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Vilkovisky unique effective action in quantum gravity
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The divergent part of the one-loop Vilkovisky unique effective action for quantum Einstein gravity is
evaluated in the general parametrization of the quantum field, including the separated conformal factor. The
output of this calculation explicitly demonstrates the parametrization and conformal gauge independence of
the unique effective action with the configuration space metric chosen following Vilkovisky’s prescription.
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I. INTRODUCTION

The off-shell effective action in gauge theories depends
on the choice of the gauge fixing and the parametrization of
quantum fields. On the other hand, in the modified versions
of effective action proposed by Vilkovisky [1] and DeWitt
[2], there is no gauge or parametrization ambiguity. The
purpose of the present work is to evaluate the divergent part
of the one-loop Vilkovisky effective action for the quantum
version of Einstein gravity in a general parametrization of
the quantum field and explicitly verify the independence of
this construction on the parametrization.

The classical action of the theory of our interest has the
form

Stow) ==z [ Pw/IglR+20). (1)

where G = x?/(16x) is the (D-dimensional) Newton con-
stant and A is the cosmological constant. There is an
extensive amount of literature on the derivation and
analysis of one-loop and two-loop divergences in the
theory (1). The first calculations were performed in
Ref. [3] for gravity coupled with the minimal scalar field
and in Ref. [4] for gravity coupled to an electromagnetic
field. The calculation in the nonminimal gauge was
pioneered in Ref. [S]. The parametrization dependence
was explored in Refs. [6—8] and, in a more general form, in
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the more recent Ref. [9]. In what follows, we shall use some
technical developments of the latter work, which can be
also consulted for further references.

The unique effective action of Vilkovisky is independent
of the parametrization of quantum fields by construction.
On the other hand, this construction becomes complicated
in gauge theories, where one has to combine corrections
compensating gauge and parametrization ambiguities. In
this regard, a special case is the two-dimensional quantum
gravity. It was noted in Ref. [10] that, in this particular
example, the gauge and parametrization ambiguities mix in
such a way that the unique effective action turns out to
depend on the gauge fixing. The origin of this contradictory
result is that the unique effective action depends on the
choice of the metric in the configuration space, or the space
of the quantum fields, in the background field formalism, as
it was anticipated in the very first work [1]. In gravity, the
configuration-space metric has one arbitrary parameter a,
and it happens that in the D = 2 covariant formulation of
the metric-scalar theory (see, e.g., Refs. [11,12] for the
review) this parameter depends on the gauge fixing because
of the reduced number of the physical degrees of freedom
[10]. As a result, the metric in the configuration space
depends on the gauge-fixing parameters even if the bilinear
form of the action acquires the simplest minimal form. The
four-dimensional quantum gravity in the conformal para-
metrization has a seeming similarity with the mentioned
D = 2 case because the metric in the configuration space
also depends on a gauge parameter, namely, the conformal
gauge-fixing parameter A [6,9]. Thus, one could suspect
that some gauge or parametrization dependence in the off-
shell unique effective action may persist in this case, too.

Let us note that the Vilkovisky-DeWitt approach in
quantum gravity opens the way for formulating the exact
renormalization group flow for the cosmological and
Newton constants and for the full set of higher-derivative
terms which should be added to the Einstein-Hilbert action

Published by the American Physical Society
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in the framework of effective field theory [13] (see also
Refs. [14,15] for previous analysis of the renormalization
group based on the unique effective action in quantum
gravity). This makes the verification of the consistency of
this approach in D = 4 even more interesting.

The outline of the paper is as follows. Section II briefly
reviews the formalism of Vilkovisky’s effective action. The
main objective of this section is to make the paper self-
consistent and to fix the notations. In Sec. III, we formulate
the one-loop quantum gravity using the background field
method in a general nonconformal parametrization of quan-
tum field and a special minimal gauge. The metric in the
space of the fields, the Christoffel symbols, and the improved
bilinear form of the classical action are derived in Sec. IV. Itis
shown that the coefficients related to the parametrization
nonlinearity are compensated by this correction. The corre-
sponding one-loop divergences of the Vilkovisky effective
action are computed, in the minimal DeWitt gauge, in Sec. V.
In Sec. VI, the result is generalized to the most general,
conformal parametrization of the quantum metric. Finally, in
Sec. VII, we draw our conclusions.

In this paper, we adopt the condensed notations of
Refs. [16,17].

II. VILKOVISKY EFFECTIVE
ACTION: A SHORT REVIEW

Vilkovisky’s proposal for defining a parametrization-
independent effective action [1] is based on the following
observation: even though the classical action S(g) is a
scalar in the space M of fields ¢', the generating functional
of vertex functions (effective action) is not a scalar func-
tional of the corresponding mean fields. In the simplest,
one-loop approximation, the effective action depends on

&p &p,, which does not

transform as a tensor under freld redefinitions ¢’ = ¢'(¢").

To provide the scalar nature of the effective action,
Ref. [1] introduced an affine structure compatible with the
metric G;; in the space M. For given two close points @'
and ¢, there exists a unique geodesic curve x'(1) C M
with affine parameter 4 €0, 1] connecting them, x(0) =
@' and x i1 ) . Then, defining the two-point quantrty

o' (¢ p) =
@' see e.g., Refs [16 18]), the modified definition of the
effective action has the form

/ Dylu(e?) explilS(e?) + o' (0. 0T o)},
2)

where p(¢') is an invariant functional measure and the
comma denotes functional differentiation with respect to
¢'. The effective action I'(¢) constructed in this way is a
scalar under field reparametrizations because o' (@, ¢')
behaves as a vector with respect to ¢’ and as a scalar with
regard to ¢''.

the Hessian of the action, Sij

expil (¢

A qualitatively similar construction can be done for
gauge theories, to restore the off-shell gauge independence,
given that the effective actions calculated in different
gauges are connected by changes of variables (in general,
in the form of a canonical transformation [19-21]).
However, in this case, the prescription (2) cannot be used
directly since it is necessary to factor out the gauge group G
in the functional integral. Namely, one has to take into
account the gauge orbits and define an affine connection in
the configuration space M /G of physical fields. For the
sake of simplicity, we assume that the generators R!, of
gauge transformations are linearly independent and their
algebra is closed, R: jR’ R ;R = Fi,R), with the
structure functions F” ap DEINg 1ndependent of the fields.
Let the classical action be invariant under gauge trans-
formations 8¢’ = R! &%,

Sl‘Ra = 0, & = S,i‘ (3)
Given a metric G;; on M, one can define the projection
operator on M /G [1,22],

Pj- = 5;'- - RéN“ﬁRZij, (4)
where N* is the inverse of the metric on G,
N(l/)’ = RflGl/R;j (5)
Then, the projected metric is

Gt = PiGyP; = Gij — GyRINVRG;. (6)
The affine connection 7° f] on the physical configuration
space can then be obtained by requiring its compatibility
with the metric G[le ie., VkGiljL =0 (see, e.g.,
Refs. [23,24]). This yields [1]

Ty =T%+T}, (7)

which consists of the Christoffel symbol Fffj calculated with

the metric G;;,

1
Iy = 3 G"(Gij+ Gy,

-Giji1) (8)
and a nonlocal part T;‘j related to the gauge constraints on
the connection,

Tf] — —2G(l‘1RlaNaﬂD‘j)R§

+ G RN Ry (D, Ry)NT’REG ). 9)
The parentheses in the indices represent symmetrization in
the pair (i, ), and D; denotes the covariant derivative
calculated with the Christoffel connection l"f-‘j. The non-
locality of (9) is due to the fact that N4 is a differential
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operator and thus its inverse N% is formally a Green’s
function. In addition to that, this procedure provides the
measure y(¢) of the Faddeev-Popov quantization; see, e.g.,
Refs. [25,26]. The effective action (2) constructed using the
geodesic distance based on the connection 7° fJ is therefore
reparametrization invariant, gauge invariant, and gauge
independent. For this reason, this object is often called
unique effective action.!

Performing the loop expansion of the Vilkovisky effec-
tive action (2), one gets

C(p) = S(p) +TW(p) +T@(p) +---.  n=1, (10)

where the one-loop quantum contribution is given by [1]

_ i . . "
= 5 Trln G*(DyD;S — Thje1 — 4%Y opx’s) — iTr In M3,
(11)

As usual, in pure quantum gravity, we can use x as a loop
expansion parameter, instead of A. Here, y* is a gauge
condition introduced by the gauge-fixing action

1
SGr = _E)faya/;’)(ﬂ» (12)

Y,s is a nondegenerate weight function (the y“-space
metric), and Mj = ¥R} is the Faddeev-Popov ghost
matrix. Comparing (11) to the loop expansion of the
standard effective action, one notes that the second func-
tional derivative of the classical action has been replaced by
the second covariant variational derivative.

From the technical side, the computation of (11) is, in
general, a very complicated task because of the non-
localities of the term Tf‘j For this reason, most of the
evaluations found in the literature use some kind of DeWitt
gauge [30], for which

1% =-YPGyR), (13)

The following observation is in order. It is quite common in
the literature (see, e.g., Refs. [22,24,27]) to use the singular
version of (13), 15 = 0, also known as Landau-DeWitt
gauge. Such a gauge choice is convenient as it yields
Tf-‘j = 0. Thus, in theories whose field space M is flat, at
one-loop level, the traditional effective action evaluated in
the Landau-DeWitt gauge is equal to Vilkovisky’s one [22].
This gauge, however, is not so auspicious in gravity

! Another gauge- and parametrization-invariant effective action
was proposed by DeWitt [2]. Since both definitions coincide at
the one-loop level, we do not present this construction. We
remark, however, that for calculations in higher-loop orders it is
necessary to use the Vilkovisky-DeWitt formalism, as the
simplest form (2) may generate nonlocal divergences [27,28]
(see also Ref. [29]).

theories because the geometry of M is nontrivial
[22,27,29]. A remarkable exception is the one-loop diver-
gences related to the cosmological constant and Einstein-
Hilbert term in quantum general relativity. In fact, it turns
out that for the Vilkovisky’s choice of metric G;; in the
space of fields the Fffj—correction in Eq. (11) does not give
any new contribution to these terms; therefore, they can be
directly obtained by using the Landau-DeWitt gauge in the
context of the usual definition of the effective action [22].
As here we are interested in evaluating also the divergences
related to curvature-squared terms, for practical reasons, we
choose to use the nonsingular version of the DeWitt gauge
and deal with the nonlocalities in the connection.

The purpose of the present work is to evaluate the
divergent part of (11) for the quantum gravity based on the
general relativity. In this calculation, we follow the reduc-
tion method introduced in Ref. [17], which mainly consists
in making a power series expansion in the equations of
motion ¢; and applying the generalized Schwinger-DeWitt
technique. By using the DeWitt gauge (13) and the Ward
identities, it is possible to write (11) in the form [17]

= %TrlnI:I— iTrinN
- % (TrU, = Tr U,) — %Tr U3+ 0(3),  (14)
where N = Y %N, and N,z was defined in (5),
A = G*DyD;S - 1Y o) (15)

takes into account the nontrivial geometry of the space of
fields M, and

U, = N7R.(D;R})e;N*Y .5, (16)
U, = N (D;RE)er(H™") (DR )e;NY 5 (17)

are two nonlocal operators responsible for restoring the off-
shell gauge independence of the one-loop effective action.
In (17), H" is defined by the relation H-B'=-1 (of
course, the latin indices i, j, k... should be raised and
lowered with the metric G and its inverse). In the case of
our interest, the terms of orders higher than £ do not
contribute to the divergent part of the one-loop effective
action and therefore are not considered here.

It is worth noting that the latter feature is not true for
other models of quantum gravity. In fact, in the higher-
derivative fourth-order gravity, only linear terms in ¢;
contribute to the divergences [31,32], while in quantum
general relativity in higher dimensions, other terms are
necessary. For explicit expressions of the O(&*)-terms, see
Ref. [33]. Calculations of the unique effective action in
D # 4 gravity models can be found, e.g., in Refs. [24,
33-37]. Even though we are mainly interested in D =4
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results, for the sake of generality, we let the space-time
dimension D be arbitrary in our intermediate calculations.

III. FIELD PARAMETRIZATIONS AND BILINEAR
FORM OF THE ACTION

In the traditional background field method, the original
field g,,, is split into a sum of a classical background g, and
a quantum field 4, ie., g,, = g, +xh,. As in the
present work we are interested in evaluating the one-loop
divergences in a general parametrization of the quantum
field, instead of performing the usual linear shift, we shall
consider g, = f,,(gup- Pap)- Here, the indices are lowered
and raised with the external metric g, (and its inverse g"*),
and f depends on the quantum field ¢,, possibly in a
nonlinear way. Assuming that f has a series expansion, we
can define the most general (at one-loop order) para-
metrization of the quantum metric in the form [9]

.d/w = g;u/ + KA?'lﬁ)ﬂy(paﬂ + KZA?;’)‘Z(;¢1T¢[)(F + 0(K3)’ (18)

where A are tensor structures depending only on the
background metric and « is the loop-expansion parameter.
Through covariance and symmetry arguments, the coef-
ficient functions in (18) have the general tensor form

Al =118+ 1207 Gy (19)
A, = 73 AT AT A7,
Ay =5 93,005+ 5,0,55) + 140" G

14 T PO w )t T AP0
In these expressions,
5 = Liusn 4+ i) (21)
ap = 5 \Oadp T 030

and y; (i=1,...,6) are six arbitrary coefficients para-
metrizing the choice of the quantum variable. The restric-
tions y; #0 and y; + Dy, # 0 have to be imposed, to
provide that the change of coordinates from g, to ¢, is not
degenerate. Terms of order O(x*) in (18) contribute only at
the two- and higher-loop orders and hence are irrelevant
and will be omitted in what follows. The one-loop con-
tribution requires a functional integration of a quadratic
form in ¢,,, and hence it is evaluated taking x — 0
in Eq. (14).

Inserting expressions (19) and (20) in Eq. (18), we get

.dm/ = g;w + K(ylfﬁyu + 7/2¢g/w)
+ K2 (73¢W)¢ﬁ + 7/4gyu¢po'¢pa
+ 7/5¢¢;w + yﬁgﬂb¢2) + 0(K3)’ (22)

where ¢“¢,, = ¢ denotes the trace of the quantum metric.
Equation (22) represents a general parametrization of the

TABLE 1.  Values of the parameters in (22) for the covariant and
contravariant densitized parametrizations.

71 72 73 V4 Vs Y6
91" G 1 P 0 -p/2 0 p’/2
lg/|“g" -1 -q 1 q/2 q q’/2

quantum metric for one-loop calculations. Other choices of
quantum variables based on the expansions of |¢'|” g, and
|d|9g" (see, e.g., Refs. [7,8,38]) can be reduced to
particular cases of (22). The explicit values of y; for these
parametrizations are displayed in Table I. Let us note that it
is possible to construct a parametrization of the more
general type g, = ¢*"%(g,, + - - -), in which the conformal
factor o(x) of the metric is explicitly separated.
Calculations using the conformal parametrization can be
found, e.g., in Refs. [6,8,9]. We postpone the discussion on
this choice to Sec. VI.

The bilinear form of the action can be obtained by
expanding (1) in powers of ¢,, by means of (22). This
yields [9]

S(g;u/) = S(g/u/) + S(l) + S(2> +-y (23)

where
oL [
SV = E dx |g| lem/qs/w

~5 I D= 2IRE =+ g, 24)

1 \/ v,
S(2) = _2/ de |g|{¢#y{K;w.a/}(|:| _ 2A) + M;lt ap
+ ML\ pop + (11 V0 + BV, )}, (25)

and unnecessary superficial terms have been omitted. In the
last formula,

p=-3ln+ D=2y (26)

and the tensor objects are defined as
uv,af 1 2 suv,aff 1 2
K =3 ST —5[71 +2(D -2)y1r2
+ DD =23l . 27)

MWP — 2 Ruavh 2 b uas _ x_21 (¢“R + g R™)

11 X2
- E‘&MﬂR +7 7" g*R, (28)
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MY = 2 fPRA — (R + g R
+lra+(D=2)r4)o" R
+rs+(D=2)r6lg" g7 R
+2(73+Dys) 3P A+2(ys+ Dye) ¢ g’ A, (29)

with

x1 =71+ (D —4)r72,
X =71 +2(D-4)ri72+ (D-2)(D-4)y3. (30

It is worth noticing that all the dependences on the
parameters y3__¢ of the nonlinear part of the field splitting
(22) are encoded in the tensor M’Z””“ﬁ . In the above-given
formulas, and in the following ones, we may present
expressions in a compact form in which all algebraic
symmetries are implicit (for more details, see Ref. [9]).

Finally, from Eq. (23), it follows that the equations of
motion read

1 65 1 1
w —/|g|W Tk {71R’w _E[}’l + (D =2)y,]Rg"™
uw
= (1 + D)raAg"” + O(K)}' (31

Now, we have all basic elements to perform the desired
calculation.

IV. IMPROVED BILINEAR FORM
OF THE ACTION

General relativity and other metric theories of gravity are
gauge theories based on the diffeomorphism group G. The
configuration space M is the set of all spacetime metrics,
and the coset M /G is known as the space of spacetime
geometries. In quantum gravity, the invariant configuration-
space metric is defined, up to an arbitrary real parameter a,
by [39]

oo T sspioss
1
G/;w,a/} — 5 (6/,“1/,(1/} + ag’””g’“/}). (32)

The nondegeneracy of G**% is ensured by the condition
a # —1/D. Explicit calculations have shown that the
Vilkovisky effective action depends on the choice of a
[15,24,40]. The ambiguity owed to the parameter a can be
fixed by an additional prescription.

A differential operator is said to be minimal if its highest-
derivative term is given only by a power of the [] operator.
In quantum gravity models, the minimal operator almost
always has the form of G**[J" with the parameter a

unambiguously fixed by the choice of classical Lagrangian
and the parametrization of the quantum field. In Ref. [1], it
was proposed that a should be chosen correspondingly;
namely, the field-space metric should be the expression in
the highest-derivative term in the minimal version of the
bilinear part of the classical action. This prescription relies
on the assumption that all the geometrical objects under-
lying the framework of the unique effective action should
be determined from the classical action [1]. For the
quantum general relativity n =1 and in the standard
simplest parametrization, this condition fixes the value
a =—1/2. However, even in the minimal gauge, the
coefficient of the term ¢**¢* of the field-space metric
may be changed by modifying the parametrization of the
quantum metric, that is, by changing the coefficients y; in
(22) [see, for instance, Eq. (35) below]. One of the purposes
of this work is to check whether this change produces a
modification in the divergent part of the one-loop unique
effective action.

The field-space metric in terms of the variable ¢, can be
obtained by performing a change of variables in Eq. (32),
which gives

3 = [ @x/IgI6" P53 (). (33
where

G;w,a/} _ G/w.a/}(O) + KG;w,a/}(l) + O(KZ), (34)
(7% &tu,(lﬁ + C—lg;wga/}) ,
a=r,(2r, + D) +alyy + Dray)*,  (35)

G;,w,a/}(l) — glgﬂ(1¢yﬂ + 925//!1/,11/)’4)
+ o (guyd)a/} + ga[)’¢m/) + g4g,uyga/3¢’ (36)

with the coefficients

2
v
g1 = =711 + 21173, 9 = Zl [r1 + (D =4)y,] + 7175,
i
B==% 272+ a(yy + Dy2)] + var3
Y1Vs
+ (y1+ Dy2)[ya + alys + Dys)| + -
a
9% =7 [r1 4+ (D =4)y2] = riralra + alyy + Dyy))

+2[r176 + v2(rs + Dye) + aly1 + Dy2)(rs + Dye)].
(37)

Formula (35) can be rewritten using the definition of
Eq. 27),
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1
GuatO) — kel (14 20) 7, + DoV (38)

One can see that for a = —1/2 the background configu-
ration space metric reduces to the factor of the
d’Alembertian in Eq. (25). This agrees with the
Vilkovisky’s prescription [1] for fixing the ambiguity in
the one-parameter family of metrics, even for the general
parametrization (22).

The Christoffel symbol (8) associated with the metric
(34) has the form

aG/w.h
a¢aﬂ

1 aGﬂr,a/)’
e — (

aG/w,a/)’
=G AT - ) ’ (39)
27 Oy,

a¢}n’

where the inverse of the configuration-space metric (34) is
2(1 4 2a)
G v,q K_ya + vJaq|
vt = Bl (D =2)(1+ aD)(yy + Dpa)? "
+ O(x) (40)

and K7! w.ap 18 the inverse of (27),
Kiwl aff — h15ﬂv,aﬂ + h’Zg;wgaﬂv (41)
with
2 2 4
hi==. hy=—7—- . 42
Yt 7 Dt DID-2)(ri+Dr)? )

A straightforward calculation of (39) yields

e = k[c18hag” + co(Shg™ + Spag™)
+ 3P g, + a0 9P 9,0 + O(K?),  (43)

where the coefficients are

Y 1 Y
012—3’14—2}/—3, 4[71+(D 4)72]+_5
1
1 (1 + 2a)Dy} Y1V4 — Y273
= 1+2(D-2 - :
“ AD—2Xm+w»»{“+’( N7 =S rany | T3 T D)
1 (14 2a)rt Y176 — Y275
2 2 1
4y =— y1+2(D—4)y172+ (D—=2)(D—-4)y; — .
4 4@4WﬁmJl (D =Hnza + (D=2 =42 =" py | 2, 0,7 Dy

Using Egs. (31) and (43), the Christoffel correction term in the second covariant derivative D;D;S = S ;; —

k
I'};€, reads

l"ﬂvaﬁgpa|K 0= 4 (g;wRaﬁ +ga/}Ruu) _ ng/mRy/} + 5MuaﬂR g/wga/}R
D -4 (1+ Za)Dy 2D 1
_ M/u/,aﬂ KHvap A 1 R A S — — gab g , 44
> Tp 3 + 8(1 +aD) o2 pI" (44)
where M4 and x, , were defined in Egs. (29) and (30), respectively. We remark that the parameters y; g, which are

.....

related to the nonlinear terms in the parametrization (22), only occur in M5 ap , just as in (25). Because of this, the second
functional covariant derivative of the action (23) only depends on the parameters y; and y,,

2 2
_ DS 1 e
5¢ﬂv5¢aﬁ k=0 2

_ y%g""V”ﬁ + ]/%leyﬂ _

g"”g”’ﬁD + &

2 (g 9V 4 gV

% (g;wR(l[)’ + ga/)’R;,w) _ %&w,aﬂR + % gyl/ga[)’R

D (1+2a)Dy? 1 2D
— = gmappA TN spvap _ — gaf gy 7 A 4
D-2 T ) p7" )\ Bt p 3 (45)
where
dy =71 +2(D-2)yi72+(D-1)(D=2)y3.  dr=y7+(D=2)r17. (46)
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It is clear that the Christoffel symbol derived from the
metric (34) should suffice to compensate the dependence of
§ ;; on the nonlinearity of the field parametrization. In fact,
for k — 0, all the parameters y; ¢ only contribute to the
last term in the rhs of

88 5 60, %S ¢, S (47)
5g;¢u5.g:1[j 59;41/ 6glaﬁ 5¢/115¢p6 59/,41/591aﬁ 5¢/1‘: ’
which represents the nontensor nature of this

transformation.

V. ONE-LOOP DIVERGENCES OF VILKOVISKY
EFFECTIVE ACTION

Up to this point, we have considered the part of the
Vilkovisky effective action based on the Christoffel sym-
bols on the space M of field parametrization. However, it is
still necessary to introduce the gauge fixing for the diffeo-
morphism invariance and take into account the contribution
of the Faddeev-Popov ghosts as well the terms (16) and
(17) related to the gauge constraints on the affine
connection.

The standard general form of the gauge-fixing action in
quantum general relativity is

1
SGr :E/de |g|)(agaﬂ)(/3, (48)

where y,, is the background gauge condition. The use of a
linear gauge fixing~ is not a necessary condition to ensure
the invariance of the Vilkovisky effective action [22,27].
Nonetheless, as explained in Sec. II, the DeWitt gauge (13)
is crucial for deriving the expanded formula (14). In our
parametrization, it assumes the form

Xa = Gﬂy’hRﬂuﬁa¢/{f
= —11V,a = r2 +alyy + Dry)|[Vap + O(x),  (49)

where we used the explicit expression for the generators of
the gauge transformations R, , of the field ¢,,, presented
in the Appendix.

Comparing Eqgs. (49) and (25), it is easy to see that the
choice a = —1/2 provides the minimal form of the operator

(15),
. 5)&)
gﬁ 6¢(1/} k=0

’See Ref. [41] for a recent discussion on nonlinear gauges
within the framework of the background field method in the
standard definition of the effective action.

d_c D25 515
I 5¢/)05¢aﬂ 5¢/)o‘

(50)

Let us remark that another possible way of making
the operator H**% minimal is through the use of a speci-
fic parametrization, namely, y; = —Dy,. However, as
explained in Sec. III, this is not acceptable since it makes
the metric in the space of the quantum fields singular,
see Eq. (40), and the operator H in (50) undefined. Thus,
a = —1/2 is the sole reasonable choice. For this value of a,
the operator gets reduced to the standard form

H=—(10+10), (51)

where | = &, is the identity operator (21) on the space of
symmetric rank-2 tensors and

I=2R) - gﬂ”Raﬂ Do ZgaﬁR””
P3 v i DA 1
— 2 R+8|———-=R), (52
with
D—4
p]:1+M’
71
71 +2(D=2)y,
pr=—""
Y1+ Dy
D —2)(D —4)y3
ey 4 (D=2D= 45
71(r1 + Dy,)

Furthermore, with the gauge condition (49), the ghost
matrix reads

N _ ga/l GHv-po lej R/)a./)’
= 550+ (1+2a)V°V, + RS + O(x).  (53)

Notice that in the DeWitt gauge all the dependence on
the parametrization is canceled in the ghost operator and
that @ = —1/2 makes it also minimal. Hereafter, we choose
this value for a, such that both A and N assume mini-
mal forms.

The correction which is responsible to restore the gauge
invariance of the effective action is based on the nonlocal
operators U | and 02, defined in (16) and (17). These
operators depend on the two new vertices

(D:R})¢;

(Vl)ia = and (VZ)aﬂ = Rfl(DlRf)’)gj (54)

Particularizing the formulas above for the gravity theory
in the parametrization (22) and using the gauge generators
(A4) given in Appendix, after some algebra, we get
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(Vi)y

71 v
= 5(R’;V” + RyV”) -

2

LR + RV, + 11 (V,R™)

y v 1 v }/ 12 v
TRAY . =5 (n + Dr)g RV, +ZIR(5/;V A

~ 3l + (D =2)lg*(9,R) = 111 + (D = RV,

Dy, 5
—1-72(1) ) A&,V +

and

1
(VZ)aﬂ = RaﬂD + EgaﬂRD - ga,;R’”VﬁV,
+ (lea/})vi - (V(IR?j)vj + (VI;R;E)VA

1
- Raﬂ/}‘rRM— + R(/MR?)’ + 7RRaﬁ

2
DA
+= D—2 (gaﬂD + Raﬂ) + 0( ) (56)

We see that the dependence on the parameters y;
corresponding to the nonlinear part of the field sphttlng
(22) gets canceled in (V)*, while the vertex (V)4 is
parametrization independent automatically.

The operators U, and U, can be obtained by substituting
the two previous equations into the formulas (16) and (17),
together with the propagators

1 1
of — _gf — 4+ R
1
H,Lu/laﬁ Kﬂz}aﬁD+0<[ } ) (57)

Here, O([m]*) denotes a series of inessential terms of
higher background dimension k. Remember that, according
to Ref. [17], for a functional universal trace

A

TeCH 4V, -V, %, (58)
the background dimension (in mass units) is defined as the
dimension of the tensorial coefficient C*"#, and its
superficial degree of divergence is expressed by the relation
@ = D —2n + k. Thus, in four dimensions, only the traces
with background dimension 0, 1, 2, 3, and 4 contribute to
the UV divergences.

With all these ingredients in hand, it is possible to
evaluate the contribution of each term in (14), up to
background dimension O([m]*), to the effective action.
In the case of the operators H and N [respectively given by
Egs. (51) and (53)], this can be obtained from the functional
trace of the coefficient d, of the Schwinger-DeWitt
expansion [16]. On the other hand, the functional traces
of the nonlocal operators U 1> U%, and Uz can be evaluated

5I/Vll) _

Dy, + (D =2)y)]
2(D-2)

YAV, + O(x) (55)

[

using the table of universal functional traces within the
generalized Schwinger-DeWitt technique [17]. For exam-
ple, one can easily show that

TrUzz/detr[h (V)5 + (V23] -+ o(np),

D3
(59)

where h;, were defined in Eq. (42) and we used the
notations

<‘71)y = gﬂv(vl)/;y’

Skipping the algebra, the contributions of the terms in
(14) to the ﬁ—pole of the Vilkovisky unique effective
action is presented in Table II. It is important to recall that
only in D — 4 the displayed coefficients correspond to
one-loop divergences; nonetheless, our calculation in
arbitrary dimension shows that they do not depend on
the field parametrization even for D # 4. Moreover, one
can see that the parametrization dependence which
remained after the Christoffel correction was taken into
account is canceled in the functional trace of each operator
on its turn, as none of the coefficients depends on ¥ ,.

Since the object of our interest is the one-loop logarith-
mically divergent part of the Vilkovisky effective action, in
the framework of dimensional regularization, we can take
the limit D — 4 in the coefficient of the pole term, to obtain

D—4
(1) H D
NN=——— [ d

div (4”)2(1)_4)/ X |g|

53 61 25
x {ERﬁmﬂ ) R2, %R2+8AR+ 12A2} (60)
As usual, u is the renormalization parameter. Formula (60)
reproduces the results for the Vilkovisky effective action for
general relativity calculated in the standard, particular,
parametrization of the quantum variables in Ref. [17]
(the coefficients of the terms related to the cosmological
constant were calculated for the first time in Ref. [22]).
Moreover, it is straightforward to verify that, on the
classical mass shell, the divergences of Eq. (60) correctly
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TABLE II.

Contribution of each operator in (14) to the coefficients of each curvature invariant in the divergent (at D — 4) part of the

one-loop Vilkovisky effective action. Each invariant enters the effective action multiplied by the overall coefficient as in Eq. (60). The
final coefficients, which are the sum of the coefficients of columns 2-6, are presented in the last column.

Invariant iTrinH —iTrlnN —iTrU, -iTr U3 ITrU, M
2 D>-29D+480 15-D D>-33D+540
R/u/a/i 360 90 0 0 0 i
R2 D(D>-D+178) D=90 D+12 D+12 _3D-16 _ D3455D?—204D+360
12 360(D-2) 90 6 24 8(D-2) 360(D-2)
R? D3-D?+10D—6 _D+12 1 D+12 _ 3D-4 4D3-5D>+24
36(D-2) 36 6 48 8(D-2) 144(D=2)
AR D(D*+D+6) 0 D(D+6) D(D+4) _ D(D+4) D(2D>+D+12)
6(D-2) 6(D-2) 4(D-2) 2(D-2) 12(D-2)
2 D3(D+1 D3 _ D D3(D-1)
A 4(1()_2)2) 0 0 2(D-2)? (D-2)? 4(D-2)?

reduce to the coefficients of the usual on-shell effective

action [3,42],

P

(1) _ D
Il - |4
dlvlon—shell (477.')2(D _4)/ X |g|

x{E —58/\2}.

5
This is an expected result since the Vilkovisky correction
term is proportional to the equations of motion. On the
other hand, this result is known to be gauge-fixing and
parametrization independent [9].

It is interesting to compare the result for the unique
effective action (60) and the one-loop divergences of the
standard (usual) effective action in an arbitrary parametriza-
tion (22), derived in Ref. [9]. It turns out that the two
expressions coincide if the parameters satisfy the conditions

(61)

1o = 4516+ VI3 ~ 127, (62)
=1y | ot (14 22) 62357 (63
ro= =gz 150 +4n? + 4l + 4+l (64

In this case, the one-loop divergences of the conventional
effective action calculated in the minimal gauge coincide
with those of the Vilkovisky effective action (60). Curiously,
this result can be achieved only if the parametrization is
nonlinear. This can be readily seen from Eq. (63), which
implies y3 # 0. Let us note that the observation formulated
above can be seen as a parametrization-dependence counter-
part for the result of Ref. [43], where it was derived a gauge

|

GHv-ap(0)
GAB — <
r(y1 + Dy2)(1 + aD) g™

for which the one-loop divergences of the conventional
effective action (in the particular simplest parametrization)
reproduce those of the unique effective action. In this vein, it
is also worth pointing out that the A-dependent terms in (60)
can be obtained by means of the Landau-DeWitt gauge
within the usual definition of the effective action [22].
Nevertheless, the simple use of this particular singular gauge
in the standard effective action cannot give the other
divergent terms of the unique effective action for Einstein
gravity because the space of fields is not flat [22,27,29].

VI. CONFORMAL PARAMETRIZATION
OF THE METRIC

Let us now consider a more general parametrization of
the metric, which explicitly splits its conformal factor,
namely,

= e*g,, + K(r1Pu + 7209,

+ K2<y3¢;4p¢£ =+ }’49,”45/2;0 + y5¢¢/w + 7/6¢2g/w)
+ 0(x%)],

/
Guw

(65)

where g, is the background metric, ¢,, and ¢ are the
quantum fields, and y, ¢ and r are arbitrary parameters.
The one-loop divergences of the standard effective action
for Einstein gravity were evaluated in this parametrization
in Ref. [9].

It turns out that it is not possible to construct the
Vilkovisky effective action directly in this parametrization.
Treating the conformal factor ¢ as a new field increases the
total number of scalar modes. As a consequence, there is an
artificial conformal symmetry and related degeneracy,
making the transformation singular. For instance, the metric
in the configuration space is

) o).

r(y1 + Dy>)(1 4 aD)g"

2r2D(1 + aD) (66)
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where A,B,--- take the labels ¢, o, and GO
coincides w1th Eq. (38). The determlnant of the O(x°)-
term of this metric reads

|G*O) = {272D(1 4 aD) — r*(y; + Dy,)?
U 0 v,Q
x (1+aD)’g" g7 Gy} x |GO]. (67)

It is straightforward to verify that the term in curly
brackets vanishes, proving that the field-space metric is
degenerate. Therefore, it is not possible to evaluate the
Christoffel symbols. The problem originates from the fact
that the change of variables g, — (¢,,.0) is not a diffeo-
morphism.

The described difficulty can be resolved as follows. We
impose, from the beginning, the additional conformal
gauge fixing

o= (68)
with 4 being the gauge-fixing parameter. Expanding the

exponential in (65), one can see that, up to order k2, this
parametrization reduces to (22) via the substitutions

Y6 = Y6 + 2rdyy.
(69)

Yo > va+2rd,  ys > ys + 2y,

Then, all calculations that we carried out for (22) also apply
for the conformal parametrization (65).

An alternative approach is to split the field ¢,, in the
trace and traceless part, that is,

- 1
d);w = ¢;w + Bguzxd)' (70)

It is clear that g””gz’)m = 0. We now have a parametrization
in terms of two independent quantum fields: qb,w and ¢.
Applying (68) and (70) in (65), we get

Gop = Yap + K(Vlg;saﬁ + 720 9ap)
+ K2 (7/34_50:,0% + y4&pa(}pagaﬂ
+ 754)&(1/1 + }76¢2gu/)’) + 0(K3)’ (71)

where the new coefficients are

_ 71
== 2rA,
72 D+J’2+ r.

2y3
Y5 = F—FJ/s +2}/1r/1,

1 2
ﬁ[}% +D(y4 +7s) + D6

+2D(y; + Dy,)ri] +2r22%. (72)

Y6 =

Now, it is possible to define a nonsingular metric in the
space of the fields,’

Gubop — }/%S’w’aﬁ + K[é‘lgyaéﬁ/}b 4 é‘ZS”V,aﬁqj} + O(KZ)’
Ghob = Lo+ 0(),
G?* = 72D(1 + aD) + kl4p + O(K2). (73)

where &,; = &,; — £ ¢ gap is the identity operator in the

space of traceless symmetric rank-2 tensors, and the
coefficients read
$r = =2r1(r1 = 2r3),

D-4 ,_ _
b= TY%J’z + 2717,
{3 =272(1 +aD)(r3 + Dya) + 1175 — 1172(2 + aD).

D -4

{4 =72D(1 + aD) (Ti_/% + 476)- (74)
The inverse metric (G™!) 45 (A, B, - - = ¢,,,. ¢) is given by

» y]? _;w,(l/} 0
= (", +ow. @9

With these ingredients, we can proceed with the evalu-
ation of the Christoffel symbols, whose nonzero compo-
nents are

FZ;M ¢aﬁ é’l g[la6ﬂl’+0(’< )

27 (Bt s o)

(P ) rofe) (76

} b 4+ 0(k?),

For the second covariant derivative of the action, we have

3Here, to avoid any kind of ambiguity, we made use of a more
explicit notation for the indices.
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DS 1- 1 D-2 -
—_ = y% §P*NAVH — — §vaB] — REavh R + DA |6 |,
5¢yv6¢aﬂ k=0 2 4(1 + aD) 2
D? D-2 D -4
— S = ]/l}_/z (— vﬂvy + R”y> .
6¢;w5¢ k=0 2
DS ,[(D=2)(D-1) (D-4)(D-2) D?
=7 - R——A|. 77
5p5pl .y [ 2 8 1 ] 77

At this stage, it is clear that the dependence on the
nonlinear quantum field parametrization was compensated
by the Christoffel correction, just like in (45). In addition,
the use of the parametrization in terms of the traceless and
trace parts reveals that the improved bilinear operator can
be written as constant matrix times a differential operator
independent of y; and ¥,; thus, this dependence is trivial.

We point out that the conformal gauge fixing (68) does
not require Faddeev-Popov ghosts because the conformal
transformation has no derivatives [44]. Moreover, under the
diffeomorphism (A1), the field o transforms as
06 = —V,0&", and the terms in the ghost operator asso-
ciated with the generators R, = —V,o can be safely
ignored at one-loop level since they produce third-order
contributions in quantum field; as a consequence, we get
(53). Therefore, even in the conformal parametrization, the
final result matches the one presented in Eq. (60) once the
conformal factor is identified with the trace of ¢, .

VII. CONCLUSIONS

We performed the calculations of the one-loop diver-
gences of the Vilkovisky unique effective action in quan-
tum general relativity in an arbitrary, most general
parametrization of quantum metric, including the con-
formal parametrization and the corresponding gauge fixing.
Because of the similarity between the conformal para-
metrization and the two-dimensional quantum gravity, one
could suspect that the unique effective action may lose its
invariance and universality. We have shown that this does
not happen and the one-loop divergences are universal. To
achieve the positive result in the excessive conformal
parametrization, the conformal gauge should be fixed
before applying Vilkovisky’s formalism, to guarantee the
nondegeneracy of the field-space metric.

Finally, we fixed the dependence of the unique effective
action on the arbitrary parameter a of the term ¢** ¢ of the
configuration-space metric G*** by the prescription that
this metric is chosen as the metric contained in the highest-
derivative term of the bilinear form of the classical action in
the minimal gauge. This choice is in consonance with the
requirement that the metric in the space of the fields must
be determined from the classical action, as proposed in the
pioneer work [1]. We have shown that, although this term
changes under modified parametrization of the quantum

|

metric, the one-loop unique effective action does not
change. This confirms the consistency of the mentioned
additional requirement.
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APPENDIX: GENERATORS OF GAUGE
TRANSFORMATIONS

The gauge generators for the field ¢,, have been
evaluated in Ref. [9] up to the zeroth order in «.
Nonetheless, we need the expansion up to the next order.
The reason is that the terms (16) and (17) depend on the
covariant variational derivative of R, , with respect to ¢,
requiring the O(k)-approximation.

Consider the infinitesimal coordinate transformation

X X = x4 B (Al)

In the standard parametrization g,,, the generator reads
R;w,y<g/) = _(g;n'v:/ + g;/yv;t)

The generators of gauge transformation for the quantum
field ¢,, can be obtained through a vector change of
coordinates in the space of the field representations,

Ok
R ).
89;)5 po.y (g )

(A2)

Ry, (#) = (A3)

By using Egs. (22), (A2), and (A3), it is possible to show
that

0 1
Ruy(#) = Ry + kR, + O(K%).,  (A4)
where
(0) 1 2y,
RY = (g, V, 49, V) +—T2 4 V (A5
e 71(9’” 9ur Vi) 71(r1 + Dyy) I (A3)

and
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1
R/(w),y =
=+ r4¢<gm/v1/ + gl/]/vﬂ) + rSny¢vyv

with the coefficients

’

(rl - 1)(¢m/vy + ¢1/va) + rl(gm/(ﬁﬁ + gvy¢ft)vﬂ =+ r2.gﬂy¢/y1vﬂ + r3¢ﬂl/v}/ - (vy¢yy)

(A6)

2(2y273 — 117s)

ry = —
vi(r1 + Dy2)

o = 20113+ 4n(rars = 1i7s) = 21075 (ra + Dra) + 4rive

73 . 2?’%}’2 — 4(y273 = 7174)
r=-, r = 5
7 ri(y1 + Dr2)
Vs 1171
r4 == 72,
71

vi(r1 + Dr2)

The expressions (AS5) and (A6) are sufficient for the one-loop calculations reported in the main part of the paper.
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