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Quantum-reduced loop gravity is a model of loop quantum gravity, which—from the technical point of
view—is characterized by the remarkably simple form of its basic operators. In this article we examine the
operators of the quantum-reduced model from the perspective of full loop quantum gravity. We show that,
in spite of their simplicity, the operators of the quantum-reduced model are simply the operators of the full
theory acting on states in the Hilbert space of the quantum-reduced model. The passage from the full theory
operators to the “reduced” operators simply consists of noting that the states of the quantum-reduced model
are assumed to carry large spin quantum numbers, and discarding terms which are of lower than leading
order in j. Our findings clarify the relation between the quantum-reduced model and full loop quantum
gravity, and strengthen the technical foundations on which the kinematical structure of the quantum-
reduced model is based.
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I. INTRODUCTION

Quantum-reduced loop gravity is a model proposed by
Alesci and Cianfrani [1–3] in order to address the formi-
dable problem of probing the physical implications of loop
quantum gravity [4–7]—a problem which has remained a
major challenge of loop quantum gravity throughout the
three decades that have now passed since the birth of the
theory. The quantum-reduced model is based on imple-
menting a gauge fixing to a diagonal spatial metric encoded
in a diagonal densitized triad field in the setting of
canonical loop quantum gravity. Therefore, even though
the early work on quantum-reduced loop gravity was
mostly focused on the model’s cosmological applications
(see e.g., [8–10]), the model is considerably more general;
in principle, it can provide a quantum description of any
spacetime represented classically by a diagonal spatial
metric. Indeed, the formalism of the quantum-reduced
model has recently been extended to spherically symmetric
spacetimes [11,12] with the intention of applying the model
to study the quantum dynamics of black holes [13].
A characteristic feature of quantum-reduced loop gravity

is the remarkable simplicity of its operators in comparison
with the corresponding operators of full loop quantum
gravity. For instance, the reduced volume operator acts
diagonally on the natural basis states in the Hilbert space of
the quantum-reduced model. This can be contrasted with
the situation in the full theory, where even an explicit
expression for the matrix elements of the volume operator
in the spin network basis is not available, except in certain

simple special cases (see e.g., [14,15]). From a practical
point of view, this simplicity is a considerable advantage of
the quantum-reduced model, as it enables one to explore
the model’s physical content through concrete calculations,
which would be quite intractable within the framework of
proper loop quantum gravity.
Accordingly, the central topic of most of the research on

quantum-reduced loop gravity has been the physical and
phenomenological applications of the model, particularly
in the cosmological context [8–10,13,16–21]. In addition,
some work has been devoted to extending the formalism of
the quantum-reduced model to include couplings to various
matter fields [22,23]. While a couple of articles have sought
to clarify the relation between quantum-reduced loop
gravity and loop quantum cosmology [9,16], little attention
has been paid to the question of investigating the relation
between the quantum-reduced model and the full theory of
loop quantum gravity. With the exception of the early
article [24], this question has remained largely unaddressed
in the literature of the quantum-reduced model so far.
The purpose of this article is to illuminate the relation

between the operators of the quantum-reduced model and
those of full loop quantum gravity. In the standard con-
struction of the quantum-reduced model, the operators of
the model are introduced as projections of the correspond-
ing operators of the full theory down to the reduced Hilbert
space. However, we will show that these “reduced”
operators are simply the full-fledged operators of proper
loop quantum gravity acting on states in the reduced Hilbert
space. More precisely, keeping in mind that the “reduced
spin network states” of the quantum-reduced model are
assumed to carry large spins on each of their edges, the*ilkka.makinen@fuw.edu.pl
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result we will demonstrate is the following: When an
operator of full loop quantum gravity, such as the holon-
omy operator or the volume operator, acts on a state in the
reduced Hilbert space, the term of leading order in j
reproduces the simple action of the corresponding
“reduced” operator.1 In other words, the discrepancy
between the full theory operator and the reduced operator
is of lower order in j, and is therefore negligible in
comparison with the leading term.
This result puts the kinematical framework of the

quantum-reduced model on a more solid technical foun-
dation, since it shows that the only genuine technical
assumption of the model is the structure of the reduced
Hilbert space—including, in particular, the requirement
that the spin quantum number associated to each edge of a
“reduced spin network state” is large. Once the reduced
Hilbert space is given, the (extraordinarily simple) oper-
ators of the quantum-reduced model are obtained without
introducing any additional assumptions, simply by letting
the operators of the full theory act on states in the reduced
Hilbert space, and dropping terms which are negligible in
the limit of large j.
The material in this article is organized as follows. After

the present introductory section, we give a brief outline of
the kinematical structure of loop quantum gravity in Sec. II.
In Sec. III we provide an equally brief overview of the
kinematics of the quantum-reduced model, describing
the states which form the reduced Hilbert space, and the
elementary “reduced” operators of the model. In Sec. IV we
present our analysis of the operators of the quantum-
reduced model, regarded as operators of the full theory
acting on states in the reduced Hilbert space. We will
consider the holonomy operator, the flux operator, the
volume operator, and a particular version of the
Hamiltonian constraint operator, which has been used
previously in the literature of the quantum-reduced model.
Our conclusions are then given in Sec. V. The article also
contains two Appendixes, in which we review some useful
results from SUð2Þ representation theory and the quantum
theory of angular momentum, and display the solution of a
certain technical problem related to extracting the action of
the volume operator in the reduced Hilbert space.

II. LOOP QUANTUM GRAVITY

In this section we give a concise review of the basic
kinematical framework of loop quantum gravity. We will
describe the kinematical Hilbert space of the theory, and the
elementary operators thereon. A complete presentation of
the kinematics of loop quantum gravity (see e.g., [4–7])
would go on to introduce the spaces of gauge invariant and
diffeomorphism invariant states. However, these spaces do

not play any role in the work presented in this article, and
we will therefore not discuss them in any detail.

A. The kinematical Hilbert space

The kinematical Hilbert space of loop quantum gravity is
the space of so-called cylindrical functions.2 A cylindrical
function is essentially a (complex-valued) function of the
form

ΨΓðhe1 ;…; heN Þ: ð2:1Þ

It is labeled by a graph Γ, which consists of the edges
e1;…; eN . The arguments of the function are SUð2Þ group
elements, one for each edge of the graph. If there is a need
to specifically emphasize the graph on which a cylindrical
function is defined, the function (2.1) can be said to be
cylindrical with respect to the graph Γ.
The group elements he originate from holonomies of

the Ashtekar connection in the classical theory, and for
this reason they are referred to as holonomies also in the
quantum theory. The holonomies satisfy certain algebraic
properties, reflecting the classical interpretation of the
holonomy as a parallel transport operator. Letting e−1

denote the edge e taken with the opposite orientation,
we have

he−1 ¼ h−1e : ð2:2Þ

Furthermore, if e1 and e2 are two edges such that the
endpoint of e1 coincides with the beginning point of e2,
we have

he2he1 ¼ he2∘e1 ; ð2:3Þ

where e2∘e1 stands for the edge composed of e1 followed
by e2.
Due to the properties (2.2) and (2.3), there is a consid-

erable freedom in choosing the graph with respect to which
a given cylindrical function is considered to be cylindrical.
In particular, any cylindrical function defined on a graph Γ
can also be viewed as a cylindrical function on any larger
graph Γ0, which contains the graph Γ as a subgraph. Letting
eNþ1;…; eN0 denote the edges of Γ0 that are not contained
in Γ, the function (2.1) can be trivially rewritten as

Ψ0
Γ0 ðhe1 ;…; heN ; heNþ1

;…; heN0 Þ; ð2:4Þ

where the function Ψ0
Γ0 is constant with respect to the

arguments heNþ1
;…; heN0 , and is equal to ΨΓðhe1 ;…; heN Þ

independently of their values.

1In the case of the holonomy operator, the leading term in j
gives a modified form of the reduced holonomy operator, as we
will see in Sec. IVA.

2More precisely, the kinematical Hilbert space is the com-
pletion of the space of cylindrical functions with respect to the
scalar product defined by Eqs. (2.5) and (2.6).
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The observation of the previous paragraph contains the
key to defining a scalar product on the space of cylindrical
functions. For two functions cylindrical with respect to the
same graph Γ, we may define

hΨΓjΦΓi ¼
Z

dg1…dgNΨΓðg1;…; gNÞΦΓðg1;…; gNÞ;

ð2:5Þ

where dg denotes the Haar measure of SUð2Þ. In order to
extend the definition to two functions ΨΓ1

and ΦΓ2
,

cylindrical with respect to two different graphs Γ1 and
Γ2, we may take any graph Γ12 that contains both Γ1

and Γ2 as subgraphs, and view ΨΓ1
and ΦΓ2

as cylindrical
functions on Γ12. The scalar product between the two
functions can then be defined as

hΨΓ1
jΦΓ2

i≡ hΨΓ12
jΦΓ12

i; ð2:6Þ

where the right-hand side is given by Eq. (2.5). The
normalization of the Haar measure guarantees that the
value of hΨΓ1

jΦΓ2
i does not depend on how the graph Γ12 is

chosen. The scalar product defined by Eqs. (2.5) and (2.6)
is usually referred to as the Ashtekar–Lewandowski scalar
product.
According to the Peter–Weyl theorem, a basis on the

space of cylindrical functions can be constructed using the

SUð2Þ representation matrices DðjÞ
mnðhÞ. The functions

ðΨΓÞðj1…jNÞ
m1…mN ;n1…nN ðhe1 ;…; heN Þ ¼

Y
e∈Γ

DðjeÞ
meneðheÞ ð2:7Þ

span the space of functions cylindrical with respect to the
graph Γ, as the quantum numbers fjeg, fmeg and fneg
range over all their possible values. The functions (2.7) are
orthogonal but not normalized under the scalar product
(2.5). In order to normalize them, one has to multiply each
representation matrix by the factor

ffiffiffiffiffiffi
dje

p
.

B. Elementary operators

The elementary operators of loop quantum gravity are
the holonomy and flux operators. The holonomy operator is

associated to an edge e, and it acts on cylindrical functions
by multiplication:

DðjÞ
mnðheÞΨΓðhe1 ;…; heN Þ: ð2:8Þ

The character of the result depends on whether the edge e is
contained among the edges of the graph Γ. If e is not an
edge of Γ, the function (2.8) defines a state based on the
graph Γ ∪ e; in effect, the action of the holonomy operator
has added a new edge to the graph of the state on which it
acted. On the other hand, if e coincides with one of the
edges of Γ, the state (2.8) is still based on the graph Γ.
In this case, the basic tool for computing the action of the
holonomy operator is the Clebsch–Gordan series of SUð2Þ,

Dðj1Þ
m1n1ðheÞDðj2Þ

m2n2ðheÞ
¼

X
j

Cðj1 j2 jÞ
m1 m2 m1þm2

Cðj1 j2 jÞ
n1 n2 n1þn2D

ðjÞ
m1þm2 n1þn2ðheÞ; ð2:9Þ

where Cðj1 j2 jÞ
m1 m2 m are the SUð2Þ Clebsch–Gordan coefficients.

(See Appendix A for our notation and conventions regard-
ing the Clebsch–Gordan coefficients and other objects of
SUð2Þ representation theory.) If the orientation of the
holonomy operator is opposite to the orientation of the
edge on which the operator is acting, one can compute its
action by first using the relation

DðjÞ
mnðh−1e Þ ¼ ð−1Þm−nDðjÞ

−n−mðheÞ ð2:10Þ

for the matrix elements of the inverse Wigner matrix, and
then using Eq. (2.9).
In order to discuss the flux operator, it is convenient to

start by defining a set of auxiliary operators Jðv;eÞi . Each of
these operators carries an SUð2Þ vector index i, and is
labeled by a point v and an edge e such that v is either the
beginning or the ending point of e. The action of the

operator Jðv;eÞi on a cylindrical function based on a graph Γ
is defined to be3

Jðv;eÞi ΨΓðhe1 ;…; heN Þ ¼
8<
:

i d
dϵ

���
ϵ¼0

ΨΓðhe1 ;…; heke
ϵτi ;…; heN Þ if e ¼ ek and e begins at v

−i d
dϵ

���
ϵ¼0

ΨΓðhe1 ;…; eϵτihek ;…; heN Þ if e ¼ ek and e ends at v
ð2:11Þ

where τi ¼ −iσi=2 are the anti-Hermitian generators of
SUð2Þ. If v is not a node of Γ, or e is not an edge of Γ, we
set Jðv;eÞi ΨΓðhe1 ;…; heN Þ ¼ 0. It is immediate to see that the

action of Jðv;eÞi on a holonomy is given by
3The two cases in Eq. (2.11) define the left- and right-invariant

vector fields of SUð2Þ.
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Jðv;eÞi DðjÞðheÞ ¼ iDðjÞðheÞτðjÞi ðe begins at vÞ ð2:12Þ

and

Jðv;eÞi DðjÞðheÞ ¼ −iτðjÞi DðjÞðheÞ ðe ends at vÞ ð2:13Þ

where τðjÞi are the generators of SUð2Þ in the spin-j

representation. (An explicit definition of τðjÞi can be read
off from Eqs. (A17) and (A11)–(A13) in the Appendix.)
The flux operator EiðSÞ associated to a surface S is a

quantization of the classical function
R
S d

2σ naEa
i , where

Ea
i is the densitized triad field. The flux operator can be

expressed in terms of the operator Jðv;eÞi as

EiðSÞΨΓðhe1 ;…; heN Þ

¼ 8πβG
X
x∈S

X
e at x

1

2
κðS; eÞJðx;eÞi ΨΓðhe1 ;…; heN Þ; ð2:14Þ

where β is the Barbero–Immirzi parameter, and the geo-
metric factor κðS; eÞ is

κðS;eÞ ¼
8<
:

þ1 if e lies above S

−1 if e lies below S

0 if e intersects S tangentially or not at all

ð2:15Þ

Here “above” and “below” are understood with respect to
the direction defined by the normal vector of the surface.
The expression on the right-hand side of Eq. (2.14) is well-
defined despite the uncountable sum over all the points of
S, since the sum receives nonvanishing contributions only
from the finite number of points at which the edges of the
graph Γ intersect the surface S.
The action of the flux operator on a holonomy can be

deduced from Eqs. (2.12)–(2.14). For instance, in the case
that the edge e lies entirely above the surface S in the sense
explained above, we find

EiðSÞDðjÞðheÞ ¼ 8πβG
i
2
DðjÞðheÞτðjÞi ð2:16Þ

if the beginning point of e lies on S, and

EiðSÞDðjÞðheÞ ¼ −8πβG
i
2
τðjÞi DðjÞðheÞ ð2:17Þ

if the endpoint of e lies on S. If the surface S intersects the
edge e at an interior point, we have

EiðSÞDðjÞðheÞ ¼ 8πβGνðS; eÞiDðjÞðhe2ÞτðjÞi DðjÞðhe1Þ;
ð2:18Þ

where the factor νðS; eÞ equals þ1 if the orientation of e
agrees with the direction of the normal vector of S, and −1
if the orientation of the edge is opposite to that of the
surface.

III. THE QUANTUM-REDUCED MODEL

In this section we introduce the basic kinematical states
and elementary operators of quantum-reduced loop gravity,
mirroring the outline of the full theory given in the previous
section. For the purposes of the present article, it is not
necessary to go into the technical details of how the
kinematical states of the quantum-reduced model are
obtained as the solutions of the corresponding gauge-fixing
constraints. We may simply regard the Hilbert space of the
quantum-reduced model as a given subspace of the kin-
ematical Hilbert space of the full theory. A discussion of the
gauge-fixing procedure which leads to the reduced Hilbert
space can be found e.g., in the review article [17].

A. The reduced Hilbert space

The Hilbert space of the quantum-reduced model is
constructed by implementing (in the weak sense) certain
reduction constraints on the kinematical Hilbert space
described in Sec. II A. These constraints are designed to
implement a gauge fixing to a diagonal spatial metric
described by a diagonal triad field. The Hilbert space
resulting from the reduction is spanned by basis states
which have the form (2.7), and are characterized by the
following requirements:

(i) The edges of the graph Γ are aligned along the x-, y-
and z-directions defined by a fiducial background
coordinate system.

(ii) The spin quantum number associated to each edge is
large,

je ≫ 1 ð3:1Þ

for every edge of the graph.
(iii) Each edge carries a representation matrix, both of

whose magnetic indices take either the maximal or
the minimal value (i.e., je or −je) with respect to the
basis corresponding to the direction of the edge.

Let us denote by jjmii (where i ¼ x, y or z) the state
which diagonalizes the operators J2 and Ji with eigenval-
ues jðjþ 1Þ and m, and introduce the notation

DðjÞ
mnðhÞi ≡ ihjmjDðjÞðhÞjjnii ð3:2Þ

for the matrix elements of the Wigner matrices in the basis
jjmii. (See Sec. A 5 of the Appendix for more details on
how the states jjmii are defined.) Then the wave function of
a generic basis state of the reduced Hilbert space has the
form
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Y
e∈Γ

DðjeÞ
σeje σeje

ðheÞie ; ð3:3Þ

where each σe is equal to þ1 or −1, and each ie takes the
value x, y or z, depending on whether the edge e is aligned
along the x-, y- or z-direction.
As a convenient terminology, we will often refer to a

state of the form (3.3) as a reduced spin network state, and

a holonomy of the form DðjeÞ
σeje σeje

ðheÞie as a reduced
holonomy. However, the state (3.3) is not a spin network
state in the sense in which the term is usually understood
in loop quantum gravity, namely a basis state of the gauge
invariant Hilbert space, in which the representation
matrices associated to the edges are contracted with
invariant tensors at the nodes of the graph. Indeed, the
states (3.3) are neither gauge invariant nor diffeomor-
phism invariant, reflecting the fact that the fundamental
assumption of the quantum-reduced model is a restriction
to diagonal spatial metrics described by diagonal triads,
which breaks both invariance under spatial diffeomor-
phisms and the internal gauge invariance associated with
rotations of the triad.
Let us also emphasize that there are no intertwiners

involved in the states (3.3), even though the basis states of
the reduced Hilbert space are often (especially in the older
literature of the quantum-reduced model) defined by
inserting so-called reduced intertwiners at the nodes of
the graph. However, as pointed out for the first time in [23],
the “reduced intertwiners” are simply constant complex
numbers multiplying the basis states (3.3). As such, there
can be no physically meaningful information contained in
them, and they should simply be discarded in order to not
needlessly complicate the formalism.
If we keep track of the orientation of the graph on which

the state (3.3) is defined, then the relation

DðjÞ
jj ðh−1Þ ¼ DðjÞ

−j−jðhÞ ð3:4Þ

implies that we may restrict ourselves to the case σe ¼ þ1
in Eq. (3.3), and work with holonomies of the form

DðjÞ
jj ðheÞi only. Holonomies of the form DðjÞ

−j−jðheÞi do not
need to be considered, since Eq. (3.4) shows that a
holonomy with magnetic indices −j;−j is equivalent
to a holonomy with indices jj, and with a reversed
orientation of the edge. Alternatively, one could work
with both types of holonomies while taking an arbitrary
but fixed orientation of the graph. When we come to the
analysis presented in Sec. IV, it is more convenient to take
the former point of view, since we can then consider the
action of operators only on holonomies of the type

DðjÞ
jj ðheÞi, and do not need to separately discuss the case

DðjÞ
−j−jðheÞi.

B. Reduced operators

The elementary operators of the quantum-reduced model
are introduced as projections of the corresponding oper-
ators of the full theory down to the reduced Hilbert space.
As a result of the projection, the magnetic indices of the
reduced holonomy operator RDðsÞðheÞ will be set equal to
their maximal or minimal value. The action of the operator
is given by the following reduced recoupling rule, which is
essentially the multiplication law of the group Uð1Þ:

RDðsÞ
ss ðheÞDðjÞ

jj ðheÞ ¼ DðjþsÞ
jþs jþsðheÞ ð3:5Þ

and

RDðsÞ
−s−sðheÞDðjÞ

jj ðheÞ ¼ Dðj−sÞ
j−s j−sðheÞ ð3:6Þ

and similarly for the case where the operator acts on a
reduced holonomy carrying magnetic indices −j, −j. The
multiplication law given by Eqs. (3.5) and (3.6) was
introduced in [10] to replace the somewhat different form
of the reduced recoupling rule proposed originally in [2].
The flux operators of the quantum-reduced model are

associated only to surfaces dual to the coordinate directions
of the fiducial coordinate system, i.e., to surfaces Sk such
that the fiducial coordinate xk is constant on Sk. The
reduced flux operator REiðSkÞ is nonvanishing only if
i ¼ k. Moreover, when acting on a reduced holonomy
associated to an edge e, the result vanishes unless the
surface of the flux operator is dual to the direction of the
edge. In the nonvanishing case, the reduced flux operator
acts diagonally, picking out the magnetic index of the
reduced holonomy on which it is acting. The action of
the reduced flux operator is therefore summarized by the
equations

REiðSiÞDðjÞ
σj σjðheÞi ¼ ð8πβGÞσjDðjÞ

σj σjðheÞi ð3:7Þ

(assuming there is an intersection between the edge e and
the surface Si), and

REiðSkÞDðjÞ
σj σjðheÞl ¼ 0 if i ≠ k or k ≠ l: ð3:8Þ

The diagonal action of the reduced flux operator implies
that operators which are constructed out of the flux operator
are extremely simple in the quantum-reduced model. In
particular, the reduced volume operator acts diagonally on
the basis states (3.3). This can be contrasted with the
situation in proper loop quantum gravity, where not even an
explicit expression for the matrix elements of the volume
operator in the spin network basis is available, except in
certain special cases. Indeed, a characteristic feature of the
quantum-reduced model is the considerable simplicity of its
operators in comparison to the corresponding operators of
the full theory.
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IV. REDUCED OPERATORS FROM THE
PERSPECTIVE OF FULL LQG

We now move on to the main topic of this article,
namely a demonstration of how the operators of the
quantum-reduced model are related to the corresponding
operators in full loop quantum gravity. In addition to the
holonomy and flux operators, we will also consider the
volume operator, and the Euclidean part of Thiemann’s
Hamiltonian in a particular regularization, which has been
used in previous works to study the dynamics of the
quantum-reduced model.
The general picture that emerges from our calculations is

the following: As we let the operators of the full theory act

on holonomies of the formDðjÞ
jj ðheÞ, recalling that the value

of j is assumed to be large, we find that the term of highest
order in j resulting from the action of a given operator
agrees with the action of the corresponding quantum-
reduced operator. The discrepancy between the full theory
operator and the reduced operator is of lower order in j
compared to the leading term. (In the case of the holonomy
operator, the multiplication law (3.5)–(3.6) of the reduced
holonomy operator is recovered only when the holonomy
operator carries spin 1=2. For higher spins we obtain a
somewhat modified version of the reduced recoupling rule.)
The results found in this section show that the “reduced”

operators of the quantum-reduced model should not be
thought of as objects unrelated to the operators of the full
theory, whose action in the reduced Hilbert space is simply
postulated—and not even as the full theory operators
projected down to the Hilbert space of the quantum-
reduced model. Instead, they are simply the proper oper-
ators of the full theory acting on states in the reduced
Hilbert space (which is a genuine subspace of the kin-
ematical Hilbert space of the full theory). The only
“reduction” of the operators that actually takes place
merely amounts to keeping in mind that one is working
in the limit of large spins, and discarding terms which are of
lower than leading order in j.

A. Holonomy operator

We begin our discussion with an analysis of the
holonomy operator. We must consider the action of the

operator DðsÞ
mnðheÞ on a holonomy of the “reduced” form

DðjÞ
jj ðheÞ. In addition to assuming j ≫ 1, we will also

assume that s ≪ j, since if s were of the same order of
magnitude as j, the action of the holonomy operator would
not necessarily preserve the requirement of the value of j
being large.
Before taking on the general problem of a holonomy

operator carrying an arbitrary spin s, we will discuss
separately the two simplest examples, namely s ¼ 1=2
and s ¼ 1. The first example illustrates the mechanism
through which the recoupling rule of the reduced holonomy

operator is reproduced from the action of the holonomy
operator of the full theory. The second example shows
that when s > 1=2, we should expect to recover a slightly
modified form of the multiplication law for reduced
holonomies. Our findings from the two examples will
help us to anticipate the result of the calculation in the
general case.

1. Example: Spin 1=2

Let us first study the action of a holonomy operator
carrying spin 1=2. This is given by Eq. (2.9) as

Dð1=2Þ
AB ðheÞDðjÞ

jj ðheÞ ¼
X
k

Cðj 1=2 kÞ
j A jþA C

ðj 1=2 kÞ
j B jþB D

ðkÞ
jþA jþBðheÞ;

ð4:1Þ

where the sum over k runs over the two values k ¼ j� 1=2.
We may consider the different possible values of

the indices A and B case by case.4 When A ¼ B ¼ þ,
we immediately obtain

Dð1=2Þ
þþ ðheÞDðjÞ

jj ðheÞ ¼ Dðjþ1=2Þ
jþ1=2 jþ1=2ðheÞ; ð4:2Þ

since k ¼ jþ 1=2 is the only value of the total spin that is
consistent with the value jþ 1=2 of the total magnetic
number. In this case the action of the holonomy operator in
the quantum-reduced model is reproduced exactly.
In the case A ¼ B ¼ −, we have

Dð1=2Þ
−− ðheÞDðjÞ

jj ðheÞ ¼
�
Cðj 1=2 jþ1=2Þ
j 1=2 j−1=2

�
2
Dðjþ1=2Þ

j−1=2 j−1=2ðheÞ

þ
�
Cðj 1=2 j−1=2Þ
j 1=2 j−1=2

�
2
Dðj−1=2Þ

j−1=2 j−1=2ðheÞ:
ð4:3Þ

At a first sight this does not seem to be compatible with the
recoupling rule of the quantum-reduced model, since the
first term on the right-hand side contains a holonomy
whose magnetic indices are not equal to their maximal (nor
minimal) value. However, noting that the Clebsch–Gordan
coefficients involved in the above equation are given by

Cðj 1=2 jþ1=2Þ
j 1=2 j−1=2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2jþ 1
p ; Cðj 1=2 j−1=2Þ

j 1=2 j−1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

2jþ 1

s
;

ð4:4Þ

and recalling that the spin j is assumed to be large, we see
that Eq. (4.3) reduces to

4In what follows, we will use “þ” and “−” as a shorthand for
the two possible values þ1=2 and −1=2 of the indices A and B.
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Dð1=2Þ
−− ðheÞDðjÞ

jj ðheÞ ¼ Dðj−1=2Þ
j−1=2 j−1=2ðheÞ þO

�
1

j

�
: ð4:5Þ

In other words, we find that even though the action of the
reduced holonomy operator is not recovered exactly, the
discrepancy is of subleading order in j, and therefore
becomes negligible in the limit of large j.
When the indices A and B are not equal to each other, the

action of the operator Dð1=2Þ
AB ðheÞ on the state DðjÞ

jj ðheÞ
cannot produce a holonomy in which both magnetic indices
are equal to the maximal (or minimal) value. However, in
this case the action of the operator gives a result which is
entirely of lower order in j, in comparison to the leading
terms in Eqs. (4.2) and (4.5):

Dð1=2Þ
þ− ðheÞDðjÞ

jj ðheÞ

¼ Cðj 1=2 jþ1=2Þ
j 1=2 jþ1=2 Cðj 1=2 jþ1=2Þ

j 1=2 j−1=2 Dðjþ1=2Þ
jþ1=2 j−1=2ðheÞ ¼ O

�
1ffiffi
j

p
�

ð4:6Þ

and similarly for the operator Dð1=2Þ
−þ ðheÞ.

Hence the conclusion in the example at hand is that the
multiplication law of the reduced holonomy operator is
reproduced approximately in the full theory; the approxi-
mation amounts to remembering that one is working with
large values of the spin j, and neglecting terms which are of
lower than leading order in j.

2. Example: Spin 1

Before moving on to discuss the general case, let us take
a look at the example of a holonomy operator carrying spin
1, since this example will reveal a new feature which was
not encountered in the case of a holonomy operator in the
fundamental representation.
The action of a spin-1 holonomy operator on the state

DðjÞ
jj ðheÞ is given by

Dð1Þ
mnðheÞDðjÞ

jj ðheÞ ¼
X
k

Cðj 1 kÞ
jm jþmC

ðj 1 kÞ
j n jþnD

ðkÞ
jþmjþnðheÞ;

ð4:7Þ

where the sum over k now ranges through the values
k ¼ j − 1, j and jþ 1. In the casem ¼ n ¼ 1we find, as in
the previous example,

Dð1Þ
11 ðheÞDðjÞ

jj ðheÞ ¼ Dðjþ1Þ
jþ1 jþ1ðheÞ: ð4:8Þ

When m ¼ n ¼ −1, we obtain three terms from the sum
over k:

Dð1Þ
−1−1ðheÞDðjÞ

jj ðheÞ ¼
�
Cðj 1 jþ1Þ
j−1 j−1

�
2
Dðjþ1Þ

j−1 j−1ðheÞ

þ
�
Cðj 1 jÞ
j−1 j−1

�
2
DðjÞ

j−1 j−1ðheÞ

þ
�
Cðj 1 j−1Þ
j−1 j−1

�
2
Dðj−1Þ

j−1 j−1ðheÞ: ð4:9Þ

Inserting the values of the relevant Clebsch–Gordan
coefficients,

Cðj 1 jþ1Þ
j−1 j−1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 1Þð2jþ 1Þp ð4:10Þ

Cðj 1 jÞ
j−1 j−1 ¼

1ffiffiffiffiffiffiffiffiffiffiffi
jþ 1

p ð4:11Þ

Cðj 1 j−1Þ
j−1 j−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j − 1

2jþ 1

s
ð4:12Þ

we find that Eq. (4.9) becomes

Dð1Þ
−1−1ðheÞDðjÞ

jj ðheÞ ¼ Dðj−1Þ
j−1 j−1ðheÞ þO

�
1

j

�
; ð4:13Þ

again in full analogy with the spin-1=2 example.
The new feature is encountered when we consider the

action of a holonomy operator withm ¼ n ¼ 0. In this case
we have

Dð1Þ
00 ðheÞDðjÞ

jj ðheÞ ¼
�
Cðj 1 jþ1Þ
j 0 j

�
2
Dðjþ1Þ

jj ðheÞ

þ
�
Cðj 1 jÞ
j 0 j

�
2
DðjÞ

jj ðheÞ; ð4:14Þ

where the Clebsch–Gordan coefficients are given by

Cðj 1 jþ1Þ
j 0 j ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

jþ 1
p ; Cðj 1 jÞ

j 0 j ¼
ffiffiffiffiffiffiffiffiffiffiffi
j

jþ 1

s
: ð4:15Þ

Hence we obtain

Dð1Þ
00 ðheÞDðjÞ

jj ðheÞ ¼ DðjÞ
jj ðheÞ þO

�
1

j

�
: ð4:16Þ

This shows that the operatorDð1Þ
00 ðheÞ acts in an appropriate

way as a “quantum-reduced” operator, adding 0 units
of spin to the reduced holonomy on which it is acting.
This is a departure from the usual formulation of the

quantum-reduced model, in which only Dð1Þ
11 ðheÞ and

Dð1Þ
−1−1ðheÞwould be considered as valid reduced operators,

with the operator Dð1Þ
00 ðheÞ not entering the formulation of

the model.
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Finally, when m ≠ n, the action of the operator Dð1Þ
mnðheÞ

again produces a result of subleading order in j. For
example, we find

Dð1Þ
10 ðheÞDðjÞ

jj ðheÞ ¼ O
�

1ffiffi
j

p
�
;

Dð1Þ
0−1ðheÞDðjÞ

jj ðheÞ ¼ O
�

1ffiffi
j

p
�

ð4:17Þ

and

Dð1Þ
1−1ðheÞDðjÞ

jj ðheÞ ¼ O
�
1

j

�
ð4:18Þ

and so on.

3. The general case

We now proceed to consider the general problem of the
operator

DðsÞ
mnðheÞ ð4:19Þ

acting on the state

DðjÞ
jj ðheÞ ð4:20Þ

assuming that s ≪ j. Based on our findings in the two
examples discussed above, we may anticipate the result of
the calculation in the general case. We expect to find5

DðsÞ
mmðheÞDðjÞ

jj ðheÞ ¼ DðjþmÞ
jþmjþmðheÞ þO

�
1

j

�
ð4:21Þ

and

DðsÞ
mnðheÞDðjÞ

jj ðheÞ ¼ O
�

1ffiffi
j

p
�

ð4:22Þ

whenever m ≠ n.
Since

DðsÞ
mmðheÞDðjÞ

jj ðheÞ¼
X
k

�
CðjskÞ
jmjþm

�
2

DðkÞ
jþmjþmðheÞ; ð4:23Þ

the validity of Eq. (4.21) clearly hinges on the value of the

Clebsch–Gordan coefficient Cðj s jþmÞ
jm jþm . Our strategy for

proving Eq. (4.21) is to show that

Cðj s jþmÞ
jm jþm ¼ 1þO

�
1

j

�
: ð4:24Þ

If Eq. (4.24) holds, the completeness relation

1 ¼
X
k

�
Cðj s kÞ
jm jþm

�
2 ¼

�
Cðj s jþmÞ
jm jþm

�
2 þ

X
k≠jþm

�
Cðj s kÞ
jm jþm

�
2

ð4:25Þ

then implies that the coefficients Cðj s kÞ
jm jþm with k ≠ jþm

are of lower order in j:

Cðj s kÞ
jm jþm ¼ O

�
1ffiffi
j

p
�

ðk ≠ jþmÞ: ð4:26Þ

From this it follows that the terms with k ≠ jþm in
Eq. (4.23) are of order 1=j, so Eqs. (4.24) and (4.26) are
sufficient to ensure that Eq. (4.21) holds. Equation (4.26)
also guarantees the validity of Eq. (4.22), since each term
on the right-hand side of

DðsÞ
mnðhÞDðjÞ

jj ðhÞ ¼
X
k

Cðj s kÞ
jm jþmC

ðj s kÞ
j n jþnD

ðkÞ
jþmjþnðhÞ ð4:27Þ

contains at least one coefficient of the form (4.26).
It now remains to verify the crucial equation (4.24). The

important Clebsch–Gordan coefficient has the relatively
simple explicit form

Cðj s jþmÞ
jm jþm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jÞ!ð2jþ 2mþ 1Þ!

ð2j − sþmÞ!ð2jþ sþmþ 1Þ!

s
: ð4:28Þ

For large values of j, the factorials can be approximated
using Stirling’s formula. We consider the logarithm of the
number under the square root,

lnð2jÞ!þ lnð2jþ 2mþ 1Þ! − lnð2j − sþmÞ!
− lnð2jþ sþmþ 1Þ! ð4:29Þ

and apply Stirling’s approximation in the form

lnN!¼N lnN−Nþ1

2
ln2πNþ 1

12N
þO

�
1

N3

�
; ð4:30Þ

where we have included all the terms which can in principle
lead to contributions of order 1=j or higher. When
Eq. (4.30) is used to approximate the logarithms in
(4.29), the terms of order N lnN give

2j ln 2jþ ð2jþ 2mþ 1Þ lnð2jþ 2mþ 1Þ
− ð2j − sþmÞ lnð2j − sþmÞ
− ð2jþ sþmþ 1Þ lnð2jþ sþmþ 1Þ: ð4:31Þ

We now expand the logarithms as5The index m is not summed over in Eqs. (4.21) and (4.23).
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lnð2jþ xÞ ¼ ln 2jþ ln

�
1þ x

2j

�

¼ ln 2jþ x
2j

−
x2

4j2
þO

�
1

j3

�
; ð4:32Þ

and find that (4.31) reduces to

−
sðsþ 1Þ −mðmþ 1Þ

2j
þO

�
1

j2

�
: ð4:33Þ

As to the remaining terms that result when Eq. (4.30) is
applied to Eq. (4.29), the terms linear in N immediately
sum up to zero, while a short calculation shows that the
terms proportional to lnN and 1=N give contributions of
order 1=j2. Hence the entire contribution at order 1=j is that
given by (4.33).
Recalling that (4.33) is an approximation for the

logarithm of the number under the square root in
Eq. (4.28), we have found

lnCðj s jþmÞ
jm jþm ¼ −

sðsþ 1Þ −mðmþ 1Þ
4j

þO
�
1

j2

�
: ð4:34Þ

For the Clebsch–Gordan coefficient itself, this implies

Cðj s jþmÞ
jm jþm ¼ 1 −

sðsþ 1Þ −mðmþ 1Þ
4j

þO
�
1

j2

�
; ð4:35Þ

showing that the coefficient indeed has the form (4.24), and
hence confirming that the result anticipated in Eqs. (4.21)
and (4.22) is valid.
To summarize our discussion of the holonomy operator,

we have shown that the action of the operatorDð1=2Þ
mn ðheÞ on

the state DðjÞ
jj ðheÞ reproduces the multiplication law of the

reduced holonomy operator in the quantum-reduced model,
up to terms of subleading order in j. In the case of a
holonomy operator carrying a spin higher than 1=2, we
discovered a modified form of the reduced recoupling rule.
Under the modified recoupling rule given by Eqs. (4.21)
and (4.22), all the diagonal components of the operator

DðsÞ
mnðheÞ (and not only the components labeled by

m ¼ n ¼ �s) act as valid “quantum-reduced” operators.
Our findings therefore suggest that the label s in the
quantum-reduced multiplication law of Eqs. (3.5) and
(3.6) should not be interpreted as the spin carried by the

operator DðsÞ
ss ðheÞ, but rather as the magnetic quantum

number of the operator DðlÞ
ss ðheÞ (keeping in mind that the

leading term in the action of the latter operator on the state

DðjÞ
jj ðheÞ is independent of the spin l, and is entirely

determined by the magnetic number s, as long as the
assumption l ≪ j is satisfied).
Before proceeding to consider the flux operator, let us

briefly comment on the normalization of the states used in

the above calculations. For simplicity, we have chosen to

work with the unnormalized basis states DðjÞ
jj ðheÞ.

However, the results established in this section are not
sensitive to this choice. While equations such as Eq. (4.21)
involve different basis states whose norms are not exactly
equal to each other, all the states entering the equation
(including those contained in the subleading terms) have
the same norm at leading order in j. Hence the equality
between the leading terms would continue to be valid in the
same form, even if we restored the correct normalization of
the basis states. (On the other hand, if we were interested in
finding the precise form of the lower-order correction
terms, then it would be important to work with normalized
basis states.)

B. Flux operator

In order to analyze the action of the flux operator on
the reduced Hilbert space, we begin by considering the

operator Jðv;eÞi defined by Eq. (2.11). Taking a reduced

holonomy DðjÞ
jj ðheÞ of an edge e aligned in the z-direction,

and assuming that v is the beginning point of the edge e, the

action of Jðv;eÞi gives

Jðv;eÞi DðjÞ
jj ðheÞ ¼ iDðjÞ

jmðheÞðτðjÞi Þmj: ð4:36Þ

The matrix elements of the generators entering the above
equation can be read off from Eqs. (A37)–(A39). We have

ðτðjÞx Þmj ¼ −i
ffiffiffi
j
2

r
δm;j−1; ðτðjÞy Þmj ¼

ffiffiffi
j
2

r
δm;j−1;

ðτðjÞz Þmj ¼ −ijδmj; ð4:37Þ

leading to

Jðv;eÞz DðjÞ
jj ðheÞ ¼ jDðjÞ

jj ðheÞ ð4:38Þ

and

Jðv;eÞx DðjÞ
jj ðheÞ ¼

ffiffiffi
j
2

r
DðjÞ

j j−1ðheÞ;

Jðv;eÞy DðjÞ
jj ðheÞ ¼ i

ffiffiffi
j
2

r
DðjÞ

j j−1ðheÞ: ð4:39Þ

The calculation is easily generalized to the case where v is
the endpoint of the edge e, or where e is oriented along the

x- or the y-direction. When the index i of the operator Jðv;eÞi
matches the direction of the edge e, we obtain

Jðv;eÞi DðjÞ
jj ðheÞi ¼ �jDðjÞ

jj ðheÞi; ð4:40Þ
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where the sign is þ if e begins from v, and − if e ends at v.

When the operator Jðv;eÞi acts on an edge aligned in a
direction different from i, we get

Jðv;eÞi DðjÞ
jj ðheÞk ¼ Oð

ffiffi
j

p
Þ ði ≠ kÞ: ð4:41Þ

This result has the same general structure as we found in the
case of the holonomy operator. When the operator Jðv;eÞ

acts on the reduced holonomyDðjÞ
jj ðheÞi, the contribution of

highest order in j is given by the component Jðv;eÞi , whose
action preserves the form of the reduced holonomy. The

action of the components Jðv;eÞk with k ≠ i gives a result in
which the holonomy is not of the appropriate reduced form
(i.e., the magnetic indices of the holonomy are not both
equal to the maximal or the minimal value). However, the
contribution of the k ≠ i components is of lower order in j

compared to that of Jðv;eÞi .
Let us then move on to consider the flux operator EiðSkÞ

where, according to the discussion of the reduced flux
operator in Sec. III B, the surface Sk lies in the plane
xk ¼ const defined by the fiducial background coordinate
system. When the operator EiðSkÞ acts on the reduced

holonomy DðjÞ
jj ðheÞl, the geometric factor κðS; eÞ in

Eq. (2.14) implies that the result can be nonvanishing
only if k ¼ l, since only in this case there can be a
transversal intersection between the edge e and the
surface Sk. Assuming further that the surface intersects
the edge at one of its endpoints, the action of the flux
operator gives

EiðSkÞDðjÞ
jj ðheÞk ¼ ð8πβGÞ 1

2
κðSk; eÞJðv;eÞi DðjÞ

jj ðheÞk:
ð4:42Þ

With the help of Eqs. (4.40) and (4.41), we see that if the
index of the flux operator agrees with the direction of the
edge e, we get

EiðSiÞDðjÞ
jj ðheÞi ¼ �ð8πβGÞ 1

2
jDðjÞ

jj ðheÞi; ð4:43Þ

while if the index does not match the orientation of e,
we have

EiðSkÞDðjÞ
jj ðheÞk ¼ Oð

ffiffi
j

p
Þ ði ≠ kÞ: ð4:44Þ

Up to the factor �1=2, Eqs. (4.43) and (4.44) agree with
the action of the reduced flux operator given by Eqs. (3.7)
and (3.8), provided that we neglect the contribution of
order

ffiffi
j

p
in comparison with the term of order j.

Note, however, that the action of the reduced flux
operator is correctly recovered only when the intersection
between the edge and the surface is the beginning or ending

point of the edge. If the surface intersects the edge at an
interior point, we obtain, instead of Eq. (4.42),

EiðSkÞDðjÞ
jj ðheÞk

¼ 8πβGνðSk; eÞiDðjÞ
jmðhe2ÞkðτðjÞi ÞkmnD

ðjÞ
nj ðhe1Þk; ð4:45Þ

where e1 and e2 are the two segments into which the edge e

is divided by the surface Sk, and ðτðjÞi Þkmn denotes the matrix

elements of the generator τðjÞi in the basis jjmik. In general
there is no reason why the expression (4.45) should reduce
to a simpler form, even in the limit of large j, since all the

matrix elements of the generator τðjÞi are involved in it, and
not only those in which one index is equal to j.
On the other hand, most of the operators one is usually

dealing with in loop quantum gravity—for instance, the
volume operator discussed in the following section—can

be formulated directly in terms of the operator Jðv;eÞi ,
without having to make any explicit reference to the
flux operator. On account of this, it does not seem to be
a very serious problem that the quantum-reduced form of
the flux operator is not valid in complete generality; it is
more important that we have established the relations (4.40)

and (4.41) for the operator Jðv;eÞi .

C. Volume operator

The volume operator in loop quantum gravity [25]
(restricted to a single node v of a cylindrical function)
has the form

Vv ¼
ffiffiffiffiffiffiffiffi
jqvj

p
; ð4:46Þ

where

qv ¼
1

48

X
eI ;eJ ;eK

at v

ϵðeI; eJ; eKÞϵijkJðv;eIÞi Jðv;eJÞj Jðv;eKÞk ð4:47Þ

and the orientation factor ϵðeI; eJ; eKÞ is equal toþ1, −1 or
0, depending on whether the triple of vectors defined by
the outgoing tangent directions of the edges eI, eJ and eK is
positively oriented, negatively oriented or not linearly
independent. As noted in the previous section, the volume
operator is expressed entirely in terms of the operators

Jðv;eÞi , and the flux operator is not directly involved in its
definition.
We will study the action of the volume operator on a

generic six-valent node of a reduced spin network state.
The wave function associated to the node is

Dðj1Þ
j1j1

ðhe1ÞxDðj2Þ
j2j2

ðhe2ÞyDðj3Þ
j3j3

ðhe3ÞzDðj4Þ
j4j4

ðhe4Þx
×Dðj5Þ

j5j5
ðhe5ÞyDðj6Þ

j6j6
ðhe6Þz; ð4:48Þ

ILKKA MÄKINEN PHYS. REV. D 102, 106010 (2020)

106010-10



and we assume that the edges belonging to the node are
oriented as shown in Fig. 1. Expanding the sum over edges
in Eq. (4.47), we see that when acting on the cuboidal six-
valent node, the operator qv takes the form

qv¼
1

8
ϵijkðJðv;e1Þi −Jðv;e4Þi ÞðJðv;e2Þj −Jðv;e5Þj ÞðJðv;e3Þk −Jðv;e6Þk Þ:

ð4:49Þ

Recalling Eqs. (4.40) and (4.41), it is immediate to
calculate the action of the operator (4.49) on the state
(4.48), up to terms of lower order in j. The leading term is
obtained when the indices i, j and k in Eq. (4.47) take
respectively the values x, y and z. This term is

ðJðv;e1Þx − Jðv;e4Þx ÞðJðv;e2Þy − Jðv;e5Þy ÞðJðv;e3Þz − Jðv;e6Þz Þ
×Dðj1Þ

j1j1
ðhe1Þx � � �Dðj6Þ

j6j6
ðhe6Þz

¼ ðj1 þ j4Þðj2 þ j5Þðj3 þ j6ÞDðj1Þ
j1j1

ðhe1Þx � � �Dðj6Þ
j6j6

ðhe6Þz
ð4:50Þ

(Note that the þ sign in Eq. (4.40) applies to the operators
associated to the edges e1, e2 and e3, while the − sign
applies to the operators acting on the edges e4, e5 and e6.)
The remaining terms, in which the triple ði; j; kÞ is not
equal to ðx; y; zÞ, are of at least one order of magnitude
lower in j, since each of these terms contains at least two

instances of the operator Jðv;eÞi acting on the holonomy of
an edge which is not oriented along the i-direction. For
example, when ði; j; kÞ ¼ ðx; z; yÞ, we get

ðJðv;e1Þx − Jðv;e4Þx Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
OðjÞ

ðJðv;e2Þz − Jðv;e5Þz Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Oð ffiffi

j
p Þ

ðJðv;e3Þy − Jðv;e6Þy Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Oð ffiffi

j
p Þ

×Dðj1Þ
j1j1

ðhe1Þx � � �Dðj6Þ
j6j6

ðhe6Þz ¼ Oðj2Þ: ð4:51Þ

Hence we find that at leading order in j, the action of the
operator qv on the reduced spin network node is diagonal:

qvD
ðj1Þ
j1j1

ðhe1Þx � � �Dðj6Þ
j6j6

ðhe6Þz
¼ 1

8
ðj1 þ j4Þðj2 þ j5Þðj3 þ j6Þ

×Dðj1Þ
j1j1

ðhe1Þx � � �Dðj6Þ
j6j6

ðhe6Þz þOðj2Þ: ð4:52Þ

However, it does not seem immediately obvious whether
we can conclude from this that the operator Vv ¼

ffiffiffiffiffiffiffiffijqvj
p

enjoys the same property. The answer to this question turns
out to be in the affirmative, and is based on the observation
that since the off-diagonal terms generated by the action of
qv on the state (4.48) are of subleading order in j compared
to the diagonal term, the action of the square root

ffiffiffiffiffiffiffiffijqvj
p

on
(4.48) can be accessed using standard perturbation theory
familiar from quantum mechanics, treating the off-diagonal
terms as a perturbation over the diagonal term. The analysis
is presented in detail in Appendix B. The conclusion is that
the action of the volume operator on the reduced spin
network node is indeed diagonal at leading order in j, and is
given by

VvD
ðj1Þ
j1j1

ðhe1Þx � � �Dðj6Þ
j6j6

ðhe6Þz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
ðj1 þ j4Þðj2 þ j5Þðj3 þ j6Þ

r
×Dðj1Þ

j1j1
ðhe1Þx � � �Dðj6Þ

j6j6
ðhe6Þz þOð

ffiffi
j

p
Þ: ð4:53Þ

Here the leading term agrees with the diagonal action of the
reduced volume operator, as given e.g., in [22].

D. Hamiltonian

In the literature of the quantum-reduced model, the
operator governing the dynamics of the model has usually
been taken as a particular version of the Euclidean part of
Thiemann’s Hamiltonian constraint operator [26]. When
acting on the node v of a cylindrical function, Thiemann’s
Hamiltonian is essentially the operator

HðvÞ
E ¼

X
ðeI ;eJ ;eK Þ

at v

ϵIJKTr
�
DðsÞðhαIJÞDðsÞðh−1sK ÞVvDðsÞðhsK Þ

�
:

ð4:54Þ

Here sK denotes a segment of the edge eK, and αIJ is a
closed loop associated to the pair of edges (eI , eJ). In
Thiemann’s original formulation, αIJ is a triangular loop
spanned by the segments sI and sJ, but in the quantum-
reduced model one considers a graph-preserving regulari-
zation of the Hamiltonian, which was introduced by
Thiemann in [27] to construct the so-called master con-
straint operator. When the graph-preserving regularization

FIG. 1. A six-valent node of a reduced spin network state.

OPERATORS OF QUANTUM-REDUCED LOOP GRAVITY FROM … PHYS. REV. D 102, 106010 (2020)

106010-11



is adapted to a cuboidal graph, the “segment” sK coincides
with the edge eK , and the loop αIJ is a rectangular loop
formed by the edges eI and eJ, and by two neighboring
edges of the reduced spin network state, as illustrated
in Fig. 2.
The results found for the holonomy operator in Sec. IVA

imply that when the Hamiltonian acts on a reduced spin
network state, the contribution of highest order in j arises
from the terms containing diagonal matrix elements of the
holonomies involved in Eq. (4.54), when each holonomy is
expressed in the basis associated with the direction of the
corresponding edge. In order to show how the leading terms
in the action of the Hamiltonian can be extracted, let us
focus on a single term of the sum in Eq. (4.54),

Tr
�
DðsÞðhα12ÞDðsÞðh−1e3 ÞVvDðsÞðhe3Þ

�
; ð4:55Þ

assuming that the edges e1, e2 and e3 are oriented
respectively along the directions x, y and z. Expanding
the trace in the standard basis in which Jz is diagonal, and
discarding the terms which contain off-diagonal elements
of the matrices DðjÞðhe3Þ and DðjÞðh−1e3 Þ, we get6

Tr
�
DðsÞðhα12ÞDðsÞðh−1e3 ÞVvDðsÞðhe3Þ

�
¼

X
m

DðsÞ
mmðhα12ÞDðsÞ

mmðh−1e3 ÞVvD
ðsÞ
mmðhe3Þ

þ off-diagonal terms ð4:56Þ

Since the loop α12 is composed of edges aligned in the

x- and y-directions, the matrix elements DðsÞ
mmðhα12Þ are

diagonal with respect to the wrong basis. Breaking down
the holonomy around the loop as

hα12 ¼ h−1e2 h
−1
e0
1
he0

2
he1 ; ð4:57Þ

we may write

DðsÞ
mmðhα12Þ ¼

X
m0nn0

DðsÞ
mm0 ðh−1e2 ÞDðsÞ

m0nðh−1e0
1
ÞDðsÞ

nn0 ðhe02ÞD
ðsÞ
n0mðhe1Þ:

ð4:58Þ

We must now express each holonomy in the basis appro-
priate to the direction of the corresponding edge, and then
pick out the terms involving diagonal matrix elements with
respect to the new basis. In order to transform the

holonomy DðsÞ
mnðheiÞ to the i-basis, recall that the states

jsmii are defined as jsmii ¼ DðsÞðgiÞjsmi, where gi is a
rotation which rotates the z-axis into the i-axis (see Sec. A 5
of the Appendix). It follows that

jsmi ¼
X
n

DðsÞ
nmðg−1i Þjsnii ð4:59Þ

and

DðsÞ
mnðheiÞ ¼

X
m0

DðsÞ
mm0 ðgiÞDðsÞ

m0nðg−1i ÞDðsÞ
m0m0 ðheiÞi

þ off-diagonal terms: ð4:60Þ

Using this in Eq. (4.58), and neglecting the off-diagonal
terms, we find

DðsÞ
mmðhα12Þ ¼

X
m0nn0μ

DðsÞ
mm0 ðgyÞDðsÞ

m0nðg−1y gxÞDðsÞ
nn0 ðg−1x gyÞ

×DðsÞ
n0μðg−1y gxÞDðsÞ

μmðg−1x ÞDðsÞ
m0m0 ðh−1e2 Þy

×DðsÞ
nn ðh−1e0

1
ÞxDðsÞ

n0n0 ðhe02ÞyD
ðsÞ
μμ ðhe1Þx: ð4:61Þ

We now obtain the result of our calculation by combining
Eq. (4.61) with Eq. (4.56). In order to express the result in a
more compact form, we introduce the formal matrix
notation

DðsÞðheÞi ¼

0
BBBBB@
DðsÞ

ss ðheÞi
DðsÞ

s−1s−1ðheÞi
. .
.

DðsÞ
−s−sðheÞi

1
CCCCCA;

ð4:62Þ

where the matrix has nonzero entries only on the
diagonal, and in terms of which we may state our
conclusion as follows: The leading term in the action of
the operator

Tr
�
DðsÞðhα12ÞDðsÞðh−1s3 ÞVvDðsÞðhs3Þ

�
ð4:63Þ

FIG. 2. A graph-preserving regularization of Thiemann’s
Hamiltonian.

6Repeated indices are not summed over in this section, unless
indicated by an explicit summation sign.
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on a reduced spin network state can be found by replacing
the operator with

Tr
�
DðsÞðgyÞDðsÞðh−1e2 ÞyDðsÞðg−1y gxÞDðsÞðh−1e0

1
ÞxDðsÞðg−1x gyÞ

×DðsÞðhe0
2
ÞyDðsÞðg−1y gxÞDðsÞðhe1ÞxDðsÞðg−1x Þ

×DðsÞðh−1e3 ÞzVvDðsÞðhe3Þz
�
: ð4:64Þ

The operator (4.64) involves only the diagonal matrix
elements of each holonomy with respect to the appropriate
basis.
In all earlier work concerning the Hamiltonian in the

quantum-reduced model, the holonomies involved in the
Hamiltonian have been taken in the fundamental repre-
sentation. When s ¼ 1=2, the operator (4.64) agrees with
the reduced Hamiltonian discussed e.g., in [8,10]. In this
case, our treatment of the Hamiltonian contains no
fundamentally new features at the technical level; only
the interpretation of the calculation is different. The
Hamiltonian in the quantum-reduced model has previously
been viewed as a reduced operator, obtained by taking the
expression (4.54) for the Hamiltonian in the full theory, and
replacing the holonomy operators and the volume operator
with their reduced counterparts. In contrast, here we
considered the Hamiltonian as an operator in the full
theory, and looked for the terms of highest order in j in
the action of the operator on a reduced spin network state.
When s ¼ 1=2, both approaches lead to the same result.
However, for higher values of s the two points of view are
not equivalent, since all the diagonal matrix elements of the
holonomy operator (and not only those having a maximal
or minimal value of the magnetic index) are involved in the
operator (4.64), and all of them contribute to the action of
the operator at leading order in j.

V. CONCLUSIONS

In this work we considered the operators of quantum-
reduced loop gravity from the perspective of full loop
quantum gravity. We demonstrated that when the operators
of the full theory act on states in the Hilbert space of the
quantum-reduced model, the term of leading order in j
reproduces the action of the corresponding quantum-
reduced operator. Since the “reduced spin network states”
of the quantum-reduced model are assumed to carry large
spins on each of their edges, discarding the terms of lower
order in j is well justified.
In the literature of quantum-reduced loop gravity, the

operators of the quantum-reduced model are introduced as
projections of the operators of the full theory down to the
reduced Hilbert space. However, our calculations show that
despite their considerable simplicity, the reduced operators
are simply the operators of the full theory acting on states
in the Hilbert space of the quantum-reduced model,
which is a subspace of the kinematical Hilbert space of

the full theory.7 This result clarifies an important aspect of
the relation between the quantum-reduced model and
proper loop quantum gravity.
The relation between the quantum-reduced model and

the full theory has been previously discussed, in particular,
in the article [24]. Specifically, it is shown in [24] that the
quantum-reduced model arises from a quantum gauge-
fixing to a diagonal triad in the kinematical Hilbert space
of full loop quantum gravity. Hence the article establishes
the important fact that the quantum-reduced framework
is considerably more general than initially thought: It is
relevant not only in the context of cosmology, but is
applicable to any spatial metric which can be made
diagonal by a gauge fixing. On the other hand, in [24]
the quantum-reduced operators are still understood as
operators of the full theory projected onto the Hilbert
space of the quantum-reduced model. By showing that the
projection is irrelevant at leading order in j, so that the
operators of the quantum-reduced model can be seen
simply as the operators of the full theory without the need
to introduce any projection, we therefore uncover a differ-
ent and previously unknown facet of the relation between
the quantum-reduced model and full loop quantum gravity.
Our findings also strengthen the technical foundations on

which the kinematical framework of quantum-reduced loop
gravity is based, since they show that the only essential
assumption required to obtain the kinematical structure of
the quantum-reduced model is the form of the reduced
Hilbert space. If one accepts the reduced Hilbert space as
given, then the rest of the quantum-reduced kinematics—
namely, the very simple reduced operators—are obtained
simply by taking the operators of full loop quantum gravity
and letting them act on states in the reduced Hilbert space.
One only has to keep in mind that the spin quantum
numbers carried by the states in the reduced Hilbert space
are assumed to be large, and neglect terms which are of
lower than leading order in j.
In the case of the holonomy operator, our calculations

revealed a modified version of the reduced recoupling rule,
which defines the action of the reduced holonomy operator
on states in the reduced Hilbert space. We found that all

the diagonal components of the operator DðjÞ
mnðheÞ act as

valid quantum-reduced operators, whereas in the standard
formulation of quantum-reduced loop gravity, only the
components labeled with the maximal or the minimal value
of the magnetic index, i.e., m ¼ n ¼ �j, are taken into
account. For j ¼ 1=2 there is no difference between the two
versions of the reduced holonomy operator, and holonomy
operators carrying a spin higher than 1=2 have, to the

7Alternatively, if one still prefers to think of the reduced
operators as projections of the full theory operators, we have
shown that the terms which get projected out are negligibly
small in comparison with the terms which are preserved by the
projection.
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author’s best knowledge, not been used in concrete calcu-
lations in the literature of the quantum-reduced model so
far. In order to investigate which version of the reduced
holonomy operator is physically correct, one could repeat
some calculation which has already been carried out in the
quantum-reduced model—for instance, the semiclassical
analysis of the dynamics performed in [8]—using a
Hamiltonian which has been regularized in terms of
holonomies carrying a spin higher than 1=2. One would
expect to find that not both versions of the reduced
holonomy operator lead to the correct semiclassical limit
of the dynamics.
As a more speculative outlook, our results seem to

suggest that, in some sense, the quantum-reduced model
could be seen as the leading term in a large-j expansion of
(a particular sector of) the full theory. It could be worth-
while to look for a way to turn this intuitive idea into a
precise statement, by giving a proper definition of the
hypothetical large-j expansion. Taking the expansion to
higher orders in 1=j would then presumably provide a
systematic scheme for refining the approximation encap-
sulated in the quantum-reduced model. Under such an
approach, one would possibly have to re-examine the
physical interpretation of the quantum-reduced model,
since it is not clear whether the entire scheme, including
the subleading terms of the expansion, could still be
interpreted as the quantum realization of a particular
classical gauge fixing.
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APPENDIX A: SUð2Þ AND ANGULAR
MOMENTUM

In this section we collect a number of elementary results
from the representation theory of SUð2Þ and the quantum
theory of angular momentum, which are used in the
calculations carried out in the main part of this article.
The purpose of this section is, above all, to provide a full
disclosure of our notation and conventions. A more
complete discussion of the material presented below can
be found in any textbook of the quantum theory of angular
momentum, for example [28]. In addition, the book by
Varshalovich et al. [29] provides an encyclopedic collec-
tion of formulas related to quantum angular momentum,
including, in particular, all the explicit expressions for the
Clebsch–Gordan coefficients invoked throughout the cal-
culations performed in Sec. IVA.

1. Fundamental representation

The group SUð2Þ consists of 2 × 2 -matrices of the form

gAB ¼
�

α β

−β̄ ᾱ

�
where jαj2 þ jβj2 ¼ 1: ðA1Þ

The fundamental representation of the group is realized by
the action of the matrices gAB on the space H1=2 ≅ C2,
spanned by the two vectors

jþi ¼
�
1

0

�
; j−i ¼

�
0

1

�
: ðA2Þ

The antisymmetric tensors

ϵAB ¼
�

0 1

−1 0

�
; ϵAB ¼

�
0 1

−1 0

�
ðA3Þ

are invariant under the action of SUð2Þ:

ϵABgACgBD ¼ ϵCD ðA4Þ

and similarly for ϵAB. By manipulating this relation, one
finds that the matrix elements of the inverse matrix g−1 are
given by

ðg−1ÞAB ¼ ϵACϵBDgDC: ðA5Þ

Introducing the Pauli matrices

σx ¼
�
0 1

1 0

�
; σy ¼

�
0 −i
i 0

�
; σz ¼

�
1 0

0 −1

�
;

ðA6Þ

a general element of SUð2Þ can be parametrized in terms of
an angle θ and a unit vector n⃗ as

gðθ; n⃗Þ ¼ e−iθn⃗·σ⃗=2 ¼ cos
θ

2
− i sin

θ

2
ðn⃗ · σ⃗Þ; ðA7Þ

which suggests an interpretation of the group element
gðθ; n⃗Þ as representing a rotation by the angle θ around
the axis n⃗.

2. The angular momentum operator

The commutator between two Pauli matrices is given by
½σi; σj� ¼ 2iϵijkσk, which implies that the components of

the operator J⃗ ¼ σ⃗=2 satisfy

½Ji; Jj� ¼ iϵijkJk: ðA8Þ

In quantum mechanics, any Hermitian vector operator
whose components satisfy the commutation relation (A8)
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is called an angular momentum operator. The commutator
(A8) encodes the geometric significance of the angular
momentum operator as a generator of rotations in three-
dimensional space.
All components of J⃗ commute with the squared angular

momentum

J2 ¼ J2x þ J2y þ J2z : ðA9Þ

Therefore one can simultaneously diagonalize J2 and one
of the components, conventionally chosen as Jz. A standard
calculation, which follows entirely from the commutation
relation (A8), shows that the eigenstates of J2 and Jz obey
the eigenvalue equations

J2jjmi ¼ jðjþ 1Þjjmi; ðA10Þ

Jzjjmi ¼ mjjmi; ðA11Þ

where jmay be any (positive) integer or half-integer, andm
ranges from −j to j in steps of 1. In the process of the
calculation one finds that the operators

J� ¼ Jx � iJy ðA12Þ

raise and lower the eigenvalue of Jz by one, while leaving
the eigenvalue of J2 unchanged:

J�jjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mðm� 1Þ

p
jj; m� 1i: ðA13Þ

In principle, the right-hand side of Eq. (A13) contains an
arbitrary phase factor, which is not determined by the
commutation relation (A8). In this article we follow the
Condon–Shortley phase convention, according to which
this factor is set equal to þ1.

3. Spin-j representation

For a given value of j, the states jjmi span the (2jþ 1)-
dimensional vector space Hj, as the index m takes the
values −j;−jþ 1;…; j. The spin-j representation of
SUð2Þ is defined by the matrices representing the operators

gðθ; n⃗Þ ¼ e−iθn⃗·J⃗ on the space Hj. These matrices, whose
matrix elements are given by

DðjÞ
mnðgÞ ¼ hjmje−iθn⃗·J⃗jjni; ðA14Þ

are known as the Wigner matrices. We adopt the definition

ϵðjÞmn ¼ ð−1Þj−mδm;−n ðA15Þ

for the invariant epsilon tensor in the spin-j representation.
Then the inverse matrix DðjÞðg−1Þ is given by the relation

DðjÞ
mnðg−1Þ¼ ϵðjÞmm0ϵ

ðjÞ
nn0D

ðjÞ
n0m0 ðgÞ¼ð−1Þm−nDðjÞ

−n−mðgÞ ðA16Þ

By analogy with the definition τi ¼ −iσi=2 in the funda-
mental representation, we define the anti-Hermitian gen-
erators of SUð2Þ in the spin-j representation as

ðτðjÞi Þmn ¼ −ihjmjJijjni: ðA17Þ

Note that the matrix elements of the generators are given in
explicit form by Eqs. (A11)–(A13).
In order to clarify how the spin-j representation of SUð2Þ

is related to the fundamental representation, let us consider
the 2j-fold tensor product state

jΨji ¼ jþi ⊗ jþi ⊗ � � � ⊗ jþi: ðA18Þ

By direct calculation, one finds that the state (A18) is an
eigenstate of the total angular momentum operator

JðtotÞ ¼ Jð1Þ þ Jð2Þ þ � � � þ Jð2jÞ ðA19Þ

(where each JðiÞ acts on the ith factor of the tensor product

⊗2j
i¼1 H

ðiÞ
1=2), as indicated by the eigenvalue equations8

ðJðtotÞÞ2jΨji ¼ jðjþ 1ÞjΨji; ðA20Þ

JðtotÞz jΨji ¼ jjΨji: ðA21Þ

This shows that the state (A18) can be identified as the state
jjji. The remaining states jjmi are then obtained by
repeatedly applying the lowering operator

JðtotÞ− ¼ Jð1Þ− þ Jð2Þ− þ � � � þ Jð2jÞ− : ðA22Þ

In this way one finds

8The eigenvalue equation for the z-component of JðtotÞ is
immediate. In order to verify the equation for ðJðtotÞÞ2, note that

ðJðtotÞÞ2 ¼
X
i

ðJðiÞÞ2 þ
X
i≠k

J⃗ðiÞ · J⃗ðkÞ;

where the cross terms can be written as

J⃗ðiÞ · J⃗ðkÞ ¼ JðiÞz JðkÞz þ 1

2
ðJðiÞþ JðkÞ− þ JðiÞ− JðkÞþ Þ:

When acting on the state (A18), only the terms ðJðiÞÞ2 and JðiÞz JðkÞz
give a nonvanishing result, since the state jþi is annihilated by
the raising operator Jþ.
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jjmi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞ!ðj −mÞ!

ð2jÞ!

s
ðjþi ⊗ � � � ⊗ jþi|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

jþm times

⊗ j−i ⊗ � � � ⊗ j−i|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
j−m times

þ all permutationsÞ; ðA23Þ

establishing a direct relation between the spaces Hj and
H1=2. Indeed, the spin-j representation of SUð2Þ is often
introduced in the literature in terms of the completely
symmetric subspace of the 2j-fold tensor product space
H1=2 ⊗ � � � ⊗ H1=2.

4. Clebsch–Gordan coefficients

The tensor product space Hj1 ⊗ Hj2 is spanned by the
states jj1m1ijj2m2i, which are eigenstates of the mutually
commuting operators

ðJð1ÞÞ2; ðJð2ÞÞ2; Jð1Þz ; Jð2Þz : ðA24Þ

The operators

ðJð1ÞÞ2; ðJð2ÞÞ2; ðJð1Þ þ Jð2ÞÞ2; Jð1Þz þ Jð2Þz

ðA25Þ

form another complete set of commuting operators on
Hj1 ⊗ Hj2 . Let us denote their eigenstates by jj1j2; jmi.
Since both sets of states provide a basis ofHj1 ⊗ Hj2 , they
must be related to each other by unitary transformations of
the form

jj1m1ijj2m2i ¼
X
jm

Cðj1 j2 jÞ
m1 m2 mjj1j2; jmi ðA26Þ

and

jj1j2; jmi ¼
X
m1m2

Cðj1 j2 jÞ
m1 m2 mjj1m1ijj2m2i: ðA27Þ

The coefficients in these expansions are known as the
Clebsch–Gordan coefficients.
The Condon–Shortley phase convention fixes the

phases of the Clebsch–Gordan coefficients by the require-

ment that the coefficient Cðj1 j2 jÞ
j1 j−j1 j is real and positive,

and by the phase choice made in Eq. (A13). Under the
Condon–Shortley convention, all of the Clebsch–Gordan
coefficients are real-valued. Then the coefficient
hj1j2; jmjj1m1 ⊗ j2m2i is numerically equal to the inverse
coefficient hj1m1 ⊗ j2m2jj1j2; jmi. For this reason, the
coefficients appearing in Eq. (A26) are usually not dis-
tinguished from the inverse coefficients appearing in
Eq. (A27).

Some basic properties of the Clebsch–Gordan coeffi-
cients follow immediately from their definition. The

coefficient Cðj1 j2 jÞ
m1 m2 m vanishes unless the conditions

jj1 − j2j ≤ j ≤ j1 þ j2 and j1 þ j2 þ j ¼ integer

ðA28Þ

as well as

m ¼ m1 þm2 ðA29Þ

are met. Moreover, the Clebsch–Gordan coefficients satisfy
the orthogonality relationsX

jm

Cðj1 j2 jÞ
m1 m2 mC

ðj1 j2 jÞ
m0

1
m0

2
m ¼ δm1m0

1
δm2m0

2
ðA30Þ

and X
m1m2

Cðj1 j2 jÞ
m1 m2 mC

ðj1 j2 j0Þ
m1 m2 m0 ¼ δjj0δmm0 : ðA31Þ

By applying an SUð2Þ rotation to Eq. (A26), one can
deduce the Clebsch–Gordan series

Dðj1Þ
m1n1ðgÞDðj2Þ

m2n2ðgÞ ¼
X
jmn

Cðj1 j2 jÞ
m1 m2 mC

ðj1 j2 jÞ
n1 n2 n D

ðjÞ
mnðgÞ ðA32Þ

for the matrix elements of the Wigner matrices. Recalling
the condition (A29), we may eliminate the sums overm and
n, and write the Clebsch–Gordan series in the equivalent
form

Dðj1Þ
m1n1ðgÞDðj2Þ

m2n2ðgÞ
¼

X
j

Cðj1 j2 jÞ
m1 m2 m1þm2

Cðj1 j2 jÞ
n1 n2 n1þn2D

ðjÞ
m1þm2 n1þn2ðgÞ: ðA33Þ

5. Eigenstates of Jx and Jy
The states jjmii, which diagonalize the operators J2 and

Ji (for i ¼ x or y), can be constructed by starting with the
states jjmi and applying a rotation which rotates the z-axis
into the x-axis or the y-axis. If gi is an SUð2Þ element
representing any rotation which rotates the vector êz into
the vector êi, the state

jjmii ¼ DðjÞðgiÞjjmi ðA34Þ

is an eigenstate of the operators J2 and Ji with eigenvalues
jðjþ 1Þ and m.
The group element gi is not uniquely determined by the

requirement that the corresponding rotation must rotate
the z-axis into the i-axis. However, the diagonal matrix
elements of the Wigner matrices in the basis jjmii,

ILKKA MÄKINEN PHYS. REV. D 102, 106010 (2020)

106010-16



DðjÞ
mmðgÞi ¼ ihjmjDðjÞðgÞjjmii; ðA35Þ

which play a central role in this article, are independent
of the choice of rotation used to construct the states jjmii.
To verify this, note that if gi and g0i are group elements
describing two different rotations which rotate the z-axis
into the i-axis, the combined rotation g0ig

−1
i preserves the

i-axis, so it must have the form g0ig
−1
i ¼ eiασi . In other

words, g0i ¼ eiασi gi, which implies that the states jjmi0i,
constructed by applying the rotation g0i to the states jjmi,
are related by phase factors to the states constructed using
the rotation gi:

jjmi0i ¼ eiβðj;mÞjjmii: ðA36Þ

(This is also clear from the fact that both jjmii and jjmi0i are
eigenstates of the operators J2 and Ji corresponding to the
nondegenerate pair of eigenvalues jðjþ 1Þ and m.) When
the diagonal matrix elements of DðjÞðgÞ are taken in the
basis jjmi0i, the phase factors eiβðj;mÞ cancel, so the diagonal
matrix elements indeed do not depend on which rotation is
selected to construct the basis jjmii.
Whenever an explicit choice of the rotation gi has to be

made, we will choose a rotation corresponding to a cyclic
permutation of the coordinate axes, i.e., a rotation which
rotates the axes ðx; y; zÞ into ðy; z; xÞ or ðz; x; yÞ. This
choice has the advantage that the action of the angular
momentum operator on the states jjmii is particularly easy
to deduce. Equations (A11)–(A13) show that the compo-
nents of the angular momentum operator act on the states
jjmi≡ jjmiz as

Jxjjmiz ¼ Cþðj; mÞjj; mþ 1iz þ C−ðj; mÞjj; m − 1iz
ðA37Þ

Jyjjmiz ¼ −iCþðj; mÞjj; mþ 1iz þ iC−ðj; mÞjj; m − 1iz
ðA38Þ

Jzjjmiz ¼ mjjmiz ðA39Þ

where we have introduced the abbreviation

C�ðj; mÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ −mðm� 1Þ

p
: ðA40Þ

If the states jjmii are defined in the way described above,
we may cyclically permute the labels x, y and z to find

Jxjjmix ¼ mjjmix ðA41Þ

Jyjjmix ¼ Cþðj; mÞjj; mþ 1ix þ C−ðj; mÞjj; m − 1ix
ðA42Þ

Jzjjmix ¼ −iCþðj; mÞjj; mþ 1ix þ iC−ðj; mÞjj; m − 1ix
ðA43Þ

and

Jxjjmiy ¼ −iCþðj; mÞjj;mþ 1iy þ iC−ðj;mÞjj; m − 1iy
ðA44Þ

Jyjjmiy ¼ mjjmiy ðA45Þ

Jzjjmiy ¼ Cþðj; mÞjj; mþ 1iy þ C−ðj; mÞjj; m − 1iy
ðA46Þ

APPENDIX B: SQUARE ROOT OF THE
OPERATOR qv

In Sec. IV C we encountered the problem of computing
the action of the volume operator Vv ¼

ffiffiffiffiffiffiffiffijqvj
p

on the
reduced spin network node (4.48), given that the action of
the operator qv on the node is approximately diagonal, as
shown by Eq. (4.52). Here we will present a detailed
solution of this problem. The solution is based on treating
the off-diagonal terms in Eq. (4.52) as a perturbation over
the diagonal term, and using standard perturbation theory to
extract the leading term (as well as the first subleading
terms) in the action of

ffiffiffiffiffiffiffiffijqvj
p

on the state (4.48).
In order to carry out the analysis in detail, let us consider

the equivalent but notationally lighter problem of finding
the action of the operator

ffiffiffiffiffiffiffijQjp
, with Q given by

Q ¼ ϵijk
�
Jð1Þi þ Jð4Þi

��
Jð2Þj þ Jð5Þj

��
Jð3Þk þ Jð6Þk

�
; ðB1Þ

on the state

jj1j1ixjj2j2iyjj3j3izjj4j4ixjj5j5iyjj6j6iz ðB2Þ

in Hj1 ⊗ � � � ⊗ Hj6 . The action of Q on the generic basis
state

jj1m1ixjj2m2iyjj3m3izjj4m4ixjj5m5iyjj6m6iz ðB3Þ

produces the diagonal term

ðJð1Þx þ Jð4Þx ÞðJð2Þy þ Jð5Þy ÞðJð3Þz þ Jð6Þz Þjj1m1ixjj2m2iyjj3m3izjj4m4ixjj5m5iyjj6m6iz
¼ ðm1 þm4Þðm2 þm5Þðm3 þm6Þjj1m1ixjj2m2iyjj3m3izjj4m4ixjj5m5iyjj6m6iz ðB4Þ
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as well as off-diagonal terms of the form

Jð1Þx Jð2Þz Jð3Þy jj1m1ixjj2m2iyjj3m3izjj4m4ixjj5m5iyjj6m6iz
¼ m1jj1m1iðCþðj2; m2Þjj2; m2 þ 1iy þ C−ðj2; m2Þjj2; m2 − 1iyÞ
× ð−iCþðj3; m3Þjj3; m3 þ 1iz þ iC−ðj3; m3Þjj3; m3 − 1iyÞjj4m4ixjj5m5iyjj6m6iz ðB5Þ

and

Jð1Þy Jð2Þz Jð3Þx jj1m1ixjj2m2iyjj3m3izjj4m4ixjj5m5iyjj6m6iz
¼ ðCþðj1; m1Þjj1; m1 þ 1ix þ C−ðj1; m1Þjj1; m1 − 1ixÞðCþðj2; m2Þjj2; m2 þ 1iy þ C−ðj2; m2Þjj2; m2 − 1iyÞ
× ðCþðj3; m3Þjj3; m3 þ 1iz þ C−ðj3; m3Þjj3; m3 − 1izÞjj4m4ixjj5m5iyjj6m6iz; ðB6Þ

together with the similar terms which arise from the
remaining combinations of the angular momentum oper-
ators in Eq. (B1).
When m is close enough to j in absolute value, say

j − jmj ¼ Oð1Þ, the coefficient C�ðj; mÞ is of order
ffiffi
j

p
.

Thus, within the sector of the space Hj1 ⊗ � � � ⊗ Hj6 in
which each jmIj is close to the corresponding jI, the off-
diagonal matrix elements given by (B5) and (B6) are
suppressed by at least a factor of 1=j in relation to the
diagonal matrix elements of Eq. (B4). Therefore the matrix
representing the operator Q can be divided into an
unperturbed part Q0 and a small perturbation W in the
way indicated by the schematic drawing in Fig. 3. Assume
that the rows and the columns of the matrix are labeled so
that the diagonal elements are ordered from largest to
smallest. We delineate a central block of the matrix in such
a way that everywhere outside the block, the diagonal
matrix elements are of order j3, while the off-diagonal
elements are at most of order j2. The unperturbed matrixQ0

is then defined to consist of the diagonal matrix elements
outside the central block, and of all the matrix elements
inside the block. The off-diagonal matrix elements outside
the central block are assigned to the perturbation W. (The
exact location of the central block’s boundary is irrelevant
to our analysis, as long as we are interested in computing
the action of

ffiffiffiffiffiffiffijQjp
on the state (B2) only.)

Inserting a formal small parameter ϵ to keep track of
powers of the perturbation, we know that perturbation
theory can be used to approximate the spectrum of the
operator

Q ¼ Q0 þ ϵW ðB7Þ

power-by-power in ϵ. The approximation is expressed in

terms of the eigenvalues λð0Þi and eigenstates jλð0Þi i of the
unperturbed operator Q0, which are assumed to be known.
The first-order approximations for the eigenvalues and
eigenstates of Q are given by

λi ¼ λð0Þi þ ϵWii þOðϵ2Þ ðB8Þ

and

jλii ¼ jλð0Þi i þ ϵ
X0

k≠i

Wki

λð0Þi − λð0Þk

jλð0Þk i þOðϵ2Þ; ðB9Þ

where we have introduced the notation

Wik ¼ hλð0Þi jWjλð0Þk i ðB10Þ

for the matrix elements of the perturbation in the basis of
unperturbed eigenstates. The prime on the sum over k in
Eq. (B9) indicates that whenever some of the unperturbed
eigenvalues are degenerate, one should choose the basis
of unperturbed eigenstates in such a way that the pertur-
bation W has no nonvanishing matrix elements between
different eigenstates corresponding to the same degenerate
eigenvalue, and after this has been done, the terms with

FIG. 3. Dividing the matrixQ into an unperturbed partQ0 and a
perturbation W. Outside of the central block, the diagonal matrix
elements are of order j3, while the off-diagonal matrix elements
are at most of order j2. Hence the matrix elements marked in
white can be considered as a perturbation over the unperturbed
matrix formed by the matrix elements marked in black. The
matrix elements marked in grey are equal to zero.
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λð0Þk ¼ λð0Þi are to be excluded from the sum. However, in
the present problem there is no need to take this point
explicitly into account, since we are only interested in the
action of

ffiffiffiffiffiffiffijQjp
on the state (B2), which is a nondegenerate

eigenstate of the unperturbed operator Q0.
Applying the approximations (B8) and (B9) to the

spectral decomposition of the operator
ffiffiffiffiffiffiffijQjp

,ffiffiffiffiffiffiffi
jQj

p
¼

X
i

ffiffiffiffiffiffiffi
jλij

p
jλiihλij; ðB11Þ

we obtain

ffiffiffiffiffiffiffi
jQj

p
¼

X
i

0
B@ ffiffiffiffiffiffiffiffiffiffi

jλð0Þi j
q

þ ϵ
Wii

2

ffiffiffiffiffiffiffiffiffiffi
jλð0Þi j

q
1
CAjλð0Þi ihλð0Þi j

þ ϵ
X0

ik

Wik

ffiffiffiffiffiffiffiffiffiffi
jλð0Þi j

q
−

ffiffiffiffiffiffiffiffiffiffi
jλð0Þk j

q
λð0Þi − λð0Þk

jλð0Þi ihλð0Þk j

þOðϵ2Þ: ðB12Þ

Let us assign the label i ¼ 0 to the state (B2). Acting with
the operator (B12) on this state, we find

ffiffiffiffiffiffiffi
jQj

p
jλð0Þ0 i ¼

ffiffiffiffiffiffiffi
λð0Þ0

q
jλð0Þ0 i þ ϵ

X
i≠0

Wi0ffiffiffiffiffiffiffi
λð0Þi

q
þ

ffiffiffiffiffiffiffi
λð0Þ0

q jλð0Þi i

þOðϵ2Þ; ðB13Þ

where we have noted that (1) the expectation value

W00 vanishes; (2) the unperturbed eigenvalue λð0Þ0 ¼
ðj1 þ j4Þðj2 þ j5Þðj3 þ j6Þ is positive and nondegenerate;

(3) all the eigenvalues λð0Þi corresponding to states for which
the matrix element Vi0 is nonvanishing are also positive;
and (4) we have carried out the simplification

ffiffiffiffiffiffiffi
λð0Þi

q
−

ffiffiffiffiffiffiffi
λð0Þ0

q
λð0Þi − λð0Þ0

¼ 1ffiffiffiffiffiffiffi
λð0Þi

q
þ

ffiffiffiffiffiffiffi
λð0Þ0

q : ðB14Þ

All the unperturbed eigenvalues λð0Þi entering Eq. (B13) are
of order j3, while the matrix elements Wi0 are at most of
order j2. Consequently, the coefficient multiplying the
leading term is of order j3=2, whereas the coefficients in
the sum over i are of order

ffiffi
j

p
. Hence we may remove the

formal parameter ϵ and expect that (B13) remains a valid
approximation for the action of

ffiffiffiffiffiffiffijQjp
on the state (B2). We

have therefore shown that

ffiffiffiffiffiffiffi
jQj

p
jj1j1ix � � � jj6j6iz

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj1 þ j4Þðj2 þ j5Þðj3 þ j6Þ

p
jj1j1ix � � � jj6j6iz

þOð
ffiffi
j

p
Þ; ðB15Þ

which is equivalent to Eq. (4.53) given in the main text for
the action of the volume operator on the reduced spin
network node (4.48).
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