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Extremal black holes havevanishingHawking temperatures. In this paper, we argue that for asymptotically
anti–de Sitter (AdS) black holes, at extremality, a particular class of correlators in the dual conformal field
theory can exhibit exponential, maximally chaotic growth with a nonvanishing temperature. Our approach, at
extremality, is twofold. First, we geometrically investigate the modes that are responsible for chaos. Second,
we study the dynamics of a probe string to capture chaos in world sheet correlators. For rotating Banados-
Teitelboim-Zanelli at extremality, the corresponding Lyapunov exponent is determined by the left-moving
temperature. In higher dimensional AdS-Kerr geometries, on the other hand, the corresponding Lyapunov
exponent becomes a nontrivial function of the Frolov-Thorne temperatures.
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I. INTRODUCTION

The study of black holes via holography has allowed us
uncover interesting features of quantumgravity, especially in
anti–de Sitter (AdS) spacetimes. It allows the study of large-
N quantum field theories to be related to the (thermo)
dynamics of black holes in AdS. It was discovered that
certain thermal large-N unitary systems can scramble the
information of an initial localized perturbation among its
microscopic degrees of freedom exponentially faster than
others [1]. These were termed as fast scramblers and they
possessed a scrambling time t� ∼ logN. Further, black holes
were conjectured to be fastest among the fast scramblers [2].
In the thermal system,scrambling timeasmeasuredbyhow

fast CðtÞ ¼ h½VðtÞ;Wð0Þ�i2β grows in early time is a good
diagnostic of its chaotic behavior. For fast scramblers, it was
seen thatCðtÞ ∼ eλLt, where the Lyapunov exponent λL mea-
sures the growth in out-of-time-ordered-correlator (OTOC)
hVðtÞWð0ÞVðtÞWð0Þiβ occurring in h½VðtÞ;Wð0Þ�i2β. The
holographic computation of λL for Schwarzchild-AdS black
holes revealed λL ¼ 2π=β [3–5]with stringy corrections only
decreasing it.Validating the fast scrambling conjecture, itwas

shown that generic thermal large-N systems satisfy a bound
on chaos with λL ≤ 2π=β [6].
Similar chaotic behavior was obtained for a large-N

system dual to a string probing a Schwarzschild-AdS3
stretched from the boundary to the horizon [7]. The string is
governed by the Nambu-Goto action and the end point of
the string is dual to a quark in a thermal large-N system
[8,9]. Here although the string world sheet sees the ambient
horizon, it is entirely the string dynamics which gives rise
to the chaotic behavior.
The analysis of the now famous Sachdev-Ye-Kitaev

(SYK) model [10–13] revealed a similar behavior close to
small temperatures, although being a solvable model in large
N. Thus, suggesting that it may be a good model to simulate
the chaotic dynamics of black holes in gravity. Many
properties of these models have since been under extensive
investigation [14–18]. The low energy dynamics of SYK-
likemodels is governedby the Schwarzian action for the time
reparametrization which is a symmetry of its zero temper-
ature fixed point. This suggested that at least close to
extremality a similar behavior may hold for AdS black
holes. The Jackiw-Teitelboim (JT) model studied in [19,20]
essentially captures this behavior for small temperatures
close to extremality. Thismodel is a two-dimensional gravity
description for deviations away from extremality where
black holes are known to have an AdS2 factor in their near
horizon (throat) limit [21]. Similar Schwarzian dynamics has
also been uncovered for explaining the late time behavior of
probe strings in Schwarzchild-AdS3 [22,23].
However, study of rotating geometries with regards to

computing their Lyapunov exponents reveals some inter-
esting unexplored aspects. It was shown for generic rotating
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Banados-Teitelboim-Zanelli (BTZ) metrics that the
Lyapunov exponent can be >2π=β. Here apparently two
Lyapunov indices were found λþL < 2π=β < λ−L [24,25],
where λ�L ¼ rþ ∓ r− with r−ðrþÞ being the inner(outer)
horizons. This suggests that in the presence of a chemical
potential βμ the bound derived on thermal large-N quantum
field theories may be modified. This was indeed shown to
be true for certain states in [26] by modifying the arguments
of [13] due to the presence of a chemical potential for a
continuous global Uð1Þ symmetry. The study of transla-
tional symmetry on the chaos bound was studied in [27].
The above recent observations taken in tandem with the fast
scrambling conjecture seems to suggest that rotating black
holes in higher dimensions may also exhibit a similar
behavior. It is interesting to note that the one-dimensional
solvable SYK-like models do not seem to saturate such a
modified bound in the presence of a chemical potential
[28,29]. Higher dimensional versions of the SYK-like
models have also been under investigations [30].
An interesting consequence due to the presence of

chemical potential is extremal chaos, as can be seen in
the case of BTZ in [24,25]. The near horizon dynamics as
captured by the JT model does not seem to account for this
effect. However, it correctly reproduces the thermodynam-
ics of charged and rotating black holes close to extremality
which has been thoroughly verified in [31–33]. For past
works on dimensional reduction, refer to [34,35]. It would
be therefore interesting to see how the JT model accounts
for the chaos causing modes in the near horizon region
with regards to Lyapunov index as seen at the conformal
boundary of rotating BTZ. This would also be useful in
higher dimensions as holographic analysis of computing
the Lyapunov exponent using known techniques in liter-
ature would be a cumbersome task in rotating black hole
geometries in dimensions >3. This paper attempts to
take the first steps in this direction. Also, recently there
have been studies in this regard [36]. The near extremal
Ressiner-Nordström (RN) holes have also been investi-
gated in this regard by using the JT model in their near
horizon region. RN black holes are not charged under
spacetime symmetries like the Kerr or BTZ but an internal
Uð1Þ symmetry. In this regard, their near horizon effective
gravity theory may seem to be holographically dual to
charged SYK models which have also been thoroughly
investigated and do not seem to possess extremal chaos,
i.e., Lyapunov index is zero at the zero temperature IR
limit. Therefore, the results of this paper only concern with
gravitational holographic systems which possess a chemi-
cal potential due to conserved charges associated with
spacetime symmetries and not internal symmetries. Given
that most black holes found in nature possess an angular
momentum, e.g., GRS 1905þ 105 in our galaxy; the
results of this paper may indeed prove very important if
we could measure the scrambling times of such celestial
black holes in the near future.

We organize the paper as follows: in sec. II, we review
briefly the various computations used to deduce λL holo-
graphically and the change in λL in generic large-N thermal
systems with chemical potential. In Sec. III, we analyze the
near horizon region of BTZ close to extremality and indeed
find that the thermal modes captured by the JT model
contribute a Lyapunov index λL ¼ 2πTH.

1 At extremality,
the thermal modes are essentially similar to the right-
moving modes seen at the boundary of BTZ which see a
zero temperature and therefore contribute λþL ¼ 0. In
Sec. IV, we see that the left-moving extremal modes at
extremality in the near horizon region are seen to give rise
to a λ−L ¼ 2rþ in tandem with the analysis at conformal
boundary of BTZ. However, we see while deriving the near
horizon effective action that the presence of the thermal
modes is necessary in deducing this effect. In Sec. V, we
supplement the BTZ analysis by studying the temperature
dependence of a probe string in the BTZ geometry on the
angular velocity of its end point. In Sec. VI, we then
analyze the near horizon region of extremal Kerr-AdS4 and
find the thermal modes which are captured by the JT
analysis. Drawing parlance with the BTZ near horizon
analysis we look for similar diffeomorphisms of the near
horizon Kerr metric that can give rise to extremal chaos. We
find that these are precisely the “large” diffeomorphisms
studied in the Kerr/CFT correspondence.2 We also see that
one can easily find the temperature as seen by the extremal
modes by comparing the warped AdS3 in the throat region
of extremal Kerr-AdS4 to the near horizon extremal BTZ
metric. We similarly study the temperature as seen by the
probe string in extreme Kerr-AdS4 as function of its end
points angular velocity at the conformal boundary.
We note some important list of references before begin-

ning below: various aspects of the SYK-like models and the
JT gravity have been studied to a great detail in the recent
years [11,15,17,18,30,37–117]. An extensive list of refer-
ences for works on SYK-like models and a through review
of the same can be found in [118]. Aspects of JT gravity
have also been reviewed in [119]. Rotating Kerr geometries
have been studied in detail with regards to their near
horizon properties at extremality. For an account of
interesting aspects of Kerr geometries and Kerr/CFT
correspondence, please refer to [120–140]. Recently, there
have also been interesting investigations of nAdS2=CFT1

and large diffeomorphisms in the near horizon region in
extreme Kerr [141]. The case of the BTZ with gravitational
Chern-Simons term and its effect in the near horizon region
was also recently studied using nAdS2=CFT1 [142]. The
case of rotating black holes dual to holographic conformal
field theories (CFTs) and strong cosmic censorship was
recently studied in [143].

1TH ¼ β−1.
2We do not need the Kerr/CFT correspondence to motivate

extremal chaos.
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II. CHAOS IN BTZ

The rotating BTZ solution is generically written as

ds2

l2
¼ ρ2dρ2

ðρ2 − r2þÞðρ2 − r2−Þ

−
ðρ2 − r2þÞðρ2 − r2−Þdt2

ρ2

þ r2
�
dϕ −

rþr−
ρ2

dt

�
2

;

having M ¼ r2þ þ r2−; J ¼ 2lrþr−; ð2:1Þ

with r� labeling in outer and inner horizons, respectively.
It can also be cast in the Fefferman-Graham gauge to be
precisely

ds2

l2
¼ dr2

r2
−
r2dxþdx−

4
þ 1

4
ðTþþdxþ2 þ T−−dx−2Þ

−
1

4r2
TþþT−−dxþdx−; ð2:2Þ

where T�� ¼ ðrþ ∓ r−Þ2; here the location of the horizon
can be computed from computing where the area of
constant r hypersurface vanishes, i.e., rh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ − r2−

p
.

The Fefferman-Graham coordinates are especially useful
since one can readily write down the most generic solution
to Einstein’s equations which are locally AdS3 by simply
promoting T� → T�ðx�Þ.3 As there are no bulk degrees
of freedom for gravity in three-dimensional, all these
solutions can be reached from an arbitrary metric of the
form (2.2) via local coordinate transformations, i.e., finite
diffeomorphisms; see for, e.g., [144] and the Appendix.
The infinitesimal forms of these diffeomorphisms form the
well-known Brown-Henneaux asymptotic symmetries of
AdS3. We call them Penrose-Brown-Henneaux (PBH)
diffeomorphisms here. These are the Vir ⊗ Vir with
central charge c ¼ 3l=2GN where l is the AdS3 length
scale as seen in (2.1) and (2.2).
For stationary BTZ, it was shown in [24] that the four-

point function of two scalar primaries V, W dual to
minimally coupled scalar fields ϕV;ϕW of the form
hVWVWi receives corrections from the bulk on-shell
action arising from (2.2) with T�� → T��ðx�Þ,

Son-shellð3Þ ¼ l
32πGN

Z
∂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TþþT−−

p
;

T�;� ¼ −2Sch½X�; x�� þ
�
2π

β�

�
2

X0�2: ð2:3Þ

Here the three-dimensional family of solutions are para-
metrized by x� → X�ðx�Þ conformal transformations
on the boundary of BTZ. For OTOCs of the form
hVðt; 0ÞWð0;ϕÞVðt; 0ÞWð0;ϕÞi, we find that there are
two Lyapunov exponents, λ�L ¼ 2π

β�
¼ rþ ∓ r− of which

one is not only greater that 2πTH ¼ r2þ−r
2
−

rþ but also seems to
survive when we take the extremal limit, i.e., Eλ−L ¼
rþ þ r−!ext2rþ. This method was also carried out in the
first order formalism of AdS3 gravity as a difference of two
Chern-Simons theories in slð2;RÞ in [25].
The extremal limit is reached when the inner and outer

horizons coincide, i.e., rþ − r− ¼ 2ϵ → 0. Expanding
2πT� ¼ λ�L and 2πTH in terms of ϵ, we find

2πTH ¼ r2þ − r2−
rþ

¼ 4ϵ −
4ϵ2

rþ
;

λ−L ¼ 2ðrþ − ϵÞ; λþL ¼ 2ϵ: ð2:4Þ

The corrections to probe computation of hVWVWi could
also be carried out by taking into account shock-wave
backreactions for late times of the scale t ≫ β as was first
done in [5] for nonrotating BTZ. Here one utilizes the
Thermo-Field double description of the BTZ black hole.
The four-point function is computed by considering
Eikonal scattering of scalar fields ϕV;ϕW . Since one is
interested in large time dynamics, this prescription trans-
lates to considering scattering of scalar fields in a back-
reacted geometry very close to the horizon. This is
consistent with the fact that since one is interested in
computing late time effects of small perturbations to the
bulk, the dominant effect from gravitational back reactions
would arise from the region closest to the horizon. Indeed,
the scrambling time of the bulk theory is the smallest time
for small perturbations to the bulk to have a measurable
effect as seen from the boundary theory.
The “in” and “out” states for the Eikonal scattering are

constructed on the horizons labeled by (Kruskal) bulk
coordinates u ¼ 0 and v ¼ 0 as follows:

jini ¼ Vðt3ÞWðt4ÞjTFDiin
¼
Z

dϕ0
3dϕ

0
4dp

u
3dp

v
4ψ3ðpu

3;ϕ
0
3Þψ4ðpv

4;ϕ
0
4Þjpu

3;ϕ
0
3i

⊗ jpv
4;ϕ

0
4i;

jouti ¼ Vðt1Þ†Wðt2Þ†jTFDiout
¼
Z

dϕ0
1dϕ

0
2dp

u
1dp

v
2ψ

†
1ðpu

1;ϕ
0
1Þψ†

2ðpv
2;ϕ

0
2Þjpu

1;ϕ
0
1i

⊗ jpv
2;ϕ

0
2i: ð2:5Þ

Here the ψs for any bulk operatorO is the bulk to boundary
propagators computed in the corresponding BTZ geometry
at the required horizon as

3Here we assume Dirichlet boundary conditions have been
imposed.
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ψðpu;ϕÞ ¼
Z

dve−ipvvhϕOðu; v;ϕÞOðtÞiju¼0: ð2:6Þ

The Eikonal scattering for these states then results in the in
and out states to differ by a phase factor for elastic
scattering,

ðjpu
1;ϕ

0
1i ⊗ jpv

2;ϕ
0
2Þout ≈ eiδðs;ϕ0

1
−ϕ0

2
Þðjpu

3;ϕ
0
1i ⊗ jpv

4;ϕ
0
2iÞin

þ jinelastici: ð2:7Þ

The final answer is then obtained by evaluating

houtjini ¼ outhTFDjVðt1ÞWðt2ÞVðt3ÞWðt4ÞjTFDiin: ð2:8Þ

For rotating BTZ, it was shown in [25] that such a
computation indeed gives rise to two Lyapunov exponents
λ� ¼ rþ ∓ r−. This method although gives the full form
of the answer for late times does not reveal the mechanism
behind the dynamics which results in maximal chaos. It is
also computationally involved as one needs to compute
bulk-to-boundary propagators for rotating geometries
which resist a simple coordinate system in their Kruskal
extensions. Bulk to boundary propagators for even static
black holes in AdS>3 can only be computed numerically.4

The fact that rotating black holes in AdS3 see a different
Lyapunov index than the temperature suggests that the
bound on chaos [6] computed for thermal large-N systems
may be modified for systems with certain chemical
potentials turned on. It was shown by Halder [26] that
by carefully repeating the arguments of [6] for a large-N
thermal system with a chemical potential μ the bound can
be derived to be saturated at

λL ≤
2π

βð1 − μÞ ð2:9Þ

provided there are enough states charged under the sym-
metry for which the chemical potential is turned on. This
form of analysis crucially depends on analyzing how
analytic structure of the four-point function for Oð1Þ
operators can be restricted in the complex time plane.
Shorter the region of analyticity in the Euclidean time,
greater is the Lyapunov index.
Black holes classically are characterized by their mass,

angular momentum, and electromagnetic charge fM;J;Qg.
As turning on J and/orQ amounts to turning on a chemical
potential in the dual theory, we may expect that the three-
dimensional results summarized above might even hold for
at least rotating black holes in AdS>3. This would also
seem to be consistent with the result of [26] and the fast
scrambling conjecture which states that black holes are

among the fastest scramblers of information in the
Universe.

III. JT ANALYSIS FOR NEAR EXTREMAL BTZ

The JT action for any geometry close to extremality is
obtained by (i) dimensionally reducing the full gravity
action along nonradial spacelike directions to obtain a
dilaton Φ coupling to

ffiffiffi
g

p
R in two dimensions without a

kinetic term for the former.5 (ii) By expanding the two-
dimensional action up to linear fluctuations of the dilaton
over its extremal value Φ ¼ Φext þ ψ . Note: before doing
so, all other fields resulting from the dimensional reduction
are to be determined with respect to the dilaton Φ.

A. Thermodynamics of JT model

We carry out this exercise for the case of gravity in AdS3
which has the following action:

Sð3Þ ¼ −
1

2κ

Z
dx3

ffiffiffiffiffiffi
−g

p ðR− 2ΛÞ− 1

κ

Z
∂
dx2

ffiffiffiffiffiffi
−h

p �
Kþ 1

l

�
;

ð3:1Þ

where κ ¼ 8πGN . For dimensional reduction about the
nonradial spacelike coordinate y, we choose the following
form of the metric:

ds2 ¼ Φ2αðds2ð2ÞÞ þΦ2ðdyþ AtdtÞ2; ð3:2Þ

with α to be determined such that the resulting action does
not have a kinetic term for the dilaton Φ.6 For the above
form of the metric, the bulk Lagrangian reduces to

ffiffiffiffiffiffi
−g

p ðR− 2ΛÞ ¼ ffiffiffiffiffiffi
−ḡ

p
Φ
�
R̄− 2Λþ 1

4
Φ2F2

�
; for α¼ 0;

ð3:3Þ

where we have chosen α ¼ 0 for later convenience. All
barred quantities are used to denote quantities computed
in two dimensions. Next, we would like to solve for Fμν in
terms of the dilaton Φ,

∇μðΦ3FμνÞ ¼ 0; ð3:4Þ

which for any two-dimensional metric takes the form

Frt ¼
ffiffiffiffiffiffi
−ḡ

p Q
Φ3

; ð3:5Þ

4Note that the full form of the propagators might not be needed
to arrive at the conclusion.

5The two-dimensional metric has to be scaled appropriately
with the dilaton to achieve this.

6It turns out that for three dimensions one can choose any non-
negative value of α.
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where Q is to be determined further by the dilaton equation
of motion (e.o.m).7 Therefore, the action now looks like

Sð2Þ ¼ −
1

2κ

Z ffiffiffiffiffiffi
−ḡ

p
Φ
�
R̄ − 2Λ −

Q2

2Φ4

�
−
1

κ

Z ffiffiffī
γ

p
ΦK̄:

ð3:6Þ

We choose to separately add the holographic counterterms
in the near horizon region and do not keep track of them
while dimensional reduction. Next, we look at the near
horizon metric in the extremal BTZ case given by (3.22)

ds2

l2
¼ 1

4

�
dr2

r2
− r2dτ2

�
þ r2þ

�
dϕþ r

2rþ
dτ

�
2

; ð3:7Þ

where the value of the dilaton Φ ¼ Φext ¼ rþ which is
basically the radius of the sphere at the horizon. Here the
gauge field Aτ ¼ r=ð2rþÞ fixes the value of the chargeQ in
(3.5) as the above metric is on shell with regards to the
action Sð2Þ (3.6). Linearizing the dilaton as Φ ¼ rþ þ ψ
and expanding to linear powers in ψ , we get

SJT ¼ Sð0Þ−
1

2κ

Z ffiffiffiffiffiffi
−ḡ

p
ψ

�
R̄− 2Λþ 3Q2

2r4þ

�
−
1

κ

Z
∂
ffiffiffiffiffiffi
−γ̄

p
ψK̄;

ð3:8Þ

where Sð0Þ ¼ Sð2Þjext is the topological term evaluated with
only the gauge field and the dilaton taking their on-shell
values as given in the metric (4.6)

Sð0Þ ¼ −
1

2κ

Z ffiffiffiffiffiffi
−ḡ

p
rþ

�
R̄ − 2Λ −

Q2

2r4þ

�
−
1

κ

Z
∂
ffiffiffiffiffiffi
−γ̄

p
rþK̄:

ð3:9Þ

In order that the metric (4.6) solves the ψ e.o.m. resulting
from SJT for ψ ¼ 0, we see that the charge is given by

Q ¼ 2r2þ: ð3:10Þ

Thus, rewriting SJT to be

SJT ¼ Sð0Þ −
1

2κ

Z ffiffiffiffiffiffi
−ḡ

p
ψðR̄ − 2Λ̄Þ

−
1

κ

Z
∂
ffiffiffiffiffiffi
−γ̄

p
ψK̄ þ Scounter;

Λ̄ ¼ Λ −
3

l2
¼ −

4

l2
; ð3:11Þ

where l is the radius of AdS3 which we have set to unity.
Thus, the ψ e.o.m. implies R̄ − 2Λ̄ ¼ 0 for on-shell
fluctuations of the two-dimensional metric in the JT model.
Next, we turn on a temperature in the two-dimensional

theory and therefore work with the metric

ds2ð2Þ ¼
1

4

�
dr2

r2
−
�
r −

T2
H

4r

�
2

dτ2
�
; ð3:12Þ

where TH ¼ 2π=β and the horizon occurs at r ¼ δrþ ¼
TH=2. The second and the third terms in the bulk of
topological piece Sð0Þ cancel yielding the Euclidean on-
shell action to be

Sð0Þ ¼ −
rþ
2κ

�Z ffiffiffī
g

p
R̄þ 2

Z
∂
ffiffiffī
γ

p
K

�

¼ −
βrþ
2κ

�
2δrþ þ T2

H

2δrþ

�
¼ −

4πrþ
2κ

: ð3:13Þ

Here the Gibbons-Hawking term at the boundary cancels
the bulk divergence while the finite contribution comes
only from the horizon at r ¼ δrþ. Thus, the topological
piece rightly reproduces the BTZ entropy at extremality
with the free energy F given by the thermodynamic relation

βF ¼ βðM − μJÞ − Sent ð3:14Þ

and rþ denoting the extremal horizon. Here as BTZ is dual
to a large-N system with inverse temperature β and
chemical potential βμ.8 The BTZ free energy close to
extremality reads

βF ¼ βðM − μJÞ − 4πrþ
¼ −4πðrþ þ δrþÞ þ βðMext − μJextÞ þ βðδM − μδJÞ
¼ −4πrþ þ βðMext − μJextÞ − βð1þ μÞδM; ð3:15Þ

where in the second line we have expanded about the
extremal value of the horizon rþ → rþ þ δrþ with rþ
labeling the extremal horizon. The equality between the
second and the third lines holds for small values of
δrþ ¼ TH=4. We have also expressed δM and δJ for small
temperatures as9

M¼Mextþ2δrþ; J¼Jext−2δrþ⇒ δM¼2δrþ¼−δJ:

ð3:16Þ

The last term in (3.15) is reproduced correctly by the
boundary term of the JT model proportional to the dilaton
ψ , i.e., by Euclidean on-shell value of SGH ¼ SJT − Sð0Þ,

8β ¼ 2πrþ
r2þ−r

2
−
& μ ¼ r−

rþ
for a Lorentzian BTZ.

9We have set 2κ which has GN to one; this can also be thought
of absorbing 2κ into the definition of F, M, and J.

7Note that this is not the most generic solution but is enough
for our purpose as we will be expanding about stationary
solutions.
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−SGH ¼ 1

κ

Z
∂
ffiffiffī
γ

p
ψK ¼ 1

2κ
βψ0

�
2r2∞ þ T2

H

2

�
; ð3:17Þ

where r∞ ⇒ r → ∞ and we have used the Euclidean
version of the two-dimensional metric (3.12) with ψ →
rψ0 at the boundary of the AdS2. The counterterm required
for the JT action can be determined by allowing local terms
that get rid of the above divergence. This is found to be

Scounter ¼
2

κ

Z
∂
ffiffiffī
γ

p
ψ ¼ 1

2κ
βψ0

�
2r2∞ −

T2
H

2

�
: ð3:18Þ

Therefore, the regularized on-shell Euclidean value of
SJT − Sð0Þ is

SGH þ Scounter ¼ −βψ0T2
H ¼ −βð1þ μÞδM; ð3:19Þ

where we have used ψ0 ¼ 1=4 and

T2
H

4
¼ ð1þ μÞδM; ð3:20Þ

which can be seen to hold for small temperatures. Thus, the
JT model captures the departures to the free energy βF
away from extremality.

B. Thermal modes

The near horizon limit of (2.1) at extremality can be
achieved in two ways: by taking simultaneously the
extremal and near horizon limit [145],

y ¼ ϕþ r−
rþ

t; rþ − r− ¼ 2ϵ;

ρ ¼ rþ þ ϵðr − 1Þ; t ¼ τ

4ϵ
ds2

l2
¼ 1

4

�
dr2

ðr2 − 1Þ − ðr2 − 1Þdτ2
�
þ r2þ

�
dϕþ r − 1

2rþ
dτ

�
2

;

ð3:21Þ

or by taking the near horizon limit of extremal BTZ,

y ¼ ϕþ t; ρ ¼ rþ þ ϵr; t ¼ τ

4ϵ
ds2

l2
¼ 1

4

�
dr2

r2
− r2dτ2

�
þ r2þ

�
dϕþ r

2rþ
dτ

�
2

: ð3:22Þ

In the JT analysis, the above box bracket denotes the
Lorentzian analogue of the Euclidean AdS2 disk. We would
choose to work with the latter geometry. Different AdS2
geometries can either be denoted by different boundaries of
this disk as visualized in [20], or equivalently by perform-
ing PBH diffeomorphisms on the metric while keeping
the boundary fixed. In (and only in) two dimensions, these
are equivalent; we will be adopting the latter of the two

descriptions as it can be readily generalized to higher
dimensions.10

From the two-dimensional point of view, one can readily
read off the value of the dilaton and the gauge field at
extremality from either (3.22) or (3.21) to beΦext ¼ r2þ and
Aτ ¼ r

2rþ
. Note that in the case of near horizon geometries

of extremal black holes the dilaton is always independent of
the near horizon radial direction as it is a constant
signifying the Sd−2 sphere volume. Since (2.1) depends
only on radial direction in its components, on-shell JT
configurations correspond to on-shell configurations with
respect to the three-dimensional action too, as this is a
consistent truncation.
The e.o.m. for ψ in (3.11) allows the two-dimensional

metric to be locally AdS2 with Λ̄ being determined by the
three-dimensional cosmological constant and Λ and rþ as
given in (3.8). The two-dimensional metric in box brackets
(3.22) therefore can be promoted to a family of solutions
parametrized by conformal transformations of the coordi-
nate τ → fðτÞ at the throat boundary,

ds2ð2Þ ≡
dr2

r2
− r2dτ2 þ ff; τg

2
dτ2 −

ff; τg2
16r2

dτ2: ð3:23Þ

These solutions are obtained by knowing the finite diffeo-
morphisms (see the Appendix) that correspond to τ → fðτÞ
at the conformal boundary. The on-shell action (3.11) then
evaluates the Schwarzian of the conformal transformation

ff; tg ¼ −2Sch½fðtÞ; t� ¼ 3f002 − 2f0f000

f02
ð3:24Þ

at the boundary of near horizon throat region. If one then
uses this action to compute the corrections to the scalar
primary four-point functions (dual to two bulk scalars
minimally coupled to gravity), then one would find λL ¼ 0,
as one should expect for a black hole at extremality.
In order to get an answer for small temperatures, the

coordinate τ is made periodic in Euclidean time with
period β ¼ T−1

H . In terms of the PBH diffeomorphisms,
this amounts to

�
dr2

r2
− r2dτ2

�
→

�
dr2

r2
− r2dτ2 þ ð2πTHÞ2

2
dτ2

−
ð2πTHÞ4
16r2

dτ2
�

¼ ½dρ2 − sinh2ρð2πTHÞ2dτ2�: ð3:25Þ

10In AdS3, these are indeed the diffeomorphisms discussed in
Sec. II, where in higher than three-dimensional PBH diffeos
would correspond to the finite dimensional conformal algebra of
the boundary.
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The similar family of AdS2 metric parametrized fðτÞ now
looks like

ds2ð2Þ ≡
dr2

r2
− r2dτ2 þ ff; τg þ ð2πTHÞ2f02

2
dτ2

−
ðff; τg þ ð2πTHÞ2f02Þ2

16r2
dτ2; ð3:26Þ

thus yielding λL ¼ 2πTH as shown in [20]. Although the
value of the dilaton ψ is unimportant for computing the
effective action, it is important to know that it is constrained
by the metric e.o.m. arising from SJT,

∇a∇bψ þ ga;bð1 −∇2Þψ ¼ 0 ⇒ ψ ¼ rα ð3:27Þ

for time-independent configurations of the dilaton. It is this
divergent value of the linear fluctuation of the dilaton at
the throat boundary that signals the departure from the
extremal configuration. An important point to note is that
the above equation does not allow for ψ ¼ const: ≠ 0 as a
solution.
The fact that this description is thermodynamically

consistent for describing near extremal black holes can
be seen by computing SJT in (3.11) and Sð3Þ in (3.1) where
for the JT action we use the two-dimensional geometry
(3.25) at small but finite temperature along with (3.27)
with α ¼ 1=4.
We would like to understand better the effect of the

diffeomorphism (3.25) in terms of the three-dimensional
throat geometry. We note that the metric (3.22) simply
written as

ds2 ¼ dr2

4r2
þ rrþdτdϕþ r2þdϕ2 ð3:28Þ

can be brought to the form

ds2 ¼ dr2

r2
þ r2dτdϕþ r2þdϕ2 þ ð2πTHÞ2

4
dτ2

þ ð2πTHÞ2r2þ
4r2

dτdϕ ð3:29Þ

via a finite PBH diffeomorphism. This very same diffeo-
morphism when restricted to the AdS2 part in the box
brackets in (3.22) implies (3.25).11,12 The above metric is
exactly similar to the BTZ metric in the previous section in
light-cone coordinates fr; xþ; x−g. Note also that both the
nonradial coordinates in the above metric are lightlike at
the throat boundary. Therefore, the three-dimensional

metric (3.29) in the throat region is the equivalent starting
point for describing the throat dynamics [like (3.22)].
Next, we would like to see the effect of on-shell solutions

to SJT on this geometry. The effect of SJT − Sð0Þ in (3.11) is
to describe linearized deformations away from the extrem-
ality. Thus, implying Φ ¼ rþ þ ψ , with ψ satisfying (3.27)
for time-independent configurations. As ψ ¼ αr solves the
e.o.m., we see that in order to describe deviations from
extremality, (3.29) becomes

ds2 ¼ dr2

r2
þ r2dτdϕþ ðr2þ þ 2ψÞdϕ2 þ ð2πTHÞ2

4
dτ2

þ ð2πTHÞ2ðr2þ þ 2ψÞ
4r2

dτdϕþOðψ2Þ: ð3:30Þ

This must correspond to a diffeomorphism of (3.29) as
all solutions to the three-dimensional gravity system are
diffeomorphic to each other. We note that this particular
diffeomorphism is not one of the PBH types as the on-shell
value of ψ in the SJT theory diverges toward the boundary.
This is precisely the regime where the JT formulation is
useful.
Next, we turn our attention to the family of solutions

(3.26) which give rise to the chaotic behavior with
λL ¼ 2π=β. It can be easily seen that these can be generated
by the PBH diffeomorphisms of (3.29) in the three-
dimensional throat region giving rise to

ds2 ≡ dr2

r2
þ r2dτdϕþ r2þdϕ2 þ ff; τg þ ð2πTHÞ2f02

4
dτ2

þ ðff; τg þ ð2πTHÞ2f02Þr2þ
4r2

dτdϕ; ð3:31Þ

where linear deformations away from extremality of the
form of (3.30) have not been captured as the above metric
solves the AdS3 e.o.m. exactly to all orders. However, one
has a very precise description of these modes at least where
such corrections are not present, i.e., at extremality, the
metric in the throat region is exactly

ds2¼dr2

r2
þr2dτdϕþr2þdϕ2þff;τg

4
dτ2þff;τgr2þ

4r2
dτdϕ:

ð3:32Þ

We would call these modes thermal as they seem to
contribute to chaos only at finite temperatures. Note these
modes in some sense capture average of the contribution
coming from the modes discussed in the previous section,
each of which contributes λþL and λ−L as seen from the
boundary of BTZ.

IV. EXTREMAL THROAT DESCRIPTION

We next turn our attention to the extremal throat region
which has (3.22) as the metric. As we are now in an exactly

11This is done by keeping all ϕ dependencies, the final answer
has no terms proportional to dϕ.

12Also note that applying the AdS2 diffeos resulting in (3.26)
to (3.22) would not yield a three-dimensional metric with
Dirichlet boundary conditions.
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extremal setting, the throat describes an AlAdS3. As seen in
Sec. II, the modes that contributed to chaos at extremality
are modes that allowed one to transform from one extremal
BTZ solution to another. Thus, to describe these modes in
the throat region, we only need look for those modes which
change the value of the extremal horizon appropriately.
These modes must also result in λL ¼ 2rþ, i.e., must have a
temperature 2πTL ¼ 2rþ as this is what the higher for the
Lyapunov exponents would be at extremality. These modes
are obtained after first rescaling r → r2=rþ in (3.22),
yielding

ds2 ¼ dr2

r2
þ r2dτdϕþ r2þdϕ2 ð4:1Þ

and then applying the finite form of the PBH transformations
corresponding to conformal transformations of ϕ → gðϕÞ,

ds2 ¼ dr2

r2
þ r2dτdϕþ 1

4
ðfg;ϕg þ 4r2þg02Þdϕ2: ð4:2Þ

Note the shift in the Schwarzian is precisely of the form that
we expected from the analysis of the full BTZ geometry
[24]. We label these modes as the extremal modes.
As the extremal throat is perfectly captured by (4.1), we

can indeed analyze the effective gravity action at the throat
boundary with Dirichlet boundary condition. This would
imply allowing for conformal transformations of the form
τ → fðτÞ too, which gives rise to the thermal modes in the
JT analysis of the previous section,

ds2 ¼ dr2

r2
þ r2dτdϕþ 1

4
ðfg;ϕg þ 4r2þg02Þdϕ2

þ ff; τg
4

dτ2 þ ff; τgðfg;ϕg þ 4r2þg02Þ
16r2

dτdϕ:

ð4:3Þ

The horizon in the above geometry can be calculated by
finding the location at which the area of constant r hyper-
surface vanishes, yielding r4h¼ff;τgðfg;ϕgþ4r2þg02Þ. The
on-shell action (3.1) which only gets contribution from the
horizon yields

S3 ≡ l
32πGN

Z
dτdϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ff; τgðfg;ϕg þ 4r2þg02Þ

q
; ð4:4Þ

with fτ;ϕg being the null coordinates on the throat
boundary. Note that without incorporating the thermal
modes the above action would be zero, i.e., for fðτÞ ¼ τ.
This is because without the thermal modes the horizon exists
at r ¼ 0 as can be seen from (4.2). Evaluating propagators
for the infinitesimal fluctuations of the fields f and g above
are difficult. However, one can choose to make the τ
coordinate transformation in the action by replacing

fðτÞ → eαfðτÞ, thus implying ff; τg → ff; τg þ α2f02.
The action now becomes

S3α≡ l
32πGN

Z
dτdϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðff;τgþα2f02Þðfg;ϕgþ4r2þg02Þ

q
;

ð4:5Þ

which is similar to the one obtained in [24] at the conformal
boundary of BTZ. One can then proceed to compute the
propagators for infinitesimal fluctuations of f and g.
The four-point scalar OTOC can then be computed using
the contributions from these α-deformed propagators and
then taking the limit α → 0. This analysis is similar to that in
[24] done at the conformal boundary of BTZ with xþ → τ
and x− → −ϕ but at extremality. Therefore, a similar
analysis in the throat region would result in λ−L ¼ 2rþ

and λþL ¼ 0 ¼ λL which match the extremal limit of the
Lyapunov indices obtained in [24]. It may be noted that
although turning on the parameter α is like turning on a
temperature β−1 ¼ α, the action (4.12) is not valid for finite
temperatures as the family of extremal modes at finite
temperatures is not known in this region.13 Also note that
as mentioned before fτ;ϕg are null coordinates at the throat
boundary. The comoving time and space coordinates would
be given by τ ¼ τ̄ þ ϕ̄ and ϕ ¼ τ̄ − ϕ̄.
In order to show that the chaos measured by a CFT2

computation done holographically at the boundary of the
throat region, we would have to relate the boundary
coordinates of the extremal throat fτ;ϕg to the coordinates
at the conformal boundary of BTZ, i.e., fxþ; x−g in (2.2).
Note that in taking the near horizon limit in (3.21) or (3.22)
we simultaneously go close to the (boundary of the)
horizon throat and to a comoving coordinate. Therefore,
these must be related by a diffeomorphism for finite values
of ϵ. Further as diffeomorphisms in AdS3 can take one
solution to the Einstein’s equation to another, these must be
“small” diffemorphisms.

A. Relating boundary and near horizon coordinates

The extremal throat metric (3.22) is

ds2

l2
¼ 1

4

�
dr2

r2
− r2dτ2

�
þ r2þ

�
dϕþ r

2rþ
dτ

�
2

: ð4:6Þ

Let us rederive the throat metric and the action (4.4) for
extremal BTZ in terms of light-cone coordinates fxþ; x−g
at the conformal boundary of BTZ. Extremal BTZ (2.1) in
these coordinates is simply

13We use this deformation for the ease of doing the compu-
tation with (4.12) and justify it by obtaining the right answer at
extremality as seen by taking the extremal limit of the Lyapunov
indices at the conformal boundary.
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ds2

l2
¼ ρ2dρ2

ðρ2 − r2þÞ2
− ðρ2 − r2þÞdxþdx− þ r2þdx−2: ð4:7Þ

The near horizon limits taken in (3.22) in light-cone
coordinates read

ρ ¼ rþ þ ϵr; xþ ¼ τ

2ϵ
− x−; ð4:8Þ

which yield (3.22) as ϵ → 0. However, since we want
to associate the near horizon coordinates to the
boundary coordinates, we perform the following small
diffeomorphism14:

ρ ¼ rþ þ ϵr; x− → x−;

xþ → xþ −
�
xþ
�
1 −

1

2ϵ

�
þ x−

��
rþð1þ ϵÞ

r

�
n
;

where n ∈ Z>0 ð4:9Þ
on the metric (4.7). Taking the ϵ → 0 limit further yields

ds2

l2
¼ dr2

r2
− r2dxþdx− þ r2þdx−2; ð4:10Þ

which is the near horizon metric (4.1) with τ → xþ and
ϕ → −x−. Therefore, the near horizon effective action reads

Sð3Þ ¼ −
1

2κ

Z
dxþdx−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ff; xþgðfg; x−g þ 4r2þg02Þ

q
;

ð4:11Þ

with f ≡ fðxþÞ and g≡ gðx−Þ. It is easily seen that as
r → ∞ the transformation (4.9) takes xþ → xþ þOðr−nÞ,
thus qualifying as a small diffeomorphism. Note that here it
was necessary that we could do a small diffeomorphism (4.9)
which essentially allowed us to go to the comoving coor-
dinates on the horizon. Now, the late time physics (for t ≫ β)
of the CFT2 at the boundary of BTZ is governed by the near
horizon region. Therefore, the late time dynamics is dictated
by the extremal throat AdS3=CFT2. Hence, the behavior of
correlators defined on the conformal boundary of the throat
region is a good approximation for the behavior of corre-
sponding correlators on the conformal boundary of BTZ
for t ≫ β.
In order to use this action to compute its contribution to

scalar four-point OTOC along [24], it is useful to map
fðτÞ → eαfðτÞ yielding

Sð3Þα≡ l
32πGN

Z
dτdϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðff;τgþα2f02Þðfg;ϕgþ4r2þg02Þ

q
:

ð4:12Þ

Computing the Lyapunov indices by minimally coupling to
scalars and then taking the α → 0 yields λþ ¼ 2rþ;
λ− ¼ 0.15

Note that for small temperatures the thermal modes
described in the previous section capture the average of the
two temperature inverses as it should λL¼2λþλ−=ðλþþλ−Þ.
The modes characterized by λþ in boundary analysis of
rotating BTZ are not readily seen in the near horizon region.
This is simply the artifact of coordinate transformations the
boundary coordinates undergo in order to describe the near
horizon geometry as we explain below.
The fact that modes outside the horizon see a different

temperature at extremality can also be discerned by
computing what is known as the Frolov-Thorne temper-
ature for modes in the throat region. For a generic BTZ
metric, we can expand quantum fields using boundary
coordinates ft; yg in terms of asymptotic eigenstates with
eigenvalues of energy ω and angular momentum m. This
would be a series using basis e−iωtþimy, or along light-cone
coordinates using e−inþx

þ−in−x− . Knowing the coordinate
transformation that describes the extremal throat region in
comoving coordinates fτ;ϕg, we can write

e−iωtþimy ¼ e−inþx
þ−in−x− ¼ e−inRτþinLϕ;

where t ¼ τ

4ϵ
; y ¼ ϕþ τ

4ϵ
;

x− ¼ −ϕ; xþ ¼ τ

2ϵ
þ ϕ

⇒ ω ¼ 4ϵnR þ nL; m ¼ nL;

nþ ¼ 2ϵnR; n− ¼ nL þ 2ϵnR; ð4:13Þ

where ϵ is the parameter in the coordinate transformation
(3.22). We then define the left and right temperatures with
respect to TH of the black hole as

e−ðω−mμÞ=TH ¼ e−nþ=Tþ−n−=T− ¼ e−nR=TR−nL=TL ;

thus ⇒ TL ¼ T− ¼ TH

1 − μ
;

TR ¼ 1

2ϵ

�
TþT−

Tþ þ T−

�
¼ TH

4ϵ
; ð4:14Þ

where 2πTH ¼ r2þ−r
2
−

rþ
¼ 2ð TþT−

TþþT−
Þ and μ ¼ r−

rþ
. Upon taking

the extremal limit, we get

2πTL ¼ 2rþ; 2πTR ¼ 0: ð4:15Þ

This is consistent with the microscopic entropy one obtains
from the Cardy formula for a unitary CFT with central

14These are small as xþ → xþ at the conformal boundary of
BTZ.

15Equation (4.12) is not the action at temp. β−1 ¼ α as
the extremal modes are not known in this region at finite
temperatures.
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charge cL ¼ 3l=2G. This central charge can also be
independently obtained from the throat region from an
analysis identical to the one done for the full BTZ as the
metric (6.26) in the extremal throat region is identical to the
extreme BTZ.
It is also interesting to note that the above action is not

modular invariant. In our case given an action on the torus
modular invariance implies S½βτ; f; g� ¼ S½β aτþb

cτþd ; f; g�
where ab − cd ¼ 1, fa…dg ∈ Z, β is the inverse temper-
ature and f, g are functions on the Euclidean torus. Here τ
is the given in terms of the parameters of the black hole,
i.e., βτ ¼ βð1þ iμÞ where μ ¼ r−=rþ. The actions in
(4.11) and (4.12) can be therefore seen not to be modular
invariant. The issue of modular invariance is probed in
great detail in a work of Cotler and Jensen [146], who
derive a similar effective action using the Chern-Simons
formulation of gravity in AdS3. They comment that in the
large central charge limit the action is not modular
invariant. There the effective action takes the form of
sum of left- and right-moving Schwarzians and not the
square root product. This is simply an artifact of working
in the first order formalism as was shown in [25] where the
action of [24] was worked out in the first order formalism.
It is also interesting to note that although modular
invariance is not explicitly obeyed one could not have
obtained the action for the rotating case from knowing the
action for the Schwarzchild case. The Schwarzchild case
corresponds to τ ¼ 1 and μ ¼ 0. The modular trans-
formation parameters simply cannot give rise to μ ≠ 0
as fa…dg ∈ Z.
We end this section by noting that the extremal modes

contribute to chaos only when the thermal modes are also
considered. The above action captures their contribution at
extremality, it would be interesting to have a prescription to
capture their contribution away from extremality for small
temperatures as was the case for the thermal modes being
described by the JT action.

V. PROBES IN BTZ

In this section, we will take a different approach. To
understand dynamical features of the bulk geometry, we
will consider the dynamics of a probe field propagating in
this geometry. Toward that, specially in the context of
capturing the growth behavior of OTOCs, a probe string
plays a rather crucial role [7]. Not only the probe sector
captures salient features of the background geometry, it
offers a richer physics; see, e.g., [147–149]. Motivated
by this, we will explore the world sheet temperature of a
string probe, assuming implicitly that the corresponding
Lyapunov exponent is maximal with the world sheet
temperature. We emphasize that this assumption is fairly
mild and should hold on kinematic grounds.
Let us recall the rotating BTZ geometry, with the

curvature scale set to unity,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dϕ −

rþr−
r2

dt

�
2

; ð5:1Þ

fðrÞ ¼ ðr2 − r2þÞðr2 − r2−Þ
r2

; ð5:2Þ

where rþ and r− are the two black hole radii. The mass and
the angular momentum of the geometry are given by

M ¼ r2þ þ r2−; J ¼ 2rþr−; ð5:3Þ

with the corresponding Hawking temperature and
Bekenstein-Hawking entropy,

TH ¼ r2þ − r2−
2πrþ

; Ω ¼ r−
rþ

; ð5:4Þ

SBH ¼ 2πrþ
4GN

¼ 2π

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8GN
ðM þ JÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8GN
ðM − JÞ

s !
:

ð5:5Þ

Here GN is the Newton’s constant and Ω is the angular
velocity at the event horizon. The Hawking temperature can
be read off from the standard Euclideanization and sub-
sequently demanding regularity of the Euclidean section.
Note that, in the coordinate patch (5.1), the conformal
boundary is represented by an inertial frame, i.e., there are
no off-diagonal terms in the conformal boundary metric.16

Now, we wish to study the dynamics of a probe
fundamental string in the background (5.1) and (5.2).
Our goal is to capture the dynamics of a probe degree
of freedom in the dual CFT, described by a trajectory
ϕbdryðtÞ. In static gauge, we choose the following configu-
ration to describe the classical embedding of the string:

τ ¼ t; σ ¼ r; ϕðt; rÞ ¼ ϕbdryðtÞ þ ϕðrÞ;
ϕbdryðtÞ ¼ ωt; ð5:7Þ

where ω is the angular velocity of the probe particle at
the boundary. Clearly, causality constrains jωj ≤ 1.17 The
dynamics of the string is described by the Nambu-Goto
action,

SNG ¼ −
1

2πα0

Z
dτdσ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γ

p
; ð5:8Þ

16Explicitly, this takes the form

ds2bdry ¼ r2ð−dt2 þ dϕ2Þ: ð5:6Þ
17This is certainly true in the inertial frame; however, not in a

noninertial, e.g., rotating frame. We will explicitly consider this
momentarily.
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γ ¼ φ�½G�; ð5:9Þ

where α0 sets the inverse string tension, γ denotes the
induced world sheet metric, G is the background metric,
and φ� is the pull-back map.
The Lagrangian is independent of ϕðrÞ, which readily

provides an integral of motion ð∂LÞ=ð∂ϕ0ðrÞÞ ¼ C, where
C is a constant. The embedding profile ϕ0ðrÞ has an
algebraic solution which can be written as follows:

ϕ0ðrÞ ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðrÞ

HðrÞðHðrÞ − C2Þ

s
; ð5:10Þ

GðrÞ ¼ −
r2ðr2ðω2 − 1Þ þ r2− − 2r−rþωþ r2þÞ

ðr2 − r2−Þðr2 − r2þÞ
; ð5:11Þ

HðrÞ ¼ ðr − r−Þðrþ r−Þðr − rþÞðrþ rþÞ: ð5:12Þ

It is clear from the solution above that the point where
GðrÞ ¼ 0 needs special care. Let us denote this location
by rws. For example, at the bulk event horizon, this can
happen without any issue. For any other point, rws > rþ,
this possesses an issue: the string cannot end at an ordinary
location like rws in the bulk; this would cause a violation of
the charge conservation carried by the end point of the
string. However, when rws ¼ rþ, this end point lies inside
the black hole and conceptually we are fine, since,
classically, it belongs to a causally inaccessible region.
Now, we obtain

GðrÞ ¼ 0 ⇒ rws ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2− − 2rþr−ω

1 − ω2

s
> rþ: ð5:13Þ

Thus, we need to extend the string beyond rws up to rþ.
This can be implemented by imposing

C ¼ HðrwsÞ ¼
1

1 − ω2
ðrþ − r−ωÞðr− − rþωÞ: ð5:14Þ

Taking these into account, the solution for ϕ can be
given by18

ϕ0ðrÞ ¼ � Cr
ðr2 − r2−Þðr2 − r2þÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2− − 2rþr−ω − r2ð1 − ω2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − ðr2 − r2−Þðr2 − r2þÞ

p : ð5:15Þ

The � sign contains ambiguity of whether the energy flux
is ingoing or outgoing at the event horizon. With these, one

can easily write down the induced world sheet metric,
which takes the following schematic form:

ds2 ¼ γttdt2 þ γrrdr2 þ 2γtrdtdr; ð5:16Þ

which is no longer a diagonal metric. The two-dimensional
metric can be easily diagonalized by defining

dt ¼ dt0 þ h0ðrÞdr; with h0ðrÞ ¼ −
γtr
γtt

; ð5:17Þ

that yields

ds2 ¼ γttdt02 þ
�
γrr −

γ2tr
γtt

�
dr2: ð5:18Þ

The world sheet event horizon, which is found by looking
at the zeroes of the inverse of the coefficient of dr2; let us
denote this by r�ws. Note that there is no a priori reason that
r�ws ¼ rws, where rws is defined in Eq. (5.13).
Let us find the roots explicitly. The algebraic solution is

given by

�
γrr −

γ2tr
γtt

�−1����
r�ws

¼ 0; ð5:19Þ

⇒ r�ws ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2− − 2rþr−ω

1 − ω2

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð2r−rþ − ωðr2− þ r2þÞÞ

1 − ω2

s
; ð5:20Þ

while the solution to

γtt ¼ 0 ⇒ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ r2− − 2rþr−ω

1 − ω2

s
¼ rws: ð5:21Þ

Now, it is easy to check that r� < rws, as well as
maxðr�wsÞ ¼ rws.
Let us look at the world sheet geometry near r ¼ rws.

The Lorentzian metric in (5.18) can now be expanded near
the world sheet event horizon. This yields

ds2 ≈ −2r2wsð1 − ω2Þx2dt02 þ 2r2ws
r2ws − r20

dx2;

r ¼ rwsð1þ x2Þ; ð5:22Þ

where r0 is a constant determined in terms of ω, and r�
which we do not explicitly write down. Now, the
Euclideanization of the near horizon metric becomes
straightforward, by sending t0 → −iτ. Subsequently impos-
ing the periodicity condition, the corresponding temper-
ature is given by

18Note that this method is rather generic in probe calculations;
see, e.g., [150–152] for a similar behavior on probe branes.
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Twsðω; rþ; r−Þ2 ¼
1

2
½T2

Rðωþ 1Þ2 þ T2
Lð1 − ωÞ2�; ð5:23Þ

TR ¼ rþ − r−
2π

; TL ¼ rþ þ r−
2π

: ð5:24Þ

First of all, the above expression is invariant under

Tws
L ↔ Tws

R ; ω ↔ −ω: ð5:25Þ

This is clearly indicative of the equivalence between the
left movers and the right movers. Furthermore, below, we
enlist some interesting cases in which Twsðω; rþ; r−Þ takes
particularly illuminating forms,

Tws ¼
r2þ − r2−
2πrþ

; ω ¼ r−
rþ

; ð5:26Þ

Tws ¼
rþ − r−ffiffiffi

2
p

π
¼

ffiffiffi
2

p
TR ¼ Tws

R ; ω ¼ 1; ð5:27Þ

Tws ¼
rþ þ r−ffiffiffi

2
p

π
¼

ffiffiffi
2

p
TL ¼ Tws

L ; ω ¼ −1: ð5:28Þ

Clearly, left movers and right movers observe the Frolov-
Thorne temperatures, up to an overall numerical constant.
Meanwhile, a particular linear combination of the left
movers and right movers observe the Hawking temperature
of the background spacetime. This combination knows
precisely the angular velocity of the event horizon. Any
other observer would detect a TwsðωÞ for a given value
of ω.
Note further that, in the extremal geometry when we set

rþ ¼ r−, the right-moving temperature TR ¼ 0, as well as
TH ¼ 0. In this case, the world sheet temperature is
observed to be

T ¼ 1ffiffiffi
2

p TLð1 − ωÞ: ð5:29Þ

Thus, for an arbitrary probe degree of freedom, as long as
jωj < 1, the world sheet fluctuations will couple naturally
with TL, where the proportionality constant depends on the
angular velocity of the rotating particle. At precisely ω ¼ 1,
the world sheet temperature also vanishes since the cou-
pling between the Frolov-Thorne temperature and the
world sheet modes disappear.
Thus, the generic features can be summarized as follows:

the world sheet geometry comes equipped with two
independent temperatures, TL and TR, and the additional
parameter of angular velocity at the end point of the string.
On a generic point in the parameter space, the world sheet
temperature is a function of all three parameters, as shown
in Eq. (5.23). At special points, e.g., at extremality rþ ¼ r−,
the world sheet modes couple to only one nonvanishing
temperature, where the coupling depends on the angular

velocity. Correspondingly, the four-point OTOC, following
similar calculation as in [7], will yield a Lyapunov
exponent; specifically, even at exact extremality, there
are modes on the world sheet which show a nontrivial
exponential growth in their OTOC, determined by the left-
moving temperature. Finally, note that the left-moving and
the right-moving temperatures that we have defined in
Eq. (5.24) are exactly the left-moving and right-moving
temperature of the CFT dual to the gravitational back-
ground, up to a factor of

ffiffiffi
2

p
.

Before leaving this section, let us offer a few comments
on the effective low energy description of the Lyapunov-
growth at extremality. It can be checked that the world sheet
is not an AdS2 at a generic point in the parameter space
frþ; r−;ωg. In fact, generically, the world sheet is nowhere
AdS2; thus, an effective Schwarzian description cannot
arise simply, as described in [22,23]; however, an effective
Schwarzian description arises from the AdS3 perspective,
as demonstrated in the previous section. Another way of
stating the same fact is to declare that the Schwarzian
effective action may not capture the chaotic growing modes
at extremality.

VI. EXTREMAL KERR-AdS4

In this section, we analyze how the near horizon region
of extremal Kerr-AdS4 sees the thermal modes in the JT
model [32] and compare it similarly to the modes that may
contribute to extremal chaos.
The gravity action in AdS4 is

Sð4Þ ¼ −
1

16πG

Z
dx4

ffiffiffiffiffiffi
−g

p ðR − 2λÞ

−
1

πG

Z
∂
dx2

ffiffiffiffiffiffi
−γ

p �
K −

2

l
−
l
2
R∂
�
; ð6:1Þ

where the boundary terms (R∂ being the boundary intrinsic
curvature) included above make the on-shell action finite
[153,154]. This has a rotating black hole solution given in
Boyer-Lindquist coordinates by the metric

ds2 ¼ ρ2
�
dr̂2

Δ
þ dθ2

Δθ

�
þ Δθ sin2θ

ρ2

�
adt̂ −

r̂2 þ a2

Ξ
dϕ̂

�
2

−
Δ
ρ2

�
dt̂ −

asin2θ
Ξ

dϕ̂

�
2

;

ρ2 ¼ r̂2 þ a2cos2θ; Δ ¼ ðr̂2 þ a2Þ
�
1þ r̂2

l2

�
− 2mr̂;

Δθ ¼ 1 −
a2

l2
cos2θ; Ξ ¼ 1 −

a2

l2
; ð6:2Þ

with Rμν ¼ −ð3=l2Þgμν. The above metric has two real
horizons r� which are roots of Δ ¼ 0. It is algebraically
convenient to express thermodynamic quantities mass M
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and angular momentum Jϕ in terms of m, a which are
constant parameters in the above metric rather than r�,

2πTH ¼ r2þ−a2þ r2þl−2ð3r2þ þa2Þ
2rþðr2þ þa2Þ ; SBH ¼ πðr2þ þa2Þ

Ξ

M¼ m
Ξ2

; Jϕ ¼
ma
Ξ2

; Ωϕ ¼
aΞ

r2þ þa2
; ð6:3Þ

where SBH is the black hole entropy and Ωϕ its horizon’s
angular velocity as measured at the boundary. Also note
that the metric (6.2) asymptotes to an AdS4 in rotating
boundary coordinates. In order to obtain the thermody-
namically consistent description of its mass and angular
momentum, one should compute quantities with boundary
coordinates being nonrotating [154]. The Kerr solution
is completely described by specifying the outer horizon
radius rþ and the parameter a, all other quantities can be
expressed in terms of rþ and a.
The extremal limit corresponds to the having coincident

roots r� ¼ r0 to the equation Δ ¼ 0, thus implying
∂ r̂Δ ¼ 0. It is easier to solve for the extremal value of
parameters m and a in terms of r0 rather than vice versa,

m ¼ r0ð1þ r20l
−2Þ2

1 − r20l
−2 ; a2 ¼ r20ð1þ 3r20l

−2Þ
1 − r20l

−2 : ð6:4Þ

We first expand Δ about extremal root r0 as

Δ ¼ ðr̂ − r0Þ2V þOððr̂ − r0Þ3Þ;

where V ¼ 1þ 6r20l
−2 − 3r40l

−4

1 − r20l
−2 : ð6:5Þ

Like in the BTZ case we would have to go to a comoving
frame in order to describe the extremal throat region in (6.2)
by defining a scaling parameter ϵ as

r̂ ¼ r0ð1þ ϵrÞ; t̂ ¼ r20 þ a2

ϵr0V
t; ϕ̂ ¼ ϕþ aΞ

r20 þ a2
t̂:

ð6:6Þ

The extremal throat metric is then obtained by taking the
limit ϵ → 0, yielding [122,155]

ds2 ¼ ρ20
V

�
dr2

r2
− r2dt2 þ V

Δθ
dθ2
�

þ 4a2r20Δθ sin2 θ
V2ρ20

�
rdtþ Vðr20 þ a2Þ

4a2r20Ξ
dϕ

�
2

;

ρ20 ¼ r20 þ a2 cos2 θ; ð6:7Þ

with a given in (6.4). The above metric has a constant
negative curvature at any fixed value of θ. As expected, the

throat metric (6.7) exhibits an AdS2 as seen in the
coordinates fr; tg.
For a specific value of θ ¼ θ0 given by

ρ40 ¼
4a2r20Δθ sin2 θ

V
; ð6:8Þ

the geometry is exactly the AdS3 and of the form of (3.22)

ds2

4k
¼ 1

4

�
dr2

r2
− r2dt2

�
þ R2

0

�
dϕþ r

2R0

dt

�
2

;

with k ¼ ρ20
V

����
θ¼θ0

; R0 ¼
Vðr20 þ a2Þ
4a2r20Ξ

: ð6:9Þ

The metric (6.7) possesses an SLð2;RÞ × Uð1Þ symmetry
with the U(1) coming from the relabeling of the azimuthal
coordinate ϕ [122]. The metric (6.7) is therefore a warped
AdS3 at fixed θ with a θ-dependent warping factor.

A. Thermal modes and near extremal chaos

As seen in the BTZ case, here too the contribution
coming from the thermal modes is captured nicely by the
JT model for black holes with a small temperature turned
on close to extremality. These have been studied and
verified in the four-dimensional RN-Kerr and five-
dimensional RN-Kerr cases to great detail by Moitra et al.
[32].19 We briefly review the mechanism here for Kerr-
AdS4 without going into the computational details.
The near horizon metric (6.7) for the extremal Kerr-AdS4

can be also written as

ds2 ¼ ρ20
V

�
dr2

r2
− r2dt2 þ V

Δθ
dθ2
�

þ Δθðr20 þ a2Þ sin2 θ
Ξρ20

Φ2
ext

�
dϕþ 2r0aΞ

Vðr20 þ a2Þ rdt
�

2

;

ð6:10Þ

where Φ2
ext ¼ r2

0
þa2

Ξ2 . Note that the dilaton Φext is being
identified as volume of the S2 spanned by fθ;ϕg coor-
dinates VS2 ¼ 4πΦ2

ext. The above metric is then rewritten
for generic values of dilaton Φ as

ds2 ¼ ρ20
V

�
Φext

Φ
ds2ð2Þðr; tÞ þ

VΦ2

ΔθΦ2
ext

dθ2
�

þ Δθðr20 þ a2Þ sin2 θ
Ξρ20

Φ2ðdϕþ Atðr; tÞdtÞ2; ð6:11Þ

19Although [32] covers the case of charged rotating black hole
in AdS4, the details for the rotating case can be obtained by taking
the electric charge to zero.
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which is motivated by the fact that upon dimensional
reduction on to two-dimensional the dilaton Φðr; tÞ does
not have a kinetic term. The two-dimensional action result-
ing from the dimensional reduction of (6.1) over the above
metric is quite complicated [32] apart from having the Φ2R̄
part in its Lagrangian. Here R̄ is the two-dimensional Ricci
scalar for the resulting geometry spanned by the remaining
fr; tg coordinates. Also note that the field strength Frt for
gauge field At resulting from dimensional reduction can be
solved in terms ofΦ [32]. We have demonstrated this for the
case of BTZ in (3.5) in Sec. III A.
Upon dimensionally reducing the action (6.1) along

(6.11) and solving gauge field e.o.m., one obtains an action
for the two-dimensional metric ds2ð2Þ ¼ ḡabdxadxb and Φ.

Expanding this action for linear fluctuations of the dilaton
as before Φ ¼ Φext þ ψ , one arrives at the JT action (3.11).
The JT action therefore captures the contribution coming
from the different AdS2 geometries given by the metric ḡab
above. As we have turned on a fluctuation ψ over the
extremal value of the dilaton, the AdS2 geometry must have
a temperature β−1. Thus, the JT action captures the AdS2
fluctuations about a thermal AdS2 given by

ḡabdxadxb ¼
�
dr2

r2
− r2dτ2 þ ð2πTHÞ2

2
dτ2 −

ð2πTHÞ4
16r2

dτ2
�

¼ ½dρ2 − sinh2ρð2πTHÞ2dτ2�: ð6:12Þ
The extremal parameters are described by Φ2

ext ¼
ðr20 þ a2Þ=Ξ, which basically is a function of extremal
horizon r0. Different values of horizon radius therefore
specify different extremal solutions.
Note that ψ satisfies an on-shell equation (3.27)

∇a∇bψ þ ḡa;bð1 −∇2Þψ ¼ 0; ð6:13Þ
which does not allow a ψ ¼ const: ≠ 0 as a solution.
Therefore, although the full nonlinear e.o.m. constraining
ψ must allow for constant shifts in the value of the dilaton,
linearization about a constant value Φext given above does
not. It is this space of extremal solutions which would be
important for studying extremal chaos.

B. Extremal chaos

In order to study extremal modes that contribute to chaos
similar to those in BTZ, we look for those three-dimen-
sional diffeomorphisms which take the metric (6.7) from
extremal configuration to another. As these are exactly
known in the case of BTZ geometry and therefore for
metric (6.9), we can simply apply them to the throat metric
(6.7). However, we can only do this in its infinitesimal
form.20 Such extremal diffeomorphisms of (6.9) are gen-
erated by vectors of the form

ξμext∂μ ¼ −rf0ðϕÞ∂r þ fðϕÞ∂ϕ þOðr−2Þ; ð6:14Þ

which are precisely the Brown-Henneaux vector fields in
the three-dimensional space corresponding to infinitesimal
conformal transformations of coordinate ϕ → ϕþ fðϕÞ.
These are exactly the vector fields studied in the context of
Kerr/CFT and Kerr-AdS=CFT correspondence [122–124,
130]. The throat metric (6.7) is allowed to fluctuate to
precisely those orders in r in its components as is allowed
by the Lie derivative of metric (6.7) along the vector (6.14)

Lξextgμν ¼ hμν

≈

0
BBB@

Oð1=r3Þ Oð1=r2Þ Oð1=r2Þ Oð1=rÞ
Oðr2Þ Oð1=rÞ Oð1Þ

Oð1=rÞ Oð1=rÞ
Oð1Þ

1
CCCA

ð6:15Þ

in fr; t; θ;ϕg coordinates; here gμν is (6.7).
Like in the BTZ case, above given falloff conditions

would then allow a set of consistent large diffeomorphisms.
Note these are not of the Dirichlet type. It turns out that one
may define another set of diffeomorphisms infinitesimally
generated by

ξμt ∂μ ¼ gðtÞ∂t þOðr−1Þ ð6:16Þ

along which the Lie derivative of (6.7) obeys the above
falloff (6.15). It is not hard to see that these take the metric
away from extremality as relabeling of t → tþ gðtÞ allows
for a Euclidean conical defect to be generated in the fr; tg
part of the metric similar to the BTZ case. These are
precisely the infinitesimal versions of the diffeomorphisms
which are used to generate the thermal AdS2 (6.12) while
studying the thermal modes close to extremality.21

Therefore, in order to stay extremal, only constant shifts
in t are allowed.
The space of fluctuations is thus generated infinitesi-

mally by the vector fields

ξμext∂μ ¼ −rf0ðϕÞ∂r þ fðϕÞ∂ϕ þOðr−2Þ;
ξμt ∂μ ¼ ∂t þOðr−1Þ: ð6:17Þ

These have been studied to a great extent in the context
of Kerr/CFT correspondence. These form the asymptotic
symmetry algebra of the near horizon extremal Kerr
(NHEK) family of geometries. Their asymptotic charges
can be defined for the above set of vector fields with

20We return to this point later.

21The thermal AdS2 deformations are infinitesimally generated
by ξμ∂μ ¼ − r

2
g0ðtÞ∂r þ gðtÞ∂t, but the r-component of the vector

field can be ignored as the boundary conditions (6.15) are more
relaxed than Dirichlet boundary conditions.
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regards to the falloff conditions (6.15) on the spatial slice at
the boundary of the throat region,

Qξ ¼
1

8π

Z
∂
�Kξ

Kξ½h; g� ¼
1

2
½ξμ∇μh − ξμ∇αhαν þ ξα∇μhνα þ

1

2
h∇μξν

− hμα∇αξν þ
1

2
hμαð∇νξ

α þ∇αξνÞ�dxν ∧ dxμ;

ð6:18Þ

where � denotes the Hodge dual and Kξ is the two-form
simplectic current defined on the boundary, and g here
denotes the throat metric (6.7).22 These are finite and can
be used to define the Poisson structure for the space of
solutions allowed by the above conditions.
The vectors ξexts form a Witt algebra for the para-

metrization fðϕÞ ¼P ξðnÞeinϕ under the commutator
along their Lie derivatives,

½ξðmÞ
ext ; ξ

ðnÞ
ext �≡ ½L

ξðmÞ
ext
;L

ξðnÞext
� ¼ iðm − nÞL

ξðmþnÞ
ext

; ð6:19Þ

where ξðnÞext is obtained by replacing fðϕÞ ¼ einϕ in ξext.
Demanding that the charges associated with the above
vectors generate required change in the solution space
about the extremal solutions via Lie derivative allows one
to define a Poisson bracket on the phase space of allowed
solutions,

fQ
ξðmÞ
ext
; Q

ξðnÞext
g ¼ Q½ξðmÞ

ext ;ξ
ðnÞ
ext � þ

1

8π

Z
∂
�K

ξðmÞ
ext
½L

ξðnÞext
; g�: ð6:20Þ

This gives rise to the asymptotic structure of the Virasoro
algebra with a central extension given by the last term
in (6.20)

cL ¼ 12
r0a
V

; ð6:21Þ

with a being the extremal value given by (6.4).
Like in the BTZ case one can find a temperature

associated to these extremal fluctuations. If one were to
look at the throat metric at the specific angle θ ¼ θ0 given
by (6.8), the metric (6.9) would be exactly AdS3,

ds2

4k
¼ 1

4

�
dr2

r2
− r2dt2

�
þ R2

0

�
dϕþ r

2R0

dt

�
2

;

with k ¼ ρ20
V

����
θ¼θ0

; R0 ¼
Vðr20 þ a2Þ
4a2r20Ξ

: ð6:22Þ

One might be tempted to conclude that since the same
metric is obtained in the extremal BTZ near horizon region,
a temperature of

2πTL ¼ 2R0 ¼
Vðr20 þ a2Þ
2a2r20Ξ

¼ 1þ 6r20l
−2 − 3r40l

−4

ð1 − 3r20l
−2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 3r20l

−2Þð1 − r20l
−2Þ

p ð6:23Þ

could be expected, with a corresponding TR ¼ 0 as the
geometry is extremal. One can check the above temperature
matches with the Frolov-Throne temperature seen by
modes outside the horizon [155]. The Cardy formula then
gives the right extremal entropy with the central charge
given by (6.18)

Sent ¼
1

3
π3cLTL ¼ 2πr20

1 − 3r20l
−2 : ð6:24Þ

However, in the BTZ case, we knew the full nonlinear
completion of the diffeomorphisms corresponding to the
extremal modes. This allowed us to ascertain the existence
of the Schwarzian function and how it changes if there
were a temperature. The full nonlinear form of these
diffeomorphisms is a privilege to be had only in two
and three dimensions.
If one were to simply apply the full nonlinear trans-

formation which results in (4.2) to the extremal throat
metric (6.7), then it would violate the falloff conditions
(6.15). This should not be surprising as dimensionally
uplifting nonlinear diffeomorphisms naively23 often leads
to a metric which violates the falloff conditions which are
respected by the infinitesimal versions of the same diffeo-
morphisms. This can also be readily seen in the three-
dimensional case where uplifting the nonlinear thermal
PBH diffeomorphisms which results in (3.23), i.e.,

�
dr2

r2
− r2dτ2

�
→

�
dr2

r2
− r2dτ2 þ ff; τg

2
dτ2 −

ff; τg2
16r2

dτ2
�

ð6:25Þ

when applied to (3.22)

ds2

l2
¼ 1

4

�
dr2

r2
− r2dτ2

�
þ r2þ

�
dϕþ r

2rþ
dτ

�
2

ð6:26Þ

without any ϕ dependence yields a metric which violates
the Dirichlet or Brown-Henneaux-type boundary condi-
tions. However, we know the nonlinear diffeomorphisms in
three dimensions which do obey the Dirichlet boundary

22The derivatives in the expression of K are computed with
respect to metric g.

23With no dependence on the extra dimensions, i.e., θ in this
case.
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conditions and have the same effect as (6.25) when
restricted to two dimensions.
This suggests that there should be some nonlinear

completion of diffeomorphisms generated by vectors
(6.17) which also depends on θ such that the resulting
metric obeys the falloffs (6.15). These have not yet been
constructed but would have important consequences as we
will discuss further.
Similar to the BTZ case, one may proceed to find the

effective action in the extremal throat region. Doing so
for the family of solutions generated by the asymptotic
symmetry generators (6.17) would similarly yield an
effective action at the throat boundary. This action could
in principle be used to study the contribution to the OTOC
of boundary operators dual to minimally coupled bulk
scalars. But there are a few technical issues to be
addressed first.
(1) The falloffs (6.15) are not the usual Dirichlet

boundary conditions one usually imposes in
AdS=CFT as the boundary metric is allowed to
fluctuate at Oðr2Þ. This would imply that a neces-
sary boundary counterterms need to be added to
make the variational problem with respect to the
metric well posed.

(2) One also needs to write the NHEK metric (6.7) and
the full space of solutions generated by (6.17) about
it in the Fefferman-Graham form. This necessary in
order to implement holographic renormalization
of the on-shell action. For the case of the full
Kerr-AdS4;5 metrics, this was systematically done
in [154]. The asymptotic charges defined on such a
boundary for Killing symmetries are the ones
that enter the thermodynamic relations for the black
hole system.

(3) It would be interesting to find the nonlinear com-
pletions of both the thermal diffeomorphisms, which
give rise to the Schwarzian in the JT description, and
the extremal diffeomorphisms discussed above for
the NHEK geometry such that (6.15) are obeyed.
Like the BTZ case, it might probably also imply that
in order to see the effect of the extremal modes one
has to include the contribution coming from the
thermal ones.24

We end this subsection by noting that the dynamics of
the warped AdS3 in the NHEK metric can contribute to the
late time physics of CFT3 correlators at the conformal
boundary of Kerr-AdS4. Near horizon considerations sim-
ilar to that of the BTZ case suggest that there do exist
modes that can contribute to extremal chaos. These have
been previously studied in the context of Kerr/CFT
correspondence and their asymptotic symmetry algebra

consists of a Virasoro suggesting the existence of
Schwarzian-like behavior. As espoused in the previous
sections, the extremal mode dynamics are independent of
the thermal fluctuations captured by the JT model. The
study of these modes is nonetheless important in under-
standing how black holes scramble information as they do
seem to contribute to its chaotic behavior. It is also worth
noting that extremal configurations in string theory have a
good microstate description in terms of brane configura-
tions obeying certain Bogomol’nyi-Prasad-Sommerfield
conditions [156]. It would indeed be very interesting to
find how the space for such brane configurations partic-
ipates in the dynamics of scrambling information.
We next proceed to see what more can a string probe can

tell us about extremal temperature as we did in Sec. V for
the case of extremal BTZ.

C. Probing the geometry

As we have done in the BTZ geometry, let us study the
behavior of a probe string in the AdS4-Kerr background
in (6.2). First, let us offer some comments. Note that, in the
coordinate system of (6.2), the conformal boundary metric
is written in a rotating frame, with angular velocity−a. This
can be easily reconciled with the BTZ description, by
redefining the boundary coordinates and going to an
inertial frame. Toward that, let us note that a generic probe
string in this background can be described by the following
embedding function: fθðr̂Þ;ϕðr̂Þg, in the static gauge:
τ ¼ t̂ and σ ¼ r̂, where fτ; σg are world sheet coordinates.
Now, schematically, the Nambu-Goto action takes the
following form:

SNG ¼ −
1

2πα0

Z
dτdσL½θ; θ0; ϕ̂0�: ð6:27Þ

Thus, the general equations of motion will yield a set of
coupled equations,

d
dr̂

�∂L
∂ϕ̂0

�
−
∂L
∂ϕ̂ ¼ 0; ð6:28Þ

d
dr̂

�∂L
∂θ0
�
−
∂L
∂θ ¼ 0: ð6:29Þ

It is straightforward to check that the second equation is
trivially satisfied at θ ¼ π=2, which corresponds to the
equatorial embedding of the probe string. Thus, without
any loss of generality, we will consider this case. Now, we
use the ansatz,

ϕ̂ ¼ ðω − aÞdt̂þ ϕ0dr̂; ð6:30Þ

where ω is the angular velocity measured in the inertial
conformal boundary frame.

24This might not always be true as in Kerr-AdS4;5 the on-shell
action does receive finite contributions from the boundary
(see [154]), which is not the case in AdS3.
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To proceed further, let us first consider the extremal case.
This corresponds to setting

m ¼ r0
ð1þ r20Þ2
1 − r20

; a2 ¼ r20
1þ 3r20
1 − r20

; ð6:31Þ

Δ ¼ ðr̂ − r0Þ2
�
r̂2 þ 2r̂r0 þ

1þ 3r20
1 − r20

�
; with 1 > 3r20

ð6:32Þ

in the geometry in (6.2). Now, one proceeds exactly as we
have previously done in probing the extremal BTZ geom-
etry. In this case, most of the explicit algebraic expressions
are unwieldy and not necessarily illuminating; therefore,
we do not write them down. At the end of the day, one
proceeds to calculate a world sheet temperature, which is,
again, a function of the extremal horizon r0 and the angular
velocity of the string end point. This is pictorially dem-
onstrated in Fig. 1.
Let us briefly comment on the generic observations: first,

note that the world sheet temperature now is a function of
the Frolov-Thorne temperature25 and the angular velocity
of the string end point. However, unlike in the BTZ case,
this functional dependence does not factorize in terms of
two independent functions of the extremal temperature
(Frolov-Thorne, in this case) and ω. However, the world
sheet extremal limit is set by the causality bound ω ¼ 1,
which is true for any Frolov-Thorne temperature. Thus, it
has a clear similarity to the TH → 0 and jωj → 1 extrem-
ality condition in the BTZ background. Note further,
given the Frolov-Thorne temperature, the world sheet

temperature has one maximum, as a function of ω, similar
to the BTZ case. In the latter, however, because of the Z2

symmetry, ω → −ω, the world sheet temperature peaks at
ω ¼ 1=2. In higher dimensions, this Z2 symmetry is
broken and the peak occurs asymmetrically along the
ω-axis.
Thus, even at extremality, this class of world sheet

fluctuations will yield an OTOC, with an exponentially
growing mode with the corresponding Lyapunov exponent,
which is now determined by a nontrivial function of the
Frolov-Thorne temperature. Once again, the world sheet is
not generically AdS2, and therefore the Schwarzian effec-
tive action, as is obtained in the context of JT gravity, is not
relevant here. Generically though, on the world sheet a
notion of the left movers and the right movers do remain,
but they become chiral.26

Let us offer some comments on what happens away
from extremality. There is no longer any notion of a left-
moving and a right-moving temperature in the background.
However, as far as the string world sheet is considered, the
corresponding temperature Twsðm; a;ωÞ is likely to have a
maximum and a minimum, corresponding to rotation
parallel or antiparallel to the rotation of the event horizon.
Away from extremality, Tws

max and Tws
min will be analogues to

Tws
L and Tws

R in (5.27) and (5.28).
Now it becomes algorithmic to explore higher dimen-

sional AdS-Kerr geometries. For example, take the
AdS5-Kerr background. In this case, the boundary metric
has an S3 and the corresponding SO(4) has two U(1)
Cartans, along which two independent angular velocities
can be realized. The simplest profile of the string will be
given by the equatorial embedding, where the end point lies
on the equator of the S3. At extremality, this background
yields two Frolov-Thorne temperatures, see [155], and the
world sheet temperature will be a function of these two
temperatures, as well as the angular velocity of the end
point. As before, away from extremality, Tws

max and Tws
min will

exist along the directions where Ω⃗1 þ Ω⃗2 is maximized and
minimized. Here Ω⃗1;2 correspond to the angular velocities
along the Cartans of the SO(4).

VII. CONCLUSION AND DISCUSSION

We have analyzed the case of extremal chaos by studying
the near horizon or the throat region of extremal and near
extremal BTZ. We have done this with an aim of under-
standing the effect of rotation on the Lyapunov index λL as
seen at the conformal boundary of BTZ in [24,25]. We find
that in the near horizon region, the JT model captures the
contribution of what we term as thermal modes toward
chaos—these account for the λL ¼ 2π=β < λ−L and only

1.0 0.5 0.5 1.0

0.02

0.04

0.06

0.08

0.10

Tws
TFT

FIG. 1. We have plotted the world sheet temperature, in units of
the Frolov-Thorne temperature TFT , defined in Eq. (6.23). Here
curves correspond to setting r0 ¼ 1=2; 2=5; 1=3, from top to
bottom, respectively. Clearly, the curves end at jωj ¼ 1, which is
the causality bound.

25Note that this is the analogue of the left-moving temperature
at extremality for BTZ.

26This chirality is inherited from the warped AdS3 near horizon
near extremal throat, where the dual CFT distinguishes between
the left movers and the right movers.
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contribute away from extremality. These are the well-
studied near extremal AdS2 reparametrizations. The modes
that survive extremality have nice description in terms one
of the (left-moving) AdS3 PBH diffeomorphisms in the
near horizon region. We are able to ascertain the contri-
bution of these extremal modes exactly at extremality in the
throat region where the above mentioned thermal modes
are also present. The extremal modes seem to give rise to a
λ−L ¼ 2rþ at extremality, while the thermal modes contrib-
ute λþL ¼ λL ¼ 0 as expected. We also derive an effective
action in the three-dimensional throat region and find that
the contribution from the thermal modes is important in
determining the contribution from the extremal modes
toward chaos. It would be interesting to obtain a JT-like
prescription for analyzing the extremal modes’ contribution
away from extremality in the throat region.
As a separate check, we analyze the temperature as seen

by the two-dimensional world sheet of a string probing the
BTZ geometry as a function of its end point’s angular
velocity. We find that when the Killing horizon and the
event horizon of the world sheet metric coincide, the world
sheet temperature sees a combination of the left- and the
right-moving temperatures. As a function of angular
velocity ω, the world sheet temperature lies betweenffiffiffi
2

p
TR < Tws <

ffiffiffi
2

p
TL with 2πTL ¼ λ−L & 2πTR ¼ λþL .

The extremes in the world sheet temperature occur when
the string end point rotates at the speed of light. On the
other hand, Tws ¼ TH when the end point rotates with
ω ¼ r−=rþ canceling the rotation of the black hole. Note
that, this probing calculation, at extremality, comes with a
subtle upper bound for the angular velocity. This upper
bound exists in higher dimensional AdS-Kerr geometries as
well, and therefore it may be connected to a generic physics
at the extremal limit. This will be a particularly interesting
feature to explore further, specially a potential connection
with instabilities of extremal geometries (such as super-
radiance) will be very interesting.
We next proceed to analyze the near horizon region of

extreme Kerr-AdS4 and find that the JT action accounts for
the contribution coming from the AdS2 factor in the warped
AdS3. We see that an analogue of the BTZ extremal modes
can be seen in the warped near horizon AdS3 in extremal
Kerr geometry. These are the same large diffeomorphisms
studied in the Kerr/CFT literature. The existence of a
Schwarzian-like behavior can be inferred from the asymp-
totic symmetry algebra of Vir ×Uð1Þ, where the Vir
corresponds to the extremal modes. Comparing the
NHEK AdS3 at a fixed θ ¼ θ0 with that of the near horizon
extreme BTZ metric, one can obtain a TL given by (6.23),
which matches the Frolov-Thorne temperature seen by the
modes outside the horizon. Here the Uð1Þ corresponds to
time translations which is indeed generalized to τ → fðτÞ
when describing the thermal modes in the AdS2 in the JT
model. Further analysis even at extremality would require
us to know a possible nonlinear completion of the extremal

and thermal large diffeomorphisms in the four-dimensional
NHEK region. In order to find the on-shell action, we would
have to write the family of solutions in Fefferman-Graham
form asymptotically at the throat boundary. One would also
have to impose relevant boundary conditions and consistent
boundary terms to the action for allowing the same.
We also analyze the probe string world sheet temperature

for extremal Kerr-AdS4, and the physics is qualitatively
similar towhat is alreadyobserved in rotatingBTZgeometry.
In fact, these features survive in general dimensions and, on
the world sheet, one always finds the analogue of a “left-
moving” and “right-moving” temperatures, and correspond-
ingly Lyapunov exponents. These two limiting temperatures
are essentially the maximum and the minimum temperatures
that the world sheet fluctuations observe. In the extremal
limit, the world sheet temperatures become a nontrivial
function of the Frolov-Thorne temperatures. Thus, at extrem-
ality, the probe degrees of freedom display an ergodic growth
of the OTOCs. It will certainly be very interesting to extract
an effective description for the same, which we leave for
future work.
Extremal black holes enjoy a better description of their

microstates in terms of stringy (brane) configurations
satisfying certain Bogomol’nyi-Prasad-Sommerfield con-
ditions [156]. It would be interesting to see how such
configurations individually contribute toward the chaotic
process involved in scrambling of small perturbations to
extremal black hole geometries.
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APPENDIX: ROBERT’S TRANSFORMATIONS

Here we list the full nonlinear diffeomorphisms which
map one stationary BTZ solution to another. These were
first written down in the form given below by Roberts
[144]. We begin with

ds2 ¼ du2

u2
− u2dyþdy−; ðA1Þ

which can be relabeled to

u ¼ r
8f0þf0− − 2r−2f00þf00−

ð4f0þf0−Þ3=2
;

y� ¼ f0� þ 4r−2f0�
2f00∓

8f0�f
0∓ − 2r−2f00�f

00∓
ðA2Þ
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⇒ ds2 ¼ dr2

r2
− r2dxþdxþ

1

4
ðTþþðdxþÞ2

þ T−−ðdx−Þ2Þ −
1

16r2
TþþT−−dxþdx−;

where T�� ¼ −2 Sch½f�ðx�Þ; x��& f� ≡ f�ðx�Þ;
ðA3Þ

where Sch½fðtÞ;t�¼ 2f0f00−3f0002
2f02 ¼−ff;tg=2. Note as r → ∞,

y� → f�ðx�Þ.
If we were to parametrize the conformal transformations

as y → e
ffiffiffiffiffi
L�

p
f� at the boundary instead, we would get

T�� ¼ ff�ðx�Þ; x�g þ L�f0�
2; ðA4Þ

which for f�ðx�Þ ¼ x� implies the stationary BTZ family
of metrics,

ds2

l2
¼ dr2

r2
− r2dxþdx− þ 1

4
ðLþdxþ2 þ L−dx−2Þ

−
1

16r2
LþL−dxþdx−; ðA5Þ

with L� ¼ ðrþ ∓ r−Þ2 ¼ λ�2
L . Here r� are inner and outer

horizons in standard BTZ coordinates in (2.1). If one were
to apply infinitesimal Brown-Henneaux diffeomorphisms
to the above metric, the change in the L� would be
precisely be given by linear terms in ϵ� in (A4) where
f�ðx�Þ ¼ x� þ ϵ�ðx�Þ. Therefore, the full nonlinear dif-
feomorphism that corresponding to the infinitesimal
Brown-Henneaux or the PBH ones takes L� → T�� given
by (A4). One can find the full diffeomorphisms which

are achieved by inverting the coordinate map that takes us
from (A3) to (A5) and then implementing the map (A2) but
with f� → e

ffiffiffiffiffi
L�

p
f� .

We exhibit this for the simpler case of Lþ ¼ 0 for
which (A5) takes the form

ds2

l2
¼ dr2

r2
− r2dxþdx− þ 1

4
L−dx−2; ðA6Þ

which is similar to the near horizon metric for extremal
BTZ after scaling the radial coordinate. Upon the following
coordinated transformation

r¼ u

f0−ðy−Þ3=2
; xþ ¼ yþ þ f00−ðy−Þ

2u2f0−ðy−Þ
; x− ¼ f−ðy−Þ;

ðA7Þ

we get

ds2

l2
¼ du2

u2
− u2dyþdy− þ 1

4
ðff−ðy−Þ; y−g þ L−f0−2Þdy−2:

ðA8Þ

The two-dimensional analogue parametrizing the space of
AdS2 metric can be easily constructed from (A2) by taking
f�ðx�Þ → fðtÞ. One can similarly obtain the Schwarzian
derivative by parametrizing the space of AdS2 metrics in
terms of conformal transformations of t at the conformal
boundary of AdS2. Proceeding in a similar manner as
shown above, a corresponding shift in the Schwarzian
derivative can also be obtained if the family of AdS2
metrics is parametrized about a thermal AdS2.
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