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The phase space of three-dimensional gravity with Compere-Song-Strominger (CSS) boundary conditions
is endowed with asymptotic symmetries consisting in the semidirect product of a Virasoro and a ûð1Þ Kač-
Moody algebra, and containsBañados-Teitelboim-Zanelli (BTZ) black holeswhose entropy can be accounted
for by the degeneracy of states of a warped Conformal Field Theory (CFT). By embedding these boundary
conditions in topologically massive gravity, we observe the existence of two special points in the space of
couplings parametrized by the AdS3 radius l and the Chern-Simons coupling μ. When μ ¼ � 1

l, the
asymptotic symmetries reduce to either a chiral Virasoro algebra or a pure ûð1Þ Kač-Moody current algebra.
At those points, black holes have positive energy while that of linearized excitations are non-negative.

DOI: 10.1103/PhysRevD.102.106017

I. INTRODUCTION

Lower-dimensional gravity models have appeared over
the years as a fertile playground to address fundamental
questions in quantum gravity, such as the black hole
entropy problem [1,2] of the black hole information para-
dox [3,4]. In particular, Einstein-Hilbert gravity in (2þ 1)-
dimensions [5–8] with a negative cosmological constant
Λ ¼ − 1

l2 has emerged as a very insightful toy model. Even
though the theory has no bulk propagating degrees of
freedom, it has asymptotically AdS3 (BTZ) black hole
solutions [9,10], as well as massless gravitons which can
be viewed as propagating on the boundary. Furthermore,
the phase space of AdS3 gravity admits a nontrivial action
of the 2-dimensional conformal group [11], which appeared
as the first hint of a deep connection between a gravity
theory in AdS space and a CFT in one dimension less,
later unravelled by the AdS=CFT correspondence [12].
Remarkably, the Bekenstein-Hawking entropy of the BTZ
black holes could be reproduced by a counting of states in
the corresponding dual CFT [13], opening a new perspec-
tives on the black hole entropy problem. More recently,
decisive progress has also been achieved regarding the
black hole information paradox relying on a new under-
standing of how to compute the entropy of Hawking

radiation [14,15]. The key point is the inclusion in the
gravitational path integral used to compute the entropy of
new saddles arising as complexified wormholes [16],
which could be explicitly identified in two-dimensional
Jackiw-Teitelboim gravity [17–19] (which can be viewed
as the dimensional reduction of 3d gravity [20,21]) coupled
to matter.
The BTZ entropy derivation relied only on conformal

symmetry and few additional assumptions such as unitarity
[22] and sparseness of the spectrum [23]. The precise
nature of the 2d CFT dual to pure gravity remained
therefore elusive until 2007 when Witten, assuming hol-
omorphic factorization, proposed that the theory should
be an extremal CFT, establishing intriguing connections
between quantum gravity, group and number theory [24].
Later Maloney and Witten computed the 3d gravity
partition function as a sum over topologies and found
that the result could not be interpreted as a trace over some
CFT Hilbert space [25]. Moreover, there are arguments
(although no proof) that extremal CFTs could not exist
for large central charge, i.e., in the semi-classical regime
[26–28]. Various steps have been taken toward fixing them
[29–32], but it is still unclear whether pure 3d gravity could
make sense as a quantum theory. Few months after Witten’s
proposal, Li, Song and Strominger suggested an alternative
for a fully consistent and unitary gravity theory with
partition function that of an extremal CFT under the name
chiral gravity [33]. By supplementing Einstein gravity with
a gravitational Chern-Simons term, they argued that the
resulting theory—topologically massive gravity (TMG)
[34,35]—becomes chiral at a specific point in coupling
space. Heated debates ensued as to determine whether the
theory was actually chiral and unitary (see, e.g., [36–55]),
leading to unexpected correspondences between critically
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tuned AdS3 gravity and a logarithmic CFT [56–60].
Whether chiral gravity could exist as a unitary truncation
of the nonunitary logarithmic CFT that is dual to TMG at
the critical point is still an open question, but still stands out
as a candidate for the simplest and potentially solvable
model including quantum black holes.
The core of this work is based on the recent observations

that pure AdS3 ought not to be dual to 2d CFT in the first
place. In defining the classical phase space of a physical
theory, boundary conditions play as an important role as the
action or the equations of motion. It was noticed in a series
of works that besides the classic Brown-Henneaux boun-
dary conditions with conformal symmetry, a variety of
alternative consistent choices could exist [61–69]. In
particular, it was observed by Compere, Song and
Strominger (CSS) that pure 3d gravity with appropriate
boundary conditions (referred to as CSS) has asymptotic
symmetries consisting in the semidirect product of a
Virasoro and a ûð1Þ Kač-Moody algebra. Those sym-
metries are those of a new type of 2d field theories,
Warped CFTs (WCFTs) [70,71]. The study of WCFTs
was triggered by the search for holographic duals to the
near-horizon region of extremal black holes [72–74] and
warped AdS3 (WAdS3) spaces [75,76], and they have
attracted a lot of attention in recent years [61,77–93]. The
main goal of the present work we will be to show that
embedding CSS boundary conditions in TMG allows to
identify two special points in coupling space where the
warped symmetries either reduce to a chiral Virasoro
algebra or to a ûð1Þ Kač-Moody algebra, thereby possibly
providing the simplest example of a gravity theory includ-
ing black holes.

II. CSS BOUNDARY CONDITIONS

The general solution of Einstein equations with CSS
boundary conditions is given by [61]

ds2 ¼ l2
dρ2

ρ2
− ρ2dxþðdx− − ∂þP̄dxþÞ

þ 4Gl½L̄dxþ2 þ Δðdx− − ∂þP̄dxþÞ2�

−
16G2l2

ρ2
ΔL̄dxþðdx− − ∂þP̄dxþÞ; ð1Þ

with l the AdS radius,GNewton’s constant, dimensionless
chiral functions L̄ðxþÞ and ∂þP̄ðxþÞ (which is also
periodic) and Δ a constant. The conformal boundary is
located at ρ → ∞ and x� ¼ t

l � ϕ with ϕ ∼ ϕþ 2π.
BTZ black holes with massM and angular momentum J

are included in this family of metrics for vanishing ∂þP̄ and
L̄ðxþÞ ¼ Δ̄, with lM ¼ Δþ Δ̄ and J ¼ Δ − Δ̄. Global
AdS3 is recovered as usual for M ¼ −1=8G and J ¼ 0.
Infinitesimal transformations leaving (1) invariant are

given by asymptotic Killing vectors (AKVs)

ξ ¼ ϵ∂þ þ
�
σ þ l2

2ρ2
∂2þϵ

�
∂− −

ρ

2
∂þϵ∂ρ þOðl4=ρ4Þ:

ð2Þ

and depend on two chiral arbitrary functions ϵðxþÞ and
σðxþÞ. Expanding in Fourier modes, one finds the con-
served charges

Lm ≔ Qϵ¼eimxþ ¼ 1

2π

Z
2π

0

dϕeimxþðL̄ − Δð∂þP̄Þ2Þ;

Pm ≔ Qσ¼eimxþ ¼ 1

2π

Z
2π

0

dϕeimxþðΔþ 2Δ∂þP̄Þ; ð3Þ

satisfying a Virasoro-Kač-Moody algebra:

ifLm;Lng ¼ ðm − nÞLmþn þ
cR
12

m3δm;−n;

ifLm;Png ¼ −nPmþn;

ifPm;Png ¼ kKM
2

mδm;−n: ð4Þ

with

cR ¼ 3l
2G

; kKM ¼ −4Δ ¼ −4P0: ð5Þ

Notice the unusual fact that the level is charge-dependent.
A WCFT with this symmetry algebra is said to be in
quadratic ensemble, and can be brought to canonical form
either using state-dependent AKVs or a nonlocal redefini-
tion of the charges [71,93,94]. In that case, the level is a
negative constant. While this indicates non-unitarity of
the theory, it appears to be a feature of holographic WCFTs
and does not prevent, for instance, to apply techniques of
the modular bootstrap to constrain the spectrum of the
theory [94,95].

III. CSS IN TMG

Topologically massive gravity [34] is described by the
following three-dimensional action

ITMG ¼ 1

16πG

Z
M
d3x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ 1

μ
ICS: ð6Þ

The gravitational Chern-Simons term ICS is given by

ICS ¼
1

32πG

Z
M
d3x

ffiffiffiffiffiffi
−g

p
ϵλμνΓα

λσ

�
∂μΓσ

αν þ
2

3
Γσ
μτΓτ

να

�
; ð7Þ

where Λ ¼ �1=l2 is the cosmological constant and μ the
Chern-Simons coupling. Here we consider Λ ¼ −1=l2.
Notice that our procedure for computing charges does not
depend on the boundary terms needed to held a well-
defined variational principle [96–98].
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Introducing the Einstein tensor

Gμν ≡ Rμν −
1

2
gμνRþ Λgμν ð8Þ

and the Hodge-dualized Cotton tensor

Cμν ≡ ϵμ
αβ∇α

�
Rβν −

1

4
gβνR

�
; ð9Þ

the equations of motion are

Gμν þ
1

μ
Cμν ¼ 0: ð10Þ

Any solution of Einstein gravity with negative cosmologi-
cal constant is automatically a solution of TMG. In
particular, the metric (1) is a solution of (10).

A. Charge algebra

The conserved charges in TMG are modified with
respect to their expressions in Einstein gravity and will
be denoted with a tilde. The infinitesimal charge difference
between two metrics ḡ and g ¼ ḡþ δg associated to an
AKV ξ is given by

δQ̃ξ½g; ḡ� ¼
Z
C

ffiffiffiffiffiffi
−g

p
k̃μνξ ½δg; g�ϵμναdxα; ð11Þ

where the expression of the 1-form k̃μνξ can be found in [78]
(see also Eq. (142) of [71]) and C is a fixed-time contour at
the AdS boundary. The Virasoro-Kač-Moody charges then
become

L̃m ¼ 1

2πμl

Z
2π

0

dϕ eimxþ½ðμlþ 1ÞL̄ − ðμl − 1ÞΔð∂þP̄Þ2�;

P̃m ¼ 1

2πμl

Z
2π

0

dϕ eimxþðμl − 1Þð2Δ∂þP̄þ ΔÞ ð12Þ

satisfying the same algebra as (4) with modified central
extensions given by

c̃R ¼
�
1þ 1

μl

�
cR; k̃KM ¼

�
1 −

1

μl

�
kKM: ð13Þ

We will hereafter focus on the signs of c̃R and k̃KM
pertaining to holographic WCFTs, hence we will consider
μl ≤ −1 or μl ≥ 1.

B. Special points

We see from (12) and (13) that at the point μl ¼ 1, the
asymptotic symmetry group reduces to a chiral Virasoro
algebra, because the Kač-Moody charges vanish (i.e.,
become trivial).

To study the point μl ¼ −1, we perform a redefinition of
the arbitrary function σ

σðxþÞ → σðxþÞ þ σðxþÞ∂þP̄ðxþÞ: ð14Þ
Under this shift the charges become

L̃m ¼ 1

2π

�
1þ 1

μl

�Z
2π

0

dϕ eimxþL̄;

P̃m ¼ 1

2π

�
1 −

1

μl

�Z
2π

0

dϕ eimxþð2Δ∂þP̄þ ΔÞ ð15Þ

and the mixed commutator ifLm;Png in (4) vanishes.
The action of our redefinition has been to disentangle the
Virasoro sector of the algebra from the Kač-Moody one, for
any value of μ. Now, at μl ¼ −1 the Virasoro generators
(15) vanish identically as does the central charge, and the
total algebra is simply given by a pure ûð1Þ Kač-Moody:

ifP̃m; P̃ng ¼ kKMmδm;−n: ð16Þ
This shows that there exists a particular value of the Chern-
Simons coupling (μl ¼ −1) where the total asymptotic
algebra of 3-dimensional TMG with negative cosmological
constant is a ûð1Þ Kač-Moody current algebra.

IV. BLACK HOLES

The BTZ metric in ADM form is

ds2 ¼ −N2dt2 þ dr2

N2
þ r2ðNϕdtþ dϕÞ2; ð17Þ

with

N2 ¼ −8GM þ r2

l2
þ 16G2J2

r2
¼ ðr2 − r2þÞðr2 − r2−Þ

r2l2
ð18Þ

and

Nϕ ¼ −
4GJ
r2

: ð19Þ

The black hole horizons are located at

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GlðlM þ JÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GlðlM − JÞ

p
: ð20Þ

The black hole mass M̃ ¼ Q∂t
and angular momentum

J̃ ¼ Q−∂ϕ
in TMG depart from their valuesM and J in pure

gravity and are given by

lM̃ ¼ lM −
J
μl

; ð21Þ

J̃ ¼ J −
M
μ
: ð22Þ
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Absence of naked singularities imposes lM ≥ jJj.
Therefore, in order to have positive energies lM̃ > 0,
we need to consider jμj ≥ 1

l, which is the condition we had
already obtained under (13). At the special points μl ¼ �1
we have the extremality conditions

lM̃ ¼∓ J̃: ð23Þ

The BTZ entropy in TMG has been computed in
[99–102] resulting in

S̃ ¼ πrþ
2G

−
πr−
2Gμl

: ð24Þ

We expect this to be reproduced by counting the degen-
eracy of states in the dual WCFT. In the quadratic
ensemble, the warped Cardy formula takes the form [71]

SWCFT ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−P̃vac

0 P̃0

q
þ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L̃vac

0 L̃0

q
: ð25Þ

In this expression the subscript vac refers to the charges
of the vacuum. Here, the vacuum is global AdS3, whose
charges are M ¼ −1=8G and J ¼ 0. For the BTZ black
hole, the zero modes in (15) are given by

L̃0 ¼
�
1þ 1

μl

��
lM − J

2

�
; ð26Þ

and

P̃0 ¼
�
1 −

1

μl

��
lM þ J

2

�
: ð27Þ

Plugging this in (25) using (20), one finds S̃ ¼ SWCFT
[103]. At the special points μl ¼ �1, one observes that the
BTZ black hole entropy is reproduced from the contribu-
tions of a chiral Virasoro or ûð1Þ Kač-Moody current
algebra only.

V. GRAVITONS

In this section we solve the spin-2 linearized perturbation
around the AdS3 background in TMG. While we begin
following closely [33], we then require different conditions
on the perturbations—due to the different asymptotic
symmetries under consideration. We end up with numerous
perturbations solving the linearized TMG equations of
motion of which we keep the ones with finite energy
and regular at the origin.

We consider AdS3 in global coordinates [104]

ds2 ¼ −
1

4
l2ð−4dρ2 þ dxþ2 þ 2dxþdx− coshð2ρÞ þ dx−2Þ

≔ ḡμνdxμdxν: ð28Þ

The isometry group of the metric (28) is SLð2;RÞL ×
SLð2;RÞR with generators L̄0;�1 and L0;�1 respectively. We
will single out a Uð1Þ × SLð2;RÞR subalgebra compatible
with the CSS boundary conditions to classify the pertur-
bations, theUð1Þ factor being generated by P0 ¼ i∂− ¼ L̄0

and the relevant SLð2;RÞR generators given by

L0 ¼ i∂þ; ð29Þ

L1 ¼ ieix
þ
�
cosh 2ρ
sinh 2ρ

∂þ −
1

sinh 2ρ
∂− −

i
2
∂ρ

�
: ð30Þ

We write linearized excitations around the AdS3 back-
ground metric ḡ as

gμν ¼ ḡμν þ hμν; ð31Þ

with hμν a small perturbation. The linearized equations of
motion in TMG are

Gð1Þ
μν þ 1

μ
Cð1Þ
μν ¼ 0; ð32Þ

where explicit expressions for the linearized Einstein and
Cotton tensors can be found in [33,45]. In transverse and
traceless gauge

∇̄μhμν ¼ h ¼ 0; ð33Þ

the equations of motion can be recast as [33,45]

�
∇̄2 þ 2

l2

��
hμν þ

1

μ
εμ

αβ∇̄αhβν

�
¼ 0: ð34Þ

We want to use the Uð1Þ × SLð2;RÞR algebra to classify
linear perturbations. Consider thus primary states with
weight ðh; pÞ:

L0jhμνi ¼ hjhμνi; P0jhμνi ¼ pjhμνi; ð35Þ

which implies

hμν ¼ e−iðhxþþpx−ÞFμνðρÞ: ð36Þ

The transverse, traceless, and highest-weight condition
L1jhμνi ¼ LieL1

jhμνi ¼ 0 will strongly constrain the form
of FμνðρÞ, whose components will depend on p, h, and a
set of integration constants. Inserting the result in the
equations of motion, and requiring finiteness of the
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linearized energy of the real part of the perturbation
(Eq. (69) of [33]), regularity at the origin and to satisfy
the CSS boundary conditions singles out 3 solutions:

(i) Massive mode: h ¼ 1
2
ð3 − μlÞ, p ¼ − 1

2
ð1þ μlÞ

and β ¼ 0 hereunder, with energy

E ¼ −
α2ðμl − 1Þ2ðμlþ 1Þ
256Gμl6ð4 − 2μlÞ ð37Þ

for μl < 2 and diverge for μl ≥ 2.
(ii) Right graviton mode: h ¼ 2, p ¼ 0 and β ¼ 0

hereunder, with energy

E ¼ α2ðμlþ 1Þ
384Gμl6

: ð38Þ

(iii) Right photon mode: h ¼ 1, p ¼ 0 and α ¼ 0 here-
under, with energy [105]

E ¼ β2ðμl − 1Þ
32Gμl6

; ð39Þ

with explicit wave functions

Fþþ ¼ 1

4
cosh4−2hρ tanhp−hρð4β tanh2ρþ α tanh4ρÞ; ð40Þ

Fþ− ¼ 1

2
cosh2ð1−hÞρ tanhp−hρðβ tanh2ρÞ; ð41Þ

Fþρ ¼
i
32

sinh−1ρ cosh−ð1þ2hÞρ tanhp−hρ½4 cosh 2ρð2β − αÞ
− 8β þ 3αþ αðcosh 4ρÞ�; ð42Þ

F−− ¼ 0; ð43Þ

F−ρ ¼ −
i
4
cosh−1ρ sinh−1ρ sinh−h2ρ tanhp−hρ

× ½sinhh2ρ cosh−2hρðð−βÞ cosh 2ρþ βÞ�; ð44Þ

Fρρ ¼ sinh−h−22ρ tanhp−hρ½cosh4−2hρ sinhh2ρ
× ðð4β − αÞ tanh4ρÞ�; ð45Þ

The first two modes were present in [33], and their
energies coincide with (70)-(71) of that Ref. [106]. There
is no Left graviton mode with h ¼ 0 and p ¼ 2, as it is
excluded by the CSS boundary conditions. Instead, there is
a new solution, the Right photon mode which satisfies CSS
but not Brown-Henneaux.
For μl < −1, the massive mode has a negative energy

while the graviton and the photon mode have a positive
energy. At the special point μl ¼ −1 the massive mode and
the graviton have a zero energy while the photon has a
positive energy. At the special point μl ¼ 1 the massive

mode and the photon have zero energy while the graviton
has a positive energy. For μl > 1 the massive mode has a
negative energy while the graviton and the photon mode
both have a positive energy. We thus see that the two special
points μl ¼ �1 allow us to avoid negative energy, while
the right moving graviton or photon carry no energy.

VI. SUMMARY AND FURTHER
DEVELOPMENTS

In this work we investigated CSS boundary conditions
in TMG for jμjl ≥ 1 (for which BTZ black holes have a
positive energy) and noticed two special points in the space
of couplings.
At μl ¼ 1:
(i) The ûð1Þ Kač-Moody charges and level vanish;
(ii) BTZ black holes have positive energy, an entropy

reproduced by a chiral half of the Cardy formula
and lM̃ ¼ −J̃;

(iii) The massive graviton and boundary photon acquire
vanishing energy, while the boundary graviton has
positive energy.

At μl ¼ −1:
(i) The Virasoro generators and central charge vanish;
(ii) BTZ black holes have positive energy, an entropy

reproduced by the ûð1Þ contribution of the warped
Cardy formula and lM̃ ¼ J̃;

(iii) The massive and boundary gravitons acquire van-
ishing energy, while the boundary photon has
positive energy.

This suggests that TMG with CSS boundary conditions
at these two points might be a stable and consistent gravity
theory dual either to a holomorphic CFT, or a theory with
ûð1Þ affine symmetry.
In this work we have considered a phase space

consisting of Einstein solutions. It is known however
that there exist a large variety of solutions to TMG which
are not Einstein [107]. CSS should therefore be gener-
alized to TMG, in the spirit of [49]. In particular,
logarithmic solutions are likely to arise at the special
points. This might in turn lead to the definition of
“logarithmic WCFT” that could be dual to a relaxation
of CSS in TMG at the special points. A positive energy
theorem should also be proven. A preliminary step would
be to show that the only stationary, axially symmetric
solutions of the theory are BTZ black holes. This is true
for chiral gravity [45], even though non-Einstein time-
dependent solutions do exist [108]. It would also be
interesting to evaluate the Euclidean sum over geometries
and determine what type of partition it can be identified
with.
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