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In the large-N and strong-coupling limit, maximally supersymmetric SUðNÞ Yang-Mills theory in
(2þ 1) dimensions is conjectured to be dual to the decoupling limit of a stack of N D2-branes, which may
be described by IIA supergravity. We study this conjecture in the Euclidean setting using nonperturbative
lattice gauge theory calculations. Our supersymmetric lattice construction naturally puts the theory on a
skewed Euclidean 3-torus. Taking one cycle to have antiperiodic fermion boundary conditions, the large-
torus limit is described by certain Euclidean black holes. We compute the bosonic action—the variation of
the partition function—and compare our numerical results to the supergravity prediction as the size of the
torus is changed, keeping its shape fixed. Our lattice calculations primarily utilize N ¼ 8 with
extrapolations to the continuum limit, and our results are consistent with the expected gravity behavior
in the appropriate large-torus limit.
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I. INTRODUCTION

It has been conjectured [1–4] that the large-N limits of
maximally supersymmetric Yang-Mills (SYM) theories,
obtained from the dimensional reduction of N ¼ 1 SYM
in ten dimensions down to (pþ 1) dimensions, are dual to
string theories containing Dp-branes. In the large-N and
strong-coupling limit this relates properties of gauge theories
to the dual properties of Dp-brane solutions in supergravity.
The p ¼ 3 case is the AdS=CFT correspondence, which
has received much attention, in part due to its additional
conformal symmetries. For direct numerical tests of holo-
graphic duality the p < 3 cases are more attractive to
consider, as they feature more tractable gauge theories [5].
For example, the D0-brane or p ¼ 0 case is a quantum-

mechanical description well-known as the Banks-Fischler-
Shenker-Susskind (BFSS) model [6,7]. One of the earliest

efforts to understand holographic duality in the quantum-
mechanical case directly from non-perturbative gauge
theory was described in Refs. [8–10]. In recent years,
good agreement has been obtained for the case of p ¼ 0 in
the Euclidean setting using numerical Monte Carlo calcu-
lations. These efforts started with Refs. [11–16], and more
sophisticated recent lattice analyses give convincing agree-
ment with dual-gravity black hole predictions in the large-
N low-temperature limit [17–20]. In addition to the BFSS
quantum mechanics, a maximally supersymmetric defor-
mation of it known as the Berenstein-Maldacena-Nastase
(BMN) model [21], which may also be dual to black holes
at low temperatures [22], is now also starting to be studied
on the lattice [23–25].
This Euclidean lattice approach was extended to the

higher-dimensional D1-brane case in Refs. [26–29]. To
allow numerical lattice calculations, one must compactify
the spatial direction. In the continuum this corresponds to
placing the dual theory on a Euclidean torus with all bosonic
fields subject to periodic boundary conditions along all
directions.With periodic fermion boundary conditions along
all directions, supersymmetry is unbroken and the partition
function is independent of the size and shape of this torus.
In order to studymore interesting behavior,we take one cycle
to be anti-periodic for fermions.
As discussed in Refs. [28,29], a conventional thermo-

dynamic interpretation would require the gauge theory to
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be on a rectangular torus with antiperiodic fermion (ther-
mal) boundary conditions on the Euclidean time cycle.
However, often it is more convenient to work with a skewed
torus in the Euclidean setting, in order to use supersym-
metric lattice actions which employ noncubical lattices
with enhanced point group symmetries. While one cannot
continue the numerical results to Lorentzian signature due
to the skewing, this is not an obstruction to testing super-
gravity predictions. One may also consider the dual super-
gravity in the Euclidean setting with a skewed torus as the
asymptotic boundary geometry, in which case in the
appropriate large-N ’t Hooft limit it predicts a behavior
governed by certain Euclidean black holes (which also have
no Lorentzian analog).
The higher-dimensional SYM theories, such as the one

considered in this paper, involve more challenging calcu-
lations than in the quantum-mechanical case, but offer the
advantage of richer structures. Distinct phases are associ-
ated to center symmetry breaking signaled by the eigen-
value distributions of the Wilson lines around the spatial
torus cycles, and are described in the dual gravity by the
competition between different black hole solutions. In
Refs. [28,29] these different phases were indeed seen in
two-dimensional lattice calculations, and reasonable agree-
ment was observed for the variation of the partition
function with torus size for both IIA and IIB supergravity
predictions. (See Ref. [30] for an alternate approach to the
strong-coupling limit of the p ¼ 1 theory in the Lorentzian
signature.)
The purpose of this paper is to advance these tests of

holographic duality to the next higher dimension—the case
of D2-branes. Again we consider the Euclidean theory
compactified on a torus so that it is amenable to lattice
calculations. We take one antiperiodic cycle for fermions.
In the conventional Euclidean thermal setting on a rec-
tangular torus, the system has an even richer phase structure
than the case of p ¼ 1, with sensitivity to the dimensionless
temperature and the various aspect ratios of the 3-torus
[31,32]. We consider here the skewed torus, as dictated by
our supersymmetric lattice discretization. Keeping the
shape of the torus fixed, we vary its size relative to the
scale set by the ’t Hooft coupling and study the bosonic
action—the variation of the partition function. We choose
the shape of the torus so that we can expect the behavior in
the large-N strongly coupled large-torus limit to be gov-
erned by the simplest gravitational dual, a homogeneous
Euclidean D2-brane black hole in IIA supergravity with
boundary given by the skewed torus. We then numerically
analyze this large-N, large-torus limit, to understand how
well the gauge theory matches the predictions of the
supergravity solution.
We begin in the next section by discussing (2þ 1)-

dimensional SYM on a skewed torus and its supergravity
dual in the large-N ’t Hooft limit. In Sec. III we describe our
three-dimensional supersymmetric lattice construction,

which produces the numerical results presented and com-
pared with supergravity expectations in Sec. IV. The data
leading to these results are available at [33]. We conclude in
Sec. V by looking ahead to further lattice SYM studies that
can build on this work in the future, including prospects
for exploring phase transitions by changing the shape of
the torus.

II. SYM ON A SKEWED TORUS AND THE
SUPERGRAVITY DUAL

We consider three-dimensional maximally supersym-
metric Yang-Mills theory, which we take in Euclidean
signature to be on a 3-torus denoted hereafter by T 3. As in
the thermal case, we impose antiperiodic fermion boundary
conditions only on one cycle corresponding to Euclidean
time. Labelling this coordinate as τ, and the others as xi, we
identify τ ∼ τ þ β (antiperiodic for fermions), while the
others form the “spatial” torus cycles after the identifica-
tions ðτ; xiÞ ∼ ðτ; xiÞ þ L⃗1;2 (periodic for fermions). If L⃗1;2

were orthogonal to each other and τ, the torus would be
rectangular and we would have a Lorentzian interpretation
with β being the inverse temperature. Here we will consider
a skewed torus, for which there is no simple Lorentzian
interpretation—the Euclidean torus cannot be analytically
continued to a real Lorentzian-signature space-time.
Nonetheless, holographic duality states that this theory
can be described by a string theory dual which reduces to
supergravity in the large-N ’t Hooft limit.
It is convenient to define dimensionless lengths rτ ¼ βλ

and r1;2 ¼ jL⃗1;2jλ in terms of the (dimensionful) ’t Hooft
coupling λ ¼ Ng2YM. Here we are interested in fixing the
shape of the torus that the SYM is defined on, while varying
its size. Thus we make the choice L⃗1;2 ¼ β⃗l1;2, with ⃗l1;2
being vectors that we take to be fixed with unit length,
j⃗l1;2j ¼ 1, so that each torus cycle has equal proper length
β. The partition function of the Euclidean theory is then just
a function of the one dimensionless parameter rτ, and it is
convenient to think in terms of t ¼ 1=rτ, which we may
view as a dimensionless “generalized” temperature. At
large N in the ’t Hooft limit we regard t ∼Oð1Þ. In this
limit, a large numerical value t ¼ 1=rτ ≫ 1 corresponds to
the torus being small in units of the ’t Hooft coupling, and
the theory reduces to a 0-dimensional effective theory of
the zero modes on the torus. This small-torus effective
theory corresponds to the bosonic Yang-Mills matrix
integral formed from the bosonic truncation of the p ¼ 0
SYM theory, which we note is not a weakly coupled
description [34,35].
Conversely, a small numerical value t ¼ 1=rτ ≪ 1 cor-

responds to the torus being large in units of the ’t Hooft
coupling. The behavior in this regime is given by the
decoupling limit of D2-branes [2], which may be described
in supergravity by the ten-dimensional Euclidean string
frame metric and dilaton,
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There is also a 3-form potential carrying the N units of
D2-charge, with τ and xi forming the “world-volume”
directions that constitute the asymptotic toroidal boundary
which we may think of the gauge theory living on. Here U
is the radial direction, normalized as an energy scale, and
U0 represents the radial position of a Euclidean “horizon”
where the Euclidean time circle direction, τ, shrinks to zero
size. The smoothness of the geometry relates this to the

inverse temperature β, as U3=2
0 ¼ 4π2

5

ffiffiffiffi
6λ

p
β . We require large

N to suppress string quantum corrections to the super-
gravity approximation, while the large torus size, t ≪ 1, is
required to suppress the α0 corrections to the classical
supergravity geometry near the horizon. Both these con-
ditions are satisfied if we take 1 ≪ rτ ≪ N

6
5 at large N,

which is the regime we focus on in this work.1

On a large torus with t ≪ 1, stringy winding modes
along the xi cycles may become relevant, associated to a
T-dual Gregory-Laflamme instability [31,32,34,35,37–39],
in the case that r3=21;2 ≲ rτ. However, since we are fixing the
shape of the torus to have r1;2 ¼ rτ, we do not expect such
phenomena to occur in a regime where the dual super-
gravity describes the system. Since the dual D2-brane
solution has noncontractible spatial cycles on the torus, we
expect the angular distribution of eigenvalues of a Wilson
line about such a cycle to be homogeneous at large N
[3,34,40]. On the other hand, for a small torus where the
theory reduces to a bosonic matrix integral, we expect a
highly localized distribution of eigenvalue phases for
Wilson lines about any torus cycle. Hence one expects a
large-N transition as the torus size is varied, associated to
center symmetry breaking of the spatial Wilson lines.
If the xi directions were not compact, so that T ¼ 1=β is

a temperature, then noting that the solution is translation
invariant in the τ and xi directions, one may compute the
free energy density f from the dual-gravity solution,

f
N2λ3

¼ −
�
21335π8

513

�
1=3

t10=3 ≈ −2.49189t10=3: ð2Þ

Compactifying on a torus does not change this density, and
for a rectangular torus it yields a partition function
logZ ¼ −fVðT3Þ, where VðT 3Þ denotes the volume of

the 3-torus. Due to the translation invariance of the
solution, the skewed-torus partition function is given by
these same expressions, although there is no thermal
interpretation [35].
The SYM action is composed of bosonic and fermionic

parts having the schematic form

SSYM ¼ SBos þ SFerm;

SBos ¼
N
4λ

Z
T3

dτd2xTr½F2 þ 2ðDΦIÞ2 − ½ΦI;ΦJ�2�;

SFerm ¼ N
λ

Z
T3

dτd2xTr½ψTðD − ½ΓIΦI; ·�Þψ �: ð3Þ

Rescaling the gauge field A, scalarsΦI, fermions ψ , and the
coordinates ðτ; xiÞ by the torus size so they are all
dimensionless,

ðA;ΦIÞ ¼ ðA0;Φ0
IÞ=β; ψ ¼

ffiffiffi
λ

p
ψ 0=β;

ðτ; xiÞ ¼ βðτ0; x0iÞ;

the action may be written as

SSYM ¼ 1

βλ
S0Bos þ S0Ferm; ð4Þ

where S0Bos ¼ SBosβλ and S0Ferm ¼ SFerm involve only the
dimensionless bosonic fields and fermion fields, respec-
tively, and have no explicit β or λ dependence. Thus we
may explicitly differentiate the partition function with
respect to β to obtain

β
∂
∂β logZ ¼ hSBosi: ð5Þ

While the partition function itself cannot be computed
through the lattice methods we use, the expectation value of
the bosonic action is very convenient to obtain (as reviewed
in the Appendix). We find the prediction from supergravity
that at large N,

hSBosi
N2

¼ −
�
21332π8t

513

�
1=3

�
VðT3Þ
β3

�
; ð6Þ

when t is sufficiently small. In the small-volume limit
t ≫ 1 we may use the effective dimensional reduction to
compute

1For still-larger tori it is believed the theory flows to a super-
conformal IR fixed point given by the Aharony-Bergman-
Jafferis-Maldacena model [36] with a dual M2-brane description.

THREE-DIMENSIONAL SUPER-YANG-MILLS THEORY ON THE … PHYS. REV. D 102, 106009 (2020)

106009-3



hSBosi
N2

¼ −2 ð7Þ

at large N [28,41].
We will see in the next section that the most natural torus

geometry for us to consider is formed by periodically
identifying R3 in the three basis directions of an A�

3 lattice.
As discussed above, we do so taking the cycle in each
direction to have the same length β. Explicitly in our
coordinates xμ ¼ ðτ; xiÞ we may achieve this by taking

⃗l1 ¼
1

3

0
B@

−1
2

ffiffiffi
2

p

0

1
CA ⃗l2 ¼

1

3

0
B@

−1
−

ffiffiffi
2

p
ffiffiffi
6

p

1
CA; ð8Þ

which gives a volume VðT3Þ ¼ 4β3=ð3 ffiffiffi
3

p Þ.
Defining the bosonic action density sBos ¼ hSBosi=VðT 3Þ,

for our torus geometry we see the holographic large-volume
behavior and small-volume limit imply

sBos
N2λ3

¼
�−0.831…t10=3 for t ≪ 1

−2.598…t3 for t ≫ 1
: ð9Þ

It is worth noting that for SYM on an analogous torus in
(pþ 1) dimensions we would have parametric dependence
sBos ∝ tð14−2pÞ=ð5−pÞ for t ≪ 1 from the gravity dual, and the
t ≫ 1 limit would go as sBos ∝ tpþ1. In the p ¼ 3 conformal
case these powers coincide, andwe see the powers in the case
of p ¼ 2 we consider here are rather close. This makes the
task of distinguishing the two behaviors more challenging
than for the p ¼ 0 and 1 cases considered previously
[14,15,19,20,27–29], where there is greater contrast between
the large- vs small-volume parametric dependence on t.

III. THREE-DIMENSIONAL SUPERSYMMETRIC
LATTICE CONSTRUCTION

In recent years, it has become possible to formulate
certain supersymmetric lattice gauge theories using the idea
of topological twisting, in which the supercharges are
grouped into p forms and the 0 form supercharges can
be preserved in discrete space-time. While this construction
is not needed for (0þ 1)-dimensional SYM quantum
mechanics (where one can show perturbatively that no
relevant supersymmetry-breaking counterterms are pos-
sible [12,42]), in higher dimensions it is a key ingredient
to minimize issues of fine-tuning [5,43].
The three-dimensional maximally supersymmetric

Yang-Mills theory considered here can be obtained by
classical dimensional reduction of four-dimensionalN ¼ 4
SYM. The N ¼ 4 SYM lattice construction [44–52]
discretizes a maximal twist of the continuum theory known
as the Marcus or geometric-Langlands twist [53,54].
The resulting lattice theory features many symmetries: in
addition to UðNÞ lattice gauge invariance and a single

scalar supersymmetry, it is also invariant under a large S5
point group symmetry arising from the underlying A�

4

lattice. Using these symmetries, it is possible to show in
perturbation theory that radiative corrections generate only
a small number of log divergences in the lattice theory [48].
On reduction to three dimensions these divergences dis-
appear and no fine-tuning is expected to be needed to take
the continuum limit [44]. The resulting three-dimensional
lattice theory naturally lives on an A�

3 (body-centered cubic)
lattice, whose four basis vectors correspond to vectors
drawn out from the center of an equilateral tetrahedron to
its vertices.
As we did in Refs. [28,29], here we use the full four-

dimensional lattice construction provided by the publicly
available parallel software described in Refs. [51,55,56],
setting Nz ¼ 1 to reduce to the A�

3 lattice. The remaining
lattice directions are taken to have equal numbers of lattice
sites, Nx ¼ Ny ¼ Nτ, with antiperiodic fermion boundary
conditions only on the Nτ cycle. In the continuum limit this
generates the skewed torus geometry described in Sec. II
(relabeling fx1; x2g as fx; yg).
We relegate the full details of the lattice action Slattice to

the Appendix, and here discuss only the two soft-super-
symmetry-breaking deformation that need to be included in
order to enable our three-dimensional numerical compu-
tations. The first of these is a scalar potential term, which
regulates the divergences associated with integration over a
noncompact moduli space in the partition function. We
have used various scalar potentials in our previous inves-
tigations, and here employ the single-trace version also
used in Refs. [28,29]:

Ssoft ¼
N
4λlat

μ2
X
n;a

Tr½ðŪaðnÞUaðnÞ − INÞ2�; ð10Þ

with μ2 a tunable coefficient and the dimensionless λlat
defined in the Appendix. We need to extrapolate μ2 → 0 in
order to recover the continuum SYM theory of interest, in
addition to extrapolating to the continuum limit of vanish-
ing lattice spacing that corresponds to λlat → 0 in fewer
than four dimensions. We guarantee that μ2 → 0 in the
λlat → 0 continuum limit by setting μ ¼ ζλlat. This also
allows us to extrapolate μ2 → 0 with λlat fixed by consid-
ering the ζ2 → 0 limit, which we will do in Sec. IV.
Next, for the dimensionally reduced lattice theory to

correctly reproduce the continuum physics, we need to
ensure that the trace of the each gauge link UzðnÞ in the
reduced z direction is close to N, so that the effective scalar
field obtained by dimensional reduction is small in lattice
units. In other words, this means that the center symmetry
should be completely broken in the reduced direction for
proper dimensional reduction. We ensure this by adding a
second soft-supersymmetry-breaking deformation to the
lattice action:

CATTERALL, GIEDT, JHA, SCHAICH, and WISEMAN PHYS. REV. D 102, 106009 (2020)

106009-4



Scenter ¼
N
4λlat

κ2
X
n

Tr½ðUzðnÞ − INÞ†ðUzðnÞ − INÞ�; ð11Þ

with κ2 another tunable coefficient that we must also take to
zero in Sec. IV. This term is gauge invariant since Nz ¼ 1.
It explicitly breaks the center symmetry in the single
reduced direction by forcing the trace of the link in this
direction to be close to N.
With this lattice action Slattice for three-dimensional

SYM, we stochastically sample field configurations using
the rational hybrid Monte Carlo (RHMC) algorithm [57]
implemented in the software mentioned above [51,55]. The
RHMC algorithm treats e−Slattice as a Boltzmann weight,
requiring that we consider a lattice action that is real and
non-negative. However, gaussian integration over the
fermion fields of three-dimensional SYM produces a
pfaffian that is potentially complex,

Z
½dΨ�e−ΨTDΨ ∝ pfD ¼ jpfDjeiϕ: ð12Þ

HereD is the fermion operator and Slattice ¼ SBos þΨTDΨ,
with SBos the bosonic part of the lattice action.
As in our previous work [5,28,29,49,52,58,59], we

“quench” the phase eiϕ → 1 to obtain a positive lattice
action for use in the RHMC algorithm. Reweighting

hOi ¼ hOeiϕipq
heiϕipq

ð13Þ

is then required to recover expectation values from these
phase-quenched (“pq”) calculations, where

hOipq ¼
R ½dU�Oe−SBos jpfDjR ½dU�e−SBos jpfDj ; ð14Þ

hOi ¼
R ½dU�Oe−SBospfDR ½dU�e−SBospfD : ð15Þ

This procedure breaks down, producing a sign problem,
when heiϕipq is consistent with zero. Fortunately, in this
investigation we focus on regimes where heiϕipq ≈ 1 and
hOi ≈ hOipq. This follows from the fact that the rτ and Nτ

we analyze correspond to 0.14 < λlat < 1.34, safely in the
range of couplings where we observe heiϕipq ≈ 1 in the full
four-dimensional theory [5,58,59].2 In addition, we gain
further benefit from the dimensional reduction, since the
lower-dimensional continuum limit corresponds to
λlat → 0. Partly for this reason, previous lattice studies of
N ¼ ð2; 2Þ and N ¼ ð8; 8Þ SYM theories in two

dimensions found heiϕipq → 1 rapidly upon approaching
the continuum limit, with negligible pfaffian phase fluctu-
ations even at non-zero lattice spacing [60–64]. Similarly
small pfaffian phase fluctuations were also seen in the
p ¼ 0 case [16,18].

IV. NUMERICAL RESULTS AND COMPARISON
WITH SUPERGRAVITY

We now present our lattice results for the bosonic action
density in the two different regimes described in Sec. II.
Recall that the small-volume regime has dimensionless
“generalized” temperature t ≫ 1, while t ≪ 1 for the more
interesting large-volume regime related to the dual super-
gravity by holography. We have concentrated resources to
analyze these two regimes, with a focus on 0.25 < t < 0.5.
Our key result is Fig. 1 where we display the bosonic action
density vs t for N ¼ 8 and the L3 lattice sizes we consider,
with Nx ¼ Ny ¼ Nτ ¼ L ¼ 8, 12, and 16.
After briefly discussing t ≥ 1 results in the small-volume

regime, which we use to check our lattice calculations, we
focus on the more challenging large-volume case with
0.25 < t < 0.5. This range of t is chosen to satisfy the
conditions 1 ≪ rτ ≪ N

6
5 discussed in Sec. II, which for

N ¼ 8 correspond to 0.08 ≪ t ≪ 1. While it would be
straightforward to run numerical calculations with smaller
t≲ 0.25, for our currentN ¼ 8 these may exit the regime in
which IIA supergravity is a reliable description of the
holographically dual gravitational system. Moving to larger
N > 8 is also possible, but would demand much more
substantial computational resources due to computational
costs increasing more rapidly than N3 [55]. The results
presented here required ∼5 million core hours provided by
multiple computing facilities, with costs dominated by the
largest L ¼ 16 we consider. Reference [33] provides a
comprehensive release of our data, including full account-
ing of statistics, autocorrelation times, extremal eigenvalues
of the fermion operator (which must remain within the
spectral range where the rational approximation used in the
RHMC algorithm is reliable), and other observables com-
puted in addition to the bosonic action density.

A. Small-volume regime, t ≫ 1

To check that our lattice calculations reproduce the
expected small-volume behavior of three-dimensional
SYM, we analyze several large values of t ≥ 1.
Motivated by the right panel of Fig. 1, which shows no
significant dependence on L ≥ 8 for t≳ 0.3, we carry out
these calculations for a single L3 lattice size with L ¼ 8.
For these large t we are also able to set κ2 ¼ 0 in Eq. (11)
without encountering numerical instabilities (i.e., the center
symmetry in the reduced direction breaks dynamically),
leaving Eq. (10) the only soft-supersymmetry-breaking
deformation in the lattice action. As discussed in
Sec. III, we remove this deformation by extrapolating

2These calculations used a double-trace scalar potential in
place of Eq. (10), which should not noticeably affect pfaffian
phase fluctuations.
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ζ2 → 0, here considering ζ2 ¼ 0.04, 0.06, and 0.09 for each
value of t. These linear extrapolations produce the t ≥ 1
results in the left panel of Fig. 1, which are in good
agreement with the solid line showing the expected small-
volume limit from Eq. (9).
In Fig. 2 we show distributions of the phases of the

Wilson line (spatial holonomy) eigenvalues for three t ≥ 1

lattice ensembles with ζ2 ¼ 0.09. As reviewed in the
Appendix, our lattice construction naturally provides com-
plexified Wilson lines that include contributions from both
the gauge and scalar fields. In this work, we remove the
scalar-field contributions by considering instead unitarized
Wilson lines. The resulting distributions shown in Fig. 2 are
clearly localized, and the width of the support decreases as t
increases. This lattice result is consistent with the expect-
ation that the angular eigenvalue distribution is highly
localized for t → ∞, providing another nontrivial check
that our lattice calculations correctly reproduce the three-
dimensional SYM theory.

B. Large-volume regime, t ≪ 1

Turning now to the more interesting large-volume
regime where we can compare our results with dual
supergravity predictions, we analyze 0.25 < t < 0.5 in
order to satisfy the conditions N−6

5 ≪ t ≪ 1 discussed
above, with N−6

5 ≈ 0.08 for the N ¼ 8 we consider. In this
regime, we need to include both soft-supersymmetry-
breaking deformations Eqs. (10) and (11) in the lattice
action. To simplify our analysis we set κ2 ¼ μ2, so that each
ζ2 → 0 extrapolation (here considering ζ2 ¼ 0.01, 0.04,
and 0.09) simultaneously removes both deformations.
Control over these extrapolations is essential to precisely
determine the SYM bosonic action density to be compared
with the supergravity prediction.
Representative linear ζ2 → 0 extrapolations of our

bosonic action density data are shown in Fig. 3 for all
our 123 lattice ensembles with N ¼ 8. The ζ2 → 0 limits in
this figure correspond exactly to the 123 points shown in
both panels of Fig. 1. Clearly the ζ2 → 0 extrapolated results
in Fig. 1 have significantly larger relative uncertainties than

FIG. 1. The ζ2 → 0 extrapolated bosonic action density for N ¼ 8 with lattice sizes 83, 123, and 163, compared with the large-volume
(dashed) and small-volume (solid) expectations from Eq. (9). Left: the full range of dimensionless temperatures t on log–log axes. Right:
focusing on 0.2 < t < 0.48 with linear axes to clarify the absolute size of uncertainties.

FIG. 2. Distributions of N ¼ 8 Wilson line eigenvalue phases
over the angular range ½−π; πÞ, in the small-volume regime with
dimensionless temperatures t ≥ 1. The distributions become
more localized with increasing t, as expected.

FIG. 3. Representative linear ζ2 → 0 extrapolations of the
bosonic action density for different temperatures on 123 lattices
with N ¼ 8.
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the input data at nonzero ζ in Fig. 3. This is a consequence
of the steep extrapolations to the much smaller SYM
bosonic action densities that remain after removing the
deformations in our lattice action.
These larger uncertainties are even more evident in

Fig. 4, where we enlarge the six smallest 0.29≲ t≲
0.42 to investigate the dependence of the ζ2 → 0 extrapo-
lated bosonic action densities on the L3 lattice volume with
L ¼ 8, 12, and 16. Since we fix the dimensionless lengths
of the lattice, rx ¼ ry ¼ rτ, larger values of L correspond to
smaller lattice spacings, allowing us to check discretization
artifacts and extrapolate to the continuum limit, 1=L2 → 0

or equivalently L2 → ∞. Most of the linear 1=L2 → 0
extrapolations shown in Fig. 4 have slopes consistent with
zero, indicating that there are not significant discretization

artifacts in the corresponding results, and motivating our
choice to include all our L ¼ 8, 12, and 16 results in Fig. 1.
On the whole, these bosonic action density results are
reasonably consistent with the large-N prediction from
supergravity in Eq. (9) (the dashed line in Fig. 1), particu-
larly considering the modest N ¼ 8 and t ≈ 0.3 that we
have used in this work.
The best agreement with the dual supergravity prediction

comes from the two smallest t ≈ 0.31 and 0.29, which are
also the cases where the 1=L2 → 0 continuum extrapola-
tions are nontrivial. From Fig. 4 we can see that these
nontrivial extrapolations are driven by the L ¼ 8 results,
with the L ¼ 12 and 16 results fully consistent with the
respective continuum limits within their (relatively large)
uncertainties. An obvious question in this context is
whether these results really fall in the large-volume regime,
or may still be governed by small-volume (or intermediate)
behavior. As discussed below Eq. (9), the expected para-
metric dependence of the bosonic action density is rather
similar in both regimes for this p ¼ 2 case, making it more
difficult to distinguish a clear change in behavior.
Stronger evidence that our small-t results are in the large-

volume regime can be obtained by again considering the
eigenvalues of the Wilson line about the spatial torus
cycles. In Fig. 5 we show distributions of the phases of
these eigenvalues for lattice ensembles with t ≈ 0.31 and
ζ2 ¼ 0.09, which follow broad distributions in clear con-
trast to the small-volume case shown in Fig. 2. Recall that
the D2 supergravity solution predicts a homogeneous
distribution of these phases at large N. To check the
dependence on N, we have generated one 123 ensemble
with N ¼ 4 and another with N ¼ 6. In the left panel of
Fig. 5 we compare the resultingN ¼ 4, 6, and 8Wilson line
eigenvalue phase distributions and confirm that they
become broader as N increases, consistent with the
expected large-N homogeneous distribution. In the right
panel we check that there is no visible L dependence in our

FIG. 4. Continuum extrapolations of the ζ2 → 0 extrapolated
bosonic action density for various temperatures with N ¼ 8,
where the limit L2 → ∞ with fixed t corresponds to λlat → 0 and
vanishing lattice spacing. Small horizontal offsets are added for
clarity. All extrapolations for t ≥ 0.33 have slopes consistent with
zero, indicating no significant discretization artifacts in the
corresponding results.

FIG. 5. Distributions of Wilson line eigenvalue phases over the angular range ½−π; πÞ for a small t ≈ 0.31. Left: the L ¼ 12
distributions become broader as N increases, consistent with the homogeneous distribution expected for the large-volume regime in the
large-N limit. Right: the N ¼ 8 distributions are independent of the lattice size L3.
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N ¼ 8 results for this same t ≈ 0.31 and ζ2 ¼ 0.09. Thus
we confirm that our small-t results do indeed appear to be
in the large-volume regime and consistent with the dual
supergravity predictions. Presumably there is a large-N
phase transition separating the small- and large-volume
regimes, although such a transition is difficult to see in our
N ¼ 8 data on the lattice sizes we consider here.

V. CONCLUSIONS AND NEXT STEPS

We have presented the first numerical lattice gauge
theory studies of three-dimensional maximally supersym-
metric Yang-Mills theory, advancing our program of non-
perturbatively testing holography. Such tests provide direct
first-principles checks of holographic duality at finite
temperatures and in nonconformal settings, where tools
such as integrability and supersymmetric localization are
not available.
Already at modest N ¼ 8 our results indicate that the

large-N predictions of the dual-gravity black holes can
emerge for large tori. We have seen that the bosonic
action density interpolates rather smoothly between the
small-volume regime and the large-volume supergravity
regime, similar to results for lower-dimensional cases
[14,15,19,20,27–29]. We are able to see qualitative agree-
ment with the supergravity prediction derived from the dual
black hole action density, and continuum extrapolations
indicate no significant discretization artifacts for t ≥ 0.33.
We also see that the Wilson lines about the spatial directions
of the torus are consistent with a transition from a localized
angular eigenvalue distribution at small volumes to the
expected homogeneous distribution at large volumes, pre-
sumably with a large-N phase transition at an intermediate
torus size.
In the future, we plan to look at the Maldacena-Wilson

loop and compare it to the results obtained from the dual-
gravity computations. In addition, similar to our previous
study [28,29], we can also change the aspect ratios of the
torus cycle sizes to study phase transitions from the
homogeneous D2-phase we consider here to D1-phases
or even localized D0-phases. It will also be interesting to
understand the nature of the large-N phase transition at

intermediate volumes, although this has proved difficult to
study even in simpler settings [65].
Though our results approach the supergravity predictions

in the appropriate regime, even larger N would help to
better satisfy the conditions on the validity of the classical
supergravity description. Numerical calculations at larger
N are certainly possible, but would require much more
substantial computational resources due to computational
costs increasing more rapidly than N3 [55]. Our current
results in this paper nevertheless show the approach to
this regime in detail and are certainly consistent with the
supergravity results.
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APPENDIX: LATTICE ACTION AND
COMPUTATION OF THE BOSONIC ACTION

Our lattice formulation of maximally supersymmetric
Yang-Mills theory in d < 4 dimensions discretized on the
A�
d lattice is obtained by classical dimensional reduction

from the parent four-dimensional theory. The lattice action
for topologically twistedN ¼ 4 SYM in d ¼ 4 dimensions
is the sum of the following Q-exact and Q-closed terms
[44–52]:

Sexact ¼
N
4λlat

X
n

Tr

�
−F̄ abðnÞF abðnÞ − χabðnÞDðþÞ

½a ψb�ðnÞ − ηðnÞD̄ð−Þ
a ψaðnÞ þ

1

2
ðD̄ð−Þ

a UaðnÞÞ2
�
; ðA1Þ

Sclosed ¼ −
N

16λlat

X
n

Tr½ϵabcdeχdeðnþ μ̂a þ μ̂b þ μ̂cÞD̄ð−Þ
c χabðnÞ�; ðA2Þ

where λlat is the dimensionless ’t Hooft coupling defined by
rτ;lattice ¼ λlatN4−d

τ . The indices run from 1;…; 5, spanning
the basis vectors of the A�

4 lattice, and
P

n is over all lattice

sites. The 1þ 5þ 10 fermion fields η, ψa, and χab ¼ −χba
transform in representations of the S5 point group sym-
metry, as do the five complexified gauge links Ua and Ūa
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that combine the 4þ 6 gauge and scalar field components.
These gauge links are used to form the complexified field
strengths F ab and F̄ ab, as well as the finite difference

operators DðþÞ
a and D̄ð−Þ

a .
In addition to these terms, we also include the two soft-

supersymmetry-breaking deformations discussed in
Sec. III. Ssoft from Eq. (10) is present to regulate flat
directions even in four dimensions, while Scenter from
Eq. (11) needs to be added once we specialize to the
three-dimensional theory by setting Nz ¼ 1. The full three-
dimensional lattice action is then

Slattice ¼ Sexact þ Sclosed þ Ssoft þ Scenter: ðA3Þ

As mentioned in Sec. IVA, we can omit Scenter (by setting
its coefficient κ2 ¼ 0) in the small-volume regime where
the center symmetry in the reduced direction breaks
dynamically.
Another detail mentioned in Sec. IVA is the need to

remove the scalar-field contributions from the Wilson lines
(spatial holonomies) that we analyze to distinguish between
the small- and large-volume regimes. As in Refs. [28,49,58],
we accomplish this by using a polar decomposition Ua ¼
Ha ·Ua to separate eachN × N complexified gauge link into
a positive-semidefinite hermitian matrix Ha (containing the
scalar fields) and a unitary matrix Ua corresponding to the
gauge field. The resulting unitarizedWilson lines are simply
the products

QNx
i¼1Uxðxi; y; τÞ wrapping around the lattice,

and similarly in the y direction. The distributions shown in
Figs. 2 and 5 come from the Wilson lines in the x direction,
while the data released in Ref. [33] confirm thatWilson lines
in both spatial directions are equivalent, as they should be for
the Nx ¼ Ny we consider.
Since the lattice basis vectors are not orthogonal, in

d < 4 dimensions the dimensionless lattice coupling λlat

has a nontrivial relation to the dimensionful continuum
coupling λ. Following the analysis in Ref. [28], this relation
can be written as

rτ;lattice ¼ λlatNτ ¼
ðdþ 1Þ 5−d

8−2dffiffiffi
d

p λβ; ðA4Þ

which for three-dimensional SYM becomes

λlatNτ ¼
4ffiffiffi
3

p λβ: ðA5Þ

A standard quantity computed by our software is the
dimensionless lattice bosonic action density slat defined
by [49,51]

VðT 3ÞsBos ¼ NxNyNτ

�
9N2

2

�
ðslat − 1Þ; ðA6Þ

normalized and shifted in our conventions so that slat ¼ 1
corresponds to unbroken supersymmetry. Specializing to
the aspect ratios Nx=Nτ ¼ Ny=Nτ ¼ 1 we consider in this
work, we have

NxNyNτ

VðT 3Þ ¼ 3
ffiffiffi
3

p
N3

τ

4β3
¼ 16

λ3

λ3lat
; ðA7Þ

using the relation between the couplings in Eq. (A5).
Plugging this in, we have

−
sBos
N2λ3

¼ 72

λ3lat
ð1 − slatÞ: ðA8Þ

This expression connects the slat data provided in Ref. [33]
to the points shown in Figs. 1, 3, and 4.
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