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Exceptional field theories yield duality-covariant formulations of higher-dimensional supergravity. They
have proven to be an efficient tool for the construction of consistent truncations around various background
geometries. In this paper, we demonstrate how the formalism can moreover be turned into a powerful tool
for computing the Kaluza-Klein mass spectra around these backgrounds. Most of these geometries have
little to no remaining symmetries and their spectra are accessible to standard methods only in selected
subsectors. The present formalism not only grants access to the full Kaluza-Klein spectra but also provides
the scheme to identify the resulting mass eigenstates in higher dimensions. As a first illustration, we
rederive in compact form the mass spectrum of IIB supergravity on S5. We further discuss the application of
our formalism to determine the mass spectra of higher Kaluza-Klein multiplets around the warped
geometries corresponding to some prominent N ¼ 2 and N ¼ 0 AdS vacua in maximal supergravity.
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I. INTRODUCTION

Whenever a higher-dimensional theory is compactified,
towers of infinitely many massive fields arise in the lower-
dimensional theory. These Kaluza-Klein towers are the
lower-dimensional signature of the compactification space
and often play a crucial role in the compactified theory. For
example, in phenomenological models arising out of string
theory, these Kaluza-Klein towers would correspond to
massive particles but may also indicate potential instabil-
ities of the background. On the other hand, in the AdS=CFT
correspondence, the masses of the Kaluza-Klein towers are
mapped to the conformal dimensions of operators in
strongly coupled conformal field theories (CFTs), that
cannot be computed directly except for protected operators.
Despite the universality and importance of Kaluza-Klein
towers, calculating their masses is an exceedingly difficult
undertaking. Indeed, obtaining the Kaluza-Klein spectrum
of supergravity compactifications has hitherto only been
possible for coset spaces, while on general backgrounds
this has only been achieved for the spin-2 towers.
This paper is a detailed account of the results of [1].

There we announced a new method based on exceptional

field theory (ExFT), which allows us to compute the full
Kaluza-Klein spectrum for any vacuum of a maximal
gauged supergravity arising from a consistent truncation
of 10- or 11-dimensional supergravity. This includes vacua
with few or no (super)symmetries, whose Kaluza-Klein
spectra were previously inaccessible. ExFT is a duality-
covariant reformulation of maximal 10-/11-dimensional
supergravity, which unifies fluxes and gravitational degrees
of freedom. Since the Kaluza-Klein fluctuations mix
between the flux and gravitational sectors of supergravity,
this makes ExFT a natural formulation within which to
study this problem.
Indeed, as we develop here, we can build on the efficient

ExFT description of consistent truncations to maximal
gauged supergravity [2–7] to obtain a remarkably simple
expression for the Kaluza-Klein fluctuations around any
vacuum of the lower-dimensional gauged supergravity.
The fluctuation ansatz takes the form of the lower-
dimensional supergravity multiplet, making up the con-
sistent truncation, tensored with the scalar harmonics of
the maximally symmetric point of the lower-dimensional
supergravity. As a result, the ansatz is nonlinear in the
fields of the lower-dimensional supergravity multiplet.
Due to this nonlinearity, it is straightforward to compute
the Kaluza-Klein spectrum for any vacuum of the lower-
dimensional supergravity arising from the consistent
truncation.
There are several benefits to our approach:
(i) The fluctuations of all supergravity fields are para-

metrized in terms of a common set of “scalar
harmonics.” In contrast, in the traditional approach,
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fields in different Lorentz representations require
different harmonics.

(ii) The scalar harmonics are computed at the maximally
symmetric point of the lower-dimensional super-
gravity, even if we are interested in another vacuum
of the lower-dimensional supergravity with a much
smaller symmetry group.

(iii) As a consequence, we can, for the first time,
compute the Kaluza-Klein spectrum around vacua
with few or no (super)symmetries, including non-
supersymmetric vacua, such as the prominent non-
supersymmetric SOð3Þ × SOð3Þ AdS4 vacuum of
11-dimensional supergravity [8].

(iv) The states of every Bogomol’nyi-Prasad-Sommer-
field (BPS) multiplet live in the same Kaluza-Klein
level, making the identification of supermultiplets in
10=11 dimensions considerably easier than using the
traditional approach, where BPS multiplets are
scattered amongst different Kaluza-Klein levels.

(v) Using the dictionary between the ExFT and the
original supergravity variables, it is straightforward
to identify the higher-dimensional origin of the
resulting mass eigenstates.

The paper is structured as follows. We begin with a
review of the relevant aspects of ExFT in Sec. II. In Sec. III,
we then describe how to efficiently parametrize the Kaluza-
Klein fluctuations in ExFT. In Sec. IV, we show how this
leads to compact expressions for the mass matrices of the
Kaluza-Klein towers, including the vector and the scalar
fields. We next demonstrate the power of the formalism by
applying it to several prominent AdS vacua of 10- and 11-
dimensional supergravity in Sec. V. In particular, we show
how our approach leads to a very efficient computation of
the Kaluza-Klein spectrum of AdS5 × S5 and the

identification of the mass eigenstates within IIB super-
gravity. We then elaborate on the results announced in
[1], by

(i) computing the spectrum of the first Kaluza-Klein
level above the N ¼ 8 supergravity of the SUð2Þ×
Uð1Þ-invariant AdS5 vacuum of IIB supergravity [9]
that is dual to the Leigh-Strassler CFT [10],

(ii) giving the full bosonic Kaluza-Klein spectrum of
the SUð3Þ × Uð1Þ-invariant AdS4 vacuum of 11-
dimensional supergravity [11], dual to a quadratic
deformation of the Aharony-Bergman-Jafferis-Mal-
dacena (ABJM) CFT.

(iii) reviewing the computation of [12] of the Kaluza-
Klein spectrum of the nonsupersymmetric SOð3Þ×
SOð3Þ-invariant AdS4 vacuum of 11-dimensional
supergravity, and the appearance of tachyonic sca-
lars at higher Kaluza-Klein levels.

Finally, we conclude with a summary of our results and
outlook on further problems to be tackled in Sec. VI.

II. EXCEPTIONAL FIELD THEORY

In this section, we briefly review the structure of the
relevant exceptional field theories, based on the exceptional
groups E6ð6Þ and E7ð7Þ, respectively. We refer to [13–16] for
further details. These are the duality-covariant formulations
of maximal supergravity in 10 and 11 dimensions, tailored
to describe compactifications to D ¼ 5 and D ¼ 4 dimen-
sions, respectively.

A. E6ð6Þ ExFT

The Lagrangian of E6ð6Þ exceptional field theory is
modeled after maximal five-dimensional supergravity
[17,18]. Its bosonic field content is given by

fgμν;MMN;Aμ
M;BμνMg; μ; ν ¼ 0;…; 4; M ¼ 1;…; 27; ð2:1Þ

and combines a 5 × 5 “external”metric gμν with an “internal” 27 × 27 generalized metricMMN , the latter parametrizing the
coset space E6ð6Þ=USpð8Þ. Therefore, the generalized metric can be expressed in terms of a generalized vielbein

MMN ¼ EM
MEN

NδMN; ð2:2Þ

where the generalized vielbein, EM
M, is an E6ð6Þ-valued matrix. Vector and tensor fields Aμ

M and BμνM are labeled
by an index M in the (anti)fundamental representation of E6ð6Þ. These are the fields of maximal five-dimensional
supergravity; however, all of them are still living on the full higher-dimensional spacetime. The complete bosonic
Lagrangian reads

LExFT6 ¼
ffiffiffiffiffi
jgj

p �
R̂þ 1

24
gμνDμMMNDνMMN −

1

4
MMNF μνMF μν

N þ
ffiffiffiffiffi
jgj

p −1Ltop − Vðg;MÞ
�
: ð2:3Þ

It is invariant under generalized internal diffeomorphisms whose action on the scalar matrix MMN has the generic form
[19,20]

δΛMMN ¼ LΛMMN ¼ ΛK∂KMMN þ 2αd∂LΛKPK
L
PðMMNÞP: ð2:4Þ
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Here, PK
L
P
M is the projector on the adjoint representation

of the duality group EdðdÞ, which for E6ð6Þ takes the explicit
form

PM
N
K
L ¼ 1

18
δN

MδL
K þ 1

6
δN

KδL
M −

5

3
dNLRdMKR; ð2:5Þ

in terms of the totally symmetric cubic E6ð6Þ-invariant
tensor dKMN. The constant αd in (2.4) is determined by
closure of the diffeomorphism algebra and is equal to α6 ¼
6 for E6ð6Þ. The scalar fields in the Lagrangian (2.3) couple
via a gauged sigma model on the coset space E6ð6Þ=USpð8Þ.
Accordingly, MMN denotes the matrix inverse to MMN ,
and the covariant derivatives are defined as

DμMMN ¼ ð∂μ − LAμ
ÞMMN; ð2:6Þ

corresponding to the action of (2.4).
The Einstein-Hilbert term is constructed from the modi-

fied Ricci scalar R̂, constructed from the external metric gμν
in the standard way upon covariantizing derivatives under
internal diffeomorphisms ∂μgνρ → ∂μgνρ −Aμ

K∂Kgνρ. The
non-Abelian field strengths in (2.3) are given by

F μν
N ¼ 2∂ ½μAν�N − 2A½μK∂KAν�N

þ 10dNKRdPLRA½μP∂KAν�L þ 10dNKL∂KBμνL;

ð2:7Þ

with a Stückelberg-type coupling to the two-form tensors
BμνN . In turn, the topological term Ltop is defined via its
derivative

dLtop ∝ dMNKFM ∧ FN ∧ FK − 40dMNKHM ∧ ∂NHK;

ð2:8Þ

in terms of the field strengths F μν
M and HμνρM ¼

3D½μBνρ�M þ � � �, with the ellipses denoting Chern-
Simons type couplings whose explicit form will not be
relevant for this paper. Finally, the potential term Vðg;MÞ
in (2.3) is built from bilinears in internal derivatives and
reads

Vðg;MÞ ¼ −
1

4αd
MMN∂MMKL∂NMKL

þ 1

2
MMN∂MMKL∂LMNK

−
1

2
g−1∂Mg∂NMMN −

1

4
MMNg−1∂Mgg−1∂Ng

−
1

4
MMN∂Mgμν∂Ngμν: ð2:9Þ

In the formulation (2.3), the internal coordinates are
embedded into the 27-dimensional representation of E6ð6Þ

with derivatives denoted as ∂M. Gauge invariance of the
action requires the so-called section constraint, expressed
as a condition bilinear in internal derivatives

dKMN∂MΦ1∂NΦ2 ¼ 0; ð2:10Þ
for any couple of fields fΦ1;Φ2g. The section constraint
(2.10) can be solved by breaking E6ð6Þ according to

E6ð6Þ ⊃ SLð6Þ × SLð2Þ ⊃ SLð6Þ × GLð1Þ11;
27 → ð6; 2Þ þ ð15; 1Þ → 6þ1 þ 1500 þ 6−1; ð2:11Þ

and restricting the coordinate dependence of all fields to the
first six coordinates. Upon this choice, the Lagrangian (2.3)
becomes equivalent to full 11-dimensional supergravity. In
turn, type IIB supergravity is recovered upon choosing a
second inequivalent solution of the section constraint based
on the group decomposition

E6ð6Þ ⊃ SLð5Þ × SLð2Þ × GLð1ÞIIB;
27 → ð5; 1Þþ4 þ ð50; 2Þþ1 þ ð10; 1Þ−2 þ ð1; 2Þ−5;

ð2:12Þ
and restricting internal coordinate dependence to the first
five coordinates.
The explicit map of the ExFT fields (2.1) into the fields

of 10- and 11-dimensional supergravity has been worked
out in [14,16]. Here, we just note that the internal part gmn
of the higher-dimensional metric can be straightforwardly
identified within the components of the matrix MMN

according to

MMN∂M ⊗ ∂N ¼ ðdet gÞ−1=3gmn∂m ⊗ ∂n; ð2:13Þ
where indices m, n label the derivatives along the physical
coordinates embedded into the ∂M according to (2.11) and
(2.12), respectively.

B. E7ð7Þ ExFT

The structure of E7ð7Þ exceptional field theory closely
parallels the previous construction modulo a few technical
distinctions. The construction of this theory is based on a
split of coordinates into four external and 56 internal
coordinates, the latter constrained by the section constraint

ΩMKðtαÞKN∂MΦ1∂NΦ2 ¼ 0 ¼ ΩMN∂MΦ1∂NΦ2;

α ¼ 1;…133; ð2:14Þ
where ΩMK and ðtαÞMN denote the symplectic invariant
tensor and the 133 generators of E7ð7Þ, respectively. The
two inequivalent solutions of the section constraint (2.14)
restrict the internal coordinate dependence of the fields to
the six and seven internal coordinates of IIB and D ¼ 11
supergravity, respectively. The bosonic field content of
E7ð7Þ ExFT is given by
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fgμν;MMN;Aμ
M;Bμνα;BμνMg;

μ; ν ¼ 0;…; 3; M ¼ 1;…; 56; ð2:15Þ

where the internal 56 × 56 metric MMN now parametrizes
the coset space E7ð7Þ=SUð8Þ, and can thus also be expressed
in terms of a generalized vielbein

MMN ¼ EM
MEN

NδMN; ð2:16Þ
where the generalized vielbein, EM

M, is now an E7ð7Þ-
valued matrix. Moreover, apart from two-forms Bμνα in the
adjoint representation of E7ð7Þ, the theory features cova-
riantly constrained two-forms BμνM, subject to algebraic
constraints which parallel the structure of (2.14)

0 ¼ ΩMKðtαÞKNBμνM∂NΦ ¼ ΩMKðtαÞKNBμνMBρσN; α ¼ 1;…133: ð2:17Þ

The dynamics of E7ð7Þ ExFT is most compactly described by a pseudo-Lagrangian

LExFT7 ¼
ffiffiffiffiffi
jgj

p �
R̂þ 1

48
gμνDμMMNDνMMN −

1

8
MMNF μνMF μν

N þ
ffiffiffiffiffi
jgj

p −1Ltop − Vðg;MÞ
�
; ð2:18Þ

amended by the twisted self-duality equation

F μν
M ¼ −

1

2

ffiffiffiffiffi
jgj

p
εμνρσΩMNMNKF ρσK; ð2:19Þ

for the non-Abelian vector field strengths

F μν
M ≡ 2∂ ½μAν�M − 2A½μK∂KAν�M −

1

2
ð24ðtαÞMKðtαÞNL −ΩMKΩNLÞA½μN∂KAν�L

− 12ðtαÞMN∂NBμν α −
1

2
ΩMNBμνN: ð2:20Þ

The various terms in (2.18) are defined in complete
analogy to (2.3) above. In particular, covariant derivatives
are defined as in (2.6) where now LΛ refers to generalized
internal diffeomorphisms (2.4) for the group E7ð7Þ with
α7 ¼ 12, and the projector onto the adjoint representation
expressed as

PK
M
L
N ¼ 1

24
δKMδ

L
N þ 1

12
δLMδ

K
N þ ðtαÞMNðtαÞKL

−
1

24
ΩMNΩKL: ð2:21Þ

The topological term is defined via

dLtop ∝ 24ðtαÞMNFM ∧ ∂NHα þ FM ∧ HM; ð2:22Þ

in terms of vector and tensor field strengths, while the
potential term is still of the universal form (2.9), now with
α7 ¼ 12. In analogy with (2.13), the internal part of the
higher-dimensional metric can be identified among the
components of MMN as

MMN∂M ⊗ ∂N ¼ ðdet gÞ−1=2gmn∂m ⊗ ∂n: ð2:23Þ

The field equations derived from (2.3) and (2.18)
reproduce the field equations of D ¼ 11 and IIB

supergravity, depending on the choice of solution of the
section constraint. Moreover, massive IIA supergravity can
be reproduced upon further deformation of the gauge
structures [21,22].

C. Generalized Scherk-Schwarz reduction

One of the powerful applications of the ExFT framework
is the description of consistent truncations of higher-
dimensional supergravities [5–7], i.e., truncations to
lower-dimensional supergravities such that any solution
of the lower-dimensional field equations can be uplifted
to a solution of the higher-dimensional field equations.
Here, we focus on consistent truncations to maximal
supergravities whose field content is precisely of the
form (2.1) and (2.15), respectively, i.e., mirrors the ExFT
variables, with fields depending only on the external
coordinates.

1. Truncation ansatz

In terms of the ExFT variables, a consistent truncation
to D ¼ 5 and D ¼ 4 dimensions, respectively, is described
by a reduction ansatz which on the vector fields takes the
form

Aμ
Mðx; yÞ ¼ UN

MðyÞAμ
NðxÞ; ð2:24Þ
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factorizing the dependence on internal and external
coordinates into an (EdðdÞ ×Rþ)-valued twist matrix U
depending on the internal coordinates and the gauge fields
Aμ

N of the lower-dimensional maximal supergravity.
Similarly, external and internal metrics reduce as

gμνðx; yÞ ¼ ρ−2ðyÞgμνðxÞ;
MMNðx; yÞ ¼ UM

KðyÞUN
LðyÞMKLðxÞ; ð2:25Þ

respectively, upon decomposing the twist matrix
according to

UM
N ≡ ρ−1ðU−1ÞMN; ð2:26Þ

into a unimodular matrix U−1 ∈ EdðdÞ, and a scale factor ρ.
Finally, the reduction ansatz for the two-form tensor fields
takes the form

E6ð6Þ∶ BμνMðx; yÞ ¼ ρ−2ðyÞUM
NðyÞBμνNðxÞ;

E7ð7Þ∶
�Bμν αðx; yÞ ¼ ρ−2ðyÞUα

βðyÞBμνβðxÞ;
BμνMðx; yÞ ¼ −2ρ−2ðyÞðU−1ÞSPðyÞ∂MUP

RðyÞðtαÞRSBμναðxÞ;
ð2:27Þ

in E6ð6Þ ExFT and E7ð7Þ ExFT, respectively. Here, Uα
β

denotes the twist matrix evaluated in the adjoint represen-
tation of E7ð7Þ. Consistency of the truncation ansatz (2.24)–
(2.27) is encoded in a set of differential equations on the
twist matrix which take the universal form

½ΓMN
K�

Rd
¼ −γdXMN

K; ΓMN
M ¼ ð1 −DÞρ−1∂Nρ;

ð2:28Þ

in terms of the algebra valued currents

ΓMN
K ≡ ðU−1ÞNL∂MUL

K; ∂M ≡ UM
N∂N: ð2:29Þ

Here, γd are normalization constants given by γ6 ¼ 1
5
,

γ7 ¼ 1
7
, for E6ð6Þ ExFT and E7ð7Þ ExFT, respectively.

XMN
K denotes the constant embedding tensor characteriz-

ing the lower-dimensional theory. The projection ½…�R
refers to the projection of the rank three tensor ΓMN

K onto
the irreducible representation of EdðdÞ in which the embed-
ding tensor transforms. For the theories discussed in this
paper, these are R6 ¼ 351 and R7 ¼ 912.
Let us note that, using the explicit form of the projectors

in (2.28) (which can, for example, be found in [23]), the
first of the consistency relations (2.28) can be explicitly
spelled out as

−XMN
K ¼ −αdPL

P
N
KΓPM

L þ αd
ðD − 1ÞPM

L
N
KΓPL

P

þ ΓMN
K; ð2:30Þ

which will be useful in the following. For the E6ð6Þ case, we
point out two more useful relations

5ΓKL
½MdN�KL ¼ −XKL

MdNKL;

ΓKL
ðMdNÞKL ¼ −

1

2
ΓKL

KdLMN; ð2:31Þ

which are obtained from the contraction of (2.30) with the d
tensor and from the E6ð6Þ invariance of the d tensor,
respectively.
Every twist matrix solving Eq. (2.28) defines a consistent

truncation via the reduction ansatz (2.24)–(2.27), such that
the higher-dimensional field equations factor into products
of twist matrices and the lower-dimensional field equations.
For later use, let us also give the explicit form of the scalar
potential induced in the lower-dimensional gauged super-
gravities as functions of the embedding tensor XMN

K

[18,24] MN

Vsugra ¼
1

2αd
MMNXMP

RðXNR
P þ γdXNT

SMPTMRSÞ:

ð2:32Þ

Let us also recall, that in a given AdS vacuum the relation
between AdS length and cosmological constant Λ is
given by

L2
AdS ¼ −

ðD − 1ÞðD − 2Þ
2Λ

¼ −
ðD − 1ÞðD − 2Þ

Vsugra
: ð2:33Þ

2. Generalized Leibniz parallelizability

For the purposes of computing the Kaluza-Klein spec-
trum, it is useful to view the consistent truncation in a
slightly different way. In particular, the twist matrix U ∈
EdðdÞ defines an (x-independent) generalized vielbein for
the generalized metric, as in Eqs. (2.2), (2.16), i.e.,

MMN ¼ ΔMN ¼ UM
MUN

NδMN; ð2:34Þ
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and thus fully defines the internal part of the background,
i.e., the internal metric and fully internal p-form field
strengths. Moreover, for a consistent truncation, the twist
matrix is globally well defined. Thus, the generalized
frame fields UM

M, defined using ρ as in (2.26), defines
a collection of nowhere-vanishing generalized vector fields,
and the background is called generalized parallelizable,
analogous to ordinary parallelized spaces. However,
generalized parallelized spaces need not be parallelizable
in the ordinary sense, but more generally form coset
spaces [6,25,26].
Finally, it is useful to rephrase the consistency equa-

tions (2.28) in terms of the global frame, UM
M, as

LUM
UN ¼ XMN

KUK; ð2:35Þ

with the action L of generalized diffeomorphisms defined
by (2.6) together with a canonical weight term. Spaces
admitting such a generalized frame field are called gener-
alized Leibniz parallelizable spaces and have several
important properties. For example, (2.35) immediately
implies that the vector fields, KM, contained in the
generalized frame fields (2.26) according to

KM
m∂m ¼ UM

M∂M; ð2:36Þ

generate the gauge algebra specified by the embedding
tensor, i.e.,

½KM;KN � ¼ XMN
PKP; ð2:37Þ

where ½; � denotes the ordinary Lie bracket. Moreover, the
vector fields KM generating the compact part of the gauge
group are necessarily Killing vector fields of the back-
ground metric that leave the fluxes invariant. This is clear
from the expression of the internal Riemannian metric,
which can be easily read off from (2.34) and is given by

gmn ¼ KM
mKN

nδMN: ð2:38Þ

So far we have only discussed the twist matrixUM
M, i.e.,

the background geometry and fluxes around which we
define the consistent truncation. However, the consistent
truncation ansatz (2.25) implies that every space within the
truncation is generalized Leibniz parallelizable. To see this,
introduce a vielbein for the lower-dimensional gauged
supergravity (SUGRA) scalar matrix MMN , i.e.,

MMNðxÞ ¼ VM
AðxÞVN

BðxÞδAB: ð2:39Þ

Now we can define a generalized frame field for every
internal space obtained by the consistent truncation by
dressing the generalized frame field UM

M with the scalar
vielbein ðV−1ÞAM,

UA
Mðx; yÞ ¼ ðV−1ÞAMðxÞUM

MðyÞ; ð2:40Þ

and, equivalently, a generalized vielbein, which entirely
encodes the geometry and fluxes,

EM
Aðx; yÞ ¼ UM

MðyÞVM
AðxÞ; ð2:41Þ

such that the generalized metric, (2.2) and (2.16),

MMNðx; yÞ ¼ EM
Aðx; yÞEN

Bðx; yÞδAB
¼ UM

MðyÞUN
NðyÞMMNðxÞ; ð2:42Þ

takes exactly the form of the truncation ansatz (2.25). Note
that the scale factor ρ, as in (2.26), remains unchanged
throughout the consistent truncation. Here, and throughout,
we will always use the A;B indices to denote objects that
are dressed by the scalar vielbein ðV−1ÞAM.
Since ðV−1ÞAM only depends on the external coordinates

x, the generalized Lie derivative of the dressed generalized
frame fields gives rise to the dressed embedding tensor,
often called the T-tensor in the gauged SUGRA literature,

LUA
UB ¼ XAB

CUC; ð2:43Þ

with

XAB
C ¼ ðV−1ÞAMðV−1ÞBNVP

CXMN
P: ð2:44Þ

The properties discussed previously now immediately
transfer to any background obtain by the consistent
truncation. For example, the vector fields making up the
dressed generalized frame fields KA ¼ ðV−1ÞAMKM gen-
erate the dressed gauge algebra

½KA;KB� ¼ XAB
CKC: ð2:45Þ

In particular, consider some particular vacuum of the lower-
dimensional gauged SUGRA theory that we are interested
in, specified by the scalar matrix

MMN ¼ ΔMN ¼ VM
AVN

BδAB: ð2:46Þ

The Riemannian metric at this point of the scalar potential
can be compactly expressed as

gmn ¼ KA
mKB

nδAB ¼ KM
mKN

nΔMN; ð2:47Þ

with ΔMNΔN P ¼ δP
M. Equation (2.47) shows how the

scalar matrix at the vacuum MMN ¼ ΔMN deforms the
internal geometry. Similar expressions can be derived for
the fluxes, see for example [6,27], but are typically
lengthier so that we will not give them here.
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III. FLUCTUATION ANSATZ

We will now show that ExFT leads to a particularly nice
description of the linearized fluctuations around a given
10-/11-dimensional background that corresponds to a
solution of maximal gauged SUGRA. As we will see in
the following, the natural ExFT formulation of these
linearized fluctuations leads to remarkably compact
Kaluza-Klein mass matrices for such a background.

A. General linear fluctuations

We begin by describing general linear fluctuations
around a fixed ExFT background with vanishing Aμ

M,
BμνM. Such a background is just described by a nontrivial
generalized metric

MMN ¼ ΔMN; ð3:1Þ

and an external metric g
∘
μν. The linear fluctuations of the

external metric are straightforward and given by

gμν ¼ ρ−2ðg∘μνðxÞ þ hμνðx; yÞÞ; ð3:2Þ

where ρ−2 is required to give the ExFT metric, gμν, the right
weight, just as in the generalized Scherk-Schwarz ansatz
(2.25). For the vector and two-form fields, Aμ

M and BμνM,
we will use the fact that the consistent truncation defines a
generalized parallelization for any background within the
truncation via the dressed generalized vielbein ðU−1ÞAM in
(2.41), as discussed in Sec. II C 2. In particular, this implies
that the matrices ðU−1ÞAM, seen as a collection of 27 (in the
case of E6ð6Þ) or 56 (in the case of E7ð7Þ) vector fields,
provide a well-defined basis of the generalized tangent
bundle. Moreover, the generalized vielbein induces a basis
for generalized bundles of any representation of the excep-
tional group. For example, in the case of E6ð6Þ, the UM

A

provide a well-defined basis for the 27-dimensional bundle
in which the two-forms Bμν;M live. As a result, we can
expand any Aμ

M and BμνM in terms of the basis defined by
the background generalized vielbein UA

M, i.e.,

Aμ
M ¼ ρ−1ðU−1ÞAMðAKKÞμAðx; yÞ;

BμνM ¼ ρ−2UM
AðBKKÞμνAðx; yÞ: ð3:3Þ

Finally, we turn to the scalar sector, described by the
generalized vielbein, EM

A, parametrizing the coset space
EdðdÞ=HdðdÞ. Since EM

A is an EdðdÞ element, a linear
fluctuation of the scalar fields is described by an element
of the Lie algebra jAB ∈ edðdÞ, with

δEM
A ¼ 1

2
EM

BjBAðx; yÞ: ð3:4Þ

However, the fluctuations belonging to hdðdÞ are unphys-
ical, so that we should take jAB ∈ edðdÞ⊖hdðdÞ. This implies
that

jAB ¼ jBA; ð3:5Þ

where

jAB ¼ jACδBC: ð3:6Þ

In turn, for the generalized metric (2.2), (2.16), linearized
fluctuations are given by

MMN ¼ UM
AUN

BðδAB þ jABðx; yÞÞ
¼ ΔMNðyÞ þ UM

AUN
BjABðx; yÞ: ð3:7Þ

B. Harmonics

To determine the Kaluza-Klein masses, we now need to
expand the fluctuations hμν, ðAKKÞμA, ðBKKÞμνA and jAB in
terms of a complete basis of fields on the internal manifold.
One benefit of our approach is already visible. In the ExFT
ansatz, all the linear fluctuations are scalar fields on the
internal manifold, such that we only need to find a complete
basis of scalar functions, YΣ, on the internal manifold. All
the tensorial structure of the fluctuations is taken care of by
the generalized vielbein, UA

M, in the fluctuation ansatz
(3.3) and (3.7).
We must now choose a good basis of functions YΣ to

obtain the Kaluza-Klein spectrum. Since the topology of
the compactification is the same for any solution of the
lower-dimensional gauged SUGRA, we can choose YΣ to
form representations of the largest symmetry group pos-
sible, Gmax, which would correspond to the maximally
symmetric point of the gauged SUGRA. Note that this
maximally symmetric point must not even correspond to a
vacuum of the theory, i.e., it need not satisfy the equations
of motion. Using the ExFT methods, we can choose any
internal space corresponding to some configuration of
scalar fields of the lower-dimensional supergravity, even
if this scalar configuration does not correspond to a
minimum of the potential. For example, for the 4-dimen-
sional N ¼ 8, SO(8) theory, the maximally symmetric
point would be the S7 compactification, and we can choose
YΣ to form representations of Gmax ¼ SOð8Þ even if we are
interested in another solution of the N ¼ 8, SO(8) theory
which breaks the SO(8) symmetry. As we will show, this
choice of YΣ allows us to efficiently compute the Kaluza-
Klein spectrum.
The complete basis of functions YΣ must form a repre-

sentation of the maximal symmetry group. Typically, the
consistent truncation is also defined around the maximally
symmetric point, such that the generalized frame fields UM,
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used to construct the consistent truncation (2.25), define the
maximally symmetric point. Therefore, we have

LUM
YΣ ¼UM

M∂MYΣ ¼KM
m∂mYΣ ¼−T M

Σ
ΩY

Ω; ð3:8Þ

where KM are the vector fields making up the generalized
frame fields, as in Sec. II C 2. Since the UM generate the Lie
algebra of Gmax via (2.35), the matrices T M

Σ
Ω, defined by

(3.8), correspond to the generators of Gmax in the repre-
sentation of the complete basis of functions YΣ. Using the
commutator of generalized Lie derivatives, it is straightfor-
ward to show that the generators T M

Σ
Ω satisfy the algebra

½T M; T N � ¼ X½MN�PT P; ð3:9Þ

where XMN
P is the embedding tensor of the lower-dimen-

sional gauged SUGRA, as in (2.35).
In this paper, we will restrict ourselves to theories with

compact Gmax,
1 such that the matrices T M are antisym-

metric

T M;ΣΩ ¼ −T M;ΩΣ; ð3:10Þ

and harmonic indices Σ,Ω are raised and lowered with δΣΩ.
As we explain in Sec. IVA, the complete basis of functions
YΣ necessarily correspond to the scalar harmonics of the
maximally symmetric compactification. Therefore, we will
often refer to YΣ as the harmonics.
Now we can exploit the fact that every background

obtained by the consistent truncation has a generalized
frame field obtained by dressing the maximally symmetric
one UM

M by the scalar matrix V,

UA
M ¼ ðV−1ÞAMUM

M: ð3:11Þ

As a result, the generalized vielbein of the background we
are interested in has a simple action on the scalar harmonics
YΣ of the maximally symmetric point, given by

LUA
YΣ ¼ −T A

Σ
ΩY

Ω; ð3:12Þ

where

T A
Σ
Ω ¼ ðV−1ÞAMT M

Σ
Ω ð3:13Þ

are the generators of Gmax dressed by the scalar vielbein V.
Their commutator is given by the dressed embedding tensor
(2.44)

½T A; T B� ¼ X½AB�CT C: ð3:14Þ

For our Kaluza-Klein ansatz, we now expand the linear
fluctuations of the scalar fields, jAB, in terms of the scalar
harmonics. This gives

MMN ¼ UM
AUN

B

�
δAB þ

X
Σ
YΣjAB;ΣðxÞ

�
;

Aμ
M ¼ ρ−1ðU−1ÞAM

X
Σ
YΣAμ

A;ΣðxÞ;

BμνM ¼ ρ−2UM
A
X
Σ
YΣBμνA;ΣðxÞ;

gμν ¼ ρ−2
�
g
∘
μνðxÞ þ

X
Σ
YΣhμν;ΣðxÞ

�
; ð3:15Þ

with the sum running over scalar harmonics. From now
onwards, we will drop the explicit summation symbol over
the scalar harmonics and use the Einstein summation
convention instead. As we will see, with this ansatz for
the fluctuations, Eqs. (3.12) and (2.43) are all the differ-
ential information we need to complete determine the
Kaluza-Klein spectrum.

IV. MASS MATRICES

In this section, we linearize the field equations in exce-
ptional field theory with the fluctuation ansatz (3.15) in
order to derive general formulas for the Kaluza-Klein mass
spectrum around the background defined by the general-
ized metric

MMN ¼ ΔMN ⇔ MMN ¼ ΔMN ¼ VM
AVN

A: ð4:1Þ

As a general rule of notation, when using the flat basis
introduced in (2.40), we raise, lower, and contract flat
indices with δAB.

A. Spin-2

Let us start with the spin-2 sector, for which the
computation of the Kaluza-Klein spectrum is the most
straightforward. The mass spectrum in this sector is also
accessible by other universal methods and can be traced
back to computing the eigenmodes of a higher-dimensional
wave operator depending only on the background geometry
[28–32].2 We will explicitly match this result to our
approach below.
In the ExFT formulation of supergravity, the mass terms

for the spin-2 fluctuations descend from the universal
couplings of the external metric gμν within Lpot,

1Note that even if Gmax is compact, the gauge group of the
gauged supergravity may be noncompact. An example of this
would be the D ¼ 4, N ¼ 8 ISO(7) gauged supergravity, where
Gmax ¼ SOð7Þ. 2This has e.g., been further exploited in [33–37].
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Lmass;g ¼
1

4

ffiffiffiffiffi
jgj

p
ðMMN∂Mgμν∂Ngμν þMMNg−2∂Mg∂NgÞ;

ð4:2Þ

cf. (2.9). With the explicit fluctuation ansatz (3.15) and the
action of internal derivatives on the harmonics YΣ

expressed in terms of the T M matrix according to (3.8)
above, the Lagrangian (4.2) gives rise to

Lmass;g → −
1

4
ρ2−DYΛYΓΔMNT M;Λ

ΣT N;Γ
Ωhμν;ΣhμνΩ þ…;

ð4:3Þ

where the ellipses refer to terms carrying traces and
divergences of hμν which play their role in the explicit
realization of the spin-2 Higgs effect but do not contribute
to the final mass matrix. The latter is read off from (4.3)
after comparing the normalization to the linearized
Einstein-Hilbert term from (2.3), (2.18):

MΣΩ ¼ −ΔMNðT MT NÞΣΩ ¼ −ðT AT AÞΣΩ; ð4:4Þ

in the flat basis introduced in (2.40).
The full system of differential equations for the spin-2

modes also includes the couplings of these modes to the
spin-1 fluctuations via the connection terms in the Einstein-

Hilbert term R̂ and to the spin-0 fluctuations via the
respective third terms in the ExFT potential (2.9). Upon
gauge fixing, they account for the transfer of degrees of
freedom from the massless vector and scalar fluctuations to
building the massive spin-2 modes [38–40]. Rather than
working out these couplings in detail, the most direct
analysis of their contribution proceeds by spelling out the
relevant gauge symmetries. Linearizing external diffeo-
morphisms upon expanding their gauge parameter in
accordance with the fluctuation ansatz (3.15) as ξμ ¼P

Σ ξ
μΣYΣ induces the action

δξhμν;Σ ¼ 2∂ðμξνÞ;Σ; δξAμ
M;Σ ¼ T M;ΣΩξμ

Ω; ð4:5Þ

which can be used as a shift symmetry to explicitly
eliminate those vector field fluctuations which couple to
the spin-2 fluctuations at the quadratic level. Next, we turn
to the scalar fields to identify the corresponding Goldstone
modes here. With the gauge transformations on the scalar
matrix given by (2.4) above, let us project these trans-
formations onto those which at the linearized level yield
shift symmetries to the scalar fluctuations. Meaning, we set
MMN to its background value ΔMN and expand ΛM into
harmonics according to the ansatz (3.15) for the corre-
sponding gauge fields. After going to the flat basis (2.40),
these transformations can be brought to the form

δjAB;Σ ¼
�
ΛC;ΣΓCA

B þ αd
D − 1

ΓCD
CPD

E
B
A
ΛE;Σ − αdΓCD

EPC
E
B
A
ΛD;Σ

þ αd
2
T C;ΣΩPC

D
B
A
ΛD;Ω þ αd

2
T C;ΣΩPC

D
A
B
ΛD;Ω þ ðA ↔ BÞ

�
coset

¼ ½−ΛC;ΣXCA
B − ΛC;ΣXCB

A þ αdΛA;ΩT B;ΣΩ þ αdΛB;ΩT A;ΣΩ�coset; ð4:6Þ

where we have used the projector relations (2.30) from
above. In addition, the right-hand side of (4.6) is under-
stood under projection onto the symmetric coset valued
index pairs ðABÞ, cf. (3.4), (3.5) above. These gauge
transformations combine the standard Higgs effect (giving
mass to the spin-1 vector fields) with the transformations
eliminating the Goldstone scalars for the massive spin-2
modes. To identify the latter, it is sufficient to evaluate (4.6)
for the gauge parameters corresponding to the vector fields
transforming under (4.5). Combining these two formulas,
we find that the scalars affected by the spin-2 Higgs
mechanism are those transforming under

δjAB;Σ ¼ ΠAB;ΣΩΛΩ; ð4:7Þ

with a gauge parameter ΛΩ, and the tensor Π defined as

ΠAB;ΣΩ ¼ ½−XCA
BT C;ΣΩ þ αdðT AT BÞΣΩ�coset; ð4:8Þ

where again the projection on the right-hand side refers to
projection of the AB indices onto the symmetric coset
valued index pairs ðABÞ.
To sum up, the full system of differential equations

for the spin-2 modes also includes their couplings to the
spin-1 fluctuations singled out by (4.5) and the spin-0
fluctuations defined by (4.7). Proper gauge fixing will
eliminate the lower spin modes in favor of the massive
spin-2 excitations. This does not alter the result (4.4)
for the spin-2 mass matrix, but will have to be taken
into account in the computation of the spin-1 and spin-
0 mass spectra, where these Goldstone modes will have
to be explicitly eliminated before calculating the
spectrum.
Let us finally compare the mass matrix (4.4) to the

general analysis of [32]. There, it has been shown that upon
compactification from ten dimensions around a warped
background metric
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ds2 ¼ e2AðyÞḡμνðxÞdxμdxν þ ĝmnðyÞdymdyn; ð4:9Þ

the mass spectrum of the spin-2 fluctuations is encoded in
the following Laplace equation on the internal space

□spin 2ψ ≡ eð2−DÞAjĝj−1=2∂mðjĝj1=2ĝmneDA∂nψÞ ¼ −m2ψ ;

ð4:10Þ
where D is the number of external dimensions: μ ¼ 0;
…; D − 1.3 In particular, this spectrum only depends on the
internal background geometry.
Let us compare (4.10) to the spin-2 mass matrix (4.4)

obtained in our framework. For the compactifications
described by ExFT, the internal background metric, ĝmn,
is embedded into the generalized metric, MMN , according
to the universal relation

ĝmn∂m ⊗ ∂n ¼ jĝj1=ðD−2ÞMMN∂M ⊗ ∂N; ð4:11Þ
based on the embedding of the physical coordinates ym into
the ExFT coordinates, cf. (2.13), (2.23). Similarly, the
ExFT embedding of the external metric together with the
reduction ansatz (2.25) yields the identification

e2AðyÞ ¼ ρ−2jĝj−1=ðD−2Þ: ð4:12Þ

As a result, the Laplacian on the internal manifold can be
rewritten as

□yψ ¼ jĝj−1=2∂MðjĝjD=ð2ðD−2ÞÞMMN∂NψÞ
¼ eðD−2ÞAðyÞKA

m∂mðe−DAðyÞKA
n∂nψÞ; ð4:13Þ

where we have used the reduction ansatz (2.25) for the
internal metric as well as the identification (2.36) of the
Killing vector fields within the Scherk-Schwarz twist
matrix.
For the operator□spin 2 defined in (4.10), we thus find the

explicit action

□spin 2ψ ¼ KA
m∂mðKA

n∂nψÞ; ð4:14Þ

in terms of the Killing vector fields. Combining this with
(3.8), we find the action on the YΣ as

□spin 2YΣ ¼ ðT AT AÞΣΩYΩ ¼ −MΣΩYΩ; ð4:15Þ

showing agreement of the general result [32] with the mass
matrix (4.4) in ExFT compactifications. Moreover, this also
shows that the YΣ are harmonics of the Laplacian (4.10),
hence our nomenclature for the YΣ. In [37], a similar form
of the spin-2 mass matrix has been proposed for reductions
to D ¼ 4 maximal supergravity.

B. Tensor fields

Let us move on to the mass spectrum of antisymmetric
tensor fields. Their appearance is specific to compactifi-
cations to D ¼ 5 dimensions, described by E6ð6Þ ExFT.
Their field equation in ExFT is obtained from (2.3) by
variation with respect to the tensor fields BμνM which leads
to the first-order duality equation

dPML∂L

�
eMMNF μνN þ

ffiffiffiffiffi
10

p

6
εμνρστHρστM

�
¼ 0; ð4:16Þ

with e ¼ ffiffiffiffiffijgjp
. To linear order in the fields, the field

strength F μν
M is given by

F μν
M → 2∂ ½μAν�M þ 10dMNK∂KBμνN; ð4:17Þ

where the last term is responsible for creating the tensor
masses in (4.16). The latter are thus encoded in the
differential operator dMNK∂K. Its action on tensor fields
obeying the reduction ansatz (3.15) is computed as

UM
AdMNK∂KBμνN

¼ UM
AdMNK∂Kðρ−2UN

BYΣÞBμν
B;Σ

¼ −
ρ−1

10
ðZABδΩΣ − 10dABCT C;ΩΣÞYΩBμνB;Σ

≡ ρ−1ffiffiffiffiffi
10

p YΩMAΩ;BΣBμνB;Σ; ð4:18Þ

where we have used (2.31) and (2.28) and moreover
defined the constant antisymmetric tensor

ZAB ¼ 2dCDAXCD
B; ð4:19Þ

that encodes the complete information on the embedding
tensor in D ¼ 5 dimensions.
The result of this computation is the antisymmetric mass

matrix

MAΣ;BΩ ¼ 1ffiffiffiffiffi
10

p ð−ZABδΣΩ þ 10dABCT C;ΣΩÞ: ð4:20Þ

The first term arises precisely as in the Scherk-Schwarz
reduction to D ¼ 5 dimensions, the second term captures
the effect of internal derivatives acting on the harmonics.
Plugging back (4.20) into the duality equation (4.16), we
find at linear order

0 ¼ dPML∂L

�
ρ−2UM

AYΣ
�
2∂ ½μAν�A;Σ þ

ffiffiffiffiffi
10

p
MAΣ;BΩBμν

B;Ω

þ
ffiffiffiffiffi
10

p

2
εμνρστ∂ρBστA;Σ

��
: ð4:21Þ3Strictly speaking, Ref. [32] gives the result for D ¼ 4, but it

straightforwardly generalizes to arbitrary D.
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The ∂ ½μAν�A;Σ terms can be gauge fixed and amount to the
spin-1 Goldstone modes absorbed into the massive tensor
fields. This results in the five-dimensional first-order
equation

3∂ ½μBνρ�A;Σ ¼ 1

2
εμνρστMAΣ;BΩBστ

B;Ω; ð4:22Þ

describing topologically massive tensor fluctuations with
the mass matrix (4.20).
Let us finally point out that according to (4.21) the entire

first-order equation of the tensor fields is yet hit with
another mass operator dPML∂L. Repeating the same cal-
culation for this action shows that the final first-order
equation is given by contracting (4.22) with another mass
matrix (4.20). In other words, zero eigenmodes of the mass
matrix MAΣ;BΩ are in fact not part of the physical spectrum
as the corresponding modes among the BμνA;Σ are projected
out from all field equations.

C. Vector fields

In EdðdÞ ExFT, the field equations obtained by varying
the Lagrangian with respect to the vector fields are of Yang-
Mills type (for d < 8)

∇νðMMNF νμNÞ ¼ Iμ
EH M þ Iμ

sc M þ Iμ
top M; ð4:23Þ

where the currents on the right-hand side denote the
contributions from the Einstein-Hilbert term, the scalar
kinetic term, and the topological term, respectively. As we
have discussed in Sec. IVA above, upon linearization the
contributions from Iμ

EH M only contributes to Higgsing
the spin-2 modes and have no impact on the masses of the
physical spin-1 fluctuations. We will deal with these
contributions at the very end by projecting the vector mass
matrix on the physical sector invariant under translations
(4.5). The contributions Iμ

top M from the topological term
are in general of higher order in the fields and drop out after
linearization. The notable exception is E7ð7Þ ExFT, where
according to (2.22) this current carries a contribution dual
to the field strengths Hα, HM, which by virtue of the
derivative of the twisted self-duality equation (2.19)
together with the Bianchi identity gives rise to a contribu-
tion which equals the left-hand side of (4.23) up to sign.

Upon linearization, we will thus extract the vector mass
matrix from the right-hand side of the universal equation

ΔMN∇νF νμN ¼ J μ
sc Mjlin; ð4:24Þ

where the current J μ
sc M is defined from variation of the

scalar kinetic term

eδAμ
MJ μ

sc M

¼ δA

�
1

4αd
eDμMMNDμMMN

�

¼ −eδAμ
M

�
1

2αd
ðJMÞKLJμLK þ e−1∂NðeJμMNÞ

�
;

ð4:25Þ
with the currents

ðJLÞNM ¼ MNK∂LMKM; JμNM ¼ MNKDμMKM:

ð4:26Þ
To linear order in the fluctuations in (4.25), the internal

current only contributes its background value, which in the
flat basis reads

JA;BC → −ðΓAB
C þ ΓAC

BÞ; ð4:27Þ

with ΓAB
C from (2.29). The external current JμNM carries

vector and scalar fluctuations. However, the latter do not
contribute to the vector masses but ensure the proper
absorption of the scalar Goldstone modes for realizing
the spin-1 Higgs mechanism. The vector fluctuations arise
from the connection (2.6) within JμNM and split into terms
which due to (2.35) carry the embedding tensor XAB

C

together with the contributions from the harmonics follow-
ing from (3.8). In the flat basis (2.40), these take the form

JμABjlin ¼ ð−ðXCA
B þ XCB

AÞAμ
C;Σ

þ αdðPA
B
C
D þ PB

A
C
DÞT D;ΣΩAμ

C;ΩÞYΣ:

ð4:28Þ
In (4.25), this current also appears under internal derivative
according to

−e−1∂NðeJμMN jlinÞ ¼ ρ3UM
Ag
∘μν

�
1

D − 1
ΓBC

BJνAC − ΓCA
BJνBC − ∂BðJνABÞ

�����
lin

¼ð2.30Þ − ρ3

αd
UM

Ag
∘μνððXAB

C þ ΓAB
CÞJνCB þ αd∂BðJνABÞÞ

����
lin
:

With these explicit expressions, the two terms on the right-hand side of (4.25) combine into

J μ
sc Mjlin ¼ −

ρ3

αd
UM

Ag
∘μνðXAB

CJμCB þ αd∂BðJμABÞÞ
����
lin
: ð4:29Þ
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Consistently, all ΓAB
C terms have dropped out and only the

terms carrying the constant embedding tensor XAB
C as well

as the matrices T A survive.
Putting everything together, we can write the linearized

D-dimensional vector field equation (4.24) as

∂ν∂νAμA;Σ − ∂ν∂μAνA;Σ ¼ MAΣ;BΩAμB;Ω; ð4:30Þ

where the mass matrix results from collecting all the
resulting terms in (4.29) and takes the form

MAΣ;BΩ ¼ 1

αd
XAD

CðXBC
D þ XBD

CÞδΣΩ
þ ðXBA

C þ XBC
A − XAB

C − XAC
BÞT C;ΣΩ

− αdðPA
C
B
D þ PC

A
B
DÞðT CT DÞΣΩ: ð4:31Þ

The first term of this mass matrix reproduces the known
vector mass matrix within D-dimensional supergravity. In
particular, it vanishes for compact generators XKL

N in
accordance with the massless vectors from the supergravity

multiplet associated with the unbroken gauge symmetries.
The result holds for, both, E6ð6Þ ExFT and E7ð7Þ ExFT.
In a final step, we need to project out by hand the spin-1

Goldstone modes absorbed into the massive spin-2 fields.
To this end, we have to project the vector fluctuations to the
subsector that remains invariant under the corresponding
translations (4.5). In contrast, the spin-1 modes absorbed
into massive tensor modes according to the discussion after
(4.21) above, appear as zero eigenvalues of the mass matrix
(4.31) and can thus easily be identified.

D. Scalar fields

It remains to work out the scalar mass spectrum for the
fluctuation ansatz presented above. Linearizing the theories
(2.3), (2.18), the scalar field equations also contain spin-2
and spin-1 contributions implementing the corresponding
Higgs mechanisms. These have no impact on the masses of
the physical scalars. We will deal with these contributions
at the end by applying an overall projection to the resulting
mass matrix. Ignoring vector and metric fluctuations,
the scalar masses are obtained from the linearized field
equation

□MMN jlin ¼
�
−
1

2
JM;K

LJN;L
K − αdJK;MLJL;NK þ ΔQLJK;QKJL;MPΔPN

þ 2ðD − 1Þαd∂Kρρ
−1JM;N

K − ðD − 1Þ∂Kρρ
−1ΔKLJL;MPΔPN

þ ρΔKL∂Kðρ−1JL;MPÞΔPN − 2ραd∂Kðρ−1JM;N
KÞ

− 4Dαdρ
−2∂Mρ∂Nρþ 2Dαdρ

−1∂M∂Nρ

�
coset;lin

; ð4:32Þ

with the current JM;N
K from (4.26). In addition, the right-

hand side is understood as being projected onto symmetric
coset values index pairs MN, cf. (3.4), (3.5) above.
The computation is considerably more laborious than

the preceding calculations for the tensor and the spin-
1 sector. The latter analyses were facilitated by the manifest
covariance of the field equations under generalized diffeo-
morphisms which, together with the generalized paralleliz-
ability (2.35), allowed for a compact derivation of the
corresponding mass matrices in terms of the embedding
tensor and the matrix T A. The scalar field equation, in
contrast, is not manifestly invariant under generalized
diffeomorphisms. As a consequence, it is lengthier to
arrange the numerous contributions resulting from (4.32)
until the dependence on the internal coordinates factors out.
We may, however, exploit the known structures from

gauged supergravity to reduce the computation to a few
relevant terms. As for the vector mass matrix (4.31), the
contributions to the scalar mass matrix from (4.32) can be
organized into (schematically)

M ¼ XX þ XT þ T T ; ð4:33Þ

according to if internal derivatives hit the twist matrices, U,
or the harmonics, T , in the fluctuation ansatz (3.15).
The XX terms in (4.33) do not act on the harmonics and

by construction coincide with the mass formula from
gauged supergravity for the lowest multiplet. We can thus
directly extract these terms from the variation of the D-
dimensional supergravity potentials (2.32) and only focus
on the remaining terms.
To this end, we expand the currents JM;N

K to linear order
in the fluctuations, which in the flat basis (2.40) takes the
form

JD;A
B ¼ −fΓDA

B þΓDB
A þ ∂DjAB þΓDB

EjAE − ΓDE
AjEBg;
ð4:34Þ

extending (4.27). Next, we expand their derivatives in the
flat basis and obtain
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∇CJD;A
B ≡ ρ−1ðU−1ÞCLðU−1ÞDKðU−1ÞAMUN

B∂Lðρ−1JK;MNÞ
¼ −∂CΓDA

B − ∂CΓDB
A − ΓCA

GΓDG
B − ΓCA

GΓDB
G

− ΓCD
GΓGA

B − ΓCD
GΓGB

A þ ΓCG
BΓDA

G þ ΓCG
BΓDG

A

− ∂CΓDB
FjAF þ ∂CΓDF

AjFB − ðΓCA
FΓDB

G þ ΓCG
BΓDF

AÞjFG
− ðΓCD

GΓGB
F − ΓCG

BΓDG
FÞjAF þ ðΓCD

GΓGF
A þ ΓCA

GΓDF
GÞjFB

− ΓDB
F∂CjAF þ ΓDF

A∂CjFB − ΓCA
G∂DjGB þ ΓCG

B∂DjAG

− ΓCD
G∂GjAB − ∂C∂DjAB: ð4:35Þ

Putting everything together, the right-hand side of (4.32) vanishes on the background (jAB → 0) as a consequence of the
fact that we are linearizing the theory around a stationary point of the gauged supergravity potential. The terms carrying jAB
will precisely recombine into the XX contributions in (4.33) which we can extract from the gauged supergravity describing
the lowest multiplet in the absence of higher fluctuations. The unknown terms in (4.33) thus exclusively descend from
derivative terms, such that we can restrict the above expansions to ∂CjAB

JD;A
B ¼ −ΓDA

B − ΓDB
A − ∂DjAB þ…;

∇CJD;A
B ¼ −ΓDB

F∂CjAF þ ΓDF
A∂CjFB − ΓCA

G∂DjGB þ ΓCG
B∂DjAG

− ΓCD
G∂GjAB − ∂C∂DjAB þ…; ð4:36Þ

with the ellipses denoting the terms that do not contribute to the XT þ T T terms in (4.33). Putting this back into (4.32), we
are left with

□

∘
jAB ¼ ½−2ΓAC

D∂BjDC − 2αdΓCD
A∂DjBC þ 2ΓDA

B∂CjDC

− 2ΓCB
D∂CjAD þ 2ΓCD

B∂CjAD

þ 2αdΓAC
D∂CjBD − 2αdΓAD

B∂CjDC þ 2αdΓCB
D∂AjDC

þ 2αd∂C∂AjBC − ∂C∂CjAB�coset þ “XXj”: ð4:37Þ

Still, the right-hand side is projected onto coset valued index pairs ðABÞ.
In a final step, we now expand jAB into harmonics according to (3.15), such that the action of internal derivatives can be

expressed by the T A matrix. We also make the coset projection manifest by contracting the entire fluctuation equation with
another coset-valued fluctuation, such that we find the Lagrangian quadratic in fluctuations

Lscalar−fluc ∝ jAB;Σ□
∘
jAB;Σ − 4ΓAC

DT B;ΩΣjAB;ΣjDC;Ω − 4αdΓAC
BT D;ΩΣjAB;ΣjCD;Ω

− 4ΓCA
BT C;ΩΣjAD;ΣjBD;Ω − 4αdΓBC

AT C;ΩΣjAD;ΣjBD;Ω

− 2αdT A;ΩΛT B;ΛΣjAD;ΣjBD;Ω þ T C;ΩΛT C;ΛΣjAB;ΣjAB;Ω þ “XXjj”: ð4:38Þ

The resulting couplings may be further simplified upon repeated use of the projector property (2.30) together with

jAB;Σ ¼ PA
B
C
D
jCD;Σ;

T F;ΣΩjAE;ΣjBE;Ω ¼ T F;ΣΩPA
B
C
D
jDE;ΣjCE;Ω: ð4:39Þ

The first of these relations reflects the algebra-valuedness of the fluctuations while the second one is a consequence of the
closure of the commutator on the algebra. As a consequence, all ΓAB

C in (4.38) can be eliminated in favor of the constant
embedding tensor XAB

C, as required for consistency. Restoring the XXjj terms as obtained from variation of the gauged
supergravity potential (2.32), the full scalar mass matrix finally reads
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jAB;ΣMABΣ;CDΩjCD;Ω ¼ XAE
FXBF

EjAD;ΣjBD;Σ

þ γdðXAE
FXBE

F þ XEA
FXEB

F þ XEF
AXEF

BÞjAD;ΣjBD;Σ

þ 2γdðXAC
EXBD

E − XAE
CXBE

D − XEA
CXEB

DÞjAB;ΣjCD;Σ

− 4XAC
DT B;ΩΣjAB;ΣjCD;Ω − 4XCA

BT C;ΩΣjAD;ΣjBD;Ω

þ 2αdT A;ΩΛT B;ΛΣjAD;ΣjBD;Ω − T C;ΩΛT C;ΛΣjAB;ΣjAB;Ω: ð4:40Þ

From the mass spectrum obtained by diagonalizing this
matrix, we still need to project out the Goldstone modes
that render mass to the spin-1 and spin-2 fluctuations, as
anticipated at the beginning of this section. As usual, the
Goldstone modes absorbed by the massive spin-1 fields
appear with zero eigenvalue in (4.40) and are thus easily
identified. The Goldstone modes absorbed into the massive
spin-2 fields in contrast need to be projected out explicitly.
Following the discussion of Sec. IVA above, this can be
implemented by projecting the mass matrix (4.40) onto
those fields that are left invariant under the shift trans-
formations (4.7).

V. EXAMPLES

We have in the previous section worked out general mass
formulas (4.4), (4.20), (4.31), (4.40), for the complete
bosonic Kaluza-Klein spectrum around any vacuum lying
within a consistent truncation to maximal supergravity.
After diagonalising the mass matrices, the corresponding
mass eigenstates are identified within ExFT via the
fluctuation ansatz (3.15) and can be uplifted to higher
dimensions using the dictionary between the ExFT and the
original supergravity variables.
In this section, we illustrate these formulas by various

examples in four and five dimensions.

A. Vacua of five-dimensional SO(6) gauged SUGRA

In this section, we will apply our mass formulas to the
Kaluza-Klein spectra of two vacua of the five-dimensional
SO(6) gauged supergravity [41]. This N ¼ 8 supergravity
can be obtained by a consistent truncation of IIB super-
gravity on S5 [6,7,27] and contains various interesting
vacua, including the N ¼ 8 AdS5 × S5 solution of IIB
supergravity and the N ¼ 2 SUð2Þ × Uð1Þ-invariant AdS5
vacuum [9] dual to the Leigh-Strassler CFT [10]. We will
use the example of the AdS5 × S5 vacuum to demonstrate
our formalism, showing that it allows for a compact
identification of the BPS multiplets and the IIB fields
sourcing the fluctuations. Next, we show, using the
example of the N ¼ 2 SUð2Þ × Uð1Þ vacuum, that our
mass formulas also allow to compute the Kaluza-Klein
spectrum of vacua for which this was not possible before.
Let us begin by setting up our notation for the consistent

truncation of IIB supergravity to the five-dimensional

SO(6) gauged supergravity. To do this, we use the SLð6Þ ×
SLð2Þ basis of E6ð6Þ ExFT, in which the fundamental 27
representation of E6ð6Þ decomposes into

27 → ð15; 1Þ ⊕ ð60; 2Þ;
fAMg → fAab; Aaαg; a ¼ 1;…; 6; α ¼ 1; 2: ð5:1Þ

In this basis, the d-symbol takes the form

dKMN ¼
8<
:

dabcα;dβ ¼ 1ffiffi
5

p δabcdεαβ;

dab;cd;ef ¼ 1ffiffiffiffi
80

p εabcdef:
ð5:2Þ

The consistent truncation of IIB supergravity to the
SOð6Þ gauged maximal supergravity of [41] can be
described as a generalized Scherk-Schwarz reduction
within E6ð6Þ ExFT in the sense discussed in Sec. II C
above, with twist matrices UM

M constructed from the
elementary sphere harmonics on S5

YaYa ¼ 1: ð5:3Þ

Specifically, the twist matrices are constructed as SLð6Þ ⊂
E6ð6Þ group matrices, given in terms of the round S5 metric

g
∘
mn ¼ ∂mYa∂nYa, and the vector field ζ

∘n
defined by

∇∘ nζ
∘n ¼ 1 by

ðU−1Þam̂ ¼ fðU−1Þa0; ðU−1Þamg
¼ ω

∘ 1=3fω∘ −1Ya; g
∘mn∂nYa þ 4ζ

∘m
Yag; ð5:4Þ

where we have introduced the SL(6) index m̂ ¼ 0;…; 5.

The weight factor is given by ρ ¼ ω
∘ −1=3 in terms of the

metric determinant ω
∘ 2 ¼ det g

∘
mn. For computing the

Kaluza-Klein masses, we are particularly interested in
the vector components, KM, of the generalized paralleliz-
able frame corresponding to the E6ð6Þ twist matrices. These
are given by [6,27]

KM ¼
�
Kab ¼ vab;

Kaα ¼ 0;
ð5:5Þ
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where

vabm ¼ −
ffiffiffi
2

p
g
∘mnð∂mY½aÞYb�; ð5:6Þ

are the SO(6) Killing vectors of the round S5.
The resulting D ¼ 5 theory is described by an embed-

ding tensor

XMN
P ¼

(
Xab;cd

ef ¼ 2
ffiffiffi
2

p
δ½e½aδb�½cδ

f�
d�;

Xab
cα

dβ ¼ −
ffiffiffi
2

p
δc½aδb�dδ

α
β;

ð5:7Þ

⇔ ZMN ¼
�
Zab;cd ¼ 0;

Zaα;bβ ¼
ffiffiffiffiffi
10

p
εαβδab;

ð5:8Þ

with ZMN defined in (4.19).
Finally, we need to choose a complete basis of scalar

functions in which to expand the ExFT fields via the
Kaluza-Klein ansatz (3.15). As discussed in III B, it is
most convenient to choose the complete basis of functions
as representations of the maximally symmetric point
of the consistent truncation, which in this case corresponds
to the round S5. Therefore, we will expand the ExFT
fields in terms of the scalar harmonics on the round S5,
which are given by polynomials in the elementary S5

harmonics (5.3) as

fYΣg ¼ f1;Ya;Ya1a2 ;…;Ya1…an ;…g; ð5:9Þ

where our notation Ya1…an ≡ Yðða1…YanÞÞ denotes trace-
less symmetrization in the elementary harmonics. The
index Σ thus runs over the tower of symmetric traceless
vector representations ½n; 0; 0� of SO(6). Accordingly,
we will refer to the Ya1…an harmonics as the level n
representation.
For the mass formulas, we need to compute the action of

the vectors KM, defined by the generalized parallelization
(5.5), on the scalar harmonics YΣ. By construction, the S5

Killing vector fields have a linear action on the harmonics,
which is block-diagonal level by level and according to
(3.8) defines the matrices T M as the SO(6) generators in the
symmetric ½n; 0; 0� representation. In our conventions,4

these take the explicit form

T M;c1…cn
d1…dn ¼ nT M;ððc1

ððd1δc2
d2…δcnÞÞ

dnÞÞ; ð5:11Þ

where double parentheses again denote traceless symmet-
rization, and the action on the elementary harmonics is
given by

T M;c
d ¼

�
T ab;c

d ¼ ffiffiffi
2

p
δc½aδb�d;

T aα
c
d ¼ 0:

ð5:12Þ

We can now straightforwardly apply our mass formu-
las (4.4), (4.20), (4.31), (4.40) to compute the spectrum of
Kaluza-Klein modes around any vacuum of the SO(6)
gauged supergravity. All we have to do is dress the
embedding tensor (5.7), (5.8) and the T -matrix (5.12)
by the scalar vielbein, VM

A, corresponding to the vacuum
we are interested in.

1. AdS5, N = 8, SO(6) vacuum: IIB on S5

In this section, we recompute the Kaluza-Klein spectrum
around the maximally supersymmetric AdS5 × S5 solution
of IIB supergravity. This background sits as an N ¼ 8
vacuum within a consistent truncation to the D ¼ 5 SOð6Þ
gauged maximal supergravity of [41], which can be
described within ExFT, it is thus amenable to our formal-
ism. Originally, the Kaluza-Klein spectrum on this back-
ground has been determined in [42,43] by linearizing the
IIB field equations and exploiting the representation
structure of the underlying supergroup SUð2; 2j4Þ, respec-
tively. We will show how to reproduce these results in our
formalism.
The AdS5 × S5 vacuum corresponds to the stationary

point at the origin MMN ¼ ΔMN ¼ δMN of the scalar
potential (2.32). Thus, we can choose the scalar vielbein
as VM

A ¼ δM
A. We recall, that in the flat basis, indices are

raised, lowered, and contracted with δAB which in the index
split (5.1) is expressed in terms of δab and δαβ,
respectively.5

The value of the scalar potential at this point is given by

Vsugraj0 ¼ −12 ⇒ LAdS ¼ 1: ð5:13Þ

In the original formulation of type IIB supergravity,
the computation of the Kaluza-Klein spectrum around
this background requires to expand all fields into the
corresponding sphere harmonics. For example, a ten-
dimensional scalar field gives rise to a tower of D ¼ 5
scalar fields

ϕðx; yÞ ¼
X
Σ
YΣðyÞφΣðxÞ; ð5:14Þ

according to the tower of scalar harmonics YΣ on the
round S5.

4Our summation convention for the harmonic indices Σ, Ω is
such that

AΣBΣ ¼ ABþ AaBa þ Aa1a2Ba1a2 þ � � � þ Aa1…anBa1…an þ…:

ð5:10Þ
5We denote both, “curved” SLð6Þ × SLð2Þ indices and “flat”

SOð6Þ × SOð2Þ indices by a, b and α, β.
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On the other hand, in the traditional formulation, ten-
dimensional fields with nontrivial transformation under the
Lorentz group on S5 in general give rise to several towers of
harmonics which are built from products of the elementary
harmonics (5.3) and their derivatives. These can be clas-
sified and determined by group theoretical methods [44].
E.g., the internal part of the ten-dimensional metric gives
rise to an expansion

gmnðx; yÞ ¼
X
Σ
YΣ

mnðyÞgΣðxÞ; ð5:15Þ

with the harmonics YΣ
mn now filling three towers of SO(6)

representations built from the different irreducible compo-
nents of

Ya1a2;a3…an
mn ≡ ð∂mYa1Þð∂nYa2ÞYa3…an : ð5:16Þ

In our approach, as discussed in Sec. III B, we expand all
fields in only the scalar harmonics YΣ, and the nontrivial
Lorentz structure of the Kaluza-Klein fluctuations will arise
entirely from multiplying the twist matrices appearing in
the fluctuation ansatz (3.15). Wewill demonstrate explicitly
how this occurs in the following.

Spin-2 fluctuations.—We recall from (3.15) that the spin-2
fluctuations directly organize into the scalar harmonics YΣ.
We immediately obtain their mass spectrum from the
expression (4.4) for the mass matrix. With the T -matrix
given by (5.11)–(5.12), this matrix is (up to normalization)
nothing but the quadratic SO(6) Casimir operator, whose
eigenvalue on the ½n; 0; 0� symmetric vector representation
is given by

Ma1…an;b1…bn ¼ nðnþ 4Þδðða1…anÞÞ
ððb1…bnÞÞ: ð5:17Þ

With the conformal dimension of spin-2 fields given by

Δ ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

AdS

q
, this gives rise to

Δ ¼ 4þ n: ð5:18Þ

Tensors.—According to the fluctuation ansatz (3.15), the
tensor field fluctuations combine into the tensor product of
the fundamental representation (5.1) with the tower of
scalar harmonics (5.9). We may explicitly spell out the
fluctuation coefficients as

fBμνA;Σg ¼ fBμνab;c1…cn ; Bμνaα;c1…cng: ð5:19Þ

At level n they fall into SOð6Þ × SOð2Þ representations

Bμν ab;c1…cn ∈ ½n; 1; 1�0 ⊕ ½n; 0; 0�0 ⊕ ½n − 1; 2; 0�0 ⊕ ½n − 1; 0; 2�0 ⊕ ½n − 2; 1; 1�0;
Bμν aα;c1…cn ∈ ½nþ 1; 0; 0��1

2
⊕ ½n − 1; 1; 1��1

2
⊕ ½n − 1; 0; 0��1

2
; ð5:20Þ

where we label these representations as ½n1; n2; n3�j by SO(6) Dynkin weights ni and SO(2) charge j. In terms of the SO(6)
vector indices, the different SO(6) representations correspond to the symmetrizations

ð5:21Þ

Summing over all levels, we thus find for the full spectrum

ð½0; 1; 1�0 ⊕ ½1; 0; 0��1
2
Þ ⊗

X∞
n¼0

½n; 0; 0� ¼
X∞
n¼0

ð2 · ½n; 1; 1�0 þ ½n; 0; 2�0 þ ½n; 2; 0�0 þ ½nþ 1; 0; 0�0Þ

⊕ ½0; 0; 0��1
2
⊕

X∞
n¼0

�
½n; 1; 1��1

2
þ 2 · ½nþ 1; 0; 0��1

2

�
: ð5:22Þ

Recall, however, from the discussion in Sec. IV B that
within towers, only tensors of nonvanishing mass are part
of the physical spectrum.
We may now evaluate the action of the mass matrix

(4.20) onto the components (5.19). Recall that the tensor
mass matrix is antisymmetric and thus has imaginary

eigenvalues. Using the explicit expressions for dABC,
ZAB, T A from (5.2), (5.8), and (5.12), above, we obtain6

6For the sake of readability, here and in most of the following
formulas of this subsection, we omit the space-time indices μν
which are irrelevant for the diagonalization problem.
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ðMBÞab;c1…cn ¼ −
1

2
nεabcdefBcd;eððc1…cn−1δcnÞÞf;

ðMBÞaα;c1…cn
¼ −ðnþ 1ÞεαβBðajβjc1…cnÞ
þ nεαβBdβ;dððc1…cn−1δcnÞÞa: ð5:23Þ

The first equation shows that among the Bab;c1…cn , the only
components carrying nonvanishing mass correspond to the
½n; 0; 2� ⊕ ½n; 2; 0� representation, antisymmetric in three
indices. To compute the corresponding eigenvalue, we
explicitly parametrize Bab;c1…cn as

Bab;c1…cn ¼ tð�Þ
abððc1;c2…cnÞÞ; ð5:24Þ

in terms of a tensor tð�Þ
abc;d1…dn−1

, (anti-)self-dual in the first
three indices

tð�Þ
abc;d1…dn−1

¼ � 1

6
iεabcdeft

ð�Þ
def;d1…dn−1

; ð5:25Þ

and traceless under any contraction. The action of the mass
matrix (5.23) then yields

ðMBÞab;c1…cn ¼ −
1

2
εabcdeððx1tð�Þ

cde
c2…cnÞÞ

−
1

2
ðn − 1Þεabcdeððc1tð�Þ

cd
c2;c3…cnÞÞe

¼ �iðnþ 2Þtð�Þ
abððc1;c2…cnÞÞ

¼ �iðnþ 2ÞBab;c1…cn ; ð5:26Þ

where we have used that t½abc;d�d2…dn−1 ¼ 0, as a conse-
quence of (5.25) and tracelessness.
Next, we turn to the second equation of (5.23). Its right-

hand side shows that the action of M on Baα;c1…cn is
vanishing on the ½n; 1; 1� representation and has eigenval-
ues �iðnþ 1Þ on the traceless Bμνðða

α
c1…cnÞÞ

. It remains to

compute the eigenvalue on the trace part of Baα;c1…cn . To
this end, we explicitly parametrize the trace fluctuations as

Baα;c1…cn ¼ δaððc1Tc2…cnÞÞ;α

¼ δaðc1Tc2…cnÞ;α −
n − 1

2ðnþ 1Þ δðc1c2Tc3…cnÞa;α;

ð5:27Þ

in terms of a tensor T, traceless in its SO(6) indices. The
latter relates to the trace of B as

Bα;ac2…cn ¼
ðnþ 2Þðnþ 3Þ

nðnþ 1Þ Tc2…cn;α: ð5:28Þ

The action (5.23) then becomes

ðMBÞaα;c1…cn

¼ −ðnþ 1Þεαβδðac1Tc2…cnÞ;β þ
n − 1

2
εαβδðc1c2Tc3…cnaÞ;β

þ ðnþ 5Þεαβδaðc1Tc2…cnÞ;β −
n − 1

nþ 1
εαβδaðc1Tc2…cnÞ;β

¼ ðnþ 3Þεαβ
�
δaðc1Tc2…cnÞ;β −

ðn − 1Þ
2ðnþ 1Þ δðc1c2Tc3…cnÞa;β

�
;

ð5:29Þ

with eigenvalue �iðnþ 3Þ.
We summarize the result for all nonvanishing tensor

masses at level n in Table I. It shows that at level n the
tensor spectrum contains three different representations
which all come with different masses. In particular, the
representations ½nþ 1; 0; 0��1

2
and ½n − 1; 0; 0��1

2
directly

correspond to mass eigenstates. In contrast, computing the
Kaluza-Klein spectrum in terms of the original IIB vari-
ables requires diagonalization of a coupled system of
equations mixing components of different higher-dimen-
sional fields [42]. The fluctuation ansatz (3.15) precisely
solves this diagonalization problem: the mass eigenstates
organize according to the scalar tower of harmonics and
mix into the IIB fields upon multiplication with the twist
matrix UM

A. Let us make this explicit. Table I shows that
the same representation ½k; 0; 0��1

2
appears twice within the

massive tensor fluctuations as

bþc1…ck;α ≡ Bbα;bc1…ck ;

b−c1…ck;α ≡ Bððc1
α
c2…ckÞÞ

¼ Bðc1
α
c2…ckÞ −

k − 1

2ðkþ 1ÞBd
α
dðc1…ck−2δck−1ckÞ;

ð5:30Þ

at levels n ¼ kþ 1, and n ¼ k − 1, respectively, for which
we read off the mass eigenvalues ðkþ 4Þ2, and k2,
respectively. This precisely reproduces the result of [42].
To identify the higher-dimensional origin of the mass

eigenstates, we need to combine this result with the
dictionary between the ExFT fields and the fields of IIB
supergravity [16,27]. For the original IIB 2-form Cμν

α and
in combination with the fluctuation ansatz (3.15), this gives
rise to an expansion

TABLE I. Masses of tensor fluctuations at level n. The
conformal dimension is given by Δ ¼ 2þ jmjLAdS.

Fluctuation Representation m2L2
AdS Δ

Bμν ab;c1c2…cn ½n − 1; 0; 2�0 ⊕ ½n − 1; 2; 0�0 ðnþ 2Þ2 nþ 4

Bμν ððaαc1…cnÞÞ ½nþ 1; 0; 0��1
2

ðnþ 1Þ2 nþ 3

Bμν bα;bc2…cn ½n − 1; 0; 0��1
2

ðnþ 3Þ2 nþ 5
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Cμν
α ¼ Ya

X∞
n¼0

Yc1…cnBμν
aα;c1…cnðxÞ; ð5:31Þ

where the Ya prefactor descends from the twist matrix
UM

A, and the terms under the sum correspond to the
scalar tower of harmonics which fall into mass

eigenstates. Expanding the product of harmonics in
(5.31) according to

YaYc1…cn ¼ Yac1…cn þ n
2ðnþ 2Þ δ

aððc1Yc2…cnÞÞ; ð5:32Þ

we find for the expansion of the IIB two-form

Cμν
α ¼

X∞
n¼0

�
Yac1…cnb− ac1…cn;α

μν þ n
2ðnþ 2ÞY

c2…cnbþ c2…cn;α
μν

�

¼ 1

6
bþμν α þ

X∞
k¼1

Yc1…ck

�
b− c1…ck;α
μν þ kþ 1

2ðkþ 3Þ b
þ c1…ck;α
μν

�
; ð5:33Þ

mixing in its fluctuations different mass eigenstates. A similar computation for the components of the IIB six-form
Cμν klmn

α, gives rise to its expansion into different linear combinations of the same objects (5.30) according to

Cμν lmnp
α ¼

X∞
k¼1

ω
∘
lmnpq∂qYc1Yc2…ck

�
b− c1c2…ck;α
μν −

kðkþ 1Þ
2ðkþ 2Þ2ðkþ 3Þ b

þ c1…ck;α
μν

�
þ 4ω

∘
lmnpqζ

∘q
Cμν

α; ð5:34Þ

where again the mixing of different mass eigenstates originates from multiplying out the harmonics from the twist matrix
and the scalar tower of harmonics.

Vectors.—We now perform the corresponding computation for the vector spectrum by evaluating the mass matrix (4.31).
According to the fluctuation ansatz (3.15), the vector fluctuations organize into the same SOð6Þ × SOð2Þ representations as
the tensor fluctuations, which we explicitly denote as

Aμ
ab;c1…cn ∈ ½n; 1; 1�0 ⊕ ½n; 0; 0�0 ⊕ ½n − 1; 2; 0�0 ⊕ ½n − 1; 0; 2�0 ⊕ ½n − 2; 1; 1�0;

Aμ
aα;c1…cn ∈ ½nþ 1; 0; 0��1

2
⊕ ½n − 1; 1; 1��1

2
⊕ ½n − 1; 0; 0��1

2
:

For the S5 background, the general vector mass matrix (4.31) simplifies drastically since the generators XA are compact:
XAB

C ¼ −XAC
B. As a consequence, the action of the mass matrix on the vector fluctuations reduces to

ðMAÞAΣ ¼ −6ðPA
C
B
D þ PC

A
B
DÞT D;ΛΩT C;ΣΛABΩ þ 8

3
T A;ΣΛT B;ΛΩABΩ: ð5:35Þ

Evaluating the right-hand side, we find for the adjoint projector (2.5) with (5.2)

Paα
cd

bβ
ef þ Pcd

aα
bβ

ef ¼ 1

6
ðδabδc½eδf�d þ 2δb½cδd�½eδf�aÞδαβ −

1

12
εabcdefεαβ;

Pab
ef

cd
gh þ Pef

ab
cd

gh ¼ 1

9
δefabδ

gh
cd þ

1

6
δabghδ

cd
ef þ

1

6
δefghδ

cd
ab − δefghabcd − δabghefcd: ð5:36Þ

Moreover, the product of T matrices takes the explicit form

T cd;c1…cnΛT ef;ΛΩAΩ ¼ −2nðn − 1Þδ½cððc1Ac2…cn−1
d�½eδf�cnÞÞ þ nAfððc1…cn−1δcnÞÞecd − nAeððc1…cn−1δcnÞÞfcd: ð5:37Þ

Evaluating (5.35) on the components (5.35), we then find after some computation

ðMAÞab;c1…cn ¼ 2nAab;c1;c2…cn þ 2n2A½aððc1;c2…cnÞÞ
b� þ 4nðn − 1ÞAdððc1;c2…cn−1

d½aδb�cnÞÞ − 2n2δ½aððc1Ab�dc2…cnÞÞd;

ðMAÞaα;c1…cn ¼ nðnþ 3ÞAaα;c1…cn − nðnþ 3ÞAððc1jαj;c2…cnÞÞa − nðn − 1ÞAbα;bððc1…cn−1δcnÞÞa: ð5:38Þ
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The second equation shows that for the traceless part in
Aaα;c1…cn only the ½n − 1; 1; 1� contribution carries a mass
whereas the fully symmetric part in the ½nþ 1; 0; 0�
remains massless. Indeed, the latter states are absorbed
as Goldstone modes into the corresponding massive tensor
excitations, cf. Table I. To determine the mass eigenvalue of
the ½n − 1; 1; 1� vectors, we evaluate the second equation of
(5.38) for components satisfying Aðajαj;c1…cnÞ ¼ 0 together
with tracelessness and obtain

ðMAÞaα;c1…cn ¼ ðnþ 1Þðnþ 3ÞAaα;c1c2…cn : ð5:39Þ

It remains to compute the masses of the trace modes
Abα;bc2…cn . Since these states serve as Goldstone modes for
the corresponding ½n − 1; 0; 0� massive tensors of Table I,
they must appear massless. As a consistency check of our
formulas, this can indeed explicitly be verified upon para-
metrizing the fluctuations as

Aaα;c1…cn ¼ δaððc1Tc2…cnÞÞ;α ¼ δaðc1Tc2…cnÞ;α

−
n − 1

2ðnþ 1Þ δ
ðc1c2Tc3…cnÞa;α; ð5:40Þ

with a traceless tensor T, just as (5.27) above, and
evaluating the action (5.38).
We now turn to the first equation of (5.38). Its first line

shows that within the traceless part of Aab;c1;c2…cn , the
½n − 1; 2; 0� ⊕ ½n − 1; 0; 2� representations remain massless
as required by consistency (they are the Goldstone modes for
the corresponding massive tensors, cf. Table I). In turn, we
can compute the mass of the remaining ½n; 1; 1� repre-
sentation by parametrizing the corresponding fluctuations as

Aab;c1;c2…cn ¼ t½a;b�c1…cn ; ð5:41Þ

with a tensor t, traceless, and symmetric in its last nþ 1
indices. The action (5.38) then takes the form

ðMAÞab;c1…cn ¼ 2nAab;c1c2…cn þ 2n2A½aððc1;c2…cnÞÞ
b�

¼ nðnþ 2Þt½a;b�c1…cn ¼ nðnþ 2ÞAab;c1…cn :

ð5:42Þ
Finally, we compute the action (5.38) on the trace parts of
Aμab;c1…Ccn by parametrizing these as

Aμab;c1…cn ¼ δaððc1Tc2…cnÞÞ;b − δbððc1Tc2…cnÞÞ;a;

⇒ Aμab;ac2…cn ¼ 5þ 4nþ n2

nðnþ 1Þ Tc2…cn;b

þ ðn − 1Þ
nðnþ 1ÞT

bðc2…cn−1;cnÞ; ð5:43Þ

in terms of a trace-free tensor Tc2…cn;a, symmetric in its first
n − 1 indices.

For the ½n − 2; 1; 1� representation, we further impose
that TðC2…Cn;AÞ ¼ 0 and explicit evaluation of (5.38) after
some computation turns into

ðMAÞab;c1…cn ¼ ð2þ nÞð4þ nÞAab;c1…cn : ð5:44Þ

The ½n; 0; 0� representation is described by (5.43) with a
fully symmetric Tc2…cn;a; however, the mass for this
representation is irrelevant as the corresponding modes
are the ones absorbed into the massive spin-2 excitations.
As discussed in Sec. IVA, they have to projected out from
the physical spectrum.
We summarize the result for the massive vector fluctua-

tions in Table II. At level n the vector spectrum contains
three different mass eigenstates in different representations.
Summing over all levels, the representation ½k − 1; 1; 1�0
appears twice within the massive vector fluctuations as

aa;c1…ckþ ≡ Aab;c1…ckbj½k−1;1;1�;
aa;c1…ck− ≡ Aaððc1;c2…ckÞÞj½k−1;1;1�; ð5:45Þ

at levels n ¼ kþ 1, and n ¼ k − 1, respectively, for which
we read off the mass eigenvalues ðkþ 3Þðkþ 5Þ, and
k2 − 1, respectively. This precisely reproduces the result
of [42] [cf. their Eq. (2.27)].
To identify the higher-dimensional origin of these mass

eigenstates, we again appeal to the dictionary between the
ExFT fields and the fields of IIB supergravity [16,27]. The
vector fluctuations Aab;c1…cn descend from the off-diagonal
part Aμ

m of the 10D metric and components of the four-
form as

Aμ
mðx; yÞ ¼

ffiffiffi
2

p ∂mYaYb
X∞
n¼0

Yc1…cnAab;c1…cn
μ ðxÞ;

Aμ klmðx; yÞ ¼
1

2
ω
∘
klmpq∂pYa∂qYb

X∞
n¼0

Yc1…cnAab;c1…cn
μ ðxÞ:

ð5:46Þ

Again, the sum corresponds to the tower of scalar har-
monics while the prefactor comes from the twist matrix
ðU−1ÞAM in (3.15). A computation analogous to the one for
the tensor fields in Sec. V. A. 1. b, expanding the products
of harmonics and rearranging the terms in the tower, yields

TABLE II. Masses of vector fluctuations at level n. The
conformal dimension is given by Δ ¼ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2L2

AdS

p
.

Fluctuation Representation m2L2
AdS Δ

Aμ
aððb;c1c2…cnÞÞ ½n; 1; 1�0 nðnþ 2Þ nþ 3

Aμ
ab;c2c3…cnb ½n − 2; 1; 1�0 ðnþ 2Þðnþ 4Þ nþ 5

Aμ
αa;c1…cn ½n − 1; 1; 1��1

2
ðnþ 1Þðnþ 3Þ nþ 4
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Aμ
mðx; yÞ ¼

ffiffiffi
2

p X∞
n¼0

�
∂mYaYbc1…cnaa;bc1…cn− þ n

2ðnþ 2Þ ∂
mYaYc2…cnaa;c2…cnþ

�
;

¼
ffiffiffi
2

p

6
∂mYaaaþ þ

ffiffiffi
2

p X∞
k¼1

∂mYaYc1…ck

�
aa;c1…ck− þ kþ 1

2ðkþ 3Þ a
a;c1…ckþ

�
; ð5:47Þ

and

Aμmpqðx; yÞ ¼ ω
∘
mpqrs

X∞
n¼0

�
nþ 1

nþ 2
∂rYa∂sYbYc1…cnaa;bc1…cn− −

nðn − 1Þ
2ðnþ 2Þ2 ∂

rYa∂sYc2Yc3…cnaa;c2…cnþ

�

¼ ω
∘
mpqrs

X∞
k¼1

∂rYa∂sYc1…ck

�
1

kþ 1
aa;c1…ck− −

kþ 1

2ðkþ 3Þ2 a
a;c1…ckþ

�
; ð5:48Þ

showing precisely how the mass eigenstates get entangled within the higher-dimensional fields. Again, this reproduces the
results from [42].
Scalars.—Let us finally sketch how to obtain the scalar mass spectrum in this example. According to the above discussion,
at level n the scalar fluctuations are described by tensoring the coset valued fluctuations (3.5) from the lowest multiplet with
the symmetric vector representation ½n; 0; 0�. In the SO(6) basis, these fluctuations can be parametrized as

jAB;Ω ¼
8<
:

jab;cd;Ω ¼ 2δa½cϕd�b;Ω;

jab;cα;Ω ¼ ϕabcCα;Ω;

jaα;bβ;Ω ¼ ϕab;Ωδαβ þ δabϕαβ;Ω;

ð5:49Þ

in terms of tensors ϕab;Ω, ϕαβ;Ω, ϕabcα;Ω, constrained by

ϕ½ab�;Ω ¼ 0; ϕaa;Ω ¼ 0; ϕ½αβ�;Ω ¼ 0; ϕαα;Ω ¼ 0;

ϕabcα;Ω ¼ εabcdefεαβϕdefβ;Ω: ð5:50Þ
Evaluating the tensor product with the harmonics, the scalar fluctuations at level n organize into the representations

ϕab;c1…cn ∈ ½nþ 2; 0; 0�0 ⊕ ½n; 0; 0�0 ⊕ ½n − 2; 0; 0�0 ⊕ ½n; 1; 1�0 ⊕ ½n − 2; 1; 1�0 ⊕ ½n − 2; 2; 2�0;
ϕαβ;c1…cn ∈ ½n; 0; 0��1;

ϕabcα;c1…cn ∈ ½n − 1; 1; 1��1
2
⊕ ½n; 0; 2�þ1

2
⊕ ½n; 2; 0�−1

2
⊕ ½n − 2; 0; 2�−1

2
⊕ ½n − 2; 2; 0�þ1

2
: ð5:51Þ

From the previous results, we know that these modes still
contain the unphysical Goldstone modes

½n − 2; 1; 1�0 ⊕ ½n − 1; 1; 1��1
2
⊕ ½n; 1; 1�0 ⊕ ½n; 0; 0�0;

ð5:52Þ
of which the first three are absorbed by the massive vectors
and appear with zero mass eigenvalue, whereas the last one
is absorbed into the massive spin-2 fields and must be
projected out by hand. It remains to evaluate the mass
matrix (4.40) on these fluctuations. The calculation is
analogous to (although somewhat more lengthy than) the
ones presented above for the tensor and vector fields. We
summarize the result for the various representations in
Table III.

BPS multiplets.—In the previous sections, we have deter-
mined the mass spectrum around the AdS5 × S5

background. With the fluctuation ansatz (3.15) all mass
matrices are block-diagonal level by level. With the ansatz
(3.15) for the ExFT variables, internal derivatives act via
the combination (2.35) acting on the twist matrices and
(3.8) acting on the tower of harmonics. The latter action is
realized by the matrices (5.11), such that the resulting field
equations do not mix fluctuations over different SOð6Þ
representations Σ. This is in contrast with the structure in
the original IIB variables: after evaluating the products of
the sphere harmonics YΣ with the twist matrices in (3.15),
fluctuations of the original IIB fields combine linear
combinations of different mass eigenstates as illustrated
in (5.33), (5.34) for the tensors and in (5.47), (5.48) for the
vector fields.
The same structure underlies the ExFT supersymmetry

transformations [45]. As a result, all fluctuations associated
with a fixed SOð6Þ representation Σ ¼ ½n; 0; 0� in the
towers of (3.15) combine into a single 1

2
-BPS multiplet
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BPS[n]. Indeed, the mass spectrum from Tables I–III
precisely matches the bosonic field content of the 1

2
-BPS

multiplet BPS½n� which we list in Table IV. The ansatz
(3.15) illustrates the fact that (except for its masses) the
representation content of the full Kaluza-Klein spectrum
around a maximally symmetric vacuum such as AdS5 × S5

is obtained by tensoring the zero modes of the torus
reduction with the tower of scalar harmonics [46].7

2. AdS5, N = 2, U(2) vacuum

In the previous section, we have worked out the Kaluza-
Klein spectrum around the AdS5 × S5 background corre-
sponding to the maximally symmetric stationary point of
the D ¼ 5 SOð6Þ gauged maximal supergravity of [41].
While this analysis reproduces the known results [42,43]
for the sphere spectrum, our formalism allows us to address
far more complicated backgrounds which are hardly
accessible to standard methods. As an illustration, let us
consider another stationary point in the same scalar
potential which breaks supersymmetry down to N ¼ 2

and preserves only SUð2Þ × Uð1Þ of the original SOð6Þ
bosonic symmetry group [47]. This stationary point can be
uplifted to a solution of IIB supergravity [9]. On the field
theory side of the holographic correspondence, this sol-
ution corresponds to the N ¼ 1 IR superconformal fixed
point of the deformation of N ¼ 4 super-Yang-Mills by a
mass term for one of the three adjoint hypermultiplets
[10,48]. The holographic renormalization group flow con-
necting this solution to the AdS5 × S5 background has been
constructed and studied in [49].
Within theD ¼ 5 supergravity of [41], one may compute

the mass spectrum around this background for the fields
sitting within the lowestN ¼ 8multiplet which at theN ¼
2 point decomposes into various supermultiplets of the
remaining background isometry supergroup SUð2; 2j1Þ ⊗
SUð2Þ. Organizing these multiplets according to their
(external) SUð2Þ spin, this results in [49]

½0�∶ DA1A1

�
3;
1

2
;
1

2
; 0

�
⊕ DLB1

ð3; 0; 0;þ2ÞC

⊕ DLA1

�
3; 0;

1

2
; 0

�
C
⊕ DLLð1þ

ffiffiffi
7

p
; 0; 0; 0Þ;�

1
2

�
∶ DLB1

�
9

4
;
1

2
; 0;þ 3

2

�
C
⊕ DLA2

�
11

4
;
1

2
; 0;þ 1

2

�
C
;

½1�∶ DA2A2
ð2; 0; 0; 0Þ ⊕ DLB1

�
3

2
; 0; 0;þ1

�
C
; ð5:53Þ

TABLE IV. 1
2
-BPS multiplets of SUð2; 2j4Þ in SOð6Þ × SOð4Þ notation ½n1; n2; n3�ðj1; j2Þ with Dynkin labels ni, and ðj1; j2Þ denoting

the spins of SOð4Þ ∼ SUð2Þ × SUð2Þ.
Δ

nþ 2 ½nþ 2; 00�ð00Þ
nþ 5

2
½nþ 1; 10�ð0 1

2
Þ þ ½nþ 1; 01�ð1

2
0Þ

nþ 3 ½n; 02�ð00Þ þ ½n; 20�ð00Þ þ ½nþ 1; 00�ð01Þ þ ½nþ 1; 00�ð10Þ þ ½n; 11�ð1
2
1
2
Þ

nþ 7
2

½n; 10�ð0 1
2
Þ þ ½n − 1; 12�ð0 1

2
Þ þ ½n; 01�ð1

2
0Þ þ ½n − 1; 21�ð1

2
0Þ þ ½n; 01�ð1

2
1Þ þ ½n; 10�ð1 1

2
Þ

nþ 4 2 · ½n; 00�ð00Þ þ ½n − 2; 22�ð00Þ þ ½n − 1; 02�ð01Þ þ ½n − 1; 20�ð10Þ þ 2 · ½n − 1; 11�ð1
2
1
2
Þ þ ½n; 00�ð11Þ

nþ 9
2

½n − 1; 10�ð0 1
2
Þ þ ½n − 2; 12�ð0 1

2
Þ þ ½n − 1; 01�ð1

2
0Þ þ ½n − 2; 21�ð1

2
0Þ þ ½n − 1; 01�ð1

2
1Þ þ ½n − 1; 10�ð1 1

2
Þ

nþ 5 ½n − 2; 02�ð00Þ þ ½n − 2; 20�ð00Þ þ ½n − 1; 00�ð01Þ þ ½n − 1; 00�ð10Þ þ ½n − 2; 11�ð1
2
1
2
Þ

nþ 11
2

½n − 2; 10�ð0 1
2
Þ þ ½n − 2; 01�ð1

2
0Þ

nþ 6 ½n − 2; 00�ð00Þ

TABLE III. Masses of scalar fluctuations at level n. The conformal dimension is given by Δ ¼ 2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2L2

AdS

p
.

Fluctuation Representation m2L2
AdS Δ

ϕððab;c1…cnÞÞ ½nþ 2; 0; 0�0 n2 − 4 nþ 2

ϕab;abc1…cn−2 ½n − 2; 0; 0�0 ðnþ 2Þðnþ 6Þ nþ 6

ϕαβ;c1…cn ½n; 0; 0��1 nðnþ 4Þ nþ 4

ϕab;c1…cn ½n − 2; 2; 2�0 nðnþ 4Þ nþ 4

ϕabcα;c1…cn ½n; 0; 2�þ1
2
⊕ ½n; 2; 0�−1

2
ðn − 1Þðnþ 3Þ nþ 3

ϕabdα;dcc1…cn−2 ½n − 2; 0; 2�−1
2
⊕ ½n − 2; 2; 0�þ1

2
ðnþ 1Þðnþ 5Þ nþ 5

7This is not in contradiction with the fact that the BPS
multiplet BPS[n] itself does not factorize. It is only after
imposing the explicit form of the mass matrices that the degrees
of freedom are distributed among the different fields, such that for
example only some of the tensor fields within the product (5.22)
actually become part of the physical spectrum.
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where we follow the notation of [50] and denote
SUð2; 2j1Þ supermultiplets by DðΔ; j1; j2; rÞ with the
arguments referring to the conformal dimension, SUð2Þ ⊗
SUð2Þ spin and R-charge of the highest weight state,
respectively. Complex multiplets DðΔ; j1; j2; rÞC come in
pairs DðΔ; j1; j2; rÞ ⊕ DðΔ; j2; j1;−rÞ. DLL denotes
the generic long multiplet, while the notation for the
shortening patterns Al, B1 for short and semishort multip-
lets follows [51].

In our fluctuation ansatz (3.15) and the mass formulas
worked out in Sec. IV, the result (5.53) corresponds to the
lowest term in the harmonics expansion, i.e., to evaluating
the mass matrices on the one-dimensional space spanned by
constant harmonics YΣ¼0 ¼ 1, with T A ¼ 0. In this for-
malism it is then straightforward to extend the result to
higher levels of the Kaluza-Klein spectrum. As an illustra-
tion, let us give the result at level n ¼ 1, again with
multiplets organized according to their external SUð2Þ spin8

½0�∶ 2 ·DLA1

�
9

2
; 0;

1

2
;þ1

�
C
⊕ DLA1

�
9

2
;
1

2
;
1

2
;þ1

�
C
⊕ DLL

�
9

2
;
1

2
; 0;þ1

�
C

⊕ DLL

�
1þ

ffiffiffiffiffi
37

p

2
; 0; 0;þ1

�
C
⊕ DLL

�
1þ

ffiffiffiffiffi
61

p

2
; 0; 0;þ1

�
C
;�

1
2

�
∶ DLB1

�
15

4
; 0; 0;þ 5

2

�
C
⊕ DLA2

�
17

4
; 0; 0;þ 3

2

�
C
⊕ DLL

�
15

4
;
1

2
; 0;þ 1

2

�
C

⊕ DLL

�
17

4
; 0;

1

2
;þ 1

2

�
C
⊕ DLL

�
1þ

ffiffiffiffiffiffiffiffi
145

p

4
;
1

2
;
1

2
;þ 1

2

�
C
⊕ DLL

�
1þ

ffiffiffiffiffiffiffiffi
193

p

4
; 0; 0;þ 1

2

�
C
;

½1�∶ 2 ·DLLð1þ
ffiffiffi
7

p
; 0; 0; 0Þ ⊕ DLL

�
1þ

ffiffiffi
7

p
; 0;

1

2
; 0

�
C
⊕ DLA2

�
7

2
;
1

2
; 0;þ1

�
C
⊕ DLB1

�
3;
1

2
; 0;þ2

�
C
;�

3
2

�
∶ DLB1

�
9

4
; 0; 0;þ 3

2

�
C
⊕ DLA2

�
11

4
; 0; 0;þ 1

2

�
C
:

A similar analysis can be performed at the higher Kaluza-
Klein levels and be explicitly checked against the CFT
results [52].

B. Vacua of four-dimensional SO(8) gauged SUGRA

We can similarly apply our mass matrices to vacua of
four-dimensional gauged supergravity, such as the SO(8)-
gauged SUGRA [53] arising from the consistent truncation
of 11-dimensional supergravity on S7 [54]. The SO(8)-
gauged SUGRA contains several interesting vacua from a
holographic perspective. These include the maximally
supersymmetric AdS4 vacuum a N ¼ 2 AdS4 vacuum
with SUð3Þ × Uð1ÞR symmetry [55,56], and a nonsuper-
symmetric AdS4 vacuum with SOð3Þ × SOð3Þ symmetry
[55,56]. Using the consistent truncation of 11-dimensional
supergravity [54] all these vacua uplift to AdS solutions of
11-dimensional supergravity.
We can use our mass formulas to compute the Kaluza-

Klein spectrum around these various 11-dimensional super-
gravity solutions. For the maximally supersymmetric AdS4
vacuum, corresponding to the 11-dimensional AdS4 × S7

solution, the Kaluza-Klein spectrum can be computed,
following the steps shown in Sec. VA 1 for the AdS5 × S5

solution of IIB, to recover the known spectrum of
AdS4 × S7. Since the computation is analogous to that
covered in detail in Sec. VA 1, we will not repeat it here.
Instead, we will, in the following, show how our technique
can be used to compute the mass spectrum of the Kaluza-
Klein towers of the SUð3Þ × Uð1ÞR-invariant AdS4 [11], as
well as the SOð3Þ × SOð3Þ-invariant AdS4 [8] vacua of 11-
dimensional supergravity.
To compute the Kaluza-Klein spectra of these vacua, let

us set up our notation for the SO(8) gauged supergravity.
This is best described using the SLð8Þ ⊂ E7ð7Þ subgroup
under which the fundamental 56 representation of E7ð7Þ
decomposes as

56 → 28 ⊕ 280;

fAMg → fAab; Aabg; a ¼ 1;…; 8: ð5:54Þ
The embedding tensor of the SO(8) gauged SUGRA is
given by

XMN
P ¼

8>><
>>:

Xab;cd
ef ¼ −Xab

ef
cd ¼ 2

ffiffiffi
2

p
δ½e½aδb�½cδ

f�
d�;

Xab
cd;ef ¼ 0;

Xab
N
P ¼ 0:

ð5:55Þ

The consistent truncation of 11-dimensional SUGRA
to the SO(8) gauged SUGRA can be described by a

8The last multiplet in the list (5.54) is missing in Eq. (29) of
[1], where this result was first given.
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generalized Scherk-Schwarz truncation within E7ð7Þ ExFT
[6,7], as discussed in Sec. II C. Just like for the consistent
truncation of IIB supergravity on S5, the twist matrices
UM

A can be constructed using the elementary sphere
harmonics, Ya, on S7, which are just the embedding
coordinates of S7 ⊂ R8 and thus satisfy

YaYa ¼ 1: ð5:56Þ
For the masses of the Kaluza-Klein spectrum, we only need
to know the vector components, KM, of the corresponding
generalized parallelizable frame which are given by [6]

KM ¼
�
Kab ¼ vab;

Kab ¼ 0;
ð5:57Þ

where

vabm ¼ −
ffiffiffi
2

p
g
∘mnð∂nY½aÞYb�; ð5:58Þ

with g
∘
the round metric on S7, are the SO(8) Killing vectors

of the round S7.
To compute the Kaluza-Klein spectrum of any vacuum

of the SO(8) gauged SUGRA, we need to choose a basis of
scalar harmonics in which we expand the fields according
to (3.2), (3.3) and (3.7). As discussed in Sec. III B, we can
simply choose the scalar harmonics of the maximally
symmetric point, which in this case is the round S7.
These are given, just as in Sec. VA 1, by the symmetric
traceless polynomials in the elementary sphere harmonics
Ya, i.e.,

fYΣg ¼ f1;Ya;Yab;…;Ya1…an ;…g; ð5:59Þ

where Ya1…an ≡ Yðða1…YanÞÞ denotes traceless symmetri-
zation in the elementary harmonics. The index Σ thus runs
over the tower of symmetric vector representations
½n; 0; 0; 0� of SO(8).
In order to evaluate the mass formulas, we need to

compute the action of the vectors KA, defined by the
generalized parallelization (5.57), on the scalar harmonics
YΣ. For the S7, these are the Killing vectors (5.58) which,
like for the S5, have a linear action on the harmonics given
by the generators of SO(8) in the ½n; 0; 0; 0� representation,

T M;c1…cn
d1…dn ¼ nT M;ððc1

ððd1δd2c2…δdnÞÞcnÞÞ ; ð5:60Þ

in terms of the action on the elementary harmonics, given
by

T M;c
d ¼

�
T ab;c

d ¼ ffiffiffi
2

p
δc½aδb�d;

T ab
c
d ¼ 0:

ð5:61Þ

It is now straightforward to apply our mass formulas to
compute the Kaluza-Klein spectrum around any vacuum of

the SO(8) gauged supergravity. All that is left to do is to
dress the embedding tensor (5.55) and the linear action on
the harmonics (5.61) by the four-dimensional scalar matrix
corresponding to the vacuum of interest and apply (4.4),
(4.31), (4.40).

1. AdS4, N = 2, Uð3Þ vacuum
We will now apply our formalism to compute the

Kaluza-Klein spectrum of the 11-dimensional N ¼ 2
SUð3Þ × Uð1Þ-invariant AdS4 vacuum of 11-dimensional
supergravity [11], and which can be uplifted from a vacuum
[55,56] of four-dimensional N ¼ 8 SO(8) gauged
SUGRA. This 11-dimensional AdS vacuum [11] is similar
in several respects to the AdS5 × S5 solution dual to
the Leigh-Strassler CFT discussed in Sec. VA 2. The
three-dimensional N ¼ 2 CFT dual is obtained by
deforming the N ¼ 8 ABJM CFT via a mass term for a
single chiral supermultiplet and flowing to the IR. The
corresponding holographic renormalization group flow
connecting the AdS4 × S7 solution to this N ¼ 2 SUð3Þ ×
Uð1ÞR vacuum has been constructed in [11].
Some aspects of the Kaluza-Klein spectrum of this

SUð3Þ × Uð1ÞR vacuum have also already been analyzed.
Due to the lack of computational techniques until now,
these analyses have been limited to the pattern of super-
multiplets [57] and the spin-2 Kaluza-Klein spectrum [31].
Here we will use our Kaluza-Klein spectrometry to deter-
mine the full bosonic Kaluza-Klein spectrum of this
11-dimensional AdS4 vacuum.
Using our mass matrices (4.4), (4.31) and (4.40), we can

compute the entire bosonic Kaluza-Klein spectrum of this
AdS4 vacuum of 11-dimensional supergravity. In fact,
because the mass matrices are quadratic in U(3) generators
and all fields organize themselves into supermultiplets, we
can extrapolate the entire mass spectrum from the first three
Kaluza-Klein levels alone. We find the following energies,
E0, for the graviton (GRAV), vector (VEC), and gravitino
(GINO) supermultiplets9 with SUð3Þ × Uð1ÞR representa-
tion ½p; q�r appearing at Kaluza-Klein level n:

GRAV∶ E0 ¼
1

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ 1

2
nðnþ 6Þ− 4

3
Cp;qþ

1

2

�
rþ 2

3
ðq−pÞ

�
2

s
;

GINO∶ E0 ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

2
þ 1

2
nðnþ 6Þ− 4

3
Cp;qþ

1

2
r2

r
;

VEC∶ E0 ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

4
þ 1

2
nðnþ 6Þ− 4

3
Cp;qþ

1

2
r2

r
;

ð5:62Þ

9For the supermultiplets, we follow the notation of [57].
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where Cp;q is the eigenvalue of the representation ½p; q�
under the quadratic Casimir operator, i.e.,

Cp;q ¼
1

3
ðp2 þ q2 þ pqÞ þ pþ q: ð5:63Þ

Since the hypermultiplets (HYP) are necessarily short, their
energies are fixed by the BPS bound but can be written
similarly to the other multiplets as

E0 ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17

4
þ 1

2
nðnþ 6Þ − 4

3
Cp;q þ

1

2
r2

r
: ð5:64Þ

The U(3) representations of the supermultiplets appear-
ing at a given level n can be computed by tensoring the
n ¼ 0 fields with the scalar harmonics and arranging these
into supermultiplets. For example, the graviton supermul-
tiplets appear at level n in the representations

GRAV∶ ½p; q�p−q
3
þa−b; ð5:65Þ

where p; q; a; b ∈ Zþ are all positive integers satisfying
n ¼ pþ qþ aþ b. The result for all supermultiplets
appearing at levels n ≤ 3 can be read off from the tables
in [57].
Note that the Kaluza-Klein spectrum contains infinite

series of short multiplets appearing at Kaluza-Klein level n
with U(3) representation [57]

SGRAV∶ ½0; 0��n;

SGINO∶ ½nþ 1; 0�ðnþ1Þ=3 ⊕ ½0; nþ 1�−ðnþ1Þ=3;

SVEC∶ ½nþ 1; 1�n=3 ⊕ ½1; nþ 1�−n=3;
HYP∶ ½nþ 2; 0�ðnþ2Þ=3 ⊕ ½0; nþ 2�−ðnþ2Þ=3: ð5:66Þ

For these representations, our mass formulas (5.62) exactly
reproduce the BPS bound for the short multiplets:

SGRAV∶ E0 ¼ jrj þ 2 ¼ nþ 2;

SGINO∶ E0 ¼ jrj þ 3

2
¼ 11

6
þ n

3
;

SVEC∶ E0 ¼ jrj þ 1 ¼ nþ 3

3
;

HYP∶ E0 ¼ jrj ¼ nþ 2

3
: ð5:67Þ

Furthermore, our mass formulas (5.62) are valid for all
supermultiplets, including long multiplets. We can thus
also compute the energies of unprotected multiplets in the
dual CFTs. To illustrate this, we have explicitly tabulated
the energies of all multiplets appearing at levels n ≤ 2 in

TABLE V. Energies of the multiplets of theN ¼ 2 CFT dual to
the U(3) AdS4 vacuum at level n ¼ 0. We represent the energy E0

and U(1) R-charge r of a multiplet in the ½p; q� representation of
SU(3) as ðE0Þr.
[0, 0] [0, 1] [0, 2]
MGRAV ð2Þ0 SGINO ð11

6
Þ−1

3
HYP ð2

3
Þ−2

3

LVEC ð1
2
þ

ffiffiffiffi
17

p
2
Þ
0

[1, 0] [1, 1]
SGINO ð11

6
Þþ1

3

MVEC ð1Þ0
[2, 0]
HYP ð2

3
Þþ2

3

TABLE VI. Energies of the multiplets of the N ¼ 2 CFT dual to the U(3) AdS4 vacuum at level n ¼ 1. We
represent the energy E0 and U(1) R-charge r of a multiplet appearingm times in the ½p; q� representation of SU(3) as
m × ðE0Þr.
[0, 0] [0, 1] [0, 2] [0, 3]
SGRAV ð3Þ�1 LGRAV ð1

2
þ

ffiffiffiffiffiffi
145

p
6
Þ−1

3

SGINO ð13
6
Þ−2

3

HYP ð1Þ−1
LVEC ð1

2
þ

ffiffi
3

p
2
Þ�1

LGINO ð17
6
Þþ2

3

LVEC ð7
3
Þþ1

3

LVEC ð1
2
þ

ffiffiffiffiffiffi
217

p
6
Þ−1

3

[1, 0] [1, 1] [1, 2]

LGRAV ð1
2
þ

ffiffiffiffiffiffi
145

p
6
Þþ1

3

LGINO 2 × ð1
2
þ ffiffiffi

3
p Þ

0
SVEC ð4

3
Þ−1

3

LGINO ð17
6
Þ−2

3

LVEC ð1
2
þ

ffiffiffiffiffiffi
217

p
6
Þþ1

3

[2, 0] [2, 1]
SGINO ð13

6
Þþ2

3

SVEC ð4
3
Þþ1

3

LVEC ð7
3
Þ−1

3

[3, 0]
HYP ð1Þþ1
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Tables V–VII, extending the purely group-theoretic analy-
sis of [57] to include the energies of the supermultiplets.

2. AdS4, N = 0, SOð4Þ vacuum
The SO(8) gauged SUGRA also contains a prominent

nonsupersymmetric AdS4 vacuum with SOð3Þ × SOð3Þ
symmetry [55,56], whose uplift to 11-dimensional super-
gravity was constructed in [8]. Intriguingly, this vacuum is
stable within the N ¼ 8 four-dimensional supergravity,
with all scalar fields above the Breitenlohner-Freedman
(BF) bound. It was long hoped that the AdS4 vacuum
would also be stable within 11-dimensional supergravity,
but since the AdS4 vacuum is not supersymmetric and has
few symmetries, computing its Kaluza-Klein spectrum has
remained elusive.
However, using the technique laid out here, we can

exploit the fact that this AdS4 vacuum arises by
deforming AdS4 × S7 by modes living within the
SO(8) consistent ttthe bosonic Kaluza-Klein spectrum
using our mass formulas (4.4), (4.31) and (4.40), as was
done in [12] up to level 6 above the four-dimensional
N ¼ 8 supergravity. The Kaluza-Klein spectrum displays
the curious feature that the masses of the Kaluza-Klein
modes does not increase monotonically with the level n.
Instead, even though the Kaluza-Klein scalars at levels 0
and 1 are stable, the Kaluza-Klein tower contains

tachyonic scalar fields at levels 2 and higher whose
masses violate the BF bound. Therefore, the techniques
developed here show that this nonsupersymmetric AdS4
vacuum is unstable within 11-dimensional supergravity,
lending further evidence to the “swampland conjecture”
[58] that all nonsupersymmetric AdS vacua of string
theory must be unstable.
Specifically, the scalar mass matrix (4.40) at level 0

yields the following mass eigenvalues:

ð0; 0Þ∶ f−1.714ð2Þ; 8.571g;
ð1; 1Þ∶ f−1.714ð2Þ;−1.312; 2.571; 5.598g; ð5:68Þ

normalized in units of the inverse AdS length square,
where ðj1; j2Þ denotes the SOð4Þ ∼ SUð2Þ ⊗ SUð2Þ rep-
resentations,10 and where the states with mass m2L2

AdS ¼
−1.714 appear with multiplicity 2. This reproduces the
result of [59] and shows that within N ¼ 8 supergravity,
all scalar masses lie above the BF bound m2

BFL
2
AdS ¼

−2.25.
Evaluating the mass matrix at level n ¼ 1, we obtain the

masses

TABLE VII. Energies of the multiplets of the N ¼ 2 CFT dual to the U(3) AdS4 vacuum at level n ¼ 2. We represent the energy E0

and U(1) R-charge r of a multiplet appearing m times in the ½p; q� representation of SU(3) as m × ðE0Þr.
[0, 0] [0, 1] [0, 2] [0, 3] [0, 4]

LGRAV ð1
2
þ

ffiffiffiffi
41

p
2
Þ
0

conjugate to [1, 0] conjugate to [2, 0] conjugate to [3, 0] conjugate to [4, 0]

SGRAV ð4Þ�2

LVEC ð1
2
þ

ffiffiffiffi
57

p
2
Þ�2

, 2 × ð4Þ0
[1, 0] [1, 1] [1, 2] [1, 3]

LGRAV ð1
2
þ

ffiffiffiffiffiffi
337

p
6
Þ−2

3
, ð1

2
þ

ffiffiffiffiffiffi
313

p
6
Þþ4

3

LGRAV ð3Þ0 conjugate to [2, 1] conjugate to [3, 1]

LGINO ð23
6
Þ−5

3
, 2 × ð1

2
þ 2

ffiffiffiffi
22

p
3
Þþ1

3

LGINO 2 × ð1
2
þ 2

ffiffiffi
2

p Þ�1

LVEC ð1
2
þ

ffiffiffiffiffiffi
385

p
6
Þ−2

3
, ð1

2
þ

ffiffiffiffiffiffi
409

p
6
Þþ4

3

LVEC 2 × ð1
2
þ

ffiffiffiffi
33

p
2
Þ
0

[2, 0] [2, 1] [2, 2]

LGRAV ð1
2
þ

ffiffiffiffiffiffi
217

p
6
Þþ2

3

LGINO 2 × ð1
2
þ 2

ffiffiffiffi
10

p
3
Þþ1

3
LVEC

	
1
2
þ 1

2

ffiffiffiffi
19
3

q 

0

LGINO ð19
6
Þ−1

3

LVEC ð1
2
þ

ffiffiffiffiffiffi
193

p
6
Þ−2

3

LVEC ð1
2
þ

ffiffiffiffiffiffi
313

p
6
Þ−4

3

, 2 × ð10
3
Þþ2

3

[3, 0] [3, 1]
SGINO ð15

6
Þþ1

SVEC ð5
3
Þþ2

3

LVEC
	
1
2
þ 1

2

ffiffiffiffi
19
3

q 

0

[4, 0]
HYP ð4

3
Þþ4

3

10In [12], we have used the notation ð2j1 þ 1; 2j2 þ 1Þ for
these representations.
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�
1
2
;
1
2

�
∶ f−2.232;−2.225;−1.947;−0.752; 3.790; 5.059; 5.766; 7.627;

10.567; 10.707; 11.492; 16.004g;�
1
2
;
3
2

�
⊕

�
3
2
;
1
2

�
∶ f−1.196;−0.996; 1.732; 2.429; 6.198; 6.292; 9.817; 11.725g;�

3
2
;
3
2

�
∶ f−1.965;−1.377;−0.761; 1.042; 3.208; 3.431; 3.831; 7.497; 7.882; 12.999g; ð5:69Þ

still all lying above the BF bound. However, at level n ¼ 2, the mass eigenvalues are given by

ð0; 0Þ∶ f−3.117;−2.821;−2.179; 0.941; 1.995; 3.181; 5.244; 6.753; 7.224; 9.838;
12.000; 12.108; 12.221; 14.764; 16.685; 18.000; 19.418; 19.613; 24.702g;

ð1; 1Þ∶ f−2.532;−2.448;−1.220; 0.ð3Þ; 0.846; 1.483; 2.586; 2.884; 4.133; 4.228; 4.400;
5.239; 6.282; 6.450; 6.964; 7.613; 7.793; 9.017; 9.685; 9.806; 10.002; 11.456; 11.462;

12.196; 12.767; 12.871; 13.010; 14.066; 14.556; 15.257; 18.839; 19.385; 20.107; 26.532g;
ð2; 2Þ∶ f−2.361;−0.916; 0.224; 2.291; 4.212; 4.419; 5.467; 6.513; 9.429; 10.286; 10.980;

11.822; 15.295; 16.464; 23.305g;
ð0; 1Þ ⊕ ð1; 0Þ∶ f−1.343;−0.232; 3.050; 3.725; 5.697; 6.731; 8.032; 9.647; 10.087; 11.597; 12.510;

13.574; 14.955; 15.952; 17.676; 21.337; 21.862g;
ð0; 2Þ ⊕ ð2; 0Þ∶ f−0.975;−0.110; 2.410; 3.175; 5.301; 7.183; 7.588; 9.731; 11.241; 12.232; 14.261;

16.019; 18.407; 23.822g;
ð1; 2Þ ⊕ ð2; 1Þ∶ f−0.881;−0.203; 2.143; 3.161; 3.245; 4.430; 4.984; 7.480; 7.946; 8.592; 9.234;

12.032; 12.855; 13.948; 14.334; 18.746; 21.097g; ð5:70Þ

and include a number of tachyonic modes m2L2
AdS <

−2.25. Similarly, tachyonic modes are found at the higher
Kaluza-Klein levels [12].
Moreover, the result (5.70) for the Kaluza-Klein modes

at level 2 shows 27 physical massless scalar fields (i.e.,
massless scalars not eaten by massive vector or graviton
fields), which transform in the 3 · ð1; 1Þ of the SOð3Þ ×
SOð3Þ symmetry group. These scalars are thus infinitesimal
moduli which break the SOð3Þ × SOð3Þ symmetry. If these
AdS4-preserving deformations can be integrated up to finite
moduli, then this would give rise to a family of non-
supersymmetric AdS4 vacua of 11-dimensional supergrav-
ity with symmetries smaller than SOð3Þ × SOð3Þ.

VI. CONCLUSIONS

In this paper, we have shown how the formalism of
exceptional field theory can be used as a powerful tool
for the computation of the complete Kaluza-Klein mass
spectra around vacua that lie within consistent truncations.
In particular, the method applies to deformed backgrounds
that may have little or no isometries left, as well as to non-
supersymmetric backgrounds. We have derived the explicit
form of the mass matrices (4.4), (4.20), (4.31), (4.40), for

compactifications toD ¼ 4 andD ¼ 5 dimensions, that are
described within E7ð7Þ and E6ð6Þ ExFT, respectively. They
are given in terms of the embedding tensor characterizing
the consistent truncation to the lowest multiplet, together
with the (dressed) action on the scalar harmonics associated
with the maximally symmetric point within this consistent
truncation. In terms of the ExFT variables, the fluctuations
are described by a simple product ansatz (3.15) between the
Scherk-Schwarz twist matrices and the tower of scalar
fluctuations. Translating this back into the original super-
gravity variables allows us to straightforwardly identify the
resulting mass eigenstates in higher dimensions.
We have illustrated the formalism in various examples.

First, we have rederived the full bosonic Kaluza-Klein
spectrum around the maximal symmetric AdS5 × S5 sol-
ution of IIB supergravity, finding agreement with the
classic results of [42,43]. Next, we have applied the method
to compute the higher Kaluza-Klein levels around some
prominent AdS vacua with less supersymmetry in D ¼ 5
and D ¼ 4 dimensions. This provides valuable information
for various holographic dualities and for the stability
analysis of nonsupersymmetric vacua. Although in this
paper we have restricted the analysis to the bosonic mass
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spectrum, it is clear that the fermionic mass spectrum can
be computed in complete analogy based on the structures of
supersymmetric ExFT [45,60]. Also, while we have restric-
ted our examples to AdS vacua which are of particular
interest in the holographic context, the method and the
explicit mass matrices likewise apply for Minkowski and
dS vacua.
There are many further potential applications of the

methods presented in this paper. Some recent and rather
exhaustive scans of the potentials of maximal SO(8)
gauged supergravity in D ¼ 4 [61] and SO(6) gauged
supergravity in D ¼ 5 [62,63] have revealed a plethora of
AdS vacua, most of which preserve very few bosonic (and
super)symmetries. Our analysis of the Kaluza-Klein spec-
trum can be applied to all of these. Likewise, our method
applies to vacua within other maximal supergravities, such
as the D ¼ 4, ISO(7) gauged supergravity which describes
the consistent truncation of massive IIA supergravity [64]
on S6 and exhibits a rich vacuum structure [65]. In this case,
the maximally symmetric point, which is used to construct
the scalar harmonics, would be the round S6, even though
this is not a vacuum of the theory. Another interesting
gauging is the D ¼ 4 SUGRA with ½SOð1; 1Þ × SOð6Þ� ⋉
R12 gauge group whose potential carries numerous inter-
esting AdS vacua [66,67] with IIB origin [68]. The analysis
of their Kaluza-Klein spectra will require a proper treat-
ment of the noncompact gauge group generator whose
associated noncompact direction will have to undergo a

proper S-folding in order to extract a discrete spectrum of
harmonics. For the spin-2 spectrum, this was analyzed, for
example, in [37].
We have derived in this paper the explicit mass matrices

for E7ð7Þ and E6ð6Þ ExFT. However, the fluctuation ansatz
(3.15) is universal and allows to work out the mass matrices
for other exceptional field theories, giving rise to the
Kaluza-Klein spectra in compactifications to other dimen-
sions. It would also be very interesting to extend the
formalism to vacua sitting in consistent truncations that
preserve a lower number of supersymmetries building on
the constructions of [69,70].
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