
 

Vilkovisky unique effective action in quantum gravity
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The divergent part of the one-loop Vilkovisky unique effective action for quantum Einstein gravity is
evaluated in the general parametrization of the quantum field, including the separated conformal factor. The
output of this calculation explicitly demonstrates the parametrization and conformal gauge independence of
the unique effective action with the configuration space metric chosen following Vilkovisky’s prescription.
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I. INTRODUCTION

The off-shell effective action in gauge theories depends
on the choice of the gauge fixing and the parametrization of
quantum fields. On the other hand, in the modified versions
of effective action proposed by Vilkovisky [1] and DeWitt
[2], there is no gauge or parametrization ambiguity. The
purpose of the present work is to evaluate the divergent part
of the one-loop Vilkovisky effective action for the quantum
version of Einstein gravity in a general parametrization of
the quantum field and explicitly verify the independence of
this construction on the parametrization.
The classical action of the theory of our interest has the

form

SðgμνÞ ¼ −
1

κ2

Z
dDx

ffiffiffiffiffi
jgj

p
ðRþ 2ΛÞ; ð1Þ

where G ¼ κ2=ð16πÞ is the (D-dimensional) Newton con-
stant and Λ is the cosmological constant. There is an
extensive amount of literature on the derivation and
analysis of one-loop and two-loop divergences in the
theory (1). The first calculations were performed in
Ref. [3] for gravity coupled with the minimal scalar field
and in Ref. [4] for gravity coupled to an electromagnetic
field. The calculation in the nonminimal gauge was
pioneered in Ref. [5]. The parametrization dependence
was explored in Refs. [6–8] and, in a more general form, in

the more recent Ref. [9]. In what follows, we shall use some
technical developments of the latter work, which can be
also consulted for further references.
The unique effective action of Vilkovisky is independent

of the parametrization of quantum fields by construction.
On the other hand, this construction becomes complicated
in gauge theories, where one has to combine corrections
compensating gauge and parametrization ambiguities. In
this regard, a special case is the two-dimensional quantum
gravity. It was noted in Ref. [10] that, in this particular
example, the gauge and parametrization ambiguities mix in
such a way that the unique effective action turns out to
depend on the gauge fixing. The origin of this contradictory
result is that the unique effective action depends on the
choice of the metric in the configuration space, or the space
of the quantum fields, in the background field formalism, as
it was anticipated in the very first work [1]. In gravity, the
configuration-space metric has one arbitrary parameter a,
and it happens that in the D ¼ 2 covariant formulation of
the metric-scalar theory (see, e.g., Refs. [11,12] for the
review) this parameter depends on the gauge fixing because
of the reduced number of the physical degrees of freedom
[10]. As a result, the metric in the configuration space
depends on the gauge-fixing parameters even if the bilinear
form of the action acquires the simplest minimal form. The
four-dimensional quantum gravity in the conformal para-
metrization has a seeming similarity with the mentioned
D ¼ 2 case because the metric in the configuration space
also depends on a gauge parameter, namely, the conformal
gauge-fixing parameter λ [6,9]. Thus, one could suspect
that some gauge or parametrization dependence in the off-
shell unique effective action may persist in this case, too.
Let us note that the Vilkovisky-DeWitt approach in

quantum gravity opens the way for formulating the exact
renormalization group flow for the cosmological and
Newton constants and for the full set of higher-derivative
terms which should be added to the Einstein-Hilbert action
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in the framework of effective field theory [13] (see also
Refs. [14,15] for previous analysis of the renormalization
group based on the unique effective action in quantum
gravity). This makes the verification of the consistency of
this approach in D ¼ 4 even more interesting.
The outline of the paper is as follows. Section II briefly

reviews the formalism of Vilkovisky’s effective action. The
main objective of this section is to make the paper self-
consistent and to fix the notations. In Sec. III, we formulate
the one-loop quantum gravity using the background field
method in a general nonconformal parametrization of quan-
tum field and a special minimal gauge. The metric in the
space of the fields, the Christoffel symbols, and the improved
bilinear formof the classical action are derived in Sec. IV. It is
shown that the coefficients related to the parametrization
nonlinearity are compensated by this correction. The corre-
sponding one-loop divergences of the Vilkovisky effective
action are computed, in the minimal DeWitt gauge, in Sec. V.
In Sec. VI, the result is generalized to the most general,
conformal parametrization of the quantum metric. Finally, in
Sec. VII, we draw our conclusions.
In this paper, we adopt the condensed notations of

Refs. [16,17].

II. VILKOVISKY EFFECTIVE
ACTION: A SHORT REVIEW

Vilkovisky’s proposal for defining a parametrization-
independent effective action [1] is based on the following
observation: even though the classical action SðφÞ is a
scalar in the spaceM of fields φi, the generating functional
of vertex functions (effective action) is not a scalar func-
tional of the corresponding mean fields. In the simplest,
one-loop approximation, the effective action depends on
the Hessian of the action, S;ij ¼ δ2S

δφiδφj, which does not

transform as a tensor under field redefinitions φi ¼ φiðφ0jÞ.
To provide the scalar nature of the effective action,

Ref. [1] introduced an affine structure compatible with the
metric Gij in the space M. For given two close points φi

and φ0i, there exists a unique geodesic curve xiðλÞ ⊂ M
with affine parameter λ ∈ ½0; 1� connecting them, xið0Þ ¼
φi and xið1Þ ¼ φ0i. Then, defining the two-point quantity
σiðφ0;φÞ ¼ dxiðλÞ

dλ jλ¼1 (the tangent vector to the geodesic at
φ0i; see e.g., Refs. [16,18]), the modified definition of the
effective action has the form

exp iΓðφÞ ¼
Z

Dφ0μðφ0Þ expfi½Sðφ0Þ þ σiðφ;φ0ÞΓ;iðφÞ�g;

ð2Þ
where μðφ0Þ is an invariant functional measure and the
comma denotes functional differentiation with respect to
φi. The effective action ΓðφÞ constructed in this way is a
scalar under field reparametrizations because σiðφ;φ0Þ
behaves as a vector with respect to φi and as a scalar with
regard to φ0i.

A qualitatively similar construction can be done for
gauge theories, to restore the off-shell gauge independence,
given that the effective actions calculated in different
gauges are connected by changes of variables (in general,
in the form of a canonical transformation [19–21]).
However, in this case, the prescription (2) cannot be used
directly since it is necessary to factor out the gauge group G
in the functional integral. Namely, one has to take into
account the gauge orbits and define an affine connection in
the configuration space M=G of physical fields. For the
sake of simplicity, we assume that the generators Ri

α of
gauge transformations are linearly independent and their
algebra is closed, Ri

β;jR
j
α − Ri

α;jR
j
β ¼ Fγ

αβR
i
γ , with the

structure functions Fγ
αβ being independent of the fields.

Let the classical action be invariant under gauge trans-
formations δφi ¼ Ri

αξ
α,

εiRi
α ¼ 0; εi ≡ S;i: ð3Þ

Given a metric Gij on M, one can define the projection
operator on M=G [1,22],

Pi
j ¼ δij − Ri

αNαβRk
βGkj; ð4Þ

where Nαβ is the inverse of the metric on G,

Nαβ ¼ Ri
αGijR

j
β: ð5Þ

Then, the projected metric is

G⊥⊥
ij ≡ Pk

i GklPl
j ¼ Gij −GikRk

αNαβRl
βGlj: ð6Þ

The affine connection T k
ij on the physical configuration

space can then be obtained by requiring its compatibility
with the metric G⊥⊥

ij i.e., ∇kG⊥⊥
ij ¼ 0 (see, e.g.,

Refs. [23,24]). This yields [1]

T k
ij ¼ Γk

ij þ Tk
ij; ð7Þ

which consists of the Christoffel symbol Γk
ij calculated with

the metric Gij,

Γk
ij ¼

1

2
GklðGil;j þ Gjl;i −Gij;lÞ; ð8Þ

and a nonlocal part Tk
ij related to the gauge constraints on

the connection,

Tk
ij ¼ −2GðijlRl

αNαβDjjÞRk
β

þGðijlRl
αNαβRm

β ðDmRk
γÞNγδRn

δGnjjÞ: ð9Þ

The parentheses in the indices represent symmetrization in
the pair ði; jÞ, and Di denotes the covariant derivative
calculated with the Christoffel connection Γk

ij. The non-
locality of (9) is due to the fact that Nαβ is a differential
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operator and thus its inverse Nαβ is formally a Green’s
function. In addition to that, this procedure provides the
measure μðφÞ of the Faddeev-Popov quantization; see, e.g.,
Refs. [25,26]. The effective action (2) constructed using the
geodesic distance based on the connection T k

ij is therefore
reparametrization invariant, gauge invariant, and gauge
independent. For this reason, this object is often called
unique effective action.1

Performing the loop expansion of the Vilkovisky effec-
tive action (2), one gets

ΓðφÞ ¼ SðφÞ þ Γ̄ð1ÞðφÞ þ Γ̄ð2ÞðφÞ þ � � � ; ℏ ¼ 1; ð10Þ

where the one-loop quantum contribution is given by [1]

Γ̄ð1Þ ¼ i
2
Tr lnGikðDkDjS − Tl

kjεl − χα;kYαβχ
β
;jÞ − iTr lnMα

β:

ð11Þ

As usual, in pure quantum gravity, we can use κ as a loop
expansion parameter, instead of ℏ. Here, χα is a gauge
condition introduced by the gauge-fixing action

SGF ¼ −
1

2
χαYαβχ

β; ð12Þ

Yαβ is a nondegenerate weight function (the χα-space
metric), and Mα

β ¼ χα;iR
i
β is the Faddeev-Popov ghost

matrix. Comparing (11) to the loop expansion of the
standard effective action, one notes that the second func-
tional derivative of the classical action has been replaced by
the second covariant variational derivative.
From the technical side, the computation of (11) is, in

general, a very complicated task because of the non-
localities of the term Tk

ij. For this reason, most of the
evaluations found in the literature use some kind of DeWitt
gauge [30], for which

χα;i ¼ −YαβGijR
j
β: ð13Þ

The following observation is in order. It is quite common in
the literature (see, e.g., Refs. [22,24,27]) to use the singular
version of (13), χα;i ¼ 0, also known as Landau-DeWitt
gauge. Such a gauge choice is convenient as it yields
Tk
ij ¼ 0. Thus, in theories whose field space M is flat, at

one-loop level, the traditional effective action evaluated in
the Landau-DeWitt gauge is equal to Vilkovisky’s one [22].
This gauge, however, is not so auspicious in gravity

theories because the geometry of M is nontrivial
[22,27,29]. A remarkable exception is the one-loop diver-
gences related to the cosmological constant and Einstein-
Hilbert term in quantum general relativity. In fact, it turns
out that for the Vilkovisky’s choice of metric Gij in the
space of fields the Γk

ij-correction in Eq. (11) does not give
any new contribution to these terms; therefore, they can be
directly obtained by using the Landau-DeWitt gauge in the
context of the usual definition of the effective action [22].
As here we are interested in evaluating also the divergences
related to curvature-squared terms, for practical reasons, we
choose to use the nonsingular version of the DeWitt gauge
and deal with the nonlocalities in the connection.
The purpose of the present work is to evaluate the

divergent part of (11) for the quantum gravity based on the
general relativity. In this calculation, we follow the reduc-
tion method introduced in Ref. [17], which mainly consists
in making a power series expansion in the equations of
motion εi and applying the generalized Schwinger-DeWitt
technique. By using the DeWitt gauge (13) and the Ward
identities, it is possible to write (11) in the form [17]

Γ̄ð1Þ ¼ i
2
Tr ln Ĥ − iTr ln N̂

−
i
2
ðTr Û1 − Tr Û2Þ −

i
4
Tr Û2

1 þOðε3Þ; ð14Þ

where N̂ ¼ YαγNγβ and Nαβ was defined in (5),

Ĥ ¼ GikðDkDjS − χα;kYαβχ
β
;jÞ ð15Þ

takes into account the nontrivial geometry of the space of
fields M, and

Û1 ¼ NαγRi
γðDiR

j
δÞεjNδσYσβ; ð16Þ

Û2 ¼ NαγðDiRk
γÞεkðH−1ÞijðDjRl

δÞεlNδσYσβ ð17Þ

are two nonlocal operators responsible for restoring the off-
shell gauge independence of the one-loop effective action.
In (17), Ĥ−1 is defined by the relation Ĥ · Ĥ−1 ¼ −1̂ (of
course, the latin indices i; j; k… should be raised and
lowered with the metric Gij and its inverse). In the case of
our interest, the terms of orders higher than ε2 do not
contribute to the divergent part of the one-loop effective
action and therefore are not considered here.
It is worth noting that the latter feature is not true for

other models of quantum gravity. In fact, in the higher-
derivative fourth-order gravity, only linear terms in εi
contribute to the divergences [31,32], while in quantum
general relativity in higher dimensions, other terms are
necessary. For explicit expressions of the Oðε3Þ-terms, see
Ref. [33]. Calculations of the unique effective action in
D ≠ 4 gravity models can be found, e.g., in Refs. [24,
33–37]. Even though we are mainly interested in D ¼ 4

1Another gauge- and parametrization-invariant effective action
was proposed by DeWitt [2]. Since both definitions coincide at
the one-loop level, we do not present this construction. We
remark, however, that for calculations in higher-loop orders it is
necessary to use the Vilkovisky-DeWitt formalism, as the
simplest form (2) may generate nonlocal divergences [27,28]
(see also Ref. [29]).
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results, for the sake of generality, we let the space-time
dimension D be arbitrary in our intermediate calculations.

III. FIELD PARAMETRIZATIONS AND BILINEAR
FORM OF THE ACTION

In the traditional background field method, the original
field g0μν is split into a sum of a classical background gμν and
a quantum field hμν, i.e., g0μν ¼ gμν þ κhμν. As in the
present work we are interested in evaluating the one-loop
divergences in a general parametrization of the quantum
field, instead of performing the usual linear shift, we shall
consider g0μν ¼ fμνðgαβ;ϕαβÞ. Here, the indices are lowered
and raised with the external metric gμν (and its inverse gμν),
and f depends on the quantum field ϕμν possibly in a
nonlinear way. Assuming that f has a series expansion, we
can define the most general (at one-loop order) para-
metrization of the quantum metric in the form [9]

g0μν ¼ gμν þ κAαβ
ð1Þμνϕαβ þ κ2Aλτ;ρσ

ð2Þμνϕλτϕρσ þOðκ3Þ; ð18Þ

where A…
ðnÞμν are tensor structures depending only on the

background metric and κ is the loop-expansion parameter.
Through covariance and symmetry arguments, the coef-
ficient functions in (18) have the general tensor form

Aαβ
ð1Þμν ¼ γ1δ

αβ
μν þ γ2gαβgμν; ð19Þ

Aλτ;ρω
ð2Þμν ¼

γ3
2
gγδðδλτγðμδρωνÞδ þ δρωγðμδ

λτ
νÞδÞ þ γ4δ

λτ;ρωgμν

þ γ5
2
ðδλτμνgρω þ δρωμν gλτÞ þ γ6gλτgρωgμν: ð20Þ

In these expressions,

δμναβ ¼
1

2
ðδμαδνβ þ δμβδ

ν
αÞ ð21Þ

and γi (i ¼ 1;…; 6) are six arbitrary coefficients para-
metrizing the choice of the quantum variable. The restric-
tions γ1 ≠ 0 and γ1 þDγ2 ≠ 0 have to be imposed, to
provide that the change of coordinates from g0μν to ϕμν is not
degenerate. Terms of order Oðκ3Þ in (18) contribute only at
the two- and higher-loop orders and hence are irrelevant
and will be omitted in what follows. The one-loop con-
tribution requires a functional integration of a quadratic
form in ϕμν, and hence it is evaluated taking κ → 0
in Eq. (14).
Inserting expressions (19) and (20) in Eq. (18), we get

g0μν ¼ gμν þ κðγ1ϕμν þ γ2ϕgμνÞ
þ κ2ðγ3ϕμρϕ

ρ
ν þ γ4gμνϕρσϕ

ρσ

þ γ5ϕϕμν þ γ6gμνϕ2Þ þOðκ3Þ; ð22Þ
where gμνϕμν ≡ ϕ denotes the trace of the quantum metric.
Equation (22) represents a general parametrization of the

quantum metric for one-loop calculations. Other choices of
quantum variables based on the expansions of jg0jpg0μν and
jg0jqg0μν (see, e.g., Refs. [7,8,38]) can be reduced to
particular cases of (22). The explicit values of γi for these
parametrizations are displayed in Table I. Let us note that it
is possible to construct a parametrization of the more
general type g0μν ¼ e2κrσðgμν þ � � �Þ, in which the conformal
factor σðxÞ of the metric is explicitly separated.
Calculations using the conformal parametrization can be
found, e.g., in Refs. [6,8,9]. We postpone the discussion on
this choice to Sec. VI.
The bilinear form of the action can be obtained by

expanding (1) in powers of ϕμν by means of (22). This
yields [9]

Sðg0μνÞ ¼ SðgμνÞ þ Sð1Þ þ Sð2Þ þ � � � ; ð23Þ

where

Sð1Þ ¼ 1

κ

Z
dDx

ffiffiffiffiffi
jgj

p �
γ1Rμνϕμν

−
1

2
½γ1 þ ðD − 2Þγ2�Rϕ − ðγ1 þDÞγ2Λϕ

�
; ð24Þ

Sð2Þ ¼ −
1

2

Z
dDx

ffiffiffiffiffi
jgj

p
fϕμν½Kμν;αβð□ − 2ΛÞ þMμν;αβ

1

þMμν;αβ
2 �ϕαβ þ ðγ1∇ρϕ

ρ
μ þ β∇μϕÞ2g; ð25Þ

and unnecessary superficial terms have been omitted. In the
last formula,

β ¼ −
1

2
½γ1 þ ðD − 2Þγ2�; ð26Þ

and the tensor objects are defined as

Kμν;αβ ¼ 1

2

�
γ21δ

μν;αβ −
1

2
½γ21 þ 2ðD − 2Þγ1γ2

þDðD − 2Þγ22�gμνgαβ
�
; ð27Þ

Mμν;αβ
1 ¼ γ21R

μανβ þ γ21g
νβRμα −

x1
2
ðgμνRαβ þ gαβRμνÞ

−
γ21
2
δμν;αβRþ x2

4
gμνgαβR; ð28Þ

TABLE I. Values of the parameters in (22) for the covariant and
contravariant densitized parametrizations.

γ1 γ2 γ3 γ4 γ5 γ6

jg0jpg0μν 1 p 0 −p=2 0 p2=2
jg0jqg0μν −1 −q 1 q=2 q q2=2
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Mμν;αβ
2 ¼−2γ3gνβRμα−γ5ðgμνRαβþgαβRμνÞ

þ½γ3þðD−2Þγ4�δμν;αβR
þ½γ5þðD−2Þγ6�gμνgαβR
þ2ðγ3þDγ4Þδμν;αβΛþ2ðγ5þDγ6ÞgμνgαβΛ; ð29Þ

with

x1 ¼ γ21 þ ðD − 4Þγ1γ2;
x2 ¼ γ21 þ 2ðD − 4Þγ1γ2 þ ðD − 2ÞðD − 4Þγ22: ð30Þ

It is worth noticing that all the dependences on the
parameters γ3;…;6 of the nonlinear part of the field splitting
(22) are encoded in the tensor Mμν;αβ

2 . In the above-given
formulas, and in the following ones, we may present
expressions in a compact form in which all algebraic
symmetries are implicit (for more details, see Ref. [9]).
Finally, from Eq. (23), it follows that the equations of

motion read

εμν ¼ 1ffiffiffiffiffijgjp δS
δϕμν

¼ 1

κ

�
γ1Rμν −

1

2
½γ1 þ ðD − 2Þγ2�Rgμν

− ðγ1 þDÞγ2Λgμν þOðκÞ
�
: ð31Þ

Now, we have all basic elements to perform the desired
calculation.

IV. IMPROVED BILINEAR FORM
OF THE ACTION

General relativity and other metric theories of gravity are
gauge theories based on the diffeomorphism group G. The
configuration space M is the set of all spacetime metrics,
and the coset M=G is known as the space of spacetime
geometries. In quantum gravity, the invariant configuration-
space metric is defined, up to an arbitrary real parameter a,
by [39]

δs2 ¼
Z

dDx
ffiffiffiffiffiffi
jg0j

p
G0μν;αβδg0μνðxÞδg0αβðxÞ;

G0μν;αβ ¼ 1

2
ðδ0μν;αβ þ ag0μνg0αβÞ: ð32Þ

The nondegeneracy of G0μν;αβ is ensured by the condition
a ≠ −1=D. Explicit calculations have shown that the
Vilkovisky effective action depends on the choice of a
[15,24,40]. The ambiguity owed to the parameter a can be
fixed by an additional prescription.
A differential operator is said to be minimal if its highest-

derivative term is given only by a power of the □ operator.
In quantum gravity models, the minimal operator almost
always has the form of Gμν;αβ

□
n with the parameter a

unambiguously fixed by the choice of classical Lagrangian
and the parametrization of the quantum field. In Ref. [1], it
was proposed that a should be chosen correspondingly;
namely, the field-space metric should be the expression in
the highest-derivative term in the minimal version of the
bilinear part of the classical action. This prescription relies
on the assumption that all the geometrical objects under-
lying the framework of the unique effective action should
be determined from the classical action [1]. For the
quantum general relativity n ¼ 1 and in the standard
simplest parametrization, this condition fixes the value
a ¼ −1=2. However, even in the minimal gauge, the
coefficient of the term gμνgαβ of the field-space metric
may be changed by modifying the parametrization of the
quantum metric, that is, by changing the coefficients γi in
(22) [see, for instance, Eq. (35) below]. One of the purposes
of this work is to check whether this change produces a
modification in the divergent part of the one-loop unique
effective action.
The field-space metric in terms of the variable ϕμν can be

obtained by performing a change of variables in Eq. (32),
which gives

δs2 ¼
Z

dDx
ffiffiffiffiffi
jgj

p
Gμν;αβδϕμνðxÞδϕαβðxÞ; ð33Þ

where

Gμν;αβ ¼ Gμν;αβð0Þ þ κGμν;αβð1Þ þOðκ2Þ; ð34Þ

Gμν;αβð0Þ ¼ 1

2
ðγ21δμν;αβ þ āgμνgαβÞ;

ā≡ γ2ð2γ1 þDγ2Þ þ aðγ1 þDγ2Þ2; ð35Þ

Gμν;αβð1Þ ¼ g1gμαϕνβ þ g2δμν;αβϕ

þ g3ðgμνϕαβ þ gαβϕμνÞ þ g4gμνgαβϕ; ð36Þ

with the coefficients

g1 ¼ −γ31 þ 2γ1γ3; g2 ¼
γ21
4
½γ1 þ ðD − 4Þγ2� þ γ1γ5;

g3 ¼ −
γ21
2
½2γ2 þ aðγ1 þDγ2Þ� þ γ2γ3

þ ðγ1 þDγ2Þ½γ4 þ aðγ3 þDγ4Þ� þ
γ1γ5
2

;

g4 ¼
ā
4
½γ1 þ ðD − 4Þγ2� − γ1γ2½γ2 þ aðγ1 þDγ2Þ�

þ 2½γ1γ6 þ γ2ðγ5 þDγ6Þ þ aðγ1 þDγ2Þðγ5 þDγ6Þ�:
ð37Þ

Formula (35) can be rewritten using the definition of
Eq. (27),
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Gμν;αβð0Þ ¼ Kμν;αβ þ 1

4
ð1þ 2aÞðγ1 þDγ2Þ2gμνgαβ: ð38Þ

One can see that for a ¼ −1=2 the background configu-
ration space metric reduces to the factor of the
d’Alembertian in Eq. (25). This agrees with the
Vilkovisky’s prescription [1] for fixing the ambiguity in
the one-parameter family of metrics, even for the general
parametrization (22).
The Christoffel symbol (8) associated with the metric

(34) has the form

Γμν;αβ
ρσ ¼ 1

2
Gρσ;λτ

�∂Gλτ;αβ

∂ϕμν
þ ∂Gμν;λτ

∂ϕαβ
−
∂Gμν;αβ

∂ϕλτ

�
; ð39Þ

where the inverse of the configuration-space metric (34) is

Gμν;αβ ¼ K−1
μν;αβ þ

2ð1þ 2aÞ
ðD − 2Þð1þ aDÞðγ1 þDγ2Þ2

gμνgαβ

þOðκÞ ð40Þ

and K−1
μν;αβ is the inverse of (27),

K−1
μν;αβ ¼ h1δμν;αβ þ h2gμνgαβ; ð41Þ

with

h1¼
2

γ21
; h2¼−

2

Dγ21
−

4

DðD−2Þðγ1þDγ2Þ2
: ð42Þ

A straightforward calculation of (39) yields

Γμν;αβ
ρσ ¼ κ½c1δμαρσgνβ þ c2ðδμνρσgαβ þ δαβρσgμνÞ

þ c3δμν;αβgρσ þ c4gμνgαβgρσ� þOðκ2Þ; ð43Þ

where the coefficients are

c1 ¼ −γ1 þ 2
γ3
γ1

; c2 ¼
1

4
½γ1 þ ðD − 4Þγ2� þ

γ5
γ1

;

c3 ¼
1

2ðD − 2Þðγ1 þDγ2Þ
�
γ21 þ 2ðD − 2Þγ1γ2 −

ð1þ 2aÞDγ21
2ð1þ aDÞ

�
þ 2

γ1γ4 − γ2γ3
γ1ðγ1 þDγ2Þ

;

c4 ¼ −
1

4ðD − 2Þðγ1 þDγ2Þ
�
γ21 þ 2ðD − 4Þγ1γ2 þ ðD − 2ÞðD − 4Þγ22 −

ð1þ 2aÞγ21
ð1þ aDÞ

�
þ 2

γ1γ6 − γ2γ5
γ1ðγ1 þDγ2Þ

:

Using Eqs. (31) and (43), the Christoffel correction term in the second covariant derivative DiDjS ¼ S;ij − Γk
ijεk reads

Γμν;αβ
ρσ ερσjκ→0 ¼

x1
4
ðgμνRαβ þ gαβRμνÞ − γ21g

μαRνβ þ γ21
4
δμν;αβR −

x2
8
gμνgαβR

−Mμν;αβ
2 þD − 4

D − 2
Kμν;αβΛþ ð1þ 2aÞDγ21

8ð1þ aDÞ
�
Rþ 2D

D − 2
Λ
��

δμν;αβ −
1

D
gαβgμν

�
; ð44Þ

where Mμν;αβ
2 and x1;2 were defined in Eqs. (29) and (30), respectively. We remark that the parameters γ3;…;6, which are

related to the nonlinear terms in the parametrization (22), only occur in Mμν;αβ
2 , just as in (25). Because of this, the second

functional covariant derivative of the action (23) only depends on the parameters γ1 and γ2,

−
D2S

δϕμνδϕαβ

				
κ→0

¼ γ21
2
δμν;αβ□ −

d1
2
gμνgαβ□þ d2

2
ðgμν∇α∇β þ gαβ∇μ∇νÞ

− γ21g
μα∇νβ þ γ21R

μανβ −
x1
4
ðgμνRαβ þ gαβRμνÞ − γ21

4
δμν;αβRþ x2

8
gμνgαβR

−
D

D − 2
Kμν;αβΛþ ð1þ 2aÞDγ21

8ð1þ aDÞ
�
δμν;αβ −

1

D
gαβgμν

��
Rþ 2D

D − 2
Λ
�
; ð45Þ

where

d1 ¼ γ21 þ 2ðD − 2Þγ1γ2 þ ðD − 1ÞðD − 2Þγ22; d2 ¼ γ21 þ ðD − 2Þγ1γ2: ð46Þ
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It is clear that the Christoffel symbol derived from the
metric (34) should suffice to compensate the dependence of
S;ij on the nonlinearity of the field parametrization. In fact,
for κ → 0, all the parameters γ3;…;6 only contribute to the
last term in the rhs of

δ2S0

δg0μνδg0αβ
¼ δϕλτ

δg0μν

δϕρσ

δg0αβ

δ2S
δϕλτδϕρσ

þ δ2ϕλτ

δg0μνδg0αβ

δS
δϕλτ

; ð47Þ

which represents the nontensor nature of this
transformation.

V. ONE-LOOP DIVERGENCES OF VILKOVISKY
EFFECTIVE ACTION

Up to this point, we have considered the part of the
Vilkovisky effective action based on the Christoffel sym-
bols on the spaceM of field parametrization. However, it is
still necessary to introduce the gauge fixing for the diffeo-
morphism invariance and take into account the contribution
of the Faddeev-Popov ghosts as well the terms (16) and
(17) related to the gauge constraints on the affine
connection.
The standard general form of the gauge-fixing action in

quantum general relativity is

SGF ¼
1

2

Z
dDx

ffiffiffiffiffi
jgj

p
χαgαβχβ; ð48Þ

where χα is the background gauge condition. The use of a
linear gauge fixing2 is not a necessary condition to ensure
the invariance of the Vilkovisky effective action [22,27].
Nonetheless, as explained in Sec. II, the DeWitt gauge (13)
is crucial for deriving the expanded formula (14). In our
parametrization, it assumes the form

χα ¼ Gμν;λτRμν;αϕλτ

¼ −γ1∇ρϕ
ρ
α − ½γ2 þ aðγ1 þDγ2Þ�∇αϕþOðκÞ; ð49Þ

where we used the explicit expression for the generators of
the gauge transformations Rμν;α of the field ϕμν, presented
in the Appendix.
Comparing Eqs. (49) and (25), it is easy to see that the

choice a ¼ −1=2 provides the minimal form of the operator
(15),

Ĥ ¼ Gμν;ρσ

�
D2S

δϕρσδϕαβ
þ δχλ
δϕρσ

gλτ
δχτ
δϕαβ

�				
κ→0

: ð50Þ

Let us remark that another possible way of making
the operator Hμν;αβ minimal is through the use of a speci-
fic parametrization, namely, γ1 ¼ −Dγ2. However, as
explained in Sec. III, this is not acceptable since it makes
the metric in the space of the quantum fields singular,
see Eq. (40), and the operator Ĥ in (50) undefined. Thus,
a ¼ −1=2 is the sole reasonable choice. For this value of a,
the operator gets reduced to the standard form

Ĥ ¼ −ð1̂□þ Π̂Þ; ð51Þ

where 1̂ ¼ δμναβ is the identity operator (21) on the space of
symmetric rank-2 tensors and

Π̂ ¼ 2Rμ ν
:α:β −

p1

2
gμνRαβ −

p2

D − 2
gαβRμν

þ p3

2ðD − 2Þ g
μνgαβRþ δμναβ

�
DΛ
D − 2

−
1

2
R

�
; ð52Þ

with

p1 ¼ 1þ γ2ðD − 4Þ
γ1

;

p2 ¼
γ1 þ 2ðD − 2Þγ2

γ1 þDγ2
;

p3 ¼ p2 þ
ðD − 2ÞðD − 4Þγ22
γ1ðγ1 þDγ2Þ

:

Furthermore, with the gauge condition (49), the ghost
matrix reads

N̂ ¼ gαλGμν;ρσRμν;λRρσ;β

¼ δαβ□þ ð1þ 2aÞ∇α∇β þ Rα
β þOðκÞ: ð53Þ

Notice that in the DeWitt gauge all the dependence on
the parametrization is canceled in the ghost operator and
that a ¼ −1=2makes it also minimal. Hereafter, we choose
this value for a, such that both Ĥ and N̂ assume mini-
mal forms.
The correction which is responsible to restore the gauge

invariance of the effective action is based on the nonlocal
operators Û1 and Û2, defined in (16) and (17). These
operators depend on the two new vertices

ðV1Þiα ¼ ðDiR
j
αÞεj and ðV2Þαβ ¼ Ri

αðDiR
j
βÞεj: ð54Þ

Particularizing the formulas above for the gravity theory
in the parametrization (22) and using the gauge generators
(A4) given in Appendix, after some algebra, we get

2See Ref. [41] for a recent discussion on nonlinear gauges
within the framework of the background field method in the
standard definition of the effective action.
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ðV1Þμνγ ¼ γ1
2
ðRμ

γ∇ν þ Rν
γ∇μÞ − γ1

2
ðδμγRνλ þ δνγRμλÞ∇λ þ γ1ð∇γRμνÞ

þ γ1
2
Rμν∇γ −

1

2
ðγ1 þDγ2ÞgμνRλ

γ∇λ þ
γ1
4
Rðδμγ∇ν þ δνγ∇μÞ

−
1

2
½γ1 þ ðD − 2Þγ2�gμνð∇γRÞ −

1

4
½γ1 þ ðD − 4Þγ2�gμνR∇γ

þ Dγ1
2ðD − 2ÞΛðδ

μ
γ∇ν þ δνγ∇μÞ −D½γ1 þ ðD − 2Þγ2�

2ðD − 2Þ gμνΛ∇γ þOðκÞ ð55Þ

and

ðV2Þαβ ¼ Rαβ□þ 1

2
gαβR□ − gαβRλτ∇λ∇τ

þ ð∇λRαβÞ∇λ − ð∇αRλ
βÞ∇λ þ ð∇βRλ

αÞ∇λ

− RαλβτRλτ þ RαλRλ
β þ

1

2
RRαβ

þ DΛ
D − 2

ðgαβ□þ RαβÞ þOðκÞ: ð56Þ

We see that the dependence on the parameters γ3;…;6
corresponding to the nonlinear part of the field splitting
(22) gets canceled in ðV1Þμνγ , while the vertex ðV2Þαβ is
parametrization independent automatically.
The operators Û1 and Û2 can be obtained by substituting

the two previous equations into the formulas (16) and (17),
together with the propagators

Nαβ ¼ −gαβ
1

□
þ Rαβ 1

□
2
þOð½m�3Þ;

H−1
μν;αβ ¼ K−1

μν;αβ
1

□
þOð½m�2Þ: ð57Þ

Here, Oð½m�kÞ denotes a series of inessential terms of
higher background dimension k. Remember that, according
to Ref. [17], for a functional universal trace

TrĈμ1���μk∇μ1 � � �∇μk

1̂

□
n ; ð58Þ

the background dimension (in mass units) is defined as the
dimension of the tensorial coefficient Ĉμ1���μk , and its
superficial degree of divergence is expressed by the relation
ω ¼ D − 2nþ k. Thus, in four dimensions, only the traces
with background dimension 0, 1, 2, 3, and 4 contribute to
the UV divergences.
With all these ingredients in hand, it is possible to

evaluate the contribution of each term in (14), up to
background dimension Oð½m�4Þ, to the effective action.
In the case of the operators Ĥ and N̂ [respectively given by
Eqs. (51) and (53)], this can be obtained from the functional
trace of the coefficient â2 of the Schwinger-DeWitt
expansion [16]. On the other hand, the functional traces
of the nonlocal operators Û1, Û

2
1, and Û2 can be evaluated

using the table of universal functional traces within the
generalized Schwinger-DeWitt technique [17]. For exam-
ple, one can easily show that

Tr Û2 ¼
Z

dDx tr½h1ðV2
1Þαβ þ h2ðV̄2

1Þαβ�
1

□
3

				
x0→x

þOð½m�5Þ;

ð59Þ

where h1;2 were defined in Eq. (42) and we used the
notations

ðV2
1Þαβ ¼ gαγδμν;ρσðV1Þμνγ ðV1Þρσβ ; ðV̄1Þγ ¼ gμνðV1Þμνγ ;

ðV̄2
1Þαβ ¼ gαγðV̄1ÞγðV̄1Þβ:

Skipping the algebra, the contributions of the terms in
(14) to the 1

D−4-pole of the Vilkovisky unique effective
action is presented in Table II. It is important to recall that
only in D → 4 the displayed coefficients correspond to
one-loop divergences; nonetheless, our calculation in
arbitrary dimension shows that they do not depend on
the field parametrization even for D ≠ 4. Moreover, one
can see that the parametrization dependence which
remained after the Christoffel correction was taken into
account is canceled in the functional trace of each operator
on its turn, as none of the coefficients depends on γ1;2.
Since the object of our interest is the one-loop logarith-

mically divergent part of the Vilkovisky effective action, in
the framework of dimensional regularization, we can take
the limitD → 4 in the coefficient of the pole term, to obtain

Γ̄ð1Þ
div¼−

μD−4

ð4πÞ2ðD−4Þ
Z

dDx
ffiffiffiffiffi
jgj

p

×

�
53

45
R2
μναβ−

61

90
R2
μνþ

25

36
R2þ8ΛRþ12Λ2

�
: ð60Þ

As usual, μ is the renormalization parameter. Formula (60)
reproduces the results for the Vilkovisky effective action for
general relativity calculated in the standard, particular,
parametrization of the quantum variables in Ref. [17]
(the coefficients of the terms related to the cosmological
constant were calculated for the first time in Ref. [22]).
Moreover, it is straightforward to verify that, on the
classical mass shell, the divergences of Eq. (60) correctly
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reduce to the coefficients of the usual on-shell effective
action [3,42],

Γ̄ð1Þ
divjon−shell ¼ −

μD−4

ð4πÞ2ðD − 4Þ
Z

dDx
ffiffiffiffiffi
jgj

p

×

�
53

45
R2
μναβ −

58

5
Λ2

�
: ð61Þ

This is an expected result since the Vilkovisky correction
term is proportional to the equations of motion. On the
other hand, this result is known to be gauge-fixing and
parametrization independent [9].
It is interesting to compare the result for the unique

effective action (60) and the one-loop divergences of the
standard (usual) effective action in an arbitrary parametriza-
tion (22), derived in Ref. [9]. It turns out that the two
expressions coincide if the parameters satisfy the conditions

γ4 ¼
1

48
½ð6�

ffiffiffiffiffi
15

p
Þγ21 − 12γ3�; ð62Þ

γ5 ¼
1

12

�
−6γ3 �

�
1þ 4γ2

γ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð12γ23 − 5γ41Þ

q �
; ð63Þ

γ6 ¼ −
1

64
½5ðγ1 þ 4γ2Þ2 þ 4½γ3 þ 4ðγ4 þ γ5Þ��: ð64Þ

In this case, the one-loop divergences of the conventional
effective action calculated in the minimal gauge coincide
with those of the Vilkovisky effective action (60). Curiously,
this result can be achieved only if the parametrization is
nonlinear. This can be readily seen from Eq. (63), which
implies γ3 ≠ 0. Let us note that the observation formulated
above can be seen as a parametrization-dependence counter-
part for the result of Ref. [43], where it was derived a gauge

for which the one-loop divergences of the conventional
effective action (in the particular simplest parametrization)
reproduce those of the unique effective action. In this vein, it
is also worth pointing out that the Λ-dependent terms in (60)
can be obtained by means of the Landau-DeWitt gauge
within the usual definition of the effective action [22].
Nevertheless, the simple use of this particular singular gauge
in the standard effective action cannot give the other
divergent terms of the unique effective action for Einstein
gravity because the space of fields is not flat [22,27,29].

VI. CONFORMAL PARAMETRIZATION
OF THE METRIC

Let us now consider a more general parametrization of
the metric, which explicitly splits its conformal factor,
namely,

g0μν ¼ e2κrσ½gμν þ κðγ1ϕμν þ γ2ϕgμνÞ
þ κ2ðγ3ϕμρϕ

ρ
ν þ γ4gμνϕ2

ρσ þ γ5ϕϕμν þ γ6ϕ
2gμνÞ

þOðκ3Þ�; ð65Þ

where gμν is the background metric, ϕμν and σ are the
quantum fields, and γ1;…;6 and r are arbitrary parameters.
The one-loop divergences of the standard effective action
for Einstein gravity were evaluated in this parametrization
in Ref. [9].
It turns out that it is not possible to construct the

Vilkovisky effective action directly in this parametrization.
Treating the conformal factor σ as a new field increases the
total number of scalar modes. As a consequence, there is an
artificial conformal symmetry and related degeneracy,
making the transformation singular. For instance, the metric
in the configuration space is

GAB ¼
�

Gμν;αβð0Þ rðγ1 þDγ2Þð1þ aDÞgμν
rðγ1 þDγ2Þð1þ aDÞgαβ 2r2Dð1þ aDÞ

�
þOðκÞ; ð66Þ

TABLE II. Contribution of each operator in (14) to the coefficients of each curvature invariant in the divergent (at D → 4) part of the
one-loop Vilkovisky effective action. Each invariant enters the effective action multiplied by the overall coefficient as in Eq. (60). The
final coefficients, which are the sum of the coefficients of columns 2–6, are presented in the last column.

Invariant i
2
Tr ln Ĥ −iTr ln N̂ − i

2
Tr Û1 − i

4
Tr Û2

1
i
2
Tr Û2 Γ̄ð1Þ

R2
μναβ

D2−29Dþ480
360

15−D
90

0 0 0 D2−33Dþ540
360

R2
μν − DðD2−Dþ178Þ

360ðD−2Þ
D−90
90

Dþ12
6

Dþ12
24

− 3D2−16
8ðD−2Þ − D3þ55D2−204Dþ360

360ðD−2Þ
R2 D3−D2þ10D−6

36ðD−2Þ − Dþ12
36

1
6

Dþ12
48

− 3D−4
8ðD−2Þ

4D3−5D2þ24
144ðD−2Þ

ΛR DðD2þDþ6Þ
6ðD−2Þ 0 DðDþ6Þ

6ðD−2Þ
DðDþ4Þ
4ðD−2Þ − DðDþ4Þ

2ðD−2Þ
Dð2D2þDþ12Þ

12ðD−2Þ
Λ2 D3ðDþ1Þ

4ðD−2Þ2
0 0 D3

2ðD−2Þ2 − D3

ðD−2Þ2
D3ðD−1Þ
4ðD−2Þ2
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where A; B; � � � take the labels ϕμν, σ, and Gμν;αβð0Þ
coincides with Eq. (38). The determinant of the Oðκ0Þ-
term of this metric reads

jGABð0Þj ¼ f2r2Dð1þ aDÞ − r2ðγ1 þDγ2Þ2

× ð1þ aDÞ2gμνgαβGð0Þ
μν;αβg × jGμν;αβð0Þj: ð67Þ

It is straightforward to verify that the term in curly
brackets vanishes, proving that the field-space metric is
degenerate. Therefore, it is not possible to evaluate the
Christoffel symbols. The problem originates from the fact
that the change of variables g0μν ↦ ðϕμν; σÞ is not a diffeo-
morphism.
The described difficulty can be resolved as follows. We

impose, from the beginning, the additional conformal
gauge fixing

σ ¼ λϕ ð68Þ

with λ being the gauge-fixing parameter. Expanding the
exponential in (65), one can see that, up to order κ2, this
parametrization reduces to (22) via the substitutions

γ2 ↦ γ2 þ 2rλ; γ5 ↦ γ5 þ 2rλγ1; γ6 ↦ γ6 þ 2rλγ1:

ð69Þ

Then, all calculations that we carried out for (22) also apply
for the conformal parametrization (65).
An alternative approach is to split the field ϕμν in the

trace and traceless part, that is,

ϕμν ¼ ϕ̄μν þ
1

D
gμνϕ: ð70Þ

It is clear that gμνϕ̄μν ¼ 0. We now have a parametrization
in terms of two independent quantum fields: ϕ̄μν and ϕ.
Applying (68) and (70) in (65), we get

g0αβ ¼ gαβ þ κðγ1ϕ̄αβ þ γ̄2ϕgαβÞ
þ κ2ðγ3ϕ̄αρϕ̄

ρ
β þ γ4ϕ̄ρσϕ̄

ρσgαβ

þ γ̄5ϕϕ̄αβ þ γ̄6ϕ
2gαβÞ þOðκ3Þ; ð71Þ

where the new coefficients are

γ̄2 ¼
γ1
D

þ γ2 þ 2rλ;

γ̄5 ¼
2γ3
D

þ γ5 þ 2γ1rλ;

γ̄6 ¼
1

D2
½γ3 þDðγ4 þ γ5Þ þD2γ6

þ 2Dðγ1 þDγ2Þrλ� þ 2r2λ2: ð72Þ

Now, it is possible to define a nonsingular metric in the
space of the fields,3

Gϕ̄μν;ϕ̄αβ ¼ γ21δ̄
μν;αβ þ κ½ζ1gμαϕ̄βν þ ζ2δ̄

μν;αβϕ� þOðκ2Þ;
Gϕ̄αβ;ϕ ¼ κζ3ϕ̄

αβ þOðκ2Þ;
Gϕ;ϕ ¼ γ̄22Dð1þ aDÞ þ κζ4ϕþOðκ2Þ; ð73Þ

where δ̄μναβ ¼ δμναβ −
1
D g

μνgαβ is the identity operator in the
space of traceless symmetric rank-2 tensors, and the
coefficients read

ζ1 ¼ −2γ1ðγ21 − 2γ3Þ;

ζ2 ¼
D − 4

2
γ21γ̄2 þ 2γ1γ̄5;

ζ3 ¼ 2γ̄2ð1þ aDÞðγ3 þDγ4Þ þ γ1γ̄5 − γ21γ̄2ð2þ aDÞ;

ζ4 ¼ γ̄2Dð1þ aDÞ
�
D − 4

2
γ̄22 þ 4γ̄6

�
: ð74Þ

The inverse metric ðG−1ÞAB (A;B; � � � ¼ ϕ̄μν;ϕ) is given by

ðG−1ÞAB ¼
 1

γ2
1

δ̄μν;αβ 0

0 1
γ̄2
2
Dð1þaDÞ

!
þOðκÞ: ð75Þ

With these ingredients, we can proceed with the evalu-
ation of the Christoffel symbols, whose nonzero compo-
nents are

Γϕ̄μν;ϕ̄αβ

ϕ̄λτ
¼ κζ1

γ21
gμαδ̄βνλτ þOðκ2Þ;

Γϕ̄μν;ϕ̄αβ

ϕ ¼ κ

�
2ðγ3þDγ4Þ

Dγ̄2
−
γ21ð4þDþ4aDÞ
4Dð1þaDÞγ2

�
δ̄μν;αβþOðκ2Þ;

Γϕ̄μν;ϕ
ϕ̄λτ

¼ κ

�
D−4

4
γ̄2þ

γ̄5
γ1

�
δ̄μνλτ þOðκ2Þ;

Γϕ;ϕ
ϕ ¼ κ

�
D−4

4
γ̄2þ

2γ̄6
γ̄2

�
þOðκ2Þ: ð76Þ

For the second covariant derivative of the action, we have

3Here, to avoid any kind of ambiguity, we made use of a more
explicit notation for the indices.
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D2S
δϕ̄μνδϕ̄αβ

				
κ→0

¼ γ21

�
gβν∇α∇μ −

1

2
δ̄μν;αβ□ − Rμανβ −

1

4ð1þ aDÞ
�
D − 2

2
RþDΛ

�
δ̄μν;αβ

�
;

D2S
δϕ̄μνδϕ

				
κ→0

¼ γ1γ̄2

�
−
D − 2

2
∇μ∇ν þD − 4

4
Rμν

�
;

D2S
δϕδϕ

				
κ→0

¼ γ̄22

�ðD − 2ÞðD − 1Þ
2

□ −
ðD − 4ÞðD − 2Þ

8
R −

D2

4
Λ
�
: ð77Þ

At this stage, it is clear that the dependence on the
nonlinear quantum field parametrization was compensated
by the Christoffel correction, just like in (45). In addition,
the use of the parametrization in terms of the traceless and
trace parts reveals that the improved bilinear operator can
be written as constant matrix times a differential operator
independent of γ1 and γ̄2; thus, this dependence is trivial.
We point out that the conformal gauge fixing (68) does

not require Faddeev-Popov ghosts because the conformal
transformation has no derivatives [44]. Moreover, under the
diffeomorphism (A1), the field σ transforms as
δσ ¼ −∇μσξ

μ, and the terms in the ghost operator asso-
ciated with the generators Rμ ¼ −∇μσ can be safely
ignored at one-loop level since they produce third-order
contributions in quantum field; as a consequence, we get
(53). Therefore, even in the conformal parametrization, the
final result matches the one presented in Eq. (60) once the
conformal factor is identified with the trace of ϕμν.

VII. CONCLUSIONS

We performed the calculations of the one-loop diver-
gences of the Vilkovisky unique effective action in quan-
tum general relativity in an arbitrary, most general
parametrization of quantum metric, including the con-
formal parametrization and the corresponding gauge fixing.
Because of the similarity between the conformal para-
metrization and the two-dimensional quantum gravity, one
could suspect that the unique effective action may lose its
invariance and universality. We have shown that this does
not happen and the one-loop divergences are universal. To
achieve the positive result in the excessive conformal
parametrization, the conformal gauge should be fixed
before applying Vilkovisky’s formalism, to guarantee the
nondegeneracy of the field-space metric.
Finally, we fixed the dependence of the unique effective

action on the arbitrary parameter a of the term gμνgαβ of the
configuration-space metric Gμν;αβ by the prescription that
this metric is chosen as the metric contained in the highest-
derivative term of the bilinear form of the classical action in
the minimal gauge. This choice is in consonance with the
requirement that the metric in the space of the fields must
be determined from the classical action, as proposed in the
pioneer work [1]. We have shown that, although this term
changes under modified parametrization of the quantum

metric, the one-loop unique effective action does not
change. This confirms the consistency of the mentioned
additional requirement.
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APPENDIX: GENERATORS OF GAUGE
TRANSFORMATIONS

The gauge generators for the field ϕμν have been
evaluated in Ref. [9] up to the zeroth order in κ.
Nonetheless, we need the expansion up to the next order.
The reason is that the terms (16) and (17) depend on the
covariant variational derivative of Rμν;α with respect to ϕμν,
requiring the OðκÞ-approximation.
Consider the infinitesimal coordinate transformation

xμ ↦ x0μ ¼ xμ þ ξμ: ðA1Þ

In the standard parametrization g0μν, the generator reads

R0
μν;γðg0Þ ¼ −ðg0μγ∇0

ν þ g0νγ∇0
μÞ: ðA2Þ

The generators of gauge transformation for the quantum
field ϕμν can be obtained through a vector change of
coordinates in the space of the field representations,

Rμν;γðϕÞ ¼
∂ðκϕμνÞ
∂g0ρσ R0

ρσ;γðg0Þ: ðA3Þ

By using Eqs. (22), (A2), and (A3), it is possible to show
that

Rμν;γðϕÞ ¼ Rð0Þ
μν;γ þ κRð1Þ

μν;γ þOðκ2Þ; ðA4Þ

where

Rð0Þ
μν;γ ¼ −

1

γ1
ðgμγ∇ν þ gνγ∇μÞ þ

2γ2
γ1ðγ1 þDγ2Þ

gμν∇γ ðA5Þ

and
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Rð1Þ
μν;γ ¼ ðr1 − 1Þðϕμγ∇ν þ ϕνγ∇μÞ þ r1ðgμγϕλ

ν þ gνγϕλ
μÞ∇λ þ r2gμνϕλ

γ∇λ þ r3ϕμν∇γ − ð∇γϕμνÞ
þ r4ϕðgμγ∇ν þ gνγ∇μÞ þ r5gμνϕ∇γ; ðA6Þ

with the coefficients

r1 ¼
γ3
γ31

; r2 ¼
2γ21γ2 − 4ðγ2γ3 − γ1γ4Þ

γ21ðγ1 þDγ2Þ
; r3 ¼ −

2ð2γ2γ3 − γ1γ5Þ
γ21ðγ1 þDγ2Þ

;

r4 ¼
γ5 − γ1γ1

γ21
; r5 ¼

2γ1γ
2
2 þ 4γ2ðγ2γ3 − γ1γ4Þ − 2γ2γ5ð3γ1 þDγ2Þ þ 4γ21γ6

γ21ðγ1 þDγ2Þ
:

The expressions (A5) and (A6) are sufficient for the one-loop calculations reported in the main part of the paper.
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