformal
symmetry is broken in the four-dimensional dual theory.
While there was no mass scale in the conformal field theory
(CFT) before introducing the UV and IR branes, now the
composite states appear at the IR scale. The mass spectrum
of the theory can be computed from the AdS=CFT
correspondence. It is known that there is no massless
mode for the gauge theory described by Eq. (1) in a slice of
AdS5 [7]. The massless mode requires us to add brane
masses in the following way,

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂MΦÞ2 − 1

2
ak2Φ2

− bkΦ2½δðy − y0Þ − δðy − y1Þ�
�
; ð8Þ

where b≡ 2� α. The parameter range b < 2ðb > 2Þ is
called the −ðþÞ branch. Supersymmetry forces both brane
masses to be related to each other in this form, so it can be
generalized to different brane masses if the theory is not
supersymmetric [8]. These terms on the branes are neces-
sary to have a massless mode, so we will explore what they
imply in the four-dimensional dual theory later. The
boundary equations are modified to

½ðδΦÞð∂y − bkÞΦ�y¼y0;y1
¼ 0: ð9Þ

The term on the IR brane simply modifies the IR boundary
condition. As mentioned earlier, since we do not fix the IR
boundary value, the IR boundary condition becomes
½ð∂y − bkÞΦ�y¼y1

¼ 0. Plugging the solution (6), with this
IR boundary condition back into the action (8), the on-shell
bulk action can be written as

I½Φ̂� ¼ −
1

2

Z
d4pΦ̂ðpÞΣðpÞΦ̂ð−pÞ; ð10Þ

where ΣðpÞ ¼ e−3ky0p Fðp;y0Þ
Gðp;y0Þ and

G≡Jα

�
ip
ky

�
Yα�1

�
ip
ky1

�
−Yα

�
ip
ky

�
Jα�1

�
ip
ky1

�

F≡Jα�1

�
ip
ky

�
Yα�1

�
ip
ky1

�
−Yα�1

�
ip
ky

�
Jα�1

�
ip
ky1

�
: ð11Þ

Another useful quantity that can be computed in the five-
dimensional theory is the conjugate variable Φ̌ ¼
−δI½Φ̂�=δΦ̂. The original AdS=CFT correspondence recipe
lets us determine the n-point functions hO…Oi, for the
gauge theory from the five-dimensional theory [4,5,9].
However, for general deformations of the bulk actionR
d4pðW½Φ̌� þ φ0Φ̌=g5Þ, where g5 is an expansion param-

eter with dim½g5� ¼ −1=2, W½Φ̌� is an arbitrary function of
Φ̌, and φ0 is the four-dimensional source, we follow
Ref. [10] to compute the improved correspondence for-
mula. Let us call it dictionary I and review here briefly. The
Legendre transform of I½Φ̂�,

J½Φ̌� ¼ I −
Z

d4pΦ̂
δI

δΦ̂
; ð12Þ

can be used to construct a generating functional Sholo, from
which one can compute the mass spectrum. Reference [10]
constructs the generating functional

Sholo ¼ J½Φ̌� þ
Z

d4p

�
W½Φ̌� þ 1

g5
φ0Φ̌

�
; ð13Þ

the minimization δSholo=δΦ̌ ¼ 0 of which determines the
relationship between Φ̌ and the source φ0. Plugging the
solution for Φ̌ back into Eq. (13) results in a functional
Sholo½φ0�. The AdS=CFT correspondence can therefore be
expressed as the following relation between the four- and
five-dimensional theories,

e−ðSholo½φ0�−Sholo½φ0¼0�Þ ¼
D
e
−
R
d4p

1

ΛΔ−3
UV

φ0OE
W½O�

; ð14Þ

where ΛUV ≡ 2ky0 is the cutoff scale. This definition can
be considered as choosing an origin for the location of the
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UV brane in the fifth dimension. With this definition,
following the literature and picking y0 ¼ 0, the curvature
would obey the inequality k=ΛUV ≲ 2, in order for the
classical metric solution to be valid [11].
Let us start with no deformation of the gauge theory

other than the addition of the source term,W ¼ 0. For such
linear deformations of the theory, i.e., single-trace defor-
mations, the result of minimizing Sholo, Φ̂ ¼ −φ0=g5, is
compatible with the original AdS=CFT recipe. This results
in a trivial generating functional Sholo½φ0� ¼ I½−φ0=g5�.
Using the generating functional from the five-dimensional
theory, and noting that Sholo½φ0 ¼ 0� ¼ 0 for W ¼ 0, we
can compute the two-point functions

Λ2Δ−6
UV

δ2Sholo½φ0�
δφ0ðpÞδφ0ð−pÞ

����
φ0¼0

¼hOðpÞOð−pÞiþ �� �

−
Λ2Δ−6
UV

2g25
ΣðpÞ∼

�p2αþ�� � y1→∞P
n

a2n
p2þm2

n
finite y1;

ð15Þ

where an ¼ h0jOjφni is the matrix element for O to create
the nth composite state φn, with mass mn from the vacuum
[12,13], and … denotes the analytical or diverging terms
that we do not care about while calculating the scaling
dimension of O. For the case y1 → ∞, we only showed the
leading nonanalytical term that gives us the dimension
Δ ¼ 2þ α. The mass spectrum of the composite states
after confinement can then be found by calculating the
poles of ΣðpÞ for finite y1, which are given by the solutions
of the following equation:

Jαðmn=ky0Þ
Yαðmn=ky0Þ

¼ Jα�1ðmn=ky1Þ
Yα�1ðmn=ky1Þ

: ð16Þ

This means that the bulk field can be decomposed as a
tower of the composite states

Φðx; yÞ ¼
X∞
n¼1

φnðxÞgnðyÞ: ð17Þ

The profiles gnðyÞ that satisfy the bulk equation of motion
(3), with □φn ¼ m2

nφ
n, can be written as

gnðyÞ ¼ Nne2ky
�
Jα

�
mn

ky

�
þ κðmnÞYα

�
mn

ky

��
; ð18Þ

where Nn is the normalization constant and κðmnÞ is
determined by imposing the boundary conditions.
Consider the lightest mode in the mass spectrum coming
from Eq. (16), with mass

m1 ∼
� ky1 − branch

ky1e
αkðy0−y1Þ þ branch:

ð19Þ

Note that only the þ branch has a mode whose mass is
lighter than the confinement scale ΛIR ≡ 2ky1 since α > 0

and y0 < y1. To compute the mass spectrum for the pure
composite states, one needs to remove the UV brane,
y0 → −∞. This tells us that the þ branch had a massless
mode but it is modified by the finite UV cutoff effects. On
the other hand, the − branch never has a mode lighter than
the confinement scale. Equation (16) is equivalent to the
following boundary conditions for the profiles of the
composite states:

gnðy0Þ ¼ 0 and ½ð∂y − bkÞgnðyÞ�y¼y1
¼ 0: ð20Þ

Note that this implies a fixed UV boundary value of the
bulk field, ½δΦ�y¼y0 ¼ 0, even though the composite states
are dynamical fields with δφn ≠ 0. Since φ0 is not a
dynamical field, one needs to set it to zero at the end of
the calculations to be consistent with the boundary con-
ditions of the profiles. This calculation lets us conclude that
according to dictionary I, the action (8) with

½δΦ�y¼y0 ¼ 0 ð21Þ

is the five-dimensional dual of a four-dimensional gauge
theory with the operator O and m1 is the smallest mass
of the composite spectrum created by this operator.
Therefore, we need to modify the way we approach the
five-dimensional action to have a massless or a light mode
in the four-dimensional theory, especially for the − branch.
Note that the composite states’ nature might change after
these modifications. Now, we consider different ways of
modifying the theory for that purpose.

A. Dictionary I: ½δΦ�y= y0 ≠ 0 ⇒ φs;O

The approach to have a massless mode has been to
work with a dynamical UV boundary value instead,
½δΦ�y¼y0 ≠ 0, which means that the UV boundary condition
is modified to be

½ð∂y − bkÞΦ�y¼y0
¼ 0: ð22Þ

According to dictionary I, this means that in the four-
dimensional dual theory we introduce an elementary scalar
field φs that linearly mixes with the composite operator O.
This is also known as the single-trace deformation of the
theory,

R
d4pφsO=ΛΔ−3

UV , which means W½O� ¼ 0. Then,
the five-dimensional theory is deformed by

R
d4pφsΦ̌=g5,

and observe that this is very similar to the term that we
added to compute the two-point functions. The difference is
that now φs is a dynamical field with δφs ≠ 0 unlike the
fixed source φ0. φs mixes with the composite states, and the
mass spectrum of the theory is modified. The modified
mass spectrum can be computed by minimizing the
effective action Sholo½φs�. Minimizing the effective action,
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δSholo½φs� ¼ δSholo½φs�
δφsðpÞ δφs ¼ 0, requires ΣðpÞ to be zero

since φsð−pÞ ≠ 0, which is satisfied only for certain
momentum values. Therefore, the modified mass spectrum
Mn is given by the zeros of ΣðpÞ instead of its poles. The
zeros are given by

Jα�1ðMn=ky0Þ
Yα�1ðMn=ky0Þ

¼ Jα�1ðMn=ky1Þ
Yα�1ðMn=ky1Þ

: ð23Þ

In this case, there is a massless eigenstate, M0 ¼ 0. We
conclude that these modified mass eigenstates are admix-
tures of φs and φn. Then, the decomposition of the bulk
field should be supplemented by a new four-dimensional
field φsðxÞ, with a profile gsðyÞ that has a nonzero value on
the UV brane,

Φðx; yÞ ¼ φsðxÞgsðyÞ þ
X∞
n¼1

φnðxÞgnðyÞ; ð24Þ

where gsðyÞ also satisfies the bulk equation of motion (3),
with □φs ¼ m2

sφ
s, and it is normalized so that the kinetic

terms in the resulting four-dimensional theory are canoni-
cal. This is called the holographic basis. The new profile
gsðyÞ can also be written as

gsðyÞ ¼ Nse2ky
�
Jα

�
ms

ky

�
þ κðmsÞYα

�
ms

ky

��
; ð25Þ

where Ns is the normalization constant and ms is the mass
term for φs. The constant κðmsÞ is determined by imposing
the boundary conditions. Since φs is proportional to
Φðp; y0Þ, we expect its profile to satisfy the boundary
condition

f½∂y − ð2 − αÞk�gsðyÞgy¼y0
¼ 0; ð26Þ

from Eq. (5). This boundary condition makes sure that the
profile gsðyÞ looks like the dominant term in Eq. (5) near
the UV boundary. On the other hand, different boundary
conditions for gsðyÞ on the IR brane can be imposed, which
in turn determines the nature of the mixing between the
elementary and composite scalars.

1. IR condition I

For example, Ref. [14] implicitly picks

f½∂y − ð2 − αÞk�gsðyÞgy¼y1
¼ 0; ð27Þ

which brings the following equation for the − branch,

Jα−1ðms=ky0Þ
Yα−1ðms=ky0Þ

¼ Jα−1ðms=ky1Þ
Yα−1ðms=ky1Þ

; ð28Þ

which is the same as the − branch in Eq. (23). Therefore,
one of the solutions to this equation is ms ¼ 0. In this case,

there is only a kinetic mixing between φs and φn in the
resulting four-dimensional theory. However, for the þ
branch, Ref. [14] finds both kinetic and mass mixing.
Diagonalizing the kinetic and mass matrices, we can see
that there is a massless eigenstate ϕ0. The main conclusion
for this way of achieving a massless mode is that the
massless scalar is an admixture of elementary and
composite scalars; for example, in the − branch, we have

ϕ0 ≈N 0ðφs þ ε1φ
1 þ � � �Þ; where ε1 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb − 1Þ

1 − e2ð1−bÞπkR

r

ð29Þ

and N 0 is the normalization constant. If we consider the
dominant contribution, the massless eigenstate

ϕ0 is mostly

�
elementary φs; − branch

composite φn; þ branch:
ð30Þ

2. IR condition II

Let us pick

gsðy1Þ ¼ 0; ð31Þ

instead of the modified Neumann condition that we used
before, Eq. (27). Combined with the usual boundary
condition on the UV brane, Eq. (26), it leads to the
following equation for b < 2,

Jα−1ðms=ky0Þ
Yα−1ðms=ky0Þ

¼ Jαðms=ky1Þ
Yαðms=ky1Þ

; ð32Þ

that can be solved for new nonzero ms values. The smallest
solution is given by

ms ∼
�
ky1e

ðα−1Þkðy0−y1Þ α > 1

ky1 0 ≤ α < 1:
ð33Þ

We showed that there is no ms ¼ 0 for the − branch unlike
the case in Sec. II A 1. Now, we need to check whether this
new solution also allows the system to have a massless
eigenstate. Inserting the holographic basis into the action,
we find

Smix ¼
Z

d4x
X∞
n¼1

�
−
1

2
zn∂μφ

s∂μφn −
1

2
μ2nφ

sφn

�
; ð34Þ

where Smix includes the kinetic zn and mass mixings μ2n. If
we can show that the determinant of the mass matrix is
zero, we are done with proving that there is a massless
eigenstate. For this purpose, we need to know what the
mass mixing terms μ2n are. Using the profiles and integrat-
ing by parts in two different ways, they are given by
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μ2An ≡
Z

y1

y0

dym2
sgs½e−2kygn − gnðy1Þe−bky1eðb−2Þky�

μ2Bn ≡
Z

y1

y0

dym2
ngn½e−2kygs − gsðy0Þe−bky0eðb−2Þky�; ð35Þ

where μ2n ¼ μ2An ¼ μ2Bn . The smallest eigenvalue of the
mass matrix is zero if

X∞
n¼1

μ4n
m2

n
¼ m2

s : ð36Þ

This equation can be shown to hold by computingP∞
n¼1 μ

2A
n μ2Bn =m2

n with the help of the completeness
relation

X∞
n¼1

gnðyÞgnðy0Þ ¼ e2kyδðy − y0Þ: ð37Þ

Therefore, there is a massless eigenstate in this holographic
basis as well. The difference from the holographic basis in
Sec. II A 1 is that there are both kinetic and mass mixings in
this basis for both branches. A truncated version of this type
of mass mixing is observed in a supersymmetric model
[15]. Note that the results of Ref. [15] come from a purely
four-dimensional consideration. Again, the main conclu-
sion for this way of achieving a massless eigenstate is that
the massless scalar is an admixture of elementary and
composite scalars; for example, in the − branch, it is given
by Eq. (29). If we consider the dominant contribution, the
massless eigenstate

ϕ0 is mostly

�
elementaryφs; − branch

compositeφn; þ branch:
ð38Þ

This calculation lets us conclude that according to dic-
tionary I, the action (8) with

½δΦ�y¼y0 ≠ 0 ð39Þ

is the five-dimensional dual of a four-dimensional gauge
theory with the elementary field φs and the composite
operator O. There is a partially composite massless
eigenstate in the spectrum.

B. Dictionary II: ½δΦ�y= y0 ≠ 0 ⇒ O0

Here, the UV boundary condition is modified to be

½ð∂y − bkÞΦ�y¼y0
¼ 0 ð40Þ

as well. According to dictionary II, we construct the
generating functional S0

holo in the five-dimensional theory
differently,

S0
holo ¼ I½Φ̂� þ

Z
d4p

ΛUV

g5
φ0Φ̂; ð41Þ

the minimization of which, δS0
holo=δΦ̂ ¼ 0, determines the

relationship between Φ̂ and the source φ0. This is an
example of the interpretation in Ref. [16] where the roles of
two solutions near the AdS boundary, Φ̂ and Φ̌, are
interchanged. Plugging the solution for Φ̂ back into
Eq. (41) results in a functional

S0
holo½φ0� ¼ −

Z
d4p

Λ2
UV

2g25
φ0ðpÞ

1

ΣðpÞφ0ð−pÞ: ð42Þ

Using this generating functional, we can compute the two
point functions,

1

Λ2þ2α
UV

δ2S0
holo½φ0�

δφ0ðpÞδφ0ð−pÞ
����
φ0¼0

¼hO0ðpÞO0ð−pÞiþ �� �

−
1

2g25Λ2α
UV

1

ΣðpÞ∼
�p−2αþ��� y1→∞P

n
a2n

p2þm2
n

finitey1;
ð43Þ

whereO0 is the composite operator in the four-dimensional
dual theory according to dictionary II. For the case
y1 → ∞, we only showed the leading nonanalytical term
that gives us the dimension Δ0 ¼ 2 − α. This interpretation
should then be restricted to the parameter values 0 ≤ α ≤ 1
so that Δ0 ≥ 1. The mass spectrum of the composite states
after confinement can be found by calculating the zeros of
ΣðpÞ for finite y1, which are given by the solutions of the
following equation:

Jα�1ðMn=ky0Þ
Yα�1ðMn=ky0Þ

¼ Jα�1ðMn=ky1Þ
Yα�1ðMn=ky1Þ

: ð44Þ

Note that this is the same mass spectrum as in Eq. (23).
However, according to this dictionary, the massless eigen-
state is not an admixture of φs and φn as in Sec. II A. It is
the pure composite state φ00 created by O0 at the confine-
ment scale.
Now, let us write the profiles for the composite states

with mass values calculated from Eq. (44). The bulk field
can be decomposed as a tower of the composite states,

Φðx; yÞ ¼
X∞
n¼0

φ0nðxÞfnðyÞ; ð45Þ

where φ0n are the new composite states and fnðyÞ are the
new profiles. These profiles fnðyÞ that satisfy the
bulk equation of motion (3), with □φ0n ¼ M2

nφ
0n, can be

written as
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fnðyÞ ¼ Nne2ky
�
Jα

�
Mn

ky

�
þ κðMnÞYα

�
Mn

ky

��
; ð46Þ

where Nn is the normalization constant and κðMnÞ is
determined by imposing the boundary conditions.
Equation (44) is equivalent to the following boundary
conditions for the profiles,

½ð∂y − bkÞfn�y¼y0;y1
¼ 0; ð47Þ

which is consistent with Eq. (40). Note that so far we did
not need to consider different branches separately. Since
0 ≤ α ≤ 1 in this dictionary, the boundary mass parameter
can take values in the range 1 ≤ b ≤ 3. If we look at
the profile of the massless mode with respect to the flat
metric [7],

f̃0ðyÞ≡ e−kyf0ðyÞ
∝ eðb−1Þky; ð48Þ

we see that the profile for all possible b values is localized
toward the IR brane. The fact that the IR brane is associated
with the composite sector of the four-dimensional dual
theory is consistent with our conclusion that says the
massless mode

ϕ0 is the pure composite stateφ00 for both branches

according to dictionary II unlike the partially composite
massless eigenstate in dictionary I. This calculation lets us
conclude that according to dictionary II the action (8) with

½δΦ�y¼y0 ≠ 0 ð49Þ

is the five-dimensional dual of a four-dimensional gauge
theory with the operator O0 and there is a composite
massless mode in the spectrum created by this operator.
The results are summarized in the Table I.

III. RELATIONSHIP BETWEEN O AND O0

This result Δ0 ¼ 2 − α is very similar to the one in
Ref. [16], where the Legendre transform of the on-shell
bulk action inverts the expression for the two-point function
hOðpÞOð−pÞi. Let us try to explain the relationship
between two dictionaries, which is an attempt to show
howO andO0 are related. Remember that the smallest mass
in the spectrum created by O is m1 given by Eq. (19) while
the smallest mass in the spectrum created by O0 isM0 ¼ 0.
We introduce a new interaction W½O� ¼ −ξO2=Λ2Δ−4

UV
into the initial model with no massless mode (dictionary I
with ½δΦ�y¼y0 ¼ 0), where ξ is a dimensionless constant.
This is also known as the multitrace deformation of the
gauge theory. Since we did not introduce a dynamical field
like φs in this case, we need to add an additional
deformation φ0O=ΛΔ−3

UV , where δφ0 ¼ 0 as before to be
able to probe the theory and calculate the mass spectrum.
To determine the five-dimensional counterpart of this
deformation, we need to know the relationship between
Φ̌ and hOi. This can be achieved by comparing the linear
deformations with φ0 from both sides,

Φ̌
g5

↔
hOi
ΛΔ−3
UV

: ð50Þ

Then, the five-dimensional theory is deformed byR
d4pð−ξΦ̌2=ðg25Λ2

UVÞ þ φ0Φ̌=g5Þ. For such multitrace
deformations of the theory, minimizing Sholo results in a
more complicated generating functional [10]

Sholo½φ0� ¼ −
1

2

Z
d4pφ0ðpÞ

ΣðpÞ=g25
1 − ξΣðpÞ=ðg25Λ2

UVÞ
φ0ð−pÞ:

ð51Þ

Using the generating functional from the five-dimensional
theory and noting that Sholo½φ0 ¼ 0� ¼ 0, we can compute
the two-point functions,

TABLE I. The summary of the four- and five-dimensional results for both dictionaries. The boundary mass parameter can take values
−∞ < b < ∞ in dictionary I and values 1 ≤ b ≤ 3 in dictionary II.

Dictionary Fields Massless eigenstate Boundary conditions

I φs;O − branch: mostly elementary φs f½∂y − ð2 − αÞk�gsðyÞgy¼y0
¼ 0

Δ ¼ 2þ α þ branch: mostly composite φn gnðy0Þ ¼ 0
0 ≤ α ½ð∂y − bkÞgnðyÞ�y¼y1

¼ 0

IR condition I IR condition II

f½∂y − ð2 − αÞk�gsðyÞgy¼y1
¼ 0 gsðy1Þ ¼ 0

II O0

� branch: pure composite φ00 ½ð∂y − bkÞfnðyÞ�y¼y0;y1
¼ 0Δ0 ¼ 2 − α

0 ≤ α ≤ 1
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Λ2Δ−6
UV

δ2Sholo½φ0�
δφ0ðpÞδφ0ð−pÞ

����
φ0¼0

¼ hOðpÞOð−pÞi þ � � �

−
Λ2Δ−4
UV

2

ΣðpÞ
g25Λ2

UV − ξΣðpÞ ∼
X
n

a2n
p2 þm2

n
for finite y1:

ð52Þ

The expression for y1 → ∞ would not be as trivial as the
one in Eq. (15). This means that the dimension of the
operator is not trivially related to the bulk mass parameter
anymore. The mass spectrum of the composite states after
confinement are then given by the solutions of the follow-
ing equation:

1

ξ
¼ ΣðpÞ

g25Λ2
UV

: ð53Þ

This equality makes the denominator in Eq. (52) zero while
keeping the numerator nonzero. Note that the mass spec-
trum of the original gauge theory, ξ ¼ 0, was given by the
poles of ΣðpÞ. If we consider the limit ξ → ∞, the solutions
mn are given by the zeros of ΣðpÞ. The mass spectrum of
the maximally deformed theory, ξ → ∞, is then computed
by using Eq. (23). Therefore, this particular type of
maximal deformation modifies the mass spectrum such
that mn ¼ Mn and there is a massless scalar without
introducing a new elementary field like φs. How the mass
eigenvalues change from the poles of ΣðpÞ to the zeros of
ΣðpÞ can be seen in Fig. 1. This phenomenon is also
observed in a string theory setup [17], where a light
composite fermion is achieved in a similar limit.
In this process, how ξ can take large values is not

obvious, but we can understand its physical implications.
Expanding Eq. (52) in this limit,

lim
ξ→∞

Λ2Δ−4
UV

2

−ΣðpÞ
g25Λ2

UV − ξΣðpÞ ∼ −
Λ2Δ−4
UV

2ξ
þ g25Λ2Δ−2

UV

2ξ2
1

ΣðpÞ ;

ð54Þ

and redefining the operator O → O=ξ, we can focus on the
leading nonanalytical term

hOðpÞOð−pÞi ∼ p−2α for y1 → ∞; ð55Þ

where we suppressed the dimensionful constants. Note that
this expression looks just like Eq. (43), which implies that
the operator in dictionary II,O0 is the meaningful degree of
freedom for the operator in dictionary I, O in this limit
ξ → ∞. Considering the AdS=CFT formula (14), this result
can be summarized as

lim
ξ→∞

he−
R

d4p 1

ΛΔ−3
UV

φ0Oi
− ξO2

Λ2Δ−4
UV

→ he
−
R

d4p 1

ΛΔ
0−3

UV

φ0O0

i0: ð56Þ

The same limit in the five-dimensional theory then is
equivalent to transitioning,

from ½δΦ�y¼y0 ¼ 0 to ½ð∂y − bkÞΦ�y¼y0
¼ 0; ð57Þ

without adding an external elementary field φs.

IV. CONCLUSION

We showed how a five-dimensional action can be used to
describe two different strongly coupled gauge theory with a
massless mode. For example, the five-dimensional para-
meter α is mapped to two different four-dimensional
parameters, Δ and Δ0. An important observation was that
an effective interaction term in the strong sector can modify
the composite spectrum with no light state such that there is
a pure composite scalar lighter than the confinement scale.
How much lighter this state is depends on the interaction
strength. The physical origin of this interaction strength and
how it can take large values are subjects that need further
investigation. However, when one does not need a big
suppression from the confinement scale, a reasonable
interaction strength is useful enough.
A light composite scalar as we discussed in this paper

might be used for dark matter models with light scalar
mediators. Moreover, the strong dynamics that produce a
composite Higgs boson could also give rise to such light
composite scalars, which would affect the Higgs decay
channels. Or more drastically, Higgs boson itself could be
imagined as the light composite state of a strongly coupled
gauge theory with a confinement scale around TeV. This
kind of model would allow for heavier composite scalars to
be above the several TeV range that is consistent with LHC
results.

m1

m2

0 5 10 15 20 25 30

0

1

2

3

4

5

FIG. 1. The lightest and the second-lightest modes of the
spectrum as a function of the deformation, ξ, for eky0 ¼ 0.1,
g25ΛUV ¼ 1, α ¼ 1, and πkðy1 − y0Þ ¼ 4. Horizontal dashed lines
show the poles of ΣðpÞ, while the horizontal dotted lines show the
zeros of ΣðpÞ.
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