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This paper contains discussions on the entanglement entropy and mutual information of a strongly
coupled field theory with a critical point which has a holographic dual. We investigate analytically, in the
specific regimes of parameters, how these nonlocal operators behave near the critical point. Interestingly,
we observe that although the mutual information is constant at the critical point, its slope shows a power-
law divergence in the vicinity of the critical point. We show that the leading behavior of mutual information
at and near the critical point could yield a set of critical exponents if we regard it as an order parameter. Our
result for this set of static critical exponents is ð1=2; 1=2; 1=2; 2Þ which is identical to the one calculated via
the thermodynamic quantities. Hence it suggests that beside the numerous merits of mutual information,
this quantity also captures the critical behavior of the underlying field theory and it could be used as a
proper measure to probe the phase structure associated with the strongly coupled systems.
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I. INTRODUCTION AND RESULTS

Following the recent advances in theoretical physics, one
could observe that the quantum information theory and
quantum gravity have become the frontrunners of current
theoretical research programs. Due to the developments in
studying black hole physics via holography in recent years,
it has become evident that the concept of entanglement
plays a key role in connecting those two disciplines.
Furthermore, it also resulted in fruitful insights toward
understanding the important properties of the strongly
coupled systems, as well as shedding light on our current
view of quantum gravity [1]. For a given bipartitioned
system in general, entanglement entropy measures the
amount of quantum entanglement between its two sub-
systems. In the context of quantum field theory, one could
also calculate the entanglement entropy between two
spacetime regions using the replica trick method [2].
Following up the seminal work of Cardy and Calabrese
in which they obtained the entanglement entropy of a
two-dimensional conformal field theory, generalizations of
their results for the higher dimensional field theories have

been an active line of research [3–5]. It was also shown that
the entanglement entropy in field theories suffers from
short-distance divergence obeying an area-law behavior
which makes it a scheme-dependent quantity in the UV
limit [6,7].
In the context of AdS=CFT correspondence [8–10],

quantum entanglement has become one of the main
research interests as well. Ryu and Takayanagi (and
later Hubeny, Rangamani, and Takayanagi) proposed a
general recipe for calculating the entanglement entropy of
d-dimensional large-N conformal field theories (CFTs)
which admit holographic dual [11,12]. Their proposal
has successfully satisfied the necessary conditions
required for the entanglement entropy of field theories
and matched with the prior known results obtained for the
two-dimensional CFT [13–15]. Later on, by studying
classical Euclidean gravity solutions with a boundary,
Lewkowycz and Maldacena showed that the entropy of
a well-defined density matrix is proportional to the area of a
minimal surface. This result provided an argument for the
correctness of Ryu-Takayanagi conjecture [16]. The
remarkable success of this proposal stimulated numerous
works which gave us more insights toward better under-
standing of this topic [17–27].
In order to overcome the scheme-dependent measure of

entanglement, one can use a specific linear combinations of
entanglement entropies called mutual information which is
defined by IðA∶BÞ≡ SðAÞ þ SðBÞ − SðA ∪ BÞ, where S
denotes the entanglement entropy of its associated space-
time region. Mutual information is a finite and positive
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semidefinite quantity which measures the total correlations
between the two disjoint regions A and B [28–30]. We will
show that in our background the dominant term in mutual
information features an area-law behavior in high temper-
ature limit, in contrast to the entanglement entropy which
has a volume-law behavior within the same thermal limit.
Therefore mutual information would be a more reliable
quantity to be used in order to investigate the physical
properties of systems described by quantum field theo-
ries (QFTs).
In QFTs with interesting phase structures, in addition to

thermodynamic quantities, a nonlocal operator such as
entanglement entropy has been extensively used to char-
acterize phases or to be considered as an order parameter
for phase transitions (see [31–33] and references therein).
In holographic context it was argued that entanglement
entropy can be considered as a probe of confinement in
large-N gauge theories for the first time in [34]. Later on,
holographic entanglement entropy was used to study the
phase structure of theories in the presence of chemical
potential in holographic QCD models (see e.g., [35,36] and
references therein).
In this paper we consider N ¼ 4 super Yang-Mills

theory at finite temperature, T, charged under a Uð1Þ
subgroup of its SUð4ÞR R-symmetry group which
includes one chemical potential, μ, and it is dual to
the well-known 1-R charged black hole background [37–
42]. More detailed discussions regarding this background
can be found in Sec. II. Due to the fact that the
underlying theory is conformal, its phase diagram is
one dimensional and it is characterized by the ratio μ=T.
This one-dimensional line ends in a critical point denoted
by μc=Tc ¼ π=

ffiffiffi
2

p
[43,44]. Since the phase structure of

this theory is simple, it provides us with an analytically
solvable model to study the behavior of different physical
quantities near the critical point. For example in time-
dependent setups, the behavior of conserved currents,
quasinormal modes, and other quantities such as com-
plexity has been studied numerically in this model. It has
been shown that the behavior of such quantities are the
same near the critical point and they result in the same
dynamic critical exponent [44–47].
In this paper we use this model to discuss its critical

phenomena in terms of information-theoretic measures
such as entanglement entropy and mutual information.
We obtain these measures analytically, in the context
of gauge/gravity duality, within the various thermal limits.
We also use mutual information, which is a scheme-
independent quantity, as an order parameter and discuss
its behavior near the critical point.
Finally by using our results for the holographic mutual

information, we obtain the following values for the two
suitable independent static critical exponents:

δ ¼ 2 and γ ¼ 1

2
; ð1Þ

and by using the well-known scaling relations we deter-
mine the four static critical exponents to be

ðα; β; γ; δÞ ¼
�
1

2
;
1

2
;
1

2
; 2

�
; ð2Þ

which are in full agreement with the ones obtained
previously in the literature using thermodynamic quantities
[41,42,44].

II. THE BACKGROUND GEOMETRY

As we mentioned in the Introduction, we are interested in
studying the critical phenomena of a strongly coupled
plasma using the framework of holography. Therefore we
start with a holographic geometry in five dimensions dual
to the aforementioned four-dimensional field theory with
critical point, which is known as the 1RCBH background
[37–41].

A. Geometry

We consider a gravitational theory on a five-dimensional
manifold with metric gμν, consisting of a gauge field, Aμ,
and a scalar field (dilaton), ϕ, which is described by the
following Einstein-Maxwell-Dilaton (EMD) action:

SEMD ¼ 1

16πGð5Þ
N

Z
d5x

ffiffiffiffiffiffi
−g

p �
R −

fðϕÞ
4

FμνFμν

−
1

2
ð∂μϕÞð∂μϕÞ − VðϕÞ

�
; ð3Þ

where Gð5Þ
N is the five-dimensional Newton constant. The

coupling function between the gauge field and the dilaton,
fðϕÞ, and the dilaton potential, VðϕÞ, are given by

fðϕÞ ¼ e−
ffiffi
4
3

p
ϕ;

VðϕÞ ¼ −
1

R2
ð8e ϕffiffi

6
p þ 4e−

ffiffi
2
3

p
ϕÞ; ð4Þ

where R is the asymptotic AdS5 radius. The 1RCBH
background is the solution to the equations of motion of
the EMD action in Eq. (3) and it is described by

ds2ð5Þ ¼ e2AðzÞð−hðzÞdt2 þ dx⃗2ð3ÞÞ þ
e2BðzÞ

hðzÞ
R4

z4
dz2; ð5Þ

where
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AðzÞ ¼ ln

�
R
z

�
þ 1

6
ln

�
1þQ2z2

R4

�
;

BðzÞ ¼ − ln

�
R
z

�
−
1

3
ln

�
1þQ2z2

R4

�
;

hðzÞ ¼ 1 −
M2z4

R6ð1þ Q2z2

R4 Þ
;

ϕðzÞ ¼ −
ffiffiffi
2

3

r
ln

�
1þQ2z2

R4

�
;

ΦðzÞ ¼ MQz2h

R4ð1þ Q2z2h
R4 Þ

−
MQz2

R4ð1þ Q2z2

R4 Þ
; ð6Þ

in whichΦðzÞ is the electric potential given by the temporal
component of the gauge field and it is chosen such that it is
zero on the horizon and regular on the boundary [43,44].
Note that we are working in the Poincaré patch coordinates
by defining z ¼ R2=r such that z is the radial bulk
coordinate and the boundary lies at z → 0. The black hole
mass is denoted byM whileQ denotes its charge. By using
the fact that hðzhÞ ¼ 0, one can obtain a relation for the
mass which then gives us the following expression for the
blackening factor:

hðzÞ ¼ 1 −
�
z
zh

�
4
�
1þ ðQzh

R2 Þ2
1þ ðQz

R2Þ2
�
: ð7Þ

The location of the black brane horizon, zh, could be
expressed in terms of M and Q as

zh ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 4M2R2

p
2M2

s
: ð8Þ

B. Thermodynamics

The field theory dual to the geometry background
discussed in the last subsection is characterized by the
temperature, T, and the chemical potential, μ. Following
the usual recipe for obtaining the temperature, i.e., Wick
rotating the temporal coordinate of the metric, performing a
Taylor expansion of the metric coefficients near the horizon
and imposing the periodicity condition, we obtain the
Hawking temperature as

T ¼ 1

4πR2

���eAðzhÞ−BðzhÞh0ðzhÞz2h���; ð9Þ

hence

T ¼ 1

2πzh

 
2þ ðQzh

R2 Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQzh

R2 Þ2
q

!
; ð10Þ

where the prime symbol in Eq. (9) denotes the derivative
with respect to the z coordinate. The chemical potential is
given by

μ ¼ 1

R
lim
z→0

ΦðzÞ; ð11Þ

therefore

μ ¼ Q

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðQzh

R2 Þ2
q : ð12Þ

By using Eqs. (10) and (12) we obtain the following useful
non-negative dimensionless quantity:

Qzh
R2

¼
ffiffiffi
2

p

λ
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
Þ s:t: λ≡

�
μ=T

π=
ffiffiffi
2

p
�
: ð13Þ

For our future use, we rewrite temperature in terms of the
dimensionless quantity Qzh=R2 as

T ¼ T̂

�
1þ ξ

2ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
�
; ð14Þ

where we have defined T̂ ≡ 1=πzh and ξ≡Q2z2h=R
4. In

order to see which sign of Eq. (13) relates to a thermo-
dynamically stable phase, one needs to obtain the entropy
and charge density in terms of μ=T first. One can show
that the entropy density, s, and Uð1Þ charge density, ρ, are
given by

s ¼ R3

4Gð5Þ
N z3h

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
; ρ ¼ QR

8πGð5Þ
N z2h

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
: ð15Þ

Now suppose that the thermodynamic potential of a system
is given by Φðx1;…; xrÞ depending on some set of vari-
ables fx1;…; xrg. Then for a stable phase, the Hessian
matrix, H, of the associated potential defined by

Hij ≡
� ∂2Φ
∂xi∂xj

�
; ð16Þ

should be positive-definite.1 Here we can choose the
free energy density f which satisfies −df ¼ sdT þ ρdμ
as our relevant thermodynamic potential. Hence by
evaluating its Hessian matrix which then reduces to
H ¼ ½∂ðs; ρÞ=∂ðT; μÞ�, we find out that if we choose the
minus sign in Eq. (13), both principal minors ofH become
strictly positive for μ=T ∈ ½0; π= ffiffiffi

2
p � or λ ∈ ½0; 1�.

1Note that the converse does not necessarily imply the global
stability since the positive-definiteness of a Hessian matrix for a
convex function indicates a local minima; therefore, the stability
should be considered a local one instead.
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Therefore H is positive-definite and the local thermody-
namic stability of the field theory dual to 1RCBH back-
ground is guaranteed. Note that since λ ∈ ½0; 1� then the
parameter Qzh=R2 ∈ ½0; ffiffiffi

2
p �; therefore ξ, would be a

number of the one order of magnitude.
In order to classify the phase transitions in this model, we

observe that for the second derivatives of the free energy
density with respect to T and μ we have

−
�∂2f
∂T2

�
μ

¼
�∂s
∂T
�

μ

≡ Cμ

T
and

−
�∂2f
∂μ2
�

T
¼
�∂ρ
∂μ
�

T
≡ χ2; ð17Þ

where Cμ is the specific heat at constant chemical potential
and χ2 is the second-order R-charge susceptibility. One
could see that both diverge at μ=T ¼ π=

ffiffiffi
2

p
and thermo-

dynamic quantities of the 1RCBH background will end at
the point μc=Tc ¼ π=

ffiffiffi
2

p
or equivalently at Qzh=R2 ¼ ffiffiffi

2
p

.
In other words, the phase structure of the field theory dual
to this background will exhibit a second-order phase
transition and the critical point is characterized by the
ratio μ=T as expected, since the underlying theory is
conformal.

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY

Suppose that a CFT exists on a Cauchy surface C of a
d-dimensional Lorentzian manifold Bd. We define region A
to be a subset of C such that A ∪ Ac ¼ C where Ac is its
complement. This region has a boundary ∂A (the entan-
gling surface) which is a codimension 2 hypersurface in Bd.
We then assume that the Hilbert spaceH of the CFT can be
factorized into HA ⊗ HAc and we let ρ be a density
operator (matrix) associated to a state jψi ∈ H. Now by
defining the reduced density operator for region A to be
ρA ≡ trAcðρÞ where trAc denotes the partial trace over Ac,
one can measure the entanglement between regions A and
Ac using the von Neumann entropy2 which is a nonlocal
quantity defined by

SðAÞ≡ −trðρA log ρAÞ: ð18Þ

In the framework of the AdS=CFT correspondence where
we have a d-dimensional CFT dual to a (dþ 1)-dimen-
sional asymptotically AdS spacetime Mdþ1, one can use
the holographic entanglement entropy (Ryu-Takayanagi
and Hubeny-Rangamani-Takayanagi prescriptions) which
is given by [11,12]

SðAÞ ¼ AðγAÞ
4Gðdþ1Þ

N

; ð19Þ

where γA is a codimension 2 extremal surface inMdþ1 with

the area AðγAÞ such that ∂γA ¼ ∂A and Gðdþ1Þ
N is the

(dþ 1)-dimensional Newton constant. This recipe has
already passed the tests one expects for the entanglement
entropy. Also the quantities derived from this relation such
as holographic mutual information satisfy all the necessary
conditions—as well as an extra feature called monogamy—
required for any entanglement measure in the context of
quantum information theory [13,14,30,48].

A. Setup

In the holographic set up, we choose our boundary
system to be an infinite rectangular strip of characteristic
length l (Fig. 1) and we parametrize the boundary coor-
dinate x in terms of the bulk coordinate z. We specify this
strip by

xð1Þ ≡ x ∈
�
−
l
2
;
l
2

�
; xðiÞ ∈

�
−
L
2
;
L
2

�
; i ¼ 2; 3;

ð20Þ
such that L → ∞.

B. Area and characteristic length

For a general bulk manifold Mdþ1 with the metric gμν,
the extremal surface γA is a codimension 2 hypersurface in
Mdþ1 whose area functional is given by

AðγAÞ ¼
Z

dd−1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgMNÞ

p
; ð21Þ

where gMN is the induced metric on γA. For the geometric
background of Eq. (6) on the constant time slice, we
parametrize x≡ xðzÞ and obtain the area as

A ¼ 2L2

Z
zc

0

dz e3AðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðzÞ2 þ R4

z4hðzÞ e
2ðBðzÞ−AðzÞÞ

s
:

ð22Þ

FIG. 1. A simplified sketch of a strip A on the Cauchy surface C
with characteristic length l which has a unique minimal surface
γA in the bulk anchored on its boundary.

2By assuming that this measure is mathematically well defined
in QFT.
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Since the integrand of Eq. (22) does not have an explicit dependence on x, if we construct its Hamiltonian we get the
following differential equation:

x0ðzÞ≡ dx
dz

¼ R2

z2
e3AðzcÞeBðzÞ−AðzÞffiffiffiffiffiffiffiffiffi

hðzÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e6AðzÞ − e6AðzcÞ

p ; ð23Þ

where z ¼ zc is the extrema of the minimal surface where z0ðxÞ ¼ 0. By substituting Eq. (23) in Eq. (22) we obtain

A ¼ 2L2R3

Z
zc

0

dz
z3c
z6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξð zzhÞ2
1þ ξðzczhÞ2

vuut �
1 −

�
z
zh

�
4
�

1þ ξ

1þ ξð zzhÞ2
��

−1
2

��
zc
z

�
6
�
1þ ξð zzhÞ2
1þ ξðzczhÞ2

�
− 1

�−1
2

; ð24Þ

where we have used the definition ξ≡ ðQzh=R2Þ2 which we introduced previously in Sec. II B. By integrating the
differential equation of Eq. (23) and imposing the boundary conditions xðzcÞ ¼ 0 and xð0Þ ¼ �l=2, we obtain the
following expression for the characteristic length:

l
2
¼
Z

zc

0

dz

�
1þ ξ

�
z
zh

�
2
�
−1
2

�
1 −

�
z
zh

�
4
�

1þ ξ

1þ ξð zzhÞ2
��

−1
2

��
zc
z

�
6
�
1þ ξð zzhÞ2
1þ ξðzczhÞ2

�
− 1

�−1
2

: ð25Þ

Since it is not easy to calculate this integral analytically, by the help of the generalized multinomial expansions given in the
Appendix A we show that Eq. (25) can be represented by the following series3:

l
2
¼ zc

X∞
k¼0

Xk
n¼0

X∞
m¼0

X∞
j¼0

GknmjFknmj

�
zc
zh

�
2ðkþnþmÞ

; ð26Þ

where

Gknmj ≡ Γðkþ 1
2
ÞΓðjþmþ 1

2
ÞΓð2þ 3jþ kþ nÞ

2πΓðnþ 1ÞΓðk − nþ 1ÞΓðjþ 1ÞΓð3þ 3jþ kþ nþmÞ ;

Fknmj ≡ ð−1Þkþnξk−nþmð1þ ξÞn
�
1þ ξ

�
zc
zh

�
2
�
−m

: ð27Þ

Note that in order to make use of the binomial expansions for negative powers, we made sure that the following relations are
satisfied for the whole range of ξ ∈ ½0; 2� and for zc between the boundary and the horizon:

ξðzczhÞ2
1þ ξðzczhÞ2

�
1 −

z2

zc2

�
< 1 and ξ

�
z
zh

�
2

− ð1þ ξÞ
�
z
zh

�
4

< 1: ð28Þ

These expansions can also be used to represent the area in Eq. (24) by

A ¼ 2L2R3

π

X∞
k¼0

Xk
n¼0

X∞
m¼0

X∞
j¼0

Γðkþ 1
2
ÞΓðjþmþ 1

2
Þ

Γðnþ 1ÞΓðk − nþ 1ÞΓðjþ 1ÞΓðmþ 1Þ

× ð−1Þkþnξk−nþmð1þ ξÞn
�
1þ ξ

�
zc
zh

�
2
�
−m−1

2

�
zc
zh

�
2m

×
Z

zc

0

dz

�
1þ ξ

�
z
zh

�
2
��

1 −
�
z
zc

�
2
�
m
z−3
�
z
zc

�
6j
�
z
zh

�
2ðkþnÞ

: ð29Þ

As one would expect in general, the area enclosed by the extremal surface is divergent due to its near boundary behavior.
Here one could show that the last integral (hence the area) remains finite if the condition kþ nþ 3j > 1 is satisfied. Hence

3This method of calculating the entanglement entropy and mutual information was initially used in [49–51].
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we need to isolate ðk ¼ n ¼ j ¼ 0Þ and ðk ¼ 1; n ¼ j ¼ 0Þ terms together and perform their sum over m to get the part of
the area in which the divergent term is contained. By doing so, we obtain

A0 ≡ L2R3

�
1

ϵ2
þ 3ξ

2z2h
−

1

z2c

�
1þ ξ

�
zc
zh

�
2
�3

2

	
; ð30Þ

where z ¼ ϵ, such that ϵ → 0, is the cutoff surface in the bulk geometry related to the UV regulator of the field theory. We
see that the divergent term in Eq. (30) has an area-law behavior which appears in the corresponding holographic
entanglement entropy as well. This result is indeed expected in a d-dimensional field theory side where the leading
divergence in the UV limit ϵ → 0 obeys an area law. For convenience, we will work with the finite part of the area
henceforth by subtracting the 1=ϵ2 term.4 It is given by

Afin ¼
L2R3

z2c

�
3ξ

2

�
zc
zh

�
2

−
�
1þ ξ

�
zc
zh

�
2
�3

2 þ 1þ ξ

3ξ

�
zc
zh

�
2
��

1þ ξ

�
zc
zh

�
2
�3

2

− 1

�	

þ L2R3

z2c

�X∞
k¼2

Xk
n¼0

X∞
m¼0

Λknm
Γðmþ 1

2
ÞΓðkþ n − 1Þ

Γðkþ nþmþ 1Þ
�
zc
zh

�
2ðkþnþmÞ

×

�
ðmþ 1Þ þ ðkþ n − 1Þ

�
1þ ξ

�
zc
zh

�
2
��	

þ L2R3

z2c

�X∞
k¼0

Xk
n¼0

X∞
m¼0

X∞
j¼1

Λknm
Γðmþ jþ 1

2
ÞΓðkþ nþ 3j − 1Þ

Γðjþ 1ÞΓðkþ nþmþ 3jþ 1Þ
�
zc
zh

�
2ðkþnþmÞ

×

�
ðmþ 1Þ þ ðkþ nþ 3j − 1Þ

�
1þ ξ

�
zc
zh

�
2
��	

; ð31Þ

where

Λknm ≡ ð−1ÞkþnΓðkþ 1
2
Þ

πΓðnþ 1ÞΓðk − nþ 1Þ ξ
k−nþmð1þ ξÞn

�
1þ ξ

�
zc
zh

�
2
�
−m−1

2

: ð32Þ

We should point out that although this result for the area
is lengthy and hard to work with, it gives us the vantage
point of investigating the behaviors of entanglement
entropy and mutual information near the critical point
analytically, which we will discuss in the forthcoming
sections.

IV. ENTANGLEMENT ENTROPY
AND THERMAL LIMITS

As one could observe in Eq. (31), the area of the
minimal surface would be characterized by its two
dimensionless parameters ξ and zc=zh. In this section
we investigate the holographic entanglement entropy with
respect to zc=zh which introduces two thermal limits,
while we leave its analysis with regard to the parameter ξ
which controls the critical behavior in Sec. VI. Now
given the ratio of the extremal surface location to the
horizon location, i.e., zc=zh, one could expect to see two

different cases for the area obtained in the previous
section (hence for the entanglement entropy) namely
when zc=zh ≪ 1 and when we have zc=zh ∼ 1. Note that
the former implies that the minimal surface is near the
AdS boundary while the latter indicates the case where a
minimal surface approaches the horizon while never
penetrating it. This is due to the fact that in a static
asymptotically AdS spacetime, the minimal surface does
not pass beyond the horizon of an existing black
hole [52].5 For the field theory side with the introduced
scale l, we can immediately translate the aforementioned
cases into the two inequivalent thermal limits; T̂l ≪ 1

and T̂l ≫ 1, respectively, where T̂ is defined in Eq. (14).
Hence one could identify the zc=zh ≪ 1 case with the
low temperature limit associated with the ground state
fluctuations of CFT while the zc=zh ∼ 1 case could be
identified with the high temperature limit in which the
entanglement of the thermal excitations is considered.

4Note that our preferred cutoff independent measure of
entanglement would be the mutual information instead, as we
will discuss in Sec. V.

5Wewill comment on this point in Appendix D where we show
how close a minimal surface could get to the horizon in the high
temperature limit.
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A. Low temperature case

One of the main concerns while dealing with the infinite
series representation of functions is the issue of their
convergence, since depending on their growth, they might
simply diverge as well. In the low temperature limit where
zc=zh ≪ 1, we observe that both infinite series in Eqs. (26)
and (31) converge. Therefore we can expand Eq. (26) at
fourth order in ðzc=zhÞ obtaining

l ¼ zc

�
a1 −

a1ξ
6

�
zc
zh

�
2

þ
�
a2ð1þ ξÞ

2
þ a3ξ2

24

��
zc
zh

�
4

þO
�
zc
zh

�
6
	
; ð33Þ

where we performed the sum over j and the numerical
constants a1, a2, and a3 are given in Appendix B. By
solving Eq. (33) perturbatively for zc at fourth order in
ðl=zhÞ we get

zc ¼
l
a1

�
1þ ξ

6a21

�
l
zh

�
2

þ 1

2a41

�
ξ2

6

�
1 −

a3
2a2

�

−
a2
a1

ð1þ ξÞ
��

l
zh

�
4

þO
�
l
zh

�
6
	
: ð34Þ

Now if we expand the finite part of the area in Eq. (31) to
the lowest orders, we obtain

Afinite
low ¼ L2R3

z2c

�
1þ ξ

2

�
zc
zh

�
4

− 1

�

þ L2R3

z2c

X∞
j¼1

Γðjþ 1
2
Þffiffiffi

π
p

Γðjþ 1Þð3j − 1Þ
�
1þ ξ

3

�
zc
zh

�
2

þ
�ð−4ξ2 þ 9ξþ 9Þj − 3ðξþ 1Þ

18jþ 6

��
zc
zh

�
4
�
:

ð35Þ

Finally, by performing the sum and substituting for zc from
Eq. (34) in the last expression and then using Eq. (19), we
obtain the entanglement entropy in the low temperature
limit as

Sfinite
low ¼ R3

4Gð5Þ
N

�
L
l

�
2
�
a21ðw1 − 1Þ þ ξ

3

�
l
zh

�
2

þ 1

2a21

�
ð1þ ξÞ

�
1 − w3 þ 3w2 þ

2ðw1 − 1Þa2
a1

�

þ ξ2

6

�
ðw1 − 1Þ

�
a3
a1

− 1

�
− 8w2

���
l
zh

�
4
	
;

ð36Þ
where the numerical constants w1, w2, and w3 are given in
Appendix B. We note that in the limit whereQ → 0, we get
zh ¼ 1=πT and the subleading terms become second and

fourth order in Tl as expected from the AdS-RN results. To
make this relation more transparent we define

c≡ a21ðw1 − 1Þ ≈ −0.32;

fðξÞ≡ ð1þ ξÞ
ð1 − w3 þ 3w2 þ 2ðw1 − 1Þða2a1ÞÞ

a21

þ ξ2

6

ððw1 − 1Þða3a1 − 1Þ − 8w2Þ
a21

≈ 1.13ð1þ ξÞ − 1.43

�
ξ2

6

�
: ð37Þ

The first term in Eq. (36) which we denoted by c in the
last expression, does not depend on temperature and it is the
contribution of the AdS boundary. Another consistency
check for our result would be the case in which we set the
chemical potential to zero. The metric of the 1RCBH
background then reduces to the AdS-Schwarzschild metric
and it is easy to see that we recover the result which was
obtained previously in the literature for this particular
background [49].
By using the reparametrization of Eq. (14) we can

rewrite the low temperature limit of entanglement
entropy as

Sfinite
low ¼ R3

4Gð5Þ
N

�
L
l

�
2
�
cþ ξ

3
ðπT̂lÞ2 þ 1

2
fðξÞðπT̂lÞ4

	
;

ð38Þ
where T̂ would be equal to T in the limit Q → 0. The
dependence on ξ, which would appear in the mutual
information as well, will be utilized later in order to
investigate its behavior near the critical point.

B. High temperature case

As we mentioned in the previous section, infinite series
do not always converge. Fortunately, for a given divergent
series some methods of summability or regularization are
available to apply in order to overcome the issue of
divergence. We observe that in the high temperature limit
where zc ∼ zh, the infinite sum of Eq. (31) does not
converge.6 By making use of the mentioned methods,
however, we can regularize this series and make it con-
vergent by rearranging it in such a way that we could
recover a term proportional to l.7 We have included the full
expression of the resulted regularized series in Appendix C.
Therefore we can take the limit zc → zh of Eq. (C1) and by
using Eq. (19), we obtain the entanglement entropy in the
high temperature regime as

6This divergence is due to the growth of series for zc ¼ zh and
it is not related to UV divergence.

7We will show in Appendix D that the sum for l in Eq. (26)
converges for zc ∼ zh after regularization.
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Sfinite
high ¼ R3

4Gð5Þ
N

�
L
zh

�
2
� ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p �

l
zh

�
þ ðS1 þ S2 þ S3Þ

	
; ð39Þ

where we defined

S1 ≡ 3ξ

2
−
1

3
−
11

5ξ
−

244

105ξ2
−

32

35ξ3
−

16

35ξ4
þ

ffiffiffiffiffiffiffiffiffiffiffi
ξþ 1

p �
−
64ξ

105
−
124

105
þ 26

21ξ
þ 214

105ξ2
þ 24

35ξ3
þ 16

35ξ4

�
;

S2 ≡
X∞
k¼2

Xk
n¼0

X∞
m¼0

Γðkþ 1
2
ÞΓðmþ 1

2
ÞΓðkþ nþ 2Þð−1Þkþnξk−nþmð1þ ξÞn−m−1

2

πΓðnþ 1ÞΓðk − nþ 1ÞΓðkþ nþmþ 3Þ

×

�
mþ 1

kþ n − 1

�
1þmþ 1

kþ n

�
2þ m

kþ nþ 1

��
þ ð1þ ξÞðmþ 1Þ

kþ n

�
2þ m

kþ nþ 1

�	
;

S3 ≡
X∞
k¼2

Xk
n¼0

X∞
m¼0

X∞
j¼1

Γðkþ 1
2
ÞΓðjþmþ 1

2
ÞΓðkþ nþ 3jþ 2Þ

πΓðnþ 1ÞΓðjþ 1ÞΓðk − nþ 1ÞΓðkþ nþmþ 3jþ 3Þ
× ð−1Þkþnξk−nþmð1þ ξÞn−m−1

2

×

�
mþ 1

kþ nþ 3j − 1

�
1þ mþ 1

kþ nþ 3j

�
2þ m

kþ nþ 3jþ 1

��

þ ð1þ ξÞðmþ 1Þ
kþ nþ 3j

�
2þ m

kþ nþ 3jþ 1

�	
: ð40Þ

By using Eq. (14) we obtain

Sfinite
high ¼ R3

4Gð5Þ
N

�
L
l

�
2

f
ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
ðπT̂lÞ3 þ S4ðπT̂lÞ2g; ð41Þ

where we defined S4 ≡ S1 þ S2 þ S3, for convenience.
We note that the finite leading temperature dependent term
[first term in Eq. (41)] scales with the volume of the
rectangular strip, L2l, while the subleading term is area
dependent. Hence the first term describes the thermal
entropy while the second term corresponds to the entan-
glement entropy between the strip region and its comple-
ment, and within this thermal limit the largest contribution
comes from the near horizon part of the minimal surface.

V. HOLOGRAPHIC MUTUAL INFORMATION

We mentioned in Sec. III B that the area of an extremal
surface has a divergent nature in general and it needs to be
regulated. This fact immediately implies the dependency of
the holographic entanglement entropy to the choice of a
cutoff hypersurface near the boundary. To avoid a regula-
tor-dependent measure of entanglement, one could borrow
another quantity from quantum information theory called
the mutual information which is a well-defined entangle-
ment measure in the context of QFT [28]. For given disjoint
regions A;B ⊂ C, the mutual information is defined by8

IðA∶BÞ ¼ SðAÞ þ SðBÞ − SðA ∪ BÞ; ð42Þ

where SðA ∪ BÞ denotes the entanglement entropy of the
composite region ρAB. First we note that this measure is
positive-semidefinite, since by using the subadditivity
inequality of the von Neumann entropy which states
that SðAÞ þ SðBÞ ≥ SðA ∪ BÞ, one can easily show that
IðA∶BÞ ≥ 0 where the equality is satisfied if the density
matrix of the composite region factorizes as ρAB ¼
ρA ⊗ ρB. It was also shown that mutual information
incorporates the total amount of correlations between
two subsystems or equivalently two separate spacetime
regions A and B [29]. More importantly, mutual informa-
tion is regulator independent since the UV divergences of
SðAÞ and SðBÞ are canceled by those in SðA ∪ BÞ.
In our setup, we let the two disjoint systems both be

infinite rectangular strips of size l which are separated by
the distance x on the boundary (Fig. 2). For the minimal
surface γA∪B, satisfying the condition ∂γA∪B ¼ ∂ðA ∪ BÞ,
we have two choices: when the separation distance is
large enough, one can deduce that the AðγA∪BÞ > AðγA ∪
γBÞ hence it follows that one would have SðA ∪ BÞ ¼
SðAÞ þ SðBÞ which then results in the vanishing mutual
information [30]. On the other hand when x is small
enough, AðγA∪BÞ would be equal to AðγxÞ plus the area
of the minimal surface corresponding to the entire union
of the regions A, B, and x. Therefore one can assume that
there would be a critical separation distance larger than
which the mutual information vanishes and the two
regions A and B become disentangled. This has been

8Simply, IðA∶BÞ quantifies the amount of common informa-
tion between A and B.

HAJAR EBRAHIM and GOL-MOHAMMAD NAFISI PHYS. REV. D 102, 106007 (2020)

106007-8



shown in [30]. For the nonvanishing mutual information
we have

IðA∶BÞ ¼ 2SðlÞ − SðxÞ − Sð2lþ xÞ: ð43Þ

We will use this relation to discuss the behavior of
mutual information in different thermal limits.

A. Mutual information and thermal limits

Since the mutual information is a linear combination of
entanglement entropies, one could similarly investigate its
behavior with respect to the thermal limits which we
discussed in Sec. IV. In addition to those cases, we are
able to compare the location of the horizon to the newly
introduced separation distance as well, which would be
specified by the dimensionless ratio x=zh. In the field
theory, it would mean that the parameter T̂x introduces an
extra temperature limit. Therefore we identify ðl=zh ≪
1Þ ∧ ðx=zh ≪ 1Þ or ðT̂l ≪ 1Þ ∧ ðT̂x ≪ 1Þ with the low
temperature case, whereas ðx=zh ≪ 1Þ ∧ ðl=zh ≫ 1Þ or
ðT̂x ≪ 1Þ ∧ ðT̂l ≫ 1Þ identifies the additional intermedi-
ate temperature limit and finally ðx=zh ≫ 1Þ ∧ ðl=zh ≫ 1Þ
or ðT̂x ≫ 1Þ ∧ ðT̂l ≫ 1Þ characterizes the high temper-
ature regime where T̂ is defined in Eq. (14).

1. Low temperature case

By using Eqs. (38) and (43), the mutual information in
the low temperature limit where zh ≫ l, x is given by

Ilow ¼ R3

4Gð5Þ
N

�
c

�
2

�
L
l

�
2

−
�

L
2lþ x

�
2

−
�
L
x

�
2
�
−
�
lþ x
zh

�
2
�
L
zh

�
2

fðξÞ
	
: ð44Þ

By Eq. (14) we obtain

Ilow ¼ R3

4Gð5Þ
N

�
c

�
2

�
L
l

�
2

−
�

L
2lþ x

�
2

−
�
L
x

�
2
�
−
�
lþ x
l

�
2
�
L
l

�
2

fðξÞðπT̂lÞ4
	
; ð45Þ

where the first terms in brackets match the result we expect for the T ¼ 0 case [50] and the finite temperature-dependent
term obeys the area-law behavior which has been proved to be true generally in [29].

2. Intermediate temperature case

In the intermediate temperature limit where x ≪ zh ≪ l, the mutual information is obtained by using Eqs. (39), (38), and
(43), and it is given by

Iint ¼
R3

4Gð5Þ
N

�
−c
�
L
x

�
2

þ
�
L
zh

�
2
�
S4 −

ξ

3

�
−
�
x
zh

��
L
zh

�
2 ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p

−
1

2

�
x
zh

�
2
�
L
zh

�
2

fðξÞ
	
; ð46Þ

where S4 ≡ S1 þ S2 þ S3. As one can see, the mutual information in this limit does not depend on the characteristic length
of the system. By using Eq. (14) we obtain

Iint ¼
R3L2

4Gð5Þ
N

ðπT̂Þ2
�
−

c

ðπT̂xÞ2 þ
�
S4 −

ξ

3

�
− ðπT̂xÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
−
1

2
fðξÞðπT̂xÞ2

	
: ð47Þ

One could also go further and investigate the case where two strips touch each other, i.e., when x ∼ 0. Hence if we take the
x → 0 limit of Eq. (47) we obtain

FIG. 2. A naive sketch of the case where two disjoint strips A
and B are separated by the distance xwith the choices for minimal
surfaces. The union of brown curves represents the choice of
minimal surface for A ∪ B when the separation distance is small
enough.
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lim
x→0

Iint ¼
R3

4Gð5Þ
N

�
−c
�
L
x

�
2

þ
�
S4 −

ξ

3

�
ðπT̂LÞ2

	
; ð48Þ

by keeping in mind that in all of the above expressions, c is
a numerical coefficient and fðξÞ depends only on ξ where
both are defined in Eq. (37). We note that the leading
term in the last expression obeys an area-law divergence
with respect to the separation distance x, and the finite
subleading term scales with the area of strip, L2, times
temperature squared. This area law behavior corresponds to
the case where the volume-law thermodynamic entropy
contribution to the entanglement is absent and Eq. (48) is a
measure of pure quantum entanglement. This unique
behavior has been also observed for the different back-
grounds in [50,51].

3. High temperature case

As we discussed earlier in this section, for x=zh ≫ 1 or
T̂x ≫ 1 we have a vanishing mutual information. It is due
to the fact that the minimal surface corresponding to the
region A ∪ B for large separation distances becomes the
disjoint union of the two strips minimal surfaces, hence
the mutual information identically vanishes.

VI. MUTUAL INFORMATION NEAR THE
CRITICAL POINT

In this section we study the critical phenomena of the
underlying field theory using the information-theoretic
measure we introduced in the previous section. Mutual
information, a scheme-independent quantity, is considered
to serve as an order parameter in the strongly coupled
plasma in our setup and we investigate whether the static
critical exponents of the theory could be read off from its
behavior near or at the critical point.9 We first begin by
recalling the notation we introduced in Sec. II B for the
critical point which was characterized by the dimensionless
quantity ξ¼2ð1−

ffiffiffiffiffiffiffiffiffiffiffi
1−λ2

p
Þ2=λ2 where λ≡ðμ=TÞ=ðπ= ffiffiffi

2
p Þ.

In the critical limit where ξ → 2 or λ → 1, we observe that
the mutual information, which depends on the parameters
of the theory, remains finite and its leading behavior at the
critical point, omitting the first constant term in brackets, is
proportional to

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
as

Ilow ∼ −
R3

4Gð5Þ
N

�
lþ x
l

�
2
�
L
l

�
2

ðπT̂lÞ4
��

3b1 þ
2

3
b2

�

− 4

�
b1 þ

2

3
b2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p �
; ð49Þ

where we have defined

b1 ≡
ð1 − w3 þ 3w2 þ 2ðw1 − 1Þða2a1ÞÞ

a21
and

b2 ≡
ððw1 − 1Þða3a1 − 1Þ − 8w2Þ

a21
; ð50Þ

such that fðξÞ ¼ b1ð1þ ξÞ þ b2ðξ2=6Þ. It is easy to see
that this result, i.e., being proportional to

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
, also

features in the intermediate regime. Therefore such behav-
ior is independent of the thermal limits and regardless of
whether we take the limit where the separation distance x
goes to zero or not, it is true for all the results we have
obtained so far for the mutual information in Sec. VA. So
we can conclude

Ilow ∼ Iint ∝
�
μ

T
−
μc
Tc

�
1=2

: ð51Þ

By comparing Eq. (51) to the expected power-law behavior
at the critical point �

μ

T
−
μc
Tc

�
1=δ

; ð52Þ

analogous to the power-law behavior of the critical iso-
therm evaluated at the critical temperature, one may
conclude that δ ¼ 2.10 Hence by considering the mutual
information as an order parameter, we were able to obtain
one of the independent critical exponents of the underlying
theory.
In order to obtain the other remaining independent

exponent—by following the thermodynamic analogy and
the same discussions in the beginning of this section—we
can use the slope of mutual information near the critical
point for this purpose. We note that although the mutual
information is finite there, we see that its derivative with
respect to λ will tend to infinity as we approach the critical
point. For the slope of mutual information in any thermal
limit one could write dI=dλ ¼ ðdI=dξÞðdξ=dλÞ where

dξ
dλ

¼ 4ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p
Þ2

λ3
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2

p : ð53Þ

Therefore at the critical point, one could easily see that
dξ=dλ behaves as ð1 − λ2Þ−1=2 hence it diverges. The only
remaining fact that needs to be checked is whether dI=dξ is
finite or it tends to zero at the critical point. By using
Eqs. (44) and (46) we obtain

dIlow
dξ

¼ −
R3L2

4Gð5Þ
N

ðlþ xÞ2
z4h

�
b1 þ

ξ

3
b2

�
; ð54Þ

9The role of entanglement entropy as a probe of phase
transitions in field theories with holographic dual was pointed
out previously in [34,53,54].

10This result is similar to the critical exponent calculated for
this theory using the thermodynamic quantity, charge density.

HAJAR EBRAHIM and GOL-MOHAMMAD NAFISI PHYS. REV. D 102, 106007 (2020)

106007-10



and

dIint
dξ

¼ R3L2

4Gð5Þ
N

�
1

z2h

�
dS4

dξ
−
1

3

�
−

x
2z3h

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p

−
x2

2z4ha
2
1

�
b1 þ

ξ

3
b2

��
; ð55Þ

as well as

dIint
dξ

����
x→0

¼ R3L2

4Gð5Þ
N

�
1

z2h

�
dS4

dξ
−
1

3

��
; ð56Þ

where b1 and b2 are defined in Eq. (50). We can see that in
all cases, dI=dξ remains finite at the critical point ξ ¼ 2.
Therefore we reach the conclusion that the mutual infor-
mation diverges near the critical point with the power-law
behavior given by

�
μ

T
−
μc
Tc

�
−1=2 ≡

�
μ

T
−
μc
Tc

�
−γ
; ð57Þ

where γ ¼ 1=2 is the critical exponent of this theory
identical to the one obtained from the divergence of the
R-charge susceptibility defined in Eq. (17) near the critical
point.11 Finally, by using the following known scaling
relations for the static critical exponents

αþ βð1þ δÞ ¼ 2; αþ 2β þ γ ¼ 2; ð58Þ

we obtain β ¼ 1=2 and α ¼ 1=2.12

Remarkably, these exponents are identical to those
calculated previously for this model within the thermody-
namic framework [41,42]. The dynamic critical exponent
of this model has been also obtained via different quantities
in [45–47]. It is interesting to note that the same identical
values for these four static critical exponents have been also
obtained for completely different gravitational back-
grounds such as Born-Infeld AdS black holes and topo-
logical charged black holes in Horava-Lifshitz gravity
[55–57].

VII. SUMMARY

In this work we have argued that information-theoretic
measures like mutual information could also be used in
order to study the critical phenomena of the strongly
coupled field theories in the large-N limit. We based
our claim on the result of our analytic calculations for
the entanglement entropy and mutual information for the
strongly coupled plasma at finite temperature and chemical
potential with a critical point using the holographic
methods. It is known, as we have also observed here, that
despite the volume-law behavior of entanglement entropy
in the high temperature limit, mutual information scales
with the area of the system; therefore, it has the upper hand
in capturing the full quantum entanglement structure of the
field theories. Based on this observation, we analyzed the
critical behavior of the underlying plasma using our
analytical results for the mutual information in various
thermal limits and we found out that although it was
constant at the critical point with the exponent δ−1 ¼ 1=2, it
had a power-law divergent slope with the exponent γ ¼ 1=2
and therefore we obtained

ðα; β; γ; δÞ ¼
�
1

2
;
1

2
;
1

2
; 2

�
; ð59Þ

which is in exact agreement with the prior thermodynamics
results in the literature. Since entanglement entropy (hence
mutual information) has more advantages than the thermo-
dynamic entropy13 and it captures the critical phenomena as
well, our result suggests that it would be a proper candidate
for further investigations regarding the various physical
properties of the strongly coupled systems, specially in the
ongoing research program of understanding the rich phase
structure of hot QCD at finite density.
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APPENDIX A: MATHEMATICAL RELATIONS

In this Appendix we present some useful relations which
we used in our work.

1. Newton’s binomial and trinomial expansion

Newton’s generalized binomial expansion when jyj <
jxj is given by

11By assuming the correspondence between entanglement
entropy and its thermodynamic counterpart and using the same
arguments we made in the beginning of this section, we could
calculate the slope of entanglement entropy in Eqs. (38) and (41)
in order to obtain the exponent α instead. This is analogous to the
exponent of specific heat capacity at constant chemical potential,
Cμ, evaluated near the critical point. In doing so, we obtain α ¼
1=2 which is in full agreement with our results.

12We could use different names and notations for these critical
exponents as these labels are associated with the behavior of
quantities in the vicinity of the critical point, approached along
the first-order line except for the critical isotherm, while there is
no such first-order transition in this model and the phase diagram
is one dimensional. However, to avoid any confusion we would
rather use these notations instead.

13Although we should point out that the exact equivalence of
entanglement entropy with Bekenstein-Hawking entropy is not
clear enough as discussed in [58].
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ðxþ yÞr ¼
X∞
k¼0

�
r
k

�
xr−kyk;

ðxþ yÞ−r ¼
X∞
k¼0

ð−1Þk
�
rþ k − 1

k

�
x−r−kyk: ðA1Þ

Similarly the generalized trinomial expansion for jyþ zj <
jxj is given by

ðxþ yþ zÞr ¼
X∞
k¼0

Xk
j¼0

�
r
k

��
k
j

�
xr−kyk−jzj;

ðxþ yþ zÞ−r ¼
X∞
k¼0

Xk
j¼0

ð−1Þk
�
rþ k− 1

k

��
k
j

�
x−r−kyk−jzj;

ðA2Þ

where x; y; r ∈ R and r > 0. Note that for any real numbers
p and q we have�

p
q

�
¼ Γðpþ 1Þ

Γðqþ 1ÞΓðp − qþ 1Þ : ðA3Þ

2. Asymptote of polylogarithm

By analytic continuation, the polylogarithm function,
LisðzÞ, can be extended to jzj ≥ 1. ForReðsÞ > 0 and jzj >
1 its leading term is given by [59]

LisðzÞ ∼ −
½lnðzÞ�s
Γðsþ 1Þ : ðA4Þ

APPENDIX B: NUMERICAL CONSTANTS

Following is the list of all numerical constants defined
throughout the paper:

a1 ≡
X∞
j¼0

Γðjþ 1
2
Þffiffiffi

π
p

Γðjþ 1Þð2þ 3jÞ ¼
3
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3
Þ

Γð1
6
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6
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and

w1 ≡ 1ffiffiffi
π
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APPENDIX C: MINIMAL SURFACE AREA IN
THE HIGH TEMPERATURE LIMIT

The regularized area of Eq. (31) in the high temperature
limit is given by

Afinite
high ¼ L2R3l
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APPENDIX D: SUBLEADING CORRECTIONS IN
THE NEAR HORIZON LIMIT

In this Appendix we will investigate the convergence of
characteristic length and behavior of area for zc → zh. We
note that the large terms of the series in Eq. (26) for the
characteristic length scale l grow as14

3−mξmk−1=2ð1þ ξÞkj−3=2
�
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�
zc
zh

�
2
�
−m
�
zc
zh

�
2ð2kþmÞ

;

ðD1Þ

which diverges for zc ¼ zh. We can overcome this situation
by isolating the divergent term of Eq. (D1) from Eq. (26) so
that l converges. Hence the regularized l becomes

l
2
¼ zc

X∞
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X∞
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4
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where we made use of the following relations for Eq. (D1)
in the process of regularization

LisðzÞ ¼
X∞
k¼1

zk

ks
;

ζðpÞ ¼
X∞
j¼1

1

jp
; ðD3Þ

and the fact that the remaining summation over m in
Eq. (D1) can be performed. Note that in Eq. (D3), ζðpÞ is
the Riemann zeta function and LisðzÞ is the polylogarithm
function of order s. As a mathematical curiosity, one might
consider the appearance of the Riemann zeta function
and polylogarithm with rational order (or even with the
integer order)15 an interesting phenomena due to their direct
link to number theory.
Now since the minimal surface remains at a finite

distance from the horizon [52], we could safely assume
zc ¼ zhð1 − εÞ, where ε < 1. Then by the help of Eq. (A4),
i.e., expanding the polylogarithm in Eq. (D2) and then
solving the result for ε at leading order, we obtain

ε ¼ 1

2
ln ð1þ ξÞ − 3π3=2ð3þ 2ξÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ð1þ ξÞp
4ζð3

2
Þξ

×

�
σ1 þ

1

2
−
�
l
zh

��
; ðD4Þ

where we defined

14By approximating the series in the limit where all the free
indices are set to infinity.

15The case for s ∈ N in both ζðsÞ and LisðzÞ is the subject
of wide interest in the number theory literature. See for
example [60].
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Finally, we are ready to calculate the subleading corrections to the minimal surface area in the near horizon limit. Similarly,
we observe that the large terms of the series in Eq. (C1) for the area behave as

3−mξmð1þmÞð1þ ξÞkk−1=2j−5=2
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: ðD6Þ

Hence by following the same regularization procedure as we did for l by isolating this piece from Eq. (C1) and performing
its sum, together with the assumption zc ¼ zhð1 − εÞ, we expand the resulted expression at the first order in ε and by the
help of Eq. (D4) we obtain
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where

σ2 ≡
X∞
k¼2
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Note that the expression in the second line of Eq. (D7) is the desired subleading contribution to the area of the minimal
surface in the high temperature limit.
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