PHYSICAL REVIEW D 102, 106016 (2020)

Kaluza-Klein spectrometry from exceptional field theory

Emanuel Malek®"" and Henning Samtleben

2,%

Unstitut fiir Physik, Humboldt-Universitit zu Berlin, IRIS Gebdude,
Zum Groflen Windkanal 6, 12489 Berlin, Germany
*Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France

® (Received 14 September 2020; accepted 8 October 2020; published 13 November 2020)

Exceptional field theories yield duality-covariant formulations of higher-dimensional supergravity. They
have proven to be an efficient tool for the construction of consistent truncations around various background
geometries. In this paper, we demonstrate how the formalism can moreover be turned into a powerful tool
for computing the Kaluza-Klein mass spectra around these backgrounds. Most of these geometries have
little to no remaining symmetries and their spectra are accessible to standard methods only in selected
subsectors. The present formalism not only grants access to the full Kaluza-Klein spectra but also provides
the scheme to identify the resulting mass eigenstates in higher dimensions. As a first illustration, we

rederive in compact form the mass spectrum of IIB supergravity on S°. We further discuss the application of
our formalism to determine the mass spectra of higher Kaluza-Klein multiplets around the warped
geometries corresponding to some prominent A" = 2 and A/ = 0 AdS vacua in maximal supergravity.
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I. INTRODUCTION

Whenever a higher-dimensional theory is compactified,
towers of infinitely many massive fields arise in the lower-
dimensional theory. These Kaluza-Klein towers are the
lower-dimensional signature of the compactification space
and often play a crucial role in the compactified theory. For
example, in phenomenological models arising out of string
theory, these Kaluza-Klein towers would correspond to
massive particles but may also indicate potential instabil-
ities of the background. On the other hand, in the AdS/CFT
correspondence, the masses of the Kaluza-Klein towers are
mapped to the conformal dimensions of operators in
strongly coupled conformal field theories (CFTs), that
cannot be computed directly except for protected operators.
Despite the universality and importance of Kaluza-Klein
towers, calculating their masses is an exceedingly difficult
undertaking. Indeed, obtaining the Kaluza-Klein spectrum
of supergravity compactifications has hitherto only been
possible for coset spaces, while on general backgrounds
this has only been achieved for the spin-2 towers.

This paper is a detailed account of the results of [1].
There we announced a new method based on exceptional
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field theory (ExFT), which allows us to compute the full
Kaluza-Klein spectrum for any vacuum of a maximal
gauged supergravity arising from a consistent truncation
of 10- or 11-dimensional supergravity. This includes vacua
with few or no (super)symmetries, whose Kaluza-Klein
spectra were previously inaccessible. ExFT is a duality-
covariant reformulation of maximal 10-/11-dimensional
supergravity, which unifies fluxes and gravitational degrees
of freedom. Since the Kaluza-Klein fluctuations mix
between the flux and gravitational sectors of supergravity,
this makes ExFT a natural formulation within which to
study this problem.

Indeed, as we develop here, we can build on the efficient
ExFT description of consistent truncations to maximal
gauged supergravity [2—7] to obtain a remarkably simple
expression for the Kaluza-Klein fluctuations around any
vacuum of the lower-dimensional gauged supergravity.
The fluctuation ansatz takes the form of the lower-
dimensional supergravity multiplet, making up the con-
sistent truncation, tensored with the scalar harmonics of
the maximally symmetric point of the lower-dimensional
supergravity. As a result, the ansatz is nonlinear in the
fields of the lower-dimensional supergravity multiplet.
Due to this nonlinearity, it is straightforward to compute
the Kaluza-Klein spectrum for any vacuum of the lower-
dimensional supergravity arising from the consistent
truncation.

There are several benefits to our approach:

(i) The fluctuations of all supergravity fields are para-

metrized in terms of a common set of “scalar
harmonics.” In contrast, in the traditional approach,
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fields in different Lorentz representations require
different harmonics.

(i1) The scalar harmonics are computed at the maximally
symmetric point of the lower-dimensional super-
gravity, even if we are interested in another vacuum
of the lower-dimensional supergravity with a much
smaller symmetry group.

(iii) As a consequence, we can, for the first time,
compute the Kaluza-Klein spectrum around vacua
with few or no (super)symmetries, including non-
supersymmetric vacua, such as the prominent non-
supersymmetric SO(3) x SO(3) AdS; vacuum of
11-dimensional supergravity [8].

(iv) The states of every Bogomol’'nyi-Prasad-Sommer-
field (BPS) multiplet live in the same Kaluza-Klein
level, making the identification of supermultiplets in
10/11 dimensions considerably easier than using the
traditional approach, where BPS multiplets are
scattered amongst different Kaluza-Klein levels.

(v) Using the dictionary between the ExFT and the
original supergravity variables, it is straightforward
to identify the higher-dimensional origin of the
resulting mass eigenstates.

The paper is structured as follows. We begin with a
review of the relevant aspects of EXFT in Sec. II. In Sec. I1I,
we then describe how to efficiently parametrize the Kaluza-
Klein fluctuations in EXFT. In Sec. IV, we show how this
leads to compact expressions for the mass matrices of the
Kaluza-Klein towers, including the vector and the scalar
fields. We next demonstrate the power of the formalism by
applying it to several prominent AdS vacua of 10- and 11-
dimensional supergravity in Sec. V. In particular, we show
how our approach leads to a very efficient computation of
the Kaluza-Klein spectrum of AdSs x S° and the
|

identification of the mass eigenstates within IIB super-
gravity. We then elaborate on the results announced in
[1], by

(i) computing the spectrum of the first Kaluza-Klein
level above the A/ = 8 supergravity of the SU(2)x
U(1)-invariant AdSs vacuum of IIB supergravity [9]
that is dual to the Leigh-Strassler CFT [10],

(i1) giving the full bosonic Kaluza-Klein spectrum of
the SU(3) x U(1)-invariant AdS; vacuum of 11-
dimensional supergravity [11], dual to a quadratic
deformation of the Aharony-Bergman-Jafferis-Mal-
dacena (ABIM) CFT.

(iii) reviewing the computation of [12] of the Kaluza-
Klein spectrum of the nonsupersymmetric SO(3)x
SO(3)-invariant AdS,; vacuum of 11-dimensional
supergravity, and the appearance of tachyonic sca-
lars at higher Kaluza-Klein levels.

Finally, we conclude with a summary of our results and
outlook on further problems to be tackled in Sec. VL.

II. EXCEPTIONAL FIELD THEORY

In this section, we briefly review the structure of the
relevant exceptional field theories, based on the exceptional
groups Eg ) and E;(7), respectively. We refer to [13-16] for
further details. These are the duality-covariant formulations
of maximal supergravity in 10 and 11 dimensions, tailored
to describe compactifications to D = 5 and D = 4 dimen-
sions, respectively.

A. E6(6) ExFT

The Lagrangian of Egp) exceptional field theory is
modeled after maximal five-dimensional supergravity
[17,18]. Its bosonic field content is given by

{90 Mun. AM . By}, uv=0,...4, M=1,..21, (2.1)
and combines a 5 x 5 “external” metric g, with an “internal” 27 x 27 generalized metric My, the latter parametrizing the
coset space Eq )/ USp(8). Therefore, the generalized metric can be expressed in terms of a generalized vielbein

Myy = 5MM5NN5M, (2.2)
where the generalized vielbein, &£, is an Eg(6)-valued matrix. Vector and tensor fields A,,M and B,y are labeled
by an index M in the (anti)fundamental representation of Eg). These are the fields of maximal five-dimensional
supergravity; however, all of them are still living on the full higher-dimensional spacetime. The complete bosonic
Lagrangian reads

o 1 1 _
Lexere = V|9 (R + 579D M"D, My — ZMMN}_WM}—WN + /gl lﬁtop - V(97M)>~ (2.3)

24

It is invariant under generalized internal diffeomorphisms whose action on the scalar matrix M,y has the generic form
[19,20]

SAMun = LaMyy = AXOx My + 2adaLAKPKLP(MMN)P- (2.4)
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Here, PX, 7, is the projector on the adjoint representation
of the duality group E;,), which for E¢ g takes the explicit
form

1 1 5
PYK, = E‘SNMéLK +—8yKo, M — ngLRdMKRa

- (2.5)

in terms of the totally symmetric cubic Eg)-invariant
tensor dgyn. The constant a; in (2.4) is determined by
closure of the diffeomorphism algebra and is equal to ag =
6 for Egg). The scalar fields in the Lagrangian (2.3) couple

via a gauged sigma model on the coset space Egg)/ USp(8).

Accordingly, MMV denotes the matrix inverse to My,
and the covariant derivatives are defined as

DMMMN = (au - EA,,)MMNv (2-6)

corresponding to the action of (2.4).

The Einstein-Hilbert term is constructed from the modi-
fied Ricci scalar R, constructed from the external metric G
in the standard way upon covariantizing derivatives under
internal diffeomorphisms d,,9,, — 9,,9,, — A,,K 9k 9,y The
non-Abelian field strengths in (2.3) are given by

Fu' =20y AN =24, K0k AN
+ 10dNKRdPLRA[”P8KAD]L + 10dNKLaKBMDL,
(2.7)

with a Stiickelberg-type coupling to the two-form tensors
B,y In turn, the topological term L, is defined via its

derivative

dﬁtop X dMNKfM VAN FN VAN fK —40dMNKHM VAN aNH[(,
(2.8)

in terms of the field strengths F, " and M, =
3DyB,,m + -+, with the ellipses denoting Chern-
Simons type couplings whose explicit form will not be
relevant for this paper. Finally, the potential term V (g, M)
in (2.3) is built from bilinears in internal derivatives and

reads

1
V(g, ./\/l) = —r“dMMNaMMKLaNMKL

1
+ EMMNZ?MMKLZ?LMNK

1 1
- Eg_laMgaNMMN - ZMMNg_laMgg_laNg
1
—ZMMNaMg””aNgW. (29)

In the formulation (2.3), the internal coordinates are
embedded into the 27-dimensional representation of Egg)

with derivatives denoted as 0),. Gauge invariance of the
action requires the so-called section constraint, expressed
as a condition bilinear in internal derivatives

dKMN8M®18N<D2 — O, (210)

for any couple of fields {®, ®,}. The section constraint
(2.10) can be solved by breaking Eg ) according to

Eg(6) D SL(6) x SL(2) D SL(6) x GL(1),,

27 5 (6,2) + (15.1) > 6., + 15, + 6_,,  (2.11)

and restricting the coordinate dependence of all fields to the
first six coordinates. Upon this choice, the Lagrangian (2.3)
becomes equivalent to full 11-dimensional supergravity. In
turn, type IIB supergravity is recovered upon choosing a
second inequivalent solution of the section constraint based
on the group decomposition

27 b (5, 1)+4 + (5/, 2)+] + (10, 1)_2 + (1, 2)_5’
(2.12)

and restricting internal coordinate dependence to the first
five coordinates.

The explicit map of the ExFT fields (2.1) into the fields
of 10- and 11-dimensional supergravity has been worked
out in [14,16]. Here, we just note that the internal part g,,),
of the higher-dimensional metric can be straightforwardly
identified within the components of the matrix MMV
according to

MYMNGy @ Oy = (detg)™' g™, ® 0, (2.13)

where indices m, n label the derivatives along the physical
coordinates embedded into the d,, according to (2.11) and
(2.12), respectively.

B. E7(7) ExFT

The structure of E;(7) exceptional field theory closely
parallels the previous construction modulo a few technical
distinctions. The construction of this theory is based on a
split of coordinates into four external and 56 internal
coordinates, the latter constrained by the section constraint

QYK (1,) N Oy @Oy D, = 0 = QYN G D Oy D,,

a=1,..133, (2.14)

where QYK and (1,),," denote the symplectic invariant
tensor and the 133 generators of E;(), respectively. The
two inequivalent solutions of the section constraint (2.14)
restrict the internal coordinate dependence of the fields to
the six and seven internal coordinates of IIB and D = 11
supergravity, respectively. The bosonic field content of
E;(7) ExFT is given by
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{g/wv MMN7 -AMMv Bﬂvav BMI/M}’

wr=0,...3  M=1..5,  (2.15)

where the internal 56 x 56 metric M,y now parametrizes
the coset space E7(7)/ SU(8), and can thus also be expressed
in terms of a generalized vielbein

|

where the generalized vielbein, £,,Y, is now an E7)-
valued matrix. Moreover, apart from two-forms B,,,,, in the
adjoint representation of E;(7), the theory features cova-
riantly constrained two-forms B,,,,, subject to algebraic

constraints which parallel the structure of (2.14)

0 = Q"X(1,) VB On® = QY5 (1,) kB Boon - a=1,...133. (2.17)
The dynamics of E;(;) EXFT is most compactly described by a pseudo-Lagrangian

Legprr = \/@(ﬁ + %gﬂypﬂMMNDVMMN - %MMNfﬂnyﬂbN + \/@_Tmp - V(g, M)), (2-18)

amended by the twisted self-duality equation
Fou = =5V 8leppe @ My P77, (2.19)

for the non-Abelian vector field strengths
F o = 203, A = 24,50 A 2 ({1, K (1), — QKO ) Ay MO A

() MN OB, o — %QMNBWN. (2.20)

The various terms in (2.18) are defined in complete
analogy to (2.3) above. In particular, covariant derivatives
are defined as in (2.6) where now L, refers to generalized
internal diffeomorphisms (2.4) for the group E;) with
a7 = 12, and the projector onto the adjoint representation
expressed as

1 1
Pt = 500K+ 5 8508 + (1) ()
1
- ﬁQMNQKL. (2.21)
The topological term is defined via
ALy < 24(t%) N FM N OyHo + FM AN Hy o (2.22)

in terms of vector and tensor field strengths, while the
potential term is still of the universal form (2.9), now with
a7 = 12. In analogy with (2.13), the internal part of the
higher-dimensional metric can be identified among the
components of MMV ag

MMNG L @ Oy = (detg)™' /g0, ® 0,.  (2.23)

The field equations derived from (2.3) and (2.18)
reproduce the field equations of D =11 and IIB

|
supergravity, depending on the choice of solution of the
section constraint. Moreover, massive IIA supergravity can
be reproduced upon further deformation of the gauge
structures [21,22].

C. Generalized Scherk-Schwarz reduction

One of the powerful applications of the ExXFT framework
is the description of consistent truncations of higher-
dimensional supergravities [5-7], i.e., truncations to
lower-dimensional supergravities such that any solution
of the lower-dimensional field equations can be uplifted
to a solution of the higher-dimensional field equations.
Here, we focus on consistent truncations to maximal
supergravities whose field content is precisely of the
form (2.1) and (2.15), respectively, i.e., mirrors the ExFT
variables, with fields depending only on the external
coordinates.

1. Truncation ansatz
In terms of the EXFT variables, a consistent truncation
to D = 5 and D = 4 dimensions, respectively, is described
by a reduction ansatz which on the vector fields takes the
form

AM(x,y) = UyM(y)AX(x), (2.24)
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factorizing the dependence on internal and external
coordinates into an (Ey(4) % R™)-valued twist matrix I/
depending on the internal coordinates and the gauge fields
Aﬂﬂ of the lower-dimensional maximal supergravity.
Similarly, external and internal metrics reduce as

9 (%,¥) = p72(9) g (%),
Myn(x,y) = UMK()’)UNL()’)MQ(X)’ (2.25)

E (6) : B/u/M(x’y)
{ uv o )C y
/,th(x y)

in Eq) ExFT and E;;) EXFT, respectively. Here, Uaé
denotes the twist matrix evaluated in the adjoint represen-
tation of E7(7). Consistency of the truncation ansatz (2.24)—
(2.27) is encoded in a set of differential equations on the
twist matrix which take the universal form

[FMK]Rd = _VdXMK’ FMM =(1- D)p"aﬁp,
(2.28)
in terms of the algebra valued currents
FMN (U_ ) L8MULK, 8M = Z/[MNaN. (229)

Here, y, are normalization constants given by y, = é

Y7 = %, for E¢e) EXFT and E;;) EXFT, respectively.
XynX denotes the constant embedding tensor characteriz-
ing the lower-dimensional theory. The projection [...|p
refers to the projection of the rank three tensor I'y,yX onto
the irreducible representation of E; (4 in which the embed-
ding tensor transforms. For the theories discussed in this
paper, these are R¢ = 351 and Ry = 912.

Let us note that, using the explicit form of the projectors
in (2.28) (which can, for example, be found in [23]), the
first of the consistency relations (2.28) can be explicitly
spelled out as

L K P
CENICESL

_XMK = —ad[P’L FPM +

Ty, (2:30)

which will be useful in the following. For the E¢g) case, we
point out two more useful relations

respectively, twist matrix

according to

upon decomposing the

Uy =p (U7, (2.26)

into a unimodular matrix U~! € E(a)» and a scale factor p.

Finally, the reduction ansatz for the two-form tensor fields
takes the form

= p‘z(y)UMN(y)BM(x)’
_2 (y) Uaé(y)Buv/i(x)s
—2p‘2(y)(U‘1)§P

(2.27)
(y)aMUPB(y)(ﬂ) B/wa()
[_dN]KL X MANEL,
Fe MaVeL — _Lp xgu, (2.31)

which are obtained from the contraction of (2.30) with the d
tensor and from the Eg) invariance of the d tensor,
respectively.

Every twist matrix solving Eq. (2.28) defines a consistent
truncation via the reduction ansatz (2.24)—(2.27), such that
the higher-dimensional field equations factor into products
of twist matrices and the lower-dimensional field equations.
For later use, let us also give the explicit form of the scalar
potential induced in the lower-dimensional gauged super-
gravities as functions of the embedding tensor X, X
[18,24] MN

1
Vsugra = 2a, MMNXMP (XNR +7dX SMPTMR )

(2.32)

Let us also recall, that in a given AdS vacuum the relation
between AdS length and cosmological constant A is
given by

L _(D-1D-2)  (D-
AdS — 2A -

N -2)

(2.33)
Vsugra

2. Generalized Leibniz parallelizability
For the purposes of computing the Kaluza-Klein spec-
trum, it is useful to view the consistent truncation in a
slightly different way. In particular, the twist matrix U €
E4(s) defines an (x-independent) generalized vielbein for
the generalized metric, as in Egs. (2.2), (2.16), i.e.,
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and thus fully defines the internal part of the background,
i.e., the internal metric and fully internal p-form field
strengths. Moreover, for a consistent truncation, the twist
matrix is globally well defined. Thus, the generalized
frame fields U/,,M, defined using p as in (2.26), defines
a collection of nowhere-vanishing generalized vector fields,
and the background is called generalized parallelizable,
analogous to ordinary parallelized spaces. However,
generalized parallelized spaces need not be parallelizable
in the ordinary sense, but more generally form coset
spaces [6,25,26].

Finally, it is useful to rephrase the consistency equa-
tions (2.28) in terms of the global frame, U, as

Ly, Uy = XMKUE, (2.35)
with the action £ of generalized diffeomorphisms defined
by (2.6) together with a canonical weight term. Spaces
admitting such a generalized frame field are called gener-
alized Leibniz parallelizable spaces and have several
important properties. For example, (2.35) immediately
implies that the vector fields, K, contained in the
generalized frame fields (2.26) according to

K0, = UMy, (2.36)
generate the gauge algebra specified by the embedding
tensor, i.e.,

Ky, Kyl = XMBICE, (2.37)
where [, ]| denotes the ordinary Lie bracket. Moreover, the
vector fields /Cy, generating the compact part of the gauge
group are necessarily Killing vector fields of the back-
ground metric that leave the fluxes invariant. This is clear
from the expression of the internal Riemannian metric,
which can be easily read off from (2.34) and is given by

g™ = Ky Ky MY, (2.38)

So far we have only discussed the twist matrix U,,Y, i.e.,
the background geometry and fluxes around which we
define the consistent truncation. However, the consistent
truncation ansatz (2.25) implies that every space within the
truncation is generalized Leibniz parallelizable. To see this,
introduce a vielbein for the lower-dimensional gauged
supergravity (SUGRA) scalar matrix My, i.e.,

Now we can define a generalized frame field for every
internal space obtained by the consistent truncation by
dressing the generalized frame field ¢/, with the scalar

vielbein (V') ,%,

UM (x.y) = VMUY (). (2.40)

and, equivalently, a generalized vielbein, which entirely
encodes the geometry and fluxes,

En(x.y) = Uy (y)VaA (%), (2.41)
such that the generalized metric, (2.2) and (2.16),
My (x,y) = (x y)En (x )’)5AB
() UN(y) My (%), (2.42)

takes exactly the form of the truncation ansatz (2.25). Note
that the scale factor p, as in (2.26), remains unchanged
throughout the consistent truncation. Here, and throughout,
we will always use the A, B indices to denote objects that

are dressed by the scalar vielbein (V).

Since (V1) éM only depends on the external coordinates
x, the generalized Lie derivative of the dressed generalized

frame fields gives rise to the dressed embedding tensor,
often called the 7T-tensor in the gauged SUGRA literature,

EUAUE - X@QUQ, (243)

with

Xp€ = (V) MOV (2.44)

AVpEXyn®.

The properties discussed previously now immediately
transfer to any background obtain by the consistent
truncation. For example, the vector fields making up the

dressed generalized frame fields Ky = vh /_;MICM gen-
erate the dressed gauge algebra

In particular, consider some particular vacuum of the lower-
dimensional gauged SUGRA theory that we are interested
in, specified by the scalar matrix

The Riemannian metric at this point of the scalar potential
can be compactly expressed as

(2.47)

gmn — Kémlcgna@ — ]CMm’CNnAM,

with AMNAy p = 5pM. Equation (2.47) shows how the

scalar matrix at the vacuum My = Ayy deforms the

internal geometry. Similar expressions can be derived for
the fluxes, see for example [6,27], but are typically
lengthier so that we will not give them here.
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III. FLUCTUATION ANSATZ

We will now show that EXFT leads to a particularly nice
description of the linearized fluctuations around a given
10-/11-dimensional background that corresponds to a
solution of maximal gauged SUGRA. As we will see in
the following, the natural EXFT formulation of these
linearized fluctuations leads to remarkably compact
Kaluza-Klein mass matrices for such a background.

A. General linear fluctuations

We begin by describing general linear fluctuations
around a fixed ExFT background with vanishing A",
B, m- Such a background is just described by a nontrivial
generalized metric

Muyn = Ayn, (3.1)
and an external metric f}ﬂy. The linear fluctuations of the
external metric are straightforward and given by

G = P72 (G (%) + By (x,7)), (3.2)
where p~2 is required to give the EXFT metric, Guy» the right
weight, just as in the generalized Scherk-Schwarz ansatz
(2.25). For the vector and two-form fields, A,,M and By,
we will use the fact that the consistent truncation defines a
generalized parallelization for any background within the
truncation via the dressed generalized vielbein (U~!),™ in
(2.41), as discussed in Sec. II C 2. In particular, this implies
that the matrices (U~!) ™, seen as a collection of 27 (in the
case of Eg) or 56 (in the case of E;7)) vector fields,
provide a well-defined basis of the generalized tangent
bundle. Moreover, the generalized vielbein induces a basis
for generalized bundles of any representation of the excep-
tional group. For example, in the case of Egg), the U v
provide a well-defined basis for the 27-dimensional bundle
in which the two-forms B,, ), live. As a result, we can
expand any A,™ and B, in terms of the basis defined by
the background generalized vielbein U,Y, i.e.,

AM = p=H (U M(ARE) Ax. y),

B/U/M :p_ZUMd<BKK)/w/_1<x’ y) (33)

Finally, we turn to the scalar sector, described by the
generalized vielbein, £,,4, parametrizing the coset space
Ey)/Ha)- Since EyA is an Ey,) element, a linear
fluctuation of the scalar fields is described by an element
of the Lie algebra j,2 € ¢, ), with

1 .
55Mé = §5M§j§é(x, y). (3.4)

However, the fluctuations belonging to b, are unphys-
ical, so that we should take j AE € e4(a)©Y,(q)- This implies
that

(3.5)
where

In turn, for the generalized metric (2.2), (2.16), linearized
fluctuations are given by

Myn = UMAUNQ((SM + jag(x.y))

= Ayn(y) + Uy2UNEjap(x.y).  (3.7)

B. Harmonics

To determine the Kaluza-Klein masses, we now need to
expand the fluctuations £, (AX%) 4, (BX¥)  , and j,p in
terms of a complete basis of fields on the internal manifold.
One benefit of our approach is already visible. In the EXFT
ansatz, all the linear fluctuations are scalar fields on the
internal manifold, such that we only need to find a complete
basis of scalar functions, )=, on the internal manifold. All
the tensorial structure of the fluctuations is taken care of by
the generalized vielbein, U AM , in the fluctuation ansatz
(3.3) and (3.7).

We must now choose a good basis of functions J* to
obtain the Kaluza-Klein spectrum. Since the topology of
the compactification is the same for any solution of the
lower-dimensional gauged SUGRA, we can choose J* to
form representations of the largest symmetry group pos-
sible, G, Which would correspond to the maximally
symmetric point of the gauged SUGRA. Note that this
maximally symmetric point must not even correspond to a
vacuum of the theory, i.e., it need not satisfy the equations
of motion. Using the EXFT methods, we can choose any
internal space corresponding to some configuration of
scalar fields of the lower-dimensional supergravity, even
if this scalar configuration does not correspond to a
minimum of the potential. For example, for the 4-dimen-
sional N/ =8, SO(8) theory, the maximally symmetric
point would be the S7 compactification, and we can choose
V* to form representations of G,,,, = SO(8) even if we are
interested in another solution of the AV = 8, SO(8) theory
which breaks the SO(8) symmetry. As we will show, this
choice of J* allows us to efficiently compute the Kaluza-
Klein spectrum.

The complete basis of functions J* must form a repre-
sentation of the maximal symmetry group. Typically, the
consistent truncation is also defined around the maximally
symmetric point, such that the generalized frame fields {/,,,
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used to construct the consistent truncation (2.25), define the
maximally symmetric point. Therefore, we have
ﬁuMyZ:UMMaMyE:/CMmamyZ:—TMZQ:))Q, (38)
where Ky, are the vector fields making up the generalized
frame fields, as in Sec. I C 2. Since the Uy, generate the Lie
algebra of G, via (2.35), the matrices TMZ o defined by
(3.8), correspond to the generators of G, in the repre-
sentation of the complete basis of functions )*. Using the

commutator of generalized Lie derivatives, it is straightfor-
ward to show that the generators TMZ o satisfy the algebra

[Ty Tyl = XMMETB’ (3.9)
where X,y is the embedding tensor of the lower-dimen-
sional ga@ed SUGRA, as in (2.35).

In this paper, we will restrict ourselves to theories with
compact Gmax,l such that the matrices 7', are antisym-
metric

TM,ZQ = _TM,QE’ (310)
and harmonic indices Z, Q are raised and lowered with dsq.
As we explain in Sec. IV A, the complete basis of functions
V* necessarily correspond to the scalar harmonics of the
maximally symmetric compactification. Therefore, we will
often refer to J* as the harmonics.

Now we can exploit the fact that every background
obtained by the consistent truncation has a generalized
frame field obtained by dressing the maximally symmetric
one U,M by the scalar matrix V,

Z/{AM — (V_I)AMZ/{MM

(3.11)

As a result, the generalized vielbein of the background we
are interested in has a simple action on the scalar harmonics
V* of the maximally symmetric point, given by

Ly, V¥ = =T 4" V% (3.12)

where

Ty g =V )A"Tu™,

(3.13)
are the generators of G, dressed by the scalar vielbein V.
Their commutator is given by the dressed embedding tensor
(2.44)

'Note that even if G, is compact, the gauge group of the
gauged supergravity may be noncompact. An example of this
would be the D = 4, " = 8 ISO(7) gauged supergravity, where
Grax = SO(7).

For our Kaluza-Klein ansatz, we now expand the linear
fluctuations of the scalar fields, j AB> in terms of the scalar

harmonics. This gives

Myy = Upy2UyE <5@ + Zyzj@.z(x))

z

AM = g (U)MSVEAAR ().
z
B/wM = p_zUMéZyEBﬂUA.Z(X)’
z

g =G0 +zzjy2h,w,z<x>), (3.15)

with the sum running over scalar harmonics. From now
onwards, we will drop the explicit summation symbol over
the scalar harmonics and use the Einstein summation
convention instead. As we will see, with this ansatz for
the fluctuations, Eqgs. (3.12) and (2.43) are all the differ-
ential information we need to complete determine the
Kaluza-Klein spectrum.

IV. MASS MATRICES

In this section, we linearize the field equations in exce-
ptional field theory with the fluctuation ansatz (3.15) in
order to derive general formulas for the Kaluza-Klein mass
spectrum around the background defined by the general-
ized metric

As a general rule of notation, when using the flat basis
introduced in (2.40), we raise, lower, and contract flat
indices with 5.

A. Spin-2

Let us start with the spin-2 sector, for which the
computation of the Kaluza-Klein spectrum is the most
straightforward. The mass spectrum in this sector is also
accessible by other universal methods and can be traced
back to computing the eigenmodes of a higher-dimensional
wave operator depending only on the background geometry
[28-32]% We will explicitly match this result to our
approach below.

In the ExFT formulation of supergravity, the mass terms
for the spin-2 fluctuations descend from the universal
couplings of the external metric g,, within L,

*This has e.g., been further exploited in [33-37].
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1
Linass.g = 7 V191 (MMNOy ¢ O Gy + MMN G720, 0 9),
(4.2)

cf. (2.9). With the explicit fluctuation ansatz (3.15) and the
action of internal derivatives on the harmonics )*
expressed in terms of the 7'y matrix according to (3.8)
above, the Lagrangian (4.2) gives rise to

1
Lonass.g = — i prPYAYEAMNT Ty r2hy sh o + ...,

(4.3)

where the ellipses refer to terms carrying traces and
divergences of h,, which play their role in the explicit
realization of the spin-2 Higgs effect but do not contribute
to the final mass matrix. The latter is read off from (4.3)
after comparing the normalization to the linearized
Einstein-Hilbert term from (2.3), (2.18):

Q°
in the flat basis introduced in (2.40).

The full system of differential equations for the spin-2
modes also includes the couplings of these modes to the
spin-1 fluctuations via the connection terms in the Einstein-
|

. Ay
5.]@2 = AQXFQB + D — 1

ay ay
+ ETQ’ZQPQQEAAQ’Q + ?TQZQPQQA AQ’Q + (A <> B)

Hilbert term R and to the spin-O fluctuations via the
respective third terms in the EXFT potential (2.9). Upon
gauge fixing, they account for the transfer of degrees of
freedom from the massless vector and scalar fluctuations to
building the massive spin-2 modes [38—40]. Rather than
working out these couplings in detail, the most direct
analysis of their contribution proceeds by spelling out the
relevant gauge symmetries. Linearizing external diffeo-
morphisms upon expanding their gauge parameter in
accordance with the fluctuation ansatz (3.15) as & =
S5 EFYE induces the action

Sehyys = 23(,;5»),2, 55AﬂM‘2 = Ty,mfﬂgv (4.5)
which can be used as a shift symmetry to explicitly
eliminate those vector field fluctuations which couple to
the spin-2 fluctuations at the quadratic level. Next, we turn
to the scalar fields to identify the corresponding Goldstone
modes here. With the gauge transformations on the scalar
matrix given by (2.4) above, let us project these trans-
formations onto those which at the linearized level yield
shift symmetries to the scalar fluctuations. Meaning, we set
My to its background value A,y and expand AY into
harmonics according to the ansatz (3.15) for the corre-
sponding gauge fields. After going to the flat basis (2.40),
these transformations can be brought to the form

CoD B EX EpC B DX
Lep=P=p=  A27 — aglep™P=p= | AZ

"B
coset

= [~AETX 4B — ASEX pA + au AT vo + g AT w0l cosers (4.6)

where we have used the projector relations (2.30) from
above. In addition, the right-hand side of (4.6) is under-
stood under projection onto the symmetric coset valued
index pairs (AB), cf. (3.4), (3.5) above. These gauge
transformations combine the standard Higgs effect (giving
mass to the spin-1 vector fields) with the transformations
eliminating the Goldstone scalars for the massive spin-2
modes. To identify the latter, it is sufficient to evaluate (4.6)
for the gauge parameters corresponding to the vector fields
transforming under (4.5). Combining these two formulas,
we find that the scalars affected by the spin-2 Higgs
mechanism are those transforming under

8japs = ypsoA®, (4.7)

with a gauge parameter A%, and the tensor IT defined as

Mugso = [~Xca®Teso + aa(TaT )yl (48)

|

where again the projection on the right-hand side refers to
projection of the AB indices onto the symmetric coset
valued index pairs (AB).

To sum up, the full system of differential equations
for the spin-2 modes also includes their couplings to the
spin-1 fluctuations singled out by (4.5) and the spin-0
fluctuations defined by (4.7). Proper gauge fixing will
eliminate the lower spin modes in favor of the massive
spin-2 excitations. This does not alter the result (4.4)
for the spin-2 mass matrix, but will have to be taken
into account in the computation of the spin-1 and spin-
0 mass spectra, where these Goldstone modes will have
to be explicitly eliminated before calculating the
spectrum.

Let us finally compare the mass matrix (4.4) to the
general analysis of [32]. There, it has been shown that upon
compactification from ten dimensions around a warped
background metric
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ds* = Mg, (x)dxdx* + G, (v)dy™dy",  (4.9)
the mass spectrum of the spin-2 fluctuations is encoded in
the following Laplace equation on the internal space

Ogpinow = eP~2A1917120,, (9] 2" ePA0,w) = —mPy,
(4.10)

where D is the number of external dimensions: u = 0,
..D—1"In particular, this spectrum only depends on the
internal background geometry.

Let us compare (4.10) to the spin-2 mass matrix (4.4)
obtained in our framework. For the compactifications
described by ExFT, the internal background metric, §™",
is embedded into the generalized metric, MYV according
to the universal relation

gmnam ® an - |§|1/(D_2)MMN8M ® 8N7 (411)
based on the embedding of the physical coordinates y™ into
the ExFT coordinates, cf. (2.13), (2.23). Similarly, the
ExFT embedding of the external metric together with the
reduction ansatz (2.25) yields the identification

e?A0) = p2|g|~1/(P-2), (4.12)
As a result, the Laplacian on the internal manifold can be
rewritten as

Oy = (917204 ([P CP2D MMN G y)

= eP2A0IKC, ™D, (e~ PAVIKC, "D, p). (4.13)
where we have used the reduction ansatz (2.25) for the
internal metric as well as the identification (2.36) of the
Killing vector fields within the Scherk-Schwarz twist
matrix.
For the operator Uy, » defined in (4.10), we thus find the
explicit action
I:|spin21»l/ = Kémam(,cénanl//)’ (414)
in terms of the Killing vector fields. Combining this with
(3.8), we find the action on the J* as
|:lspinzyZ = (Tf_\TA)ZQyQ = _MZQJ}Q’ (415)
showing agreement of the general result [32] with the mass
matrix (4.4) in EXFT compactifications. Moreover, this also
shows that the )* are harmonics of the Laplacian (4.10),
hence our nomenclature for the V=. In [37], a similar form
of the spin-2 mass matrix has been proposed for reductions
to D = 4 maximal supergravity.

3Strictly speaking, Ref. [32] gives the result for D = 4, but it
straightforwardly generalizes to arbitrary D.

B. Tensor fields

Let us move on to the mass spectrum of antisymmetric
tensor fields. Their appearance is specific to compactifi-
cations to D =5 dimensions, described by Ege) ExXFT.
Their field equation in EXFT is obtained from (2.3) by
variation with respect to the tensor fields B,,,; which leads
to the first-order duality equation

10
MLy, (eMMwaN + —\/6_ eﬂvﬂﬂmeM) —0, (4.16)

with e = 4/|g|]. To linear order in the fields, the field
strength F,,™ is given by

FuM - 2(9&,A,,]M + 10d"NK9x By, (4.17)

where the last term is responsible for creating the tensor
masses in (4.16). The latter are thus encoded in the
differential operator dMVKJy. Its action on tensor fields
obeying the reduction ansatz (3.15) is computed as

UMédMNKaKBﬂDN

= Up2d"™ K0y (p™2UNBY®)B g 5
-1

p

ST (Z488 gy — 10d48CT ¢ 5) V2B, s

_ p_l yﬁmAQBZB (4 18)
= —_10 - = DuwB3 '

where we have used (2.31) and (2.28) and moreover
defined the constant antisymmetric tensor

7AB — 2d@XQ§, (4.19)
that encodes the complete information on the embedding
tensor in D = 5 dimensions.

The result of this computation is the antisymmetric mass
matrix

1
MAZ,EQ = — (—Zﬁazg + lodﬂTg,zg)

V10

The first term arises precisely as in the Scherk-Schwarz
reduction to D = 5 dimensions, the second term captures
the effect of internal derivatives acting on the harmonics.
Plugging back (4.20) into the duality equation (4.16), we
find at linear order

(4.20)

0=d™MLy, <p—2UMéy2 (280%%2 + VIoMAzEL gy )

10
+ ge"”f’”aﬂBm&z> > (4.21)
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The 0*AYA* terms can be gauge fixed and amount to the
spin-1 Goldstone modes absorbed into the massive tensor
fields. This results in the five-dimensional first-order
equation

30uBuyjax

MAZBRBoT, o (4.22)

= 5 Euvpor
describing topologically massive tensor fluctuations with
the mass matrix (4.20).

Let us finally point out that according to (4.21) the entire
first-order equation of the tensor fields is yet hit with
another mass operator d”MX9,. Repeating the same cal-
culation for this action shows that the final first-order
equation is given by contracting (4.22) with another mass
matrix (4.20). In other words, zero eigenmodes of the mass
matrix MA*B€ are in fact not part of the physical spectrum
as the corresponding modes among the B, 4 5 are projected
out from all field equations.

C. Vector fields

In E;4 ExFT, the field equations obtained by varying
the Lagrangian with respect to the vector fields are of Yang-
Mills type (for d < 8)

VU(MMNFWN) = I,];H M+ Igc M+ Iltlop M> (423)
where the currents on the right-hand side denote the
contributions from the Einstein-Hilbert term, the scalar
kinetic term, and the topological term, respectively. As we
have discussed in Sec. IV A above, upon linearization the
contributions from 7, only contributes to Higgsing
the spin-2 modes and have no impact on the masses of the
physical spin-1 fluctuations. We will deal with these
contributions at the very end by projecting the vector mass
matrix on the physical sector invariant under translations
(4.5). The contributions Z},, 5, from the topological term
are in general of higher order in the fields and drop out after
linearization. The notable exception is E;7) EXFT, where
according to (2.22) this current carries a contribution dual
to the field strengths H,, H,;, which by virtue of the
derivative of the twisted self-duality equation (2.19)
together with the Bianchi identity gives rise to a contribu-
tion which equals the left-hand side of (4.23) up to sign.

|

1

—e~1au(eJ N ) = B3U AL
e”On(eJ" y" i) = p*Un (D—l

230) p°

=" —— UMA.(?D((X@Q + Tup) B + a,05(7,42))

ay

TpcPJ,a€ =T eald, p¢ — 0p(J w_xé))

Upon linearization, we will thus extract the vector mass
matrix from the right-hand side of the universal equation

AMNvaVMN = j/:C M|lin7 (424)

where the current J% ,, is defined from variation of the
scalar kinetic term

eSAM T m

1
= 5A <4— E‘DMMMNDMMMN)

Qy

1
= —eéAﬂM <TM () B K+ e_laN(e‘]ﬂMN))7
(4.25)

with the currents

(T = Mygdp MM, Ju" = My D, MKV,

(4.26)
To linear order in the fluctuations in (4.25), the internal

current only contributes its background value, which in the
flat basis reads

JA,BQ e d —(Fﬁg + F&E),

(4.27)

with T, € from (2.29). The external current J,5 carries
vector and scalar fluctuations. However, the latter do not
contribute to the vector masses but ensure the proper
absorption of the scalar Goldstone modes for realizing
the spin-1 Higgs mechanism. The vector fluctuations arise
from the connection (2.6) within J ﬂNM and split into terms
which due to (2.35) carry the embedding tensor X,z€

together with the contributions from the harmonics follow-
ing from (3.8). In the flat basis (2.40), these take the form

JunBlin = (=(Xcal 4+ Xcpt)A, E*
+ (ld(lpéggg + PEAQQ)TQ’ZQA”Q’Q):)}E.
(4.28)

In (4.25), this current also appears under internal derivative
according to

lin

lin

With these explicit expressions, the two terms on the right-hand side of (4.25) combine into

3
p o
e mlin = T Upd" (X €I B + a,05(1#42))

(4.29)

lin
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Consistently, all FA_BQ terms have dropped out and only the
terms carrying the constant embedding tensor X 45 as well
as the matrices 7 4 survive. o

Putting everythi_ng together, we can write the linearized

D-dimensional vector field equation (4.24) as
ayﬁyA”é’z - aya”A”é’z = MAZ.EQA”E’Q, (430)

where the mass matrix results from collecting all the
resulting terms in (4.29) and takes the form

1

+ (Xpa€ 4+ Xpc? — X455 — Xac®)T c 50

The first term of this mass matrix reproduces the known
vector mass matrix within D-dimensional supergravity. In
particular, it vanishes for compact generators X ﬂﬂ in

accordance with the massless vectors from the supergravity
|

|:|-/\/lMN|lin =

multiplet associated with the unbroken gauge symmetries.
The result holds for, both, E¢) EXFT and E;(;) EXFT.

In a final step, we need to project out by hand the spin-1
Goldstone modes absorbed into the massive spin-2 fields.
To this end, we have to project the vector fluctuations to the
subsector that remains invariant under the corresponding
translations (4.5). In contrast, the spin-1 modes absorbed
into massive tensor modes according to the discussion after
(4.21) above, appear as zero eigenvalues of the mass matrix
(4.31) and can thus easily be identified.

D. Scalar fields

It remains to work out the scalar mass spectrum for the
fluctuation ansatz presented above. Linearizing the theories
(2.3), (2.18), the scalar field equations also contain spin-2
and spin-1 contributions implementing the corresponding
Higgs mechanisms. These have no impact on the masses of
the physical scalars. We will deal with these contributions
at the end by applying an overall projection to the resulting
mass matrix. Ignoring vector and metric fluctuations,
the scalar masses are obtained from the linearized field
equation

1
_EJM,KLJN,LK - adJK,MLJL,NK + AQLJK,QKJL,MPAPN

+2(D — V) ag0xpp™ Ty n® — (D = 1)0xpp™ AKET 3" Apy
+ pARLO (p™ T ") Apy = 2pa O (P~ Ty ")

— 4Dayp™2 Dy pdyp + 2Dagp™ 0y Oyp ,

with the current Jj; y* from (4.26). In addition, the right-
hand side is understood as being projected onto symmetric
coset values index pairs MN, cf. (3.4), (3.5) above.

The computation is considerably more laborious than
the preceding calculations for the tensor and the spin-
1 sector. The latter analyses were facilitated by the manifest
covariance of the field equations under generalized diffeo-
morphisms which, together with the generalized paralleliz-
ability (2.35), allowed for a compact derivation of the
corresponding mass matrices in terms of the embedding
tensor and the matrix 7 4. The scalar field equation, in
contrast, is not manifestly invariant under generalized
diffeomorphisms. As a consequence, it is lengthier to
arrange the numerous contributions resulting from (4.32)
until the dependence on the internal coordinates factors out.

We may, however, exploit the known structures from
gauged supergravity to reduce the computation to a few
relevant terms. As for the vector mass matrix (4.31), the
contributions to the scalar mass matrix from (4.32) can be
organized into (schematically)

(4.32)

coset,lin

M=XX+XT+7T, (4.33)
according to if internal derivatives hit the twist matrices, U,
or the harmonics, 7, in the fluctuation ansatz (3.15).

The XX terms in (4.33) do not act on the harmonics and
by construction coincide with the mass formula from
gauged supergravity for the lowest multiplet. We can thus
directly extract these terms from the variation of the D-
dimensional supergravity potentials (2.32) and only focus
on the remaining terms.

To this end, we expand the currents J,; v to linear order
in the fluctuations, which in the flat basis (2.40) takes the
form

Jpa?=—{Tps® +Tpp® +Opjas +Tpstise —Tpe’ies}.
(4.34)

extending (4.27). Next, we expand their derivatives in the
flat basis and obtain
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VQJQ,AQ =p! (U_l)QL<U_1)QK<U_1)AMUNQaL(p_IJK,MN)
= =0cl'pa® = OcTps* = TeaT'pe® = Tea®Tps®

—TcpToa2 —TepTg? + TegBlpa% + TegBlpe?

—9clppjar + Ocpr®jrs — (Tea™ pp? + Tec®Tnr®)ire

— (CcpTgst —Te6BUp6E) jar + TepTar? + Tea’Tnrl)jrs

—Tpp™0cjar + Tor*dcirs — Tca®Opic + Tec®Opiac

- Fggagj@ = 0cOpjas- (4.35)

Putting everything together, the right-hand side of (4.32) vanishes on the background (j,5 — 0) as a consequence of the

fact that we are linearizing the theory around a stationary point of the gauged supergravity potential. The terms carrying j 5
will precisely recombine into the XX contributions in (4.33) which we can extract from the gauged supergravity describing

the lowest multiplet in the absence of higher fluctuations. The unknown terms in (4.33) thus exclusively descend from
derivative terms, such that we can restrict the above expansions to d¢jag

Velpa® = —Tpgtciar + Tpr*Ocjrs = Tea®Opics + Te®Opiac
~Tp%0gjap = OcOpiap + - (4.36)

with the ellipses denoting the terms that do not contribute to the X7 4 7 7 terms in (4.33). Putting this back into (4.32), we
are left with

Djag = [~2Tac20pinc — 20l cp Opise + 2L paEdcine
- ZFQQGQjA_D + 2FC_D§82jA_D
+ 20T acPOcjpp — 20U ap20cjpc + 2040 c5204jpc
+2040c04jpc — OcOcjapleoser T “XXJ. (4.37)
Still, the right-hand side is projected onto coset valued index pairs (AB).
In a final step, we now expand j,p into harmonics according to (3.15), such that the action of internal derivatives can be

expressed by the 7 4 matrix. We also make the coset projection manifest by contracting the entire fluctuation equation with
another coset-valued fluctuation, such that we find the Lagrangian quadratic in fluctuations

o
. . D . . B . .
Lcatar—fluc & J@,ZDJ@.Z - 41—‘&—75,92]@.2]%.9 - 4adF£—TQ,QEJ@.2JQ,Q
B . . A . .
—4Cca”T casiapzibp.o — 42l 'sc® T cozjapsisp.o

=207 g orT pasiansiepe + T con? casiassiasa + “XXjj. (4.38)
The resulting couplings may be further simplified upon repeated use of the projector property (2.30) together with
Japs = PAQQQJC_D.Z,
Trsojaesivea = TE,EQPAQQQJ@,ZJ'Q,Q- (4.39)

The first of these relations reflects the algebra-valuedness of the fluctuations while the second one is a consequence of the
closure of the commutator on the algebra. As a consequence, all FA_BQ in (4.38) can be eliminated in favor of the constant

embedding tensor X @Q, as required for consistency. Restoring the XX jj terms as obtained from variation of the gauged
supergravity potential (2.32), the full scalar mass matrix finally reads
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JjapsMABXEDE

_ F E : .
Jepo = Xae=Xpr=japziepx

+7a(Xag"Xp " + Xpa™Xpp" + Xpp*Xpr®)japsipns

+27a(Xa cEXppE = XarXp P — Xpa“XppP)iapsicns

- 4X£QT§,92J'@.2J'QQ - 4X@§TQ.Q)2JQ.2J.@.Q

+ 2,7 g onT pasiapsispo — T con? casiasziaso-

From the mass spectrum obtained by diagonalizing this
matrix, we still need to project out the Goldstone modes
that render mass to the spin-1 and spin-2 fluctuations, as
anticipated at the beginning of this section. As usual, the
Goldstone modes absorbed by the massive spin-1 fields
appear with zero eigenvalue in (4.40) and are thus easily
identified. The Goldstone modes absorbed into the massive
spin-2 fields in contrast need to be projected out explicitly.
Following the discussion of Sec. IV A above, this can be
implemented by projecting the mass matrix (4.40) onto
those fields that are left invariant under the shift trans-
formations (4.7).

V. EXAMPLES

We have in the previous section worked out general mass
formulas (4.4), (4.20), (4.31), (4.40), for the complete
bosonic Kaluza-Klein spectrum around any vacuum lying
within a consistent truncation to maximal supergravity.
After diagonalising the mass matrices, the corresponding
mass eigenstates are identified within ExXFT via the
fluctuation ansatz (3.15) and can be uplifted to higher
dimensions using the dictionary between the ExFT and the
original supergravity variables.

In this section, we illustrate these formulas by various
examples in four and five dimensions.

A. Vacua of five-dimensional SO(6) gauged SUGRA

In this section, we will apply our mass formulas to the
Kaluza-Klein spectra of two vacua of the five-dimensional
SO(6) gauged supergravity [41]. This N' = 8 supergravity
can be obtained by a consistent truncation of IIB super-
gravity on S° [6,7,27] and contains various interesting
vacua, including the A/ =8 AdSs x $° solution of IIB
supergravity and the " = 2 SU(2) x U(1)-invariant AdSs
vacuum [9] dual to the Leigh-Strassler CFT [10]. We will
use the example of the AdSs x S vacuum to demonstrate
our formalism, showing that it allows for a compact
identification of the BPS multiplets and the IIB fields
sourcing the fluctuations. Next, we show, using the
example of the N =2 SU(2) x U(1) vacuum, that our
mass formulas also allow to compute the Kaluza-Klein
spectrum of vacua for which this was not possible before.

Let us begin by setting up our notation for the consistent
truncation of IIB supergravity to the five-dimensional

(4.40)

SO(6) gauged supergravity. To do this, we use the SL(6) x
SL(2) basis of Eg) EXFT, in which the fundamental 27
representation of Eg) decomposes into

27 - (15.1) @ (6'.2),

{AM}_){Aub’Aaa}ﬁ a:l,...,6,a:],2_ (51)
In this basis, the d-symbol takes the form
dabca.d[i = Lé?Sgaﬂ,
dRME = oo (5.2)

ab.cdef _ _1 _ pabcdef
d NG .

The consistent truncation of IIB supergravity to the
SO(6) gauged maximal supergravity of [41] can be
described as a generalized Scherk-Schwarz reduction
within Eg) EXFT in the sense discussed in Sec. IIC
above, with twist matrices U, constructed from the
elementary sphere harmonics on $°

yey* =1. (5.3)
Specifically, the twist matrices are constructed as SL(6) C
Eg(6) group matrices, given in terms of the round §° metric

G = 0,90, )4, and the vector field ¢ defined by
V,l' = 1by

(U, ={U) . (U™),"}

_ 5)1/3{5)—1ya’§mnanya +42mya}’ (54)

where we have introduced the SL(6) index m =0, ..., 5.

1/3

The weight factor is given by p = @~ /" in terms of the

metric determinant @ = det ﬁmn. For computing the
Kaluza-Klein masses, we are particularly interested in
the vector components, }CM, of the generalized paralleliz-

able frame corresponding to the Eq ) twist matrices. These
are given by [6,27]

ICM:

{’Cab = Ugb> (5 5)

Kaa =0,
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where

Vap" = _\/E.amn(amy[a)yb]’ (56)
are the SO(6) Killing vectors of the round S°.

The resulting D = 5 theory is described by an embed-
ding tensor

Xapcd®! = Zﬁéiﬁwﬂ’
Xyt = , (5.7)
Xap“ap = —\/§5fa5b]d5",
Zuh,cd — O,
& ZMN — { (5.8)
Zaa,b[i =V 108a[35ab’

with ZMY defined in (4.19).

Finally, we need to choose a complete basis of scalar
functions in which to expand the ExFT fields via the
Kaluza-Klein ansatz (3.15). As discussed in IIIB, it is
most convenient to choose the complete basis of functions
as representations of the maximally symmetric point
of the consistent truncation, which in this case corresponds
to the round S°. Therefore, we will expand the ExFT
fields in terms of the scalar harmonics on the round S°,
which are given by polynomials in the elementary S°
harmonics (5.3) as

{yZ} — {l’ya’yalaz"“’yal...a,,"“}’ (59)

where our notation )@ = Y@ ya)) denotes trace-
less symmetrization in the elementary harmonics. The
index X thus runs over the tower of symmetric traceless
vector representations [n,0,0] of SO(6). Accordingly,
we will refer to the Y“ % harmonics as the level n
representation.

For the mass formulas, we need to compute the action of
the vectors Ky, defined by the generalized parallelization

(5.5), on the scalar harmonics )*. By construction, the S°
Killing vector fields have a linear action on the harmonics,
which is block-diagonal level by level and according to
(3.8) defines the matrices 7, as the SO(6) generators in the
symmetric [n, 0, 0] representation. In our conventions,4
these take the explicit form

Tte, e,V =0Ty (o, 46,8, ), (5.11)

4 . . C. . .
Our summation convention for the harmonic indices X, Q is
such that

A*By = AB + A“B, + A““B, , + -+ A““B, . + ..
(5.10)

where double parentheses again denote traceless symmet-
rization, and the action on the elementary harmonics is
given by

T od_ { Tab,cd = \/Eéc[atsb]d’
M, —

et _ g, (5.12)

We can now straightforwardly apply our mass formu-
las (4.4), (4.20), (4.31), (4.40) to compute the spectrum of
Kaluza-Klein modes around any vacuum of the SO(6)
gauged supergravity. All we have to do is dress the
embedding tensor (5.7), (5.8) and the 7 -matrix (5.12)
by the scalar vielbein, V,;,4, corresponding to the vacuum
we are interested in.

1. AdSs, N =8, SO(6) vacuum: IIB on S°

In this section, we recompute the Kaluza-Klein spectrum
around the maximally supersymmetric AdSs x S° solution
of IIB supergravity. This background sits as an N =8
vacuum within a consistent truncation to the D = 5 SO(6)
gauged maximal supergravity of [41], which can be
described within EXFT, it is thus amenable to our formal-
ism. Originally, the Kaluza-Klein spectrum on this back-
ground has been determined in [42,43] by linearizing the
IIB field equations and exploiting the representation
structure of the underlying supergroup SU(2,2|4), respec-
tively. We will show how to reproduce these results in our
formalism.

The AdSs x S° vacuum corresponds to the stationary
point at the origin My = Ayy = 6yy of the scalar
potential (2.32). Thus, we can choose the scalar vielbein
as V)4 = 5,4, We recall, that in the flat basis, indices are
raised, lowered, and contracted with 6,5 which in the index
split (5.1) is expressed in terms of &,, and &4,
respectively.

The value of the scalar potential at this point is given by

Vsugra|0 =-12= Lpgs = 1. (513)

In the original formulation of type IIB supergravity,
the computation of the Kaluza-Klein spectrum around
this background requires to expand all fields into the
corresponding sphere harmonics. For example, a ten-
dimensional scalar field gives rise to a tower of D =5
scalar fields

b)) = SV ()es(x), (5.14)

according to the tower of scalar harmonics J* on the
round S°.

We denote both, “curved” SL(6) x SL(2) indices and “flat”
SO(6) x SO(2) indices by a, b and a, .
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On the other hand, in the traditional formulation, ten-
dimensional fields with nontrivial transformation under the
Lorentz group on S° in general give rise to several towers of
harmonics which are built from products of the elementary
harmonics (5.3) and their derivatives. These can be clas-
sified and determined by group theoretical methods [44].
E.g., the internal part of the ten-dimensional metric gives
rise to an expansion

Zymn gZ(x

Gonn (%, ) (5.15)

with the harmonics )%, now filling three towers of SO(6)
representations built from the different irreducible compo-
nents of

a1a;,ds3 .. an —
mn

O Y1) (0, Y2) Y. (5.16)

In our approach, as discussed in Sec. III B, we expand all
fields in only the scalar harmonics J*, and the nontrivial
Lorentz structure of the Kaluza-Klein fluctuations will arise
entirely from multiplying the twist matrices appearing in
the fluctuation ansatz (3.15). We will demonstrate explicitly
how this occurs in the following.

|

B
B

praa.cy...c,

uvab,cy...c,

Spin-2 fluctuations.—We recall from (3.15) that the spin-2
fluctuations directly organize into the scalar harmonics )*.
We immediately obtain their mass spectrum from the
expression (4.4) for the mass matrix. With the 7 -matrix
given by (5.11)—(5.12), this matrix is (up to normalization)
nothing but the quadratic SO(6) Casimir operator, whose
eigenvalue on the [, 0, 0] symmetric vector representation
is given by

M n(n +4)5(((11‘..a”))((b]mbn))' (517)

ay...ayby...b, —

With the conformal dimension of spin-2 fields given by

A =2+ /4+ m’L%, this gives rise to

A=4+n. (5.18)
Tensors.—According to the fluctuation ansatz (3.15), the
tensor field fluctuations combine into the tensor product of
the fundamental representation (5.1) with the tower of
scalar harmonics (5.9). We may explicitly spell out the
fluctuation coefficients as

{Bﬂw_X,E} = {B/wah,cl Oy Byuaa.c] L..Cy } (5 19)

At level n they fall into SO(6) x SO(2) representations

€n1.1],@® (10,0, [n—120,& [n—1.0.2], ® [n—2.1,1],,
€En+1.00u®-111,&[n

~1,0,0], (5.20)

1
2

where we label these representations as [n, 15, ng] by SO(6) Dynkin weights n; and SO(2) charge j. In terms of the SO(6)
vector indices, the different SO(6) representations correspond to the symmetrizations

[n,0,0]
[n,1,1]

n,2,0] @ [n,0,2]

Summing over all levels, we thus find for the full spectrum

o0

(0.1, 1], & [1.0.0],1) ® i” 0.00=) (2

n=0

Jo...0o, (5.21)
...
- [n,1,1]y + [1,0,2]y + [n.2,0], + [n + 1,0,0],)
® oooileBZ(n,l,lilJrz [n—f—l,0,0]i%). (5.22)

Recall, however, from the discussion in Sec. IV B that
within towers, only tensors of nonvanishing mass are part
of the physical spectrum.

We may now evaluate the action of the mass matrix
(4.20) onto the components (5.19). Recall that the tensor
mass matrix is antisymmetric and thus has imaginary

eigenvalues. Using the explicit expressions for dABC,
728, T, from (5.2), (5.8), and (5.12), above, we obtain®

®For the sake of readability, here and in most of the following
formulas of this subsection, we omit the space-time indices uv
which are irrelevant for the diagonalization problem.
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1 de
(MB) - _Eng red fBCd’e(<C1"'cn—lacn))f’

ab,cy...c,
(MB)aa,cl.“cn = —(l’l + 1>€fl/}B(a|/7’|c].‘.cn)

+ ngaﬁBd/},d((cl e Cpy 56,,))11' (523)
The first equation shows that among the B, ., . .. , the only
components carrying nonvanishing mass correspond to the
[n,0,2] @ [n,2,0] representation, antisymmetric in three
indices. To compute the corresponding eigenvalue, we
explicitly parametrize B, ., . as

=& (5.24)

B ab{(c1.crorrcy))’

ab,cy...c,

in terms of a tensor t(ajgz‘ dyod, (anti-)self-dual in the first
three indices

(&) _ L. (&)
Labed,..d,, = ig Yabedeflief.d,...d,

(5.25)
and traceless under any contraction. The action of the mass
matrix (5.23) then yields

n+ Z)tab((cl,cz...cn))

i(n+2)Bupe, e, » (5.26)
where we have used that 74c.qd,...q,
quence of (5.25) and tracelessness.

Next, we turn to the second equation of (5.23). Its right-
hand side shows that the action of M on B, ., 18
vanishing on the [n, 1, 1] representation and has eigenval-

ues +i(n + 1) on the traceless Bﬂy((a“c] o) It remains to

compute the eigenvalue on the trace part of B,y ., . To
this end, we explicitly parametrize the trace fluctuations as

= 0, as a conse-

n—1
citepecy)a T mé(clczTc3...cn)a,aa

(5.27)

in terms of a tensor 7, traceless in its SO(6) indices. The
latter relates to the trace of B as

B (n+2)(n+3)

Ba,acz...c,, - n(n + 1)

T (5.28)

Cy...CpQ"

The action (5.23) then becomes

aa,cy...c

(MB) 1 n
n—1

= _(n + 1)8aﬂ5(acl Tcz...c,z)./i + Tg(zﬂé(clczTc3...c,,a),/i
n—1

+ (l’l + S)Saﬁéa(cchz...c,,),ﬁ - n—_l_lea/féa(cchz...c,,),ﬁ

(n=1)

= (n + 3>£aﬁ (5a(cchz...cn),ﬂ - m‘s(qcqu...cn)a,ﬂ s

(5.29)

with eigenvalue +i(n + 3).

We summarize the result for all nonvanishing tensor
masses at level n in Table I. It shows that at level n the
tensor spectrum contains three different representations
which all come with different masses. In particular, the
representations [n +1,0,0].; and [n—1,0,0]., directly
correspond to mass eigenstates. In contrast, computing the
Kaluza-Klein spectrum in terms of the original 1IB vari-
ables requires diagonalization of a coupled system of
equations mixing components of different higher-dimen-
sional fields [42]. The fluctuation ansatz (3.15) precisely
solves this diagonalization problem: the mass eigenstates
organize according to the scalar tower of harmonics and
mix into the IIB fields upon multiplication with the twist
matrix U,A. Let us make this explicit. Table I shows that
the same representation [k, 0, 0] +1 appears twice within the

massive tensor fluctuations as

4+ _
bc] O = Bh(l,bcl L

a

B((Cl c3...01))

bz,...ck,a =

. k-1
= B(Cl Ca..Cp) _de d(cl.“ck_zé

Crorci)?

(5.30)

atlevels n = k+ 1, and n = k — 1, respectively, for which
we read off the mass eigenvalues (k+4)%, and k2,
respectively. This precisely reproduces the result of [42].

To identify the higher-dimensional origin of the mass
eigenstates, we need to combine this result with the
dictionary between the ExFT fields and the fields of IIB
supergravity [16,27]. For the original IIB 2-form C,,* and
in combination with the fluctuation ansatz (3.15), this gives
rise to an expansion

TABLE 1. Masses of tensor fluctuations at level n. The
conformal dimension is given by A = 2 + |m|L oqs.
Fluctuation Representation m*LA 4 A
B/ll/llb.C]Czu.C,, [n_ 1707 2}0 2] [l’l— 1’2’0]0 (I’l+2)2 n+4
Bu(@®e,...c)) [n+1,0,0]. (n+1)*> n+3
Bubba,bcz.“c,, [l’l - 1’ 0’ 0]:{:% (I’l + 3)2 n+5
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-l eigenstates. Expanding the product of harmonics in

Cm,a =y Z ycl...c,,Blwaa.cl»..C,, (x)’ (531) (5.31) according to
n=0

n
where the ) prefactor descends from the twist matrix =~ YY" = Y@ +2(n 12) selayezal), (5.32)
UyA, and the terms under the sum correspond to the

scalar tower of harmonics which fall into mass  we find for the expansion of the IIB two-form

|

— n
C a _ acy ,,,C”b—vacl...c”.a CZ,”Canrch...c,,.a
Sy (i sgligyar i)
1 = e e k+1 :
— 7b+ a E CiC ycln-ck,a b+yc1...ck.,a i 5133
6 Hv +k:1y < Hi +2(k+3) H ) ( )

mixing in its fluctuations different mass eigenstates. A similar computation for the components of the IIB six-form
Cpuwkimn”> gives rise to its expansion into different linear combinations of the same objects (5.30) according to

o o —C1Cy...Cp X k k+1 Cp...Cp ° P
C/wlmnpa = E a)lmnpqaqyclyczmck (b;w] et — ( ) )b;y etk ) + 4a)1m,,qu Cﬂya, (534)
k=1

2(k+2)%(k+3

where again the mixing of different mass eigenstates originates from multiplying out the harmonics from the twist matrix
and the scalar tower of harmonics.

Vectors.—We now perform the corresponding computation for the vector spectrum by evaluating the mass matrix (4.31).
According to the fluctuation ansatz (3.15), the vector fluctuations organize into the same SO(6) x SO(2) representations as
the tensor fluctuations, which we explicitly denote as

A g [n, 1,1, @ [1,0,00) @ [n—1,2,0]y @ [n = 1,0,2]y & [n = 2,1, 1],
Ao € [n+1,0,0, @ [n =111, @ [n—1,0,0]..

For the $° background, the general vector mass matrix (4.31) simplifies drastically since the generators X 4 are compact:
X @Q =-X &E' As a consequence, the action of the mass matrix on the vector fluctuations reduces to

8
(MA)AZ - —6(|]:DAQBQ + IPQAEQ)TQ,AQTQZAAEQ + gTé,ZATE.AQAEQ' (535)

Evaluating the right-hand side, we find for the adjoint projector (2.5) with (5.2)

1 1
[FDaaCdb/jef + Pgdaabﬁef =z <5ah60[e5f]d + 25b[05d][eaf]a)6aﬂ - Eeabcdefga/;”

6
1 1 1
Pap ca® + Pog®® 7 = 500000 + GO0 + 5 8505 = 0ibla = Fegta- (5.36)

Moreover, the product of 7 matrices takes the explicit form
Tcd.q...anTef.AQAQ = —2n(n - 1)5[0((611462.-.0”_1d][e(gf]cn)) + nAf’((cl~.~cn_15cn>)ecd — nAe((cl~~cn_156n))fcd_ (5.37)
Evaluating (5.35) on the components (5.35), we then find after some computation

(MA)@bci-en = QpAabercacn 4 2n2A[a((61,Cz-~cn))b] +4n(n - 1)Ad((cl.02mcn_1d[a5b]cn>) _ 2n25[a((clAb]dCZ“'C"))d,
(MA)aa,cl...c,, — I’l(l’l + 3)Aaa,c]4..c,, _ I’l(l’l 4 3)A((Cl|a|,cz...cn))a _ l’l(l’l _ 1)Aba.b((cl...c,,,léc,,))a. (538)
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The second equation shows that for the traceless part in
A%*c-c only the [n — 1, 1, 1] contribution carries a mass
whereas the fully symmetric part in the [n+ 1,0,0]
remains massless. Indeed, the latter states are absorbed
as Goldstone modes into the corresponding massive tensor
excitations, cf. Table I. To determine the mass eigenvalue of
the [n — 1, 1, 1] vectors, we evaluate the second equation of
(5.38) for components satisfying A@la-ci--c) = () together
with tracelessness and obtain
(MA)aa.cl...c,l — (}’L + 1)(71 + 3)Aaa.clcz...c,,' (539)
It remains to compute the masses of the trace modes
Abxber---cn Since these states serve as Goldstone modes for
the corresponding [n — 1,0, 0] massive tensors of Table I,
they must appear massless. As a consistency check of our
formulas, this can indeed explicitly be verified upon para-
metrizing the fluctuations as

Adaci...c, — 5a((c]Tc2...cn)),a — 5a(c]Tcz.4.c,z).a

_ n—1 5(clczTc3...c,,)a.a

2(n+1) ' (5.40)

with a traceless tensor 7, just as (5.27) above, and
evaluating the action (5.38).

We now turn to the first equation of (5.38). Its first line
shows that within the traceless part of Adbcreren  the
[n—1,2,0] @ [n —1,0,2] representations remain massless
as required by consistency (they are the Goldstone modes for
the corresponding massive tensors, cf. Table I). In turn, we
can compute the mass of the remaining [n, 1, 1] repre-
sentation by parametrizing the corresponding fluctuations as

Aab.cicrc, — t[a,b]clﬂ.c”’ (54])
with a tensor ¢, traceless, and symmetric in its last n 4 1
indices. The action (5.38) then takes the form

(MA)abVCI...c,, = 2nAdb.cicr...c, 4 2n2A[a((cl,cz...c,,))b]

=n(n+ 2)t[a.b]cl‘..cﬂ = n(n+2)A%cria,
(5.42)

Finally, we compute the action (5.38) on the trace parts of
A#abcr--Cen by parametrizing these as

A”ab~cl~'~cn — 5‘1((51 T02'-~Cn)>~b — 5b((cl ’TCQWC'n))’“7
5+ 4n+n?

Tcz...c,,,b
n(n+1)

= A;mb,acz...cn —

(" - 1) Tb(cz...c,z_l,cn)’ (5‘43)
n(n+1)
in terms of a trace-free tensor 72+ -“»% symmetric in its first
n — 1 indices.

TABLE II. Masses of vector fluctuations at level n. The
conformal dimension is given by A =2+ /1 + m’L3 .
Fluctuation Representation m?LA 4 A
A”a((h~5152“‘crl)> [n,1,1], n(n +2) n+3
A, bcxe3encab [n—=2,1,1], (n+2)(n+4) n+5
A FbET [n—l,l,l]i% (n+1)(n+3) n+4

For the [n —2,1, 1] representation, we further impose
that 7(C2C4) = 0 and explicit evaluation of (5.38) after
some computation turns into

(MA)-crcn = (2 4 n)(4 4 n)AWcr-cn, (5.44)
The [n,0, 0] representation is described by (5.43) with a
fully symmetric 7¢““; however, the mass for this
representation is irrelevant as the corresponding modes
are the ones absorbed into the massive spin-2 excitations.
As discussed in Sec. IV A, they have to projected out from
the physical spectrum.

We summarize the result for the massive vector fluctua-
tions in Table II. At level n the vector spectrum contains
three different mass eigenstates in different representations.
Summing over all levels, the representation [k — 1,1, 1],
appears twice within the massive vector fluctuations as
a.cy...Cck EAab'cl“'C"bh

ay k—1.1,1]

q%C1--Ck EAa((cl,cz...ck))|[k_1’1.1]’ (545)
atlevels n = k+ 1, and n = k — 1, respectively, for which
we read off the mass eigenvalues (k+3)(k+5), and
k*> — 1, respectively. This precisely reproduces the result
of [42] [cf. their Eq. (2.27)].

To identify the higher-dimensional origin of these mass
eigenstates, we again appeal to the dictionary between the
ExFT fields and the fields of IIB supergravity [16,27]. The
vector fluctuations A®?¢1--¢» descend from the off-diagonal
part A, of the 10D metric and components of the four-

form as
A”m(x,y) _ \/iamyayb Zycl...anZb-,Clmcn (x)’
n=0

1o 0 e

A”klm<x7 )7) = zwklmpqapyaaqyb Zycl..,C,,A”b, Lot "(,X'),
n=0

(5.46)

Again, the sum corresponds to the tower of scalar har-
monics while the prefactor comes from the twist matrix
(U™1),M in (3.15). A computation analogous to the one for

the tensor fields in Sec. V. A. 1. b, expanding the products
of harmonics and rearranging the terms in the tower, yields

106016-19



EMANUEL MALEK and HENNING SAMTLEBEN PHYS. REV. D 102, 106016 (2020)

n

A m =2 m)aybc,...c, ,a,bcy...c,
J(xy) f;(a Yayber-engs )

amyaycz.“cnai,cz,..c,,) i

V2 = k+1
— oMYy g4 2 OMYaYCi---Cr a.cy...Cx a.cy...Cx , 5.47
6 ya++\/_]§:1 Yoy ((1 +2(k+3)a+ ) ( )
and
° . n+ 1 ry)a s Cy...C, na,bc...c n(n - 1) 7)) S \)Cr \)C3...Cp €2 Cp
Aﬂ’ﬂpq(x’y) = Wppgrs ;:0 <n +26 VagsYbyer-nqber-cn — 2(n +2)25 Ve Y2 yes- nay”? )
0 = 1 k+1 e
— ar aas Cl...Ck ci,clu.ck_ a,cp...Cp , 548
s ;l i <k+ 1 2(k+ 32 ) 549)

showing precisely how the mass eigenstates get entangled within the higher-dimensional fields. Again, this reproduces the
results from [42].

Scalars.—Let us finally sketch how to obtain the scalar mass spectrum in this example. According to the above discussion,
at level n the scalar fluctuations are described by tensoring the coset valued fluctuations (3.5) from the lowest multiplet with
the symmetric vector representation [n, 0, 0]. In the SO(6) basis, these fluctuations can be parametrized as

jab,cd.Q = 26a[c¢d]h,9 ’

jM,Q = jab,ca,Q = ¢abcCa,Q7 (549)
Jaabp@ = Pabbap + SapPaps
in terms of tensors ¢,y 0, Pup> Pabcan, constrained by
¢[ab],$2 =0, ¢aa,§2 =0, ¢[aﬂ],$2 =0, ¢aa,9 =0,
¢abca,sz = €abcdef€a/3¢defﬂ,g- (5-50)

Evaluating the tensor product with the harmonics, the scalar fluctuations at level n organize into the representations

Gave,..c, € [n+2,0,0]p & [1,0,0]y ® [n—2,0,0]p & [n, 1, 1]y ® [n = 2,1, 1]y & [n—2,2,2],

¢aﬂ,cl...cn € [}’l, 0’ O}il ’

Pabcacrcy €= 1111 @ [1.0.2],1 & [1.2,0] , & [1-2.0.2]_, & [n-2.2.0] .

-1 -1
2 2

From the previous results, we know that these modes still
contain the unphysical Goldstone modes

n=2,1,1]@ [n—1,1,114 @ [n,1,1], & [1,0,0],
(5.52)

of which the first three are absorbed by the massive vectors
and appear with zero mass eigenvalue, whereas the last one
is absorbed into the massive spin-2 fields and must be
projected out by hand. It remains to evaluate the mass
matrix (4.40) on these fluctuations. The calculation is
analogous to (although somewhat more lengthy than) the
ones presented above for the tensor and vector fields. We
summarize the result for the various representations in
Table III.

BPS multiplets.—In the previous sections, we have deter-
mined the mass spectrum around the AdSsx S$°

(5.51)

background. With the fluctuation ansatz (3.15) all mass
matrices are block-diagonal level by level. With the ansatz
(3.15) for the EXFT variables, internal derivatives act via
the combination (2.35) acting on the twist matrices and
(3.8) acting on the tower of harmonics. The latter action is
realized by the matrices (5.11), such that the resulting field
equations do not mix fluctuations over different SO(6)
representations X. This is in contrast with the structure in
the original IIB variables: after evaluating the products of
the sphere harmonics ))* with the twist matrices in (3.15),
fluctuations of the original IIB fields combine linear
combinations of different mass eigenstates as illustrated
in (5.33), (5.34) for the tensors and in (5.47), (5.48) for the
vector fields.

The same structure underlies the EXFT supersymmetry
transformations [45]. As a result, all fluctuations associated
with a fixed SO(6) representation X = [1,0,0] in the
towers of (3.15) combine into a single %—BPS multiplet
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TABLE III. Masses of scalar fluctuations at level n. The conformal dimension is given by A =2+
NCEwiry
Fluctuation Representation m*LA 4 A
D((abec,...c)) [n+2,0,0], n?—4 "2
¢ab,abc| L Cpn [n - 27 07 0}0 (I’l + 2) (n + 6) n+ 6
(f)aﬁ,cl...cn [n,O, O}il n(n +4) n+4
ab,cy...c, [n—2,2, 2}0 n(n—|—4) n+4
¢ahca,c|.“c" [l’l, 0’ 2]-&—% D [I’l, 2’ 0]—% (l’l - 1)(” + 3) n+3
d)abda,dcc]...c,,,z [I’l -2,0, 2]—% 7] [}’l -2,2, 0]+% (n + 1)(" + 5) n+5

TABLEIV. 1-BPS multiplets of SU(2,
the spins of SO(4) ~ SU(2) x SU(2).

) in SO(6) x SO(4) notation [ny, n,, n3](j, jo) with Dynkin labels n;, and (j;, j,) denoting

A
n+2 [n -+ 2,00](00)

n+3 [n+1,10](03) + [2 + 1.01](30)

n+3 [n,02](00) + [7,20](00) + [n + 1,00](01) + [ + 1,00](10) + [n, 11](31

n+1 [n,10)(01) + [n — 1,12](03) + [2,01](30) + [n — 1,21](0) + [1n,01](1 1) + [n, 10](11)

n+4 2 - [n,00](00) + [n —2,22](00) + [n — 1,02](01) + [n — 1,20](10) + 2 - [n — 1, 11](33) + [1,00](11)
n+?2 [n—1,10](03) + [n — 2, 12](01) + [n — 1,01](0) + [n — 2.21](}0) + [n — 1,01](3 1) + [n — 1,10](11)
n+5 [n —2,02](00) + [n = 2,20](00) + [n — 1,00](01) + [n — 1,00](10) + [2 — 2,11](33)

n+4 [n—2,10](03) + [n —2,01](30)

n+6 [n —2,00](00)

BPS[n]. Indeed, the mass spectrum from Tables I-III
precisely matches the bosonic field content of the %—BPS
multiplet BPS[n] which we list in Table IV. The ansatz
(3.15) illustrates the fact that (except for its masses) the
representation content of the full Kaluza-Klein spectrum
around a maximally symmetric vacuum such as AdSs x §°
is obtained by tensoring the zero modes of the torus
reduction with the tower of scalar harmonics [46].7

2. AdSs, N =2, U(2) vacuum

In the previous section, we have worked out the Kaluza-
Klein spectrum around the AdSs x S° background corre-
sponding to the maximally symmetric stationary point of
the D =5 SO(6) gauged maximal supergravity of [41].
While this analysis reproduces the known results [42,43]
for the sphere spectrum, our formalism allows us to address
far more complicated backgrounds which are hardly
accessible to standard methods. As an illustration, let us
consider another stationary point in the same scalar
potential which breaks supersymmetry down to N =2

"This is not in contradiction with the fact that the BPS
multiplet BPS[n] itself does not factorize. It is only after
imposing the explicit form of the mass matrices that the degrees
of freedom are distributed among the different fields, such that for
example only some of the tensor fields within the product (5.22)
actually become part of the physical spectrum.

and preserves only SU(2) x U(1) of the original SO(6)
bosonic symmetry group [47]. This stationary point can be
uplifted to a solution of IIB supergravity [9]. On the field
theory side of the holographic correspondence, this sol-
ution corresponds to the N' =1 IR superconformal fixed
point of the deformation of N = 4 super-Yang-Mills by a
mass term for one of the three adjoint hypermultiplets
[10,48]. The holographic renormalization group flow con-
necting this solution to the AdSs x S° background has been
constructed and studied in [49].

Within the D = 5 supergravity of [41], one may compute
the mass spectrum around this background for the fields
sitting within the lowest N' = 8 multiplet which at the ' =
2 point decomposes into various supermultiplets of the
remaining background isometry supergroup SU(2,2|1) ®
SU(2). Organizing these multiplets according to their
(external) SU(2) spin, this results in [49]

1
[0]: DA1A1(3 25"
1

@ Dpa, (3;05; > ® D (1 4+7;0,0:0),
c
1 91 3 11 1 1
— :D — . D
{2} LB, (472,0,+2> @ LA2<4 5 ,0; +2>C7

3
[1]: Dy,a,(2:0,0;0) @ Dy, <5;0, 0;+1> :
C

> ® Dp5,(3;0,0;+2)¢

(5.53)
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where we follow the notation of [50] and denote
SU(2,2|1) supermultiplets by D(A;ji, jo;r) with the
arguments referring to the conformal dimension, SU(2) ®
SU(2) spin and R-charge of the highest weight state,
respectively. Complex multiplets D(A, j;, j»;r)c come in
pairs D(A, jy, jo;r) @ D(A, jo, ji;—r). Dy denotes
the generic long multiplet, while the notation for the
shortening patterns A,, B for short and semishort multip-
lets follows [51].

|

In our fluctuation ansatz (3.15) and the mass formulas
worked out in Sec. IV, the result (5.53) corresponds to the
lowest term in the harmonics expansion, i.e., to evaluating
the mass matrices on the one-dimensional space spanned by
constant harmonics Y*=° = 1, with 7, = 0. In this for-
malism it is then straightforward to extend the result to
higher levels of the Kaluza-Klein spectrum. As an illustra-
tion, let us give the result at level n =1, again with
multiplets organized according to their external SU(2) spin8

9 1 911 9
[0} Z'DLA] <§,O,E, 1> @DLAI (E,E,E,‘i‘l) ®DLL(2 2 0 +1)C
\/37 V61
C C

1 15 5 17 3
L] Dy, (4 ,0,0;+§>C @ Dpa, (Z;O’OH_Z)

17 1 1 V1
@DLL<—;0,—‘+—> EBDLL<1 T

t\)|>—ﬁ

47722 ),

15 1 1
D _._ﬂO; ~
® LL(4’2 +2)C

1 V193 1
—+= Dppl1+——:0,0;4=
2 +2)C® LL( + 4 s Vs 9+2>C7

1 7 l 1
C C

3 9 3 11 1
—|: D —;0,0;+= D —;0,0;+=) .
3 m(an) ena(ond)

A similar analysis can be performed at the higher Kaluza-
Klein levels and be explicitly checked against the CFT
results [52].

B. Vacua of four-dimensional SO(8) gauged SUGRA

We can similarly apply our mass matrices to vacua of
four-dimensional gauged supergravity, such as the SO(8)-
gauged SUGRA [53] arising from the consistent truncation
of 11-dimensional supergravity on S’ [54]. The SO(8)-
gauged SUGRA contains several interesting vacua from a
holographic perspective. These include the maximally
supersymmetric AdS, vacuum a N =2 AdS, vacuum
with SU(3) x U(1), symmetry [55,56], and a nonsuper-
symmetric AdS,; vacuum with SO(3) x SO(3) symmetry
[55,56]. Using the consistent truncation of 11-dimensional
supergravity [54] all these vacua uplift to AdS solutions of
11-dimensional supergravity.

We can use our mass formulas to compute the Kaluza-
Klein spectrum around these various 11-dimensional super-
gravity solutions. For the maximally supersymmetric AdS,
vacuum, corresponding to the 11-dimensional AdS, x S’
solution, the Kaluza-Klein spectrum can be computed,
following the steps shown in Sec. VA 1 for the AdSs x §°

The last multiplet in the list (5.54) is missing in Eq. (29) of
[1], where this result was first given.

[

solution of IIB, to recover the known spectrum of
AdS, x §7. Since the computation is analogous to that
covered in detail in Sec. VA 1, we will not repeat it here.
Instead, we will, in the following, show how our technique
can be used to compute the mass spectrum of the Kaluza-
Klein towers of the SU(3) x U(1)g-invariant AdS4 [11], as
well as the SO(3) x SO(3)-invariant AdS, [8] vacua of 11-
dimensional supergravity.

To compute the Kaluza-Klein spectra of these vacua, let
us set up our notation for the SO(8) gauged supergravity.
This is best described using the SL(8) C E;(7y subgroup
under which the fundamental 56 representation of E;)
decomposes as

56 - 28 @ 28,

{AM} > {A Ay}, a=1...8. (554)

The embedding tensor of the SO(8) gauged SUGRA is
given by

Xab,cdef = _Xabefcd = 2\/55551)”652%’
Xabcd,ef — 0,

Xabﬂﬁ - 0

(5.55)

P __
Xyun-=

The consistent truncation of 11-dimensional SUGRA
to the SO(8) gauged SUGRA can be described by a
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generalized Scherk-Schwarz truncation within E;7) EXFT
[6,7], as discussed in Sec. II C. Just like for the consistent
truncation of IIB supergravity on S°, the twist matrices
Uy2 can be constructed using the elementary sphere
harmonics, }“, on S’, which are just the embedding
coordinates of §” C R and thus satisfy

YOy =1.

For the masses of the Kaluza-Klein spectrum, we only need
to know the vector components, K Mo of the corresponding

generalized parallelizable frame which are given by [6]

(5.56)

ICab = Vap>
Ky = 5.57
M {IC“b _ 0’ ( )
where
Vap" = _ﬁ.gmn(any[a)yb]7 (558)

with 5 the round metric on S, are the SO(8) Killing vectors
of the round §.

To compute the Kaluza-Klein spectrum of any vacuum
of the SO(8) gauged SUGRA, we need to choose a basis of
scalar harmonics in which we expand the fields according
to (3.2), (3.3) and (3.7). As discussed in Sec. III B, we can
simply choose the scalar harmonics of the maximally
symmetric point, which in this case is the round S’.
These are given, just as in Sec. VA 1, by the symmetric
traceless polynomials in the elementary sphere harmonics
V4 1e.,

{VE} = {1, 0, b, . ya-an}, (5.59)
where Ya--an = Yllar | ya:)) denotes traceless symmetri-
zation in the elementary harmonics. The index X thus runs
over the tower of symmetric vector representations
[n,0,0,0] of SO(8).

In order to evaluate the mass formulas, we need to
compute the action of the vectors K4, defined by the
generalized parallelization (5.57), on the scalar harmonics
V= For the §7, these are the Killing vectors (5.58) which,
like for the S, have a linear action on the harmonics given
by the generators of SO(8) in the [, 0, 0, 0] representation,

dn,
Tﬂxl...cndl'”d" = nTM,«C]((dléfj...éC )

M. (5.60)

in terms of the action on the elementary harmonics, given
by

d _
TMC -

T ap e = V281,017,
{ ab,c \/_ c[a9b] (561)
Tabcd =0.

It is now straightforward to apply our mass formulas to
compute the Kaluza-Klein spectrum around any vacuum of

the SO(8) gauged supergravity. All that is left to do is to
dress the embedding tensor (5.55) and the linear action on
the harmonics (5.61) by the four-dimensional scalar matrix
corresponding to the vacuum of interest and apply (4.4),
(4.31), (4.40).

1. AdSy, N =2, U(3) vacuum

We will now apply our formalism to compute the
Kaluza-Klein spectrum of the 11-dimensional A =2
SU(3) x U(1)-invariant AdS, vacuum of 11-dimensional
supergravity [11], and which can be uplifted from a vacuum
[55,56] of four-dimensional N =8 SO(8) gauged
SUGRA. This 11-dimensional AdS vacuum [11] is similar
in several respects to the AdSsx S° solution dual to
the Leigh-Strassler CFT discussed in Sec. VA 2. The
three-dimensional A =2 CFT dual is obtained by
deforming the A/ =8 ABJM CFT via a mass term for a
single chiral supermultiplet and flowing to the IR. The
corresponding holographic renormalization group flow
connecting the AdS, x S7 solution to this /' = 2 SU(3) x
U(1)g vacuum has been constructed in [11].

Some aspects of the Kaluza-Klein spectrum of this
SU(3) x U(1), vacuum have also already been analyzed.
Due to the lack of computational techniques until now,
these analyses have been limited to the pattern of super-
multiplets [57] and the spin-2 Kaluza-Klein spectrum [31].
Here we will use our Kaluza-Klein spectrometry to deter-
mine the full bosonic Kaluza-Klein spectrum of this
11-dimensional AdS, vacuum.

Using our mass matrices (4.4), (4.31) and (4.40), we can
compute the entire bosonic Kaluza-Klein spectrum of this
AdS,; vacuum of 11-dimensional supergravity. In fact,
because the mass matrices are quadratic in U(3) generators
and all fields organize themselves into supermultiplets, we
can extrapolate the entire mass spectrum from the first three
Kaluza-Klein levels alone. We find the following energies,
E,, for the graviton (GRAV), vector (VEC), and gravitino
(GINO) supermultiplets’ with SU(3) x U(1), representa-
tion [p, g], appearing at Kaluza-Klein level n:

1

9 1 4 1 2 2
+\/Z"’E”(”“‘@_gcp,q"'i(’”"'g(q_l’)) )

1 7 1 4 1
GINO: E0:5+\/§+§n(n+6>—§cp,q+§r2,

1 17 1 4 1
VEC: E0=§+\/Z+§”(”+6)—§Cp,q -I—Erz,

(5.62)

%For the supermultiplets, we follow the notation of [57].
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TABLE V. Energies of the multiplets of the AV = 2 CFT dual to
the U(3) AdS, vacuum at level n = 0. We represent the energy E

and U(1) R-charge r of a multiplet in the [p, ¢] representation of
SUQ3) as (Ey),-

[0, 0]
MGRAV (2),

LVEC (3 +Y17),

2
(1, 0]
SGINO (&

[0, 1]
SGINO (4)

[0, 2]
. HYP (3)_

(1, 1]

)y MVEC (1),

[2, 0]
HYP (3).,

where C, , is the eigenvalue of the representation [p, g]
under the quadratic Casimir operator, i.e.,

C (P’ +q*+pq)+p+q. (5.63)

W =

pqg =

Since the hypermultiplets (HYP) are necessarily short, their
energies are fixed by the BPS bound but can be written
similarly to the other multiplets as

17 1 4 1
—+-n(n+6) _ECM +=r

1
E, =~ 5.64
0=\ T3 2 (5-64)

The U(3) representations of the supermultiplets appear-
ing at a given level n can be computed by tensoring the
n = 0 fields with the scalar harmonics and arranging these
into supermultiplets. For example, the graviton supermul-
tiplets appear at level n in the representations

GRAV: [p.qlo=i, 4. (5.65)
where p,q,a,b € Z" are all positive integers satisfying
n=p-+qg+a+>b. The result for all supermultiplets
appearing at levels n <3 can be read off from the tables
in [57].

Note that the Kaluza-Klein spectrum contains infinite
series of short multiplets appearing at Kaluza-Klein level n
with U(3) representation [57]

SGRAV: |
SGINO: [1n+ 1,0](,41)3 ® [0,7 + 1]_,11y35
SVEC: [n+1,1],5 @ [l,n+1]_,3,
[

HYP: |n + 2, 0] (n+2)/3 @ [O, n-+ 2]—(ﬂ+2)/3' (566)

For these representations, our mass formulas (5.62) exactly
reproduce the BPS bound for the short multiplets:

SGRAV: Ey = |r| +2 =n+2,
311 »
SGINO: Ey = |r| +2=—+ 2
3
SVEC: E0:|r|—l-1=n_3|— :
2
HYP: EO:|r|:n§ . (5.67)

Furthermore, our mass formulas (5.62) are valid for all
supermultiplets, including long multiplets. We can thus
also compute the energies of unprotected multiplets in the
dual CFTs. To illustrate this, we have explicitly tabulated
the energies of all multiplets appearing at levels n <2 in

TABLE VI. Energies of the multiplets of the N’ =2 CFT dual to the U(3) AdS, vacuum at level n = 1. We

represent the energy E and U(1) R-charge r of a multiplet appearing m times in the [p, ¢] representation of SU(3) as

m X (EO)r'

[0, 0] [0, 1] [0, 2] [0, 3]

SGRAV (3)., LGRAV (1 4 ¥1%) | SGINO (§)_, HYP (1)
-3 3

LVEC (1 + g)il LGINO (¥) " LVEC (3) o

[1, 0]

LGRAV (§+¥5) |
LGINO (1),
LVEC (4 +217) ,

LVEC (§ +217)
(1, 1]
LGINO 2 x (1 +V3),

1
3

1, 2]
SVEC (3)

1
3

[2, 0] [2, 1]
SGINO (B) , SVEC (3) ,,
LVEC (3)_,

[3, 0]

HYP (1),
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TABLE VIIL

Energies of the multiplets of the A" = 2 CFT dual to the U(3) AdS, vacuum at level n = 2. We represent the energy E,

and U(1) R-charge r of a multiplet appearing m times in the [p, g] representation of SU(3) as m x (Ej),.

[0, 0]
LGRAV (L +¥40)
SGRAV (4),,

LVEC (4 + Y37

[0, 1]
conjugate to [1, 0]

2% (4),

[0, 2]
conjugate to [2, 0]

[0, 3]
conjugate to [3, 0]

[0, 4]
conjugate to [4, 0]

2 )iZ’
(1, 0]
LGRAV (§+¥3) , (1 +485) ,

(L, 1]
LGRAV (3),

LGINO 2 x (}+2v2),,

LVEC 2 x (1 +¥33)

LGINO (¥)5. 2% (3 +252).
1, V385 1 409
LVEC (3 + )_%, G+ )+%1

6

[1, 2]
conjugate to [2, 1]

[1, 3]
conjugate to [3, 1]

(2, 0]

.
LGRAV (3 + ¥,
LGINO (©)_,

LVEC (3 +38) , 2 (1),

(2, 1]
LGINO 2 x (4 4 240) ,

LVEC (3 +¥5) ,

(2, 2]
1 1 19
LVEC (5 +3 ;)0

3. 1]
SVEC (§),;

HYP (%) "

Tables V-VII, extending the purely group-theoretic analy-
sis of [57] to include the energies of the supermultiplets.

2. AdSy, N =0, SO(4) vacuum

The SO(8) gauged SUGRA also contains a prominent
nonsupersymmetric AdS; vacuum with SO(3) x SO(3)
symmetry [55,56], whose uplift to 11-dimensional super-
gravity was constructed in [8]. Intriguingly, this vacuum is
stable within the A =8 four-dimensional supergravity,
with all scalar fields above the Breitenlohner-Freedman
(BF) bound. It was long hoped that the AdS,; vacuum
would also be stable within 11-dimensional supergravity,
but since the AdS, vacuum is not supersymmetric and has
few symmetries, computing its Kaluza-Klein spectrum has
remained elusive.

However, using the technique laid out here, we can
exploit the fact that this AdS; vacuum arises by
deforming AdS, x S by modes living within the
SO(8) consistent ttthe bosonic Kaluza-Klein spectrum
using our mass formulas (4.4), (4.31) and (4.40), as was
done in [12] up to level 6 above the four-dimensional
N = 8 supergravity. The Kaluza-Klein spectrum displays
the curious feature that the masses of the Kaluza-Klein
modes does not increase monotonically with the level n.
Instead, even though the Kaluza-Klein scalars at levels 0
and 1 are stable, the Kaluza-Klein tower contains

tachyonic scalar fields at levels 2 and higher whose
masses violate the BF bound. Therefore, the techniques
developed here show that this nonsupersymmetric AdS,
vacuum is unstable within 11-dimensional supergravity,
lending further evidence to the “swampland conjecture”
[58] that all nonsupersymmetric AdS vacua of string
theory must be unstable.

Specifically, the scalar mass matrix (4.40) at level 0
yields the following mass eigenvalues:

(0,0): {—1.714(2),8.571},

(1.1): {-1.714(2),-1.312,2.571,5.598},  (5.68)

normalized in units of the inverse AdS length square,
where (jq, j,) denotes the SO(4) ~ SU(2) ® SU(2) rep-
resentations, = and where the states with mass m*L3 4 =
—1.714 appear with multiplicity 2. This reproduces the
result of [59] and shows that within NV = 8 supergravity,
all scalar masses lie above the BF bound m3pL3 ;s =
—2.25.

Evaluating the mass matrix at level n = 1, we obtain the
masses

"In [12], we have used the notation (2j; +1,2j, 4+ 1) for
these representations.
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2°2

11
< ) 0 {-2.232,-2.225,-1.947,-0.752,3.790, 5.059, 5.766, 7.627,

10.567,10.707, 11.492, 16.004 },

2°2 2°2

2°2

33
< ) : {=1.965,-1.377,-0.761, 1.042,3.208,3.431,3.831,7.497,7.882, 12.999},

1 1
< 3> ® (3 ): {-1.196,—-0.996, 1.732,2.429,6.198,6.292,9.817, 11.725},

still all lying above the BF bound. However, at level n = 2, the mass eigenvalues are given by

(2,2):
11.822,15.295,16.464,23.305},

13.574,14.955,15.952,17.676,21.337,21.862},

16.019, 18.407,23.822},

(5.69)
(0,0): {-3.117,-2.821,-2.179,0.941,1.995,3.181,5.244,6.753,7.224, 9.838,
12.000, 12.108, 12.221, 14.764, 16.685, 18.000, 19.418, 19.613,24.702},
(1.1): {~2.532,-2.448,-1.220,0.(3), 0.846, 1.483,2.586, 2.884, 4.133, 4.228, 4.400,
5.239,6.282, 6.450, 6.964,7.613,7.793,9.017, 9.685, 9.806, 10.002, 11.456, 11.462,
12.196, 12.767, 12.871, 13.010, 14.066, 14.556, 15.257, 18.839, 19.385,20.107, 26.532},
{~2.361,-0.916,0.224,2.291,4.212,4.419, 5.467,6.513,9.429, 10.286, 10.980,
(0.1) @ (1,0): {~1.343,-0.232,3.050,3.725,5.697, 6.731, 8.032,9.647, 10.087, 11.597, 12.510,
(0.2) @ (2,0): {~0.975,-0.110,2.410,3.175,5.301,7.183,7.588,9.731, 11.241, 12.232, 14.261,
(1.2) @ (2.1): {-0.881,-0.203,2.143,3.161,3.245, 4.430, 4.984, 7.480, 7.946, 8.592, 9.234,
(5.70)

12.032, 12.855,13.948, 14.334, 18.746,21.097},

and include a number of tachyonic modes m*L3 g <
—2.25. Similarly, tachyonic modes are found at the higher
Kaluza-Klein levels [12].

Moreover, the result (5.70) for the Kaluza-Klein modes
at level 2 shows 27 physical massless scalar fields (i.e.,
massless scalars not eaten by massive vector or graviton
fields), which transform in the 3 - (1,1) of the SO(3) x
SO(3) symmetry group. These scalars are thus infinitesimal
moduli which break the SO(3) x SO(3) symmetry. If these
AdS,-preserving deformations can be integrated up to finite
moduli, then this would give rise to a family of non-
supersymmetric AdS, vacua of 11-dimensional supergrav-
ity with symmetries smaller than SO(3) x SO(3).

VI. CONCLUSIONS

In this paper, we have shown how the formalism of
exceptional field theory can be used as a powerful tool
for the computation of the complete Kaluza-Klein mass
spectra around vacua that lie within consistent truncations.
In particular, the method applies to deformed backgrounds
that may have little or no isometries left, as well as to non-
supersymmetric backgrounds. We have derived the explicit
form of the mass matrices (4.4), (4.20), (4.31), (4.40), for

I

compactifications to D = 4 and D = 5 dimensions, that are
described within E;(;) and Eg) EXFT, respectively. They
are given in terms of the embedding tensor characterizing
the consistent truncation to the lowest multiplet, together
with the (dressed) action on the scalar harmonics associated
with the maximally symmetric point within this consistent
truncation. In terms of the EXFT variables, the fluctuations
are described by a simple product ansatz (3.15) between the
Scherk-Schwarz twist matrices and the tower of scalar
fluctuations. Translating this back into the original super-
gravity variables allows us to straightforwardly identify the
resulting mass eigenstates in higher dimensions.

We have illustrated the formalism in various examples.
First, we have rederived the full bosonic Kaluza-Klein
spectrum around the maximal symmetric AdSs x S5 sol-
ution of IIB supergravity, finding agreement with the
classic results of [42,43]. Next, we have applied the method
to compute the higher Kaluza-Klein levels around some
prominent AdS vacua with less supersymmetry in D =5
and D = 4 dimensions. This provides valuable information
for various holographic dualities and for the stability
analysis of nonsupersymmetric vacua. Although in this
paper we have restricted the analysis to the bosonic mass
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spectrum, it is clear that the fermionic mass spectrum can
be computed in complete analogy based on the structures of
supersymmetric EXFT [45,60]. Also, while we have restric-
ted our examples to AdS vacua which are of particular
interest in the holographic context, the method and the
explicit mass matrices likewise apply for Minkowski and
dS vacua.

There are many further potential applications of the
methods presented in this paper. Some recent and rather
exhaustive scans of the potentials of maximal SO(8)
gauged supergravity in D =4 [61] and SO(6) gauged
supergravity in D = 5 [62,63] have revealed a plethora of
AdS vacua, most of which preserve very few bosonic (and
super)symmetries. Our analysis of the Kaluza-Klein spec-
trum can be applied to all of these. Likewise, our method
applies to vacua within other maximal supergravities, such
as the D = 4, ISO(7) gauged supergravity which describes
the consistent truncation of massive IIA supergravity [64]
on S° and exhibits a rich vacuum structure [65]. In this case,
the maximally symmetric point, which is used to construct
the scalar harmonics, would be the round S°, even though
this is not a vacuum of the theory. Another interesting
gauging is the D = 4 SUGRA with [SO(1, 1) x SO(6)] X
R'? gauge group whose potential carries numerous inter-
esting AdS vacua [66,67] with IIB origin [68]. The analysis
of their Kaluza-Klein spectra will require a proper treat-
ment of the noncompact gauge group generator whose
associated noncompact direction will have to undergo a

proper S-folding in order to extract a discrete spectrum of
harmonics. For the spin-2 spectrum, this was analyzed, for
example, in [37].

We have derived in this paper the explicit mass matrices
for E;(7) and Egs) EXFT. However, the fluctuation ansatz
(3.15) is universal and allows to work out the mass matrices
for other exceptional field theories, giving rise to the
Kaluza-Klein spectra in compactifications to other dimen-
sions. It would also be very interesting to extend the
formalism to vacua sitting in consistent truncations that
preserve a lower number of supersymmetries building on
the constructions of [69,70].
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