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We study two families of composite twisted Ramond fields (made by products of two operators) in the
N ¼ ð4; 4Þ supersymmetric D1-D5 SCFT2 deformed by a marginal modulus operator away from its
ðT4ÞN=SN free orbifold point. We construct the large-N contributions to the four-point functions with two
composite operators and two deformation fields. These functions allow us to derive short-distance operator
product expansion limits and to calculate the anomalous dimensions of the composite operators. We
demonstrate that one can distinguish two sets of composite Ramond states with twistsm1 andm2: protected
states, for which m1 þm2 ¼ N, and “lifted” states for which m1 þm2 < N. The latter require an
appropriate renormalization. We also derive the leading order corrections to their two-point functions, and
to their three-point functions with the deformation operator.
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I. INTRODUCTION

The scalar moduli deformation of the symmetric orbifold
ðT4ÞN=SN gives rise to a particular two-dimensional
N ¼ ð4; 4Þ superconformal theory with central charge
c ¼ 6N, which for large values of N provides a fuzzball
[1] description of certain five-dimensional extremal super-
symmetric black holes. Their type IIB superstring counter-
parts are bound states of the D1-D5 brane system (see, e.g.,
[2,3] for a more recent review), which gave the first
microscopical account of the Bekenstein-Hawking entropy
[4]. There is strong evidence [5–10] that appropriate
coherent superpositions of twisted Ramond states (and
certain products of them) reproduce the “microstate
geometries” holographically dual to the semiclassical IIB
supergravity 2-charge horizonless nonsingular solutions of
AdS3 × S3 × T4 type. Similar statements hold for the
microstates of the more realistic near-extremal 3-charge
1=8-BPS black holes, the so-called D1-D5-P system,
which can be realized as appropriate tensor products
of the (left-right nonsymmetric) descendants of twisted

Ramond ground states of the same D1-D5 orbifold SCFT2

[11–13]. A more complete description of the quantum
properties of such SUSY black holes requires further
investigation of the spectra of conformal dimensions of
composite fields, the construction of their correlation
functions, and analysis of their renormalization as an effect
of the interaction introduced by the marginal perturbation
away from the free orbifold point.
Despite numerous results and achievements [14–26], the

super-conformal data concerning the effects of the inter-
action in the deformed D1-D5 SCFT2 remains incomplete.
As we have demonstrated in a recent paper [27], the
simplest R-charged twisted Ramond fields R�

n ðz; z̄Þ get
renormalized, i.e., their conformal dimensions and certain
structure constants acquire corrections in the perturbed
theory. It is then natural to address the question of whether
the simplest composite states R�

m1
R�
m2
ð0Þ, made by a

product of two Ramond fields with twists m1 and m2,
are BPS-protected1 or should be renormalized. If renorm-
alization occurs to some fields, what are, then, the con-
ditions defining classes of “protected” and “lifted” Ramond
states in the deformed theory?
The answer to the above questions requires the explicit

construction of the large-N contributions to the four-point
correlation functions involving two composite Ramond
fields and two deformation operators. This is what we

*andrealves.fis@gmail.com
†gsotkov@gmail.com
‡marian@inrne.bas.bg

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1We use the common abbreviation BPS for Bogomol’nyi-
Prasad-Sommerfield.

PHYSICAL REVIEW D 102, 106004 (2020)

2470-0010=2020=102(10)=106004(18) 106004-1 Published by the American Physical Society

https://orcid.org/0000-0002-6978-2587
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.106004&domain=pdf&date_stamp=2020-11-05
https://doi.org/10.1103/PhysRevD.102.106004
https://doi.org/10.1103/PhysRevD.102.106004
https://doi.org/10.1103/PhysRevD.102.106004
https://doi.org/10.1103/PhysRevD.102.106004
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


compute in the present paper, using the “covering surface
technique” [28] together with the “stress-tensor method”
[29–32]. We compute the four-point function at the genus-
zero order of the genus expansion [28] for large N, and we
find that the four-point function decomposes into a sum of
“connected” and “partially-disconnected” parts. Our result
allows us to examine certain short-distance limits, and to
compute the structure constants as well as the conformal
dimensions of the specific non-BPS descendants of twisted
fields present in these operator product expansions (OPEs).
Once we have the explicit form of the four-point

functions, integrating over the positions of the interaction
operators yields the correction to the conformal dimensions
of R�

m1
R�
m2
, to second order in perturbation theory. The

nature of the composite operators crucially depends on the
properties of the twists m1 and m2 of their components. We
demonstrate that operators with m1 þm2 ¼ N form a
family of protected states, whose conformal dimensions
remain the same as in the free orbifold point because the
correction vanishes. The remaining composite fields, with
m1 þm2 < N, suffer from certain UV divergences and do
require an appropriate renormalizþ ation; as a result, their
conformal dimensions get corrected.

II. SYMMETRIC ORBIFOLD D1-D5 SCFT2

In this paper we are concerned with a symmetric orbifold
model ðT4ÞN=SN where T4 is a four dimensional torus and
SN is the corresponding symmetric group. This SCFT2

orbifold model is considered as a “free orbifold point” of
the D1-D5 system (see for example [2,33]).
The theory contains 4N free scalar fields Xi

I , with i ¼
1;…; 4 and I ¼ 1;…; N, and 4N free fermions ψ i

I , with
total central charge corb ¼ 6N. The N copies of the fields
are identified by the action of the symmetric group:
Xi
Iðe2π{z; e−2π{z̄Þ ¼ Xi

gðIÞðz; z̄Þ, where g ∈ SN . These boun-

dary conditions are realized by twist fields σgðzÞ, which
give a representation of SN . For example σð1���nÞ imposes the
cyclic permutations of the fields corresponding to the cycle
ð1 � � � nÞ,

Xi
1 → Xi

2 → � � � → Xi
n → X1; ð1Þ

and similarly for the fermions. We denote by σn the twist
field corresponding to the conjugacy class obtained by
summing over the orbits of ð1 � � � nÞ,

σn ¼
1

Sn

X
h∈SN

σh−1ð1���nÞh; ð2Þ

with SnðNÞ a combinatorial factor ensuring the normali-
zation of the two-point function of the SN-invariant
operators,

hσnðz; z̄Þσmð0Þi ¼
δmn

jzj4Δσ
n
: ð3Þ

We call attention for a notational convention that we use
throughout the paper: a twist index without brackets, like in
σn, indicates a sum over conjugacy classes of cycles of
length n, as in the right-hand side (rhs) of Eq. (2). A twist
index with brackets, like in σðnÞ, indicates one single twist
corresponding to a specific permutation cycle (n), of length
n; e.g., σð2Þ is a short notation for σð12Þ or σð37Þ or σð15Þ, etc.
The holomorphic and antiholomorphic dimensions of
σnðz; z̄Þ, Δσ

n and Δ̃σ
n respectively, and of any non-SN-

invariant twist field σðnÞðz; z̄Þ, are

Δσ
n ¼

1

4

�
n −

1

n

�
¼ Δ̃σ

n: ð4Þ

We further pair the 4N real scalar fields into complex
bosons Xa

I and Xa†
I , a ¼ 1, 2. The Majorana fermions can

also be combined into complex fermions and then boson-
ized by the use of 2N new free scalars: ψa

I ¼ eiϕ
a
I ,

ψa†
I ¼ e−iϕ

a
I . The holomorphic sector possesses N ¼ 4

superconformal symmetry, generated by the stress-energy
tensor TðzÞ, the SU(2) currents JiðzÞ, (i ¼ 1, 2, 3) and the
supercurrents GaðzÞ, ĜaðzÞ (a ¼ 1, 2). These currents are
expressed in terms of the free fields. For example, the stress
tensor is given by

TðzÞ ¼ −
1

2
lim
w→z

X2
a¼1

XN
I¼1

�
∂Xa

I ðzÞ∂Xa†
I ðwÞ

þ ∂ϕa
I ðzÞ∂ϕa

I ðwÞ þ
6

ðz − wÞ2
�
; ð5Þ

for the J3 current of the SU(2) algebra defining the
conserved R-charge we have

J3ðzÞ ¼ i
2

XN
I¼1

ð∂ϕ1
I þ ∂ϕ2

I ÞðzÞ; ð6Þ

while antiholomorphic currents are built from ∂̄Xa
I ðz̄Þ,

∂̄Xa†
I ðz̄Þ and ϕ̃a

I ðz̄Þ.
In the orbifold model, one has to consider distinct

sectors: Ramond, Neveu-Schwarz (NS) and twisted, rep-
resenting different boundary conditions for the constituent
free fermions and bosons. Ground state twisted Ramond
fields (those of dimension c=24) have a simple realization
in terms of the free fields,

R�
n ðzÞ ¼

1

Sn

X
h∈SN

exp

�
� i
2n

Xn
I¼1

½ϕ1
hðIÞðzÞ þ ϕ2

hðIÞðzÞ�
�

× σh−1ð1���nÞhðzÞ: ð7Þ

From this holomorphic field, we can define R�
n ðz; z̄Þ≡

R�
n ðzÞR̃�

n ðz̄Þ. Equation (7) is an explicitly SN-invariant
construction, normalized by the combinatorial overall
factor. The holomorphic dimension and R-charge are
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ΔR
n ¼ 1

4
n; j3 ¼ � 1

2
: ð8Þ

By construction, the R�
n are doublets of the SU(2)

R-symmetry algebra and singlets of the global SUð2Þ1
algebra.2 In this paper we will be actually interested in
composite fields made of products of two of the twisted
Ramond fields (7). More precisely, we will consider two
types of composite Ramond fields,

R�
m1
R�
m2
ðz; z̄Þ; R∓

m1
R�
m2
ðz; z̄Þ; ð9Þ

which are, respectively, charged and neutral under
R-symmetry—under the action of the “isospin” SU(2)
algebra, these products of j ¼ 1

2
representations form a

triplet with j3 ¼ −1; 0;þ1, respectively given by

R−
m1
R−
m2
;

1ffiffiffi
2

p ðRþ
m1
R−
m2

þ R−
m1
Rþ
m2
Þ; Rþ

m1
Rþ
m2

ð10Þ

and a singlet 1ffiffi
2

p ðRþ
m1
R−
m2

− R−
m1
Rþ
m2
Þ as well. Composite

Ramond fields play a role in the microstate description of
the near-horizon and the interior of certain five-dimensional
extremal supersymmetric black holes (or black rings)
which can be realized semiclassically as AdS3 × S3 × T4

solutions of type IIB supergravity. Within the AdS=CFT
correspondence, they permit a particular dual holographic
description in terms of a definite SCFT2 model realized as a
marginal deformation of the symmetric orbifold ðT4ÞN=SN
SCFT with (large) central charge c ¼ 6N [33,34],
cf. also [2].
The Hilbert space of the orbifold theory can be organized

as the direct sum Horb ¼⊕½g� H½g� of Hilbert spaces H½g�
containing the states invariant under elements in the
conjugacy class [g] of a g ∈ SN . Conjugacy classes of
SN are equivalent to partitions of N, i.e., to sets fkjg of N
integers such that

P
N
j¼1 jkj ¼ N, which define the cycle

structure of the elements in [g],

g ¼ ð1Þk1ð2Þk2 � � � ðNÞkN ;
XN
k¼1

jkj ¼ N; ð11Þ

here ðnjÞkj is a composition of kj disjoint cycles of
length nj. The untwisted sector corresponds to [1], the
conjugacy class of the unity, for which k1 ¼ N and
kj≠1 ¼ 0, while the Hilbert space where the composite
field R�

m1
R�
m2

lives corresponds to the equivalence class
of ð1ÞN−m1−m2ðm1Þðm2Þ. In the operator language, we

construct double-cycle operators such as R�
m1
R�
m2
ðz; z̄Þ with

double-cycle twist operators defined by a “normal-ordered”
product of two single-cycle twists [35]:

∶σm1
σm2

∶≡ 1

Cm1m2

X
h∈SN

σh−1ð1;…;m1Þhσh−1ðm1þ1;…;m1þm2Þh;

ð12Þ

This normal-ordering amounts to eliminating from the rhs
products of cycles with overlapping elements (and then
summing over the orbits). For example,

∶σ2σ3∶ ⊃ σð12Þσð345Þ þ σð13Þσð542Þ þ σð64Þσð312Þ þ � � �

while terms like σð12Þσð234Þ ¼ σð1342Þ are absent from the rhs
The normalization factor appearing in the definition (12) is

Cm1m2
¼ Sm1

Sm2
: ð13Þ

This indeed ensures normalization because the composite
two-point function factorizes into a product of single-cycle
two-point functions:

1

Cn1n2

1

Cm1m2

X
g;h∈SN

hσg−1ð1;…;n1Þgσg−1ðn1þ1;…;n1þn2Þg

× σh−1ð1;…;m1Þhσh−1ðm1þ1;…;m1þm2Þhi

¼ S2
m1
S2
m2

C2m1m2

hσm1
σm1

ihσm2
σm2

i

where we have been rather schematic; using (3) and (13),

h∶σn1σn2∶ðz; z̄Þ∶σm1
σm2

∶ð0Þi ¼ 1

jzj2ðΔσ
m1

þΔσ
m2

Þ ð14Þ

from which see that the dimension of ∶σm1
σm2

∶ is
Δσ

m1;m2
¼ Δ̃σ

m1;m2
¼ Δσ

m1
þ Δσ

m2
.

Double-cycle twisted fields are built by dressing the
double-cycle twist operators; in particular,

R�
m1
R�
m2
ðzÞ ¼ 1

Cm1m2

X
h∈SN

exp

�
� i
2m1

Xm1

I¼1

ðϕ1
hðIÞ þ ϕ2

hðIÞÞ

� i
2m2

Xm1þm2

I¼m1þ1

ðϕ1
hðIÞ þ ϕ2

hðIÞÞ
�

× σh−1ð1���m1Þhσh−1ðm1þ1���m1þm2Þh; ð15Þ

to be compared with (7). These operators have R-charge
j3 ¼ � 1

2
, and holomorphic dimensionΔR

m1þm2
. Let us make

a remark that (15) always involves two Ramond operators,
corresponding to the two first cycles in the equivalence
class ðm1Þðm2Þð1ÞN−m1−m2 . The other N −m1 −m2 trivial

2There are other neutral composite Ramond fields made by the
intrinsically R-neutral single-cycle fields which form a doublet
under the “internal” SUð2Þ1 inherited from the target-space T4

symmetry group SOð4Þ ¼ SUð2Þ1 × SUð2Þ2. We will not con-
sider these fields here.
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cycles correspond to (untwisted) NS vacua. When one of
the Ramond cycles becomes trivial, say m2 ¼ 1, the
corresponding field R�

ð1Þ becomes the spin field appearing

in the untwisted Ramond sector. We use the notation
R�
m1
R�
m2

instead of, say, R�
m1;m2

, precisely to emphasize
this point.

III. CORRELATION FUNCTIONS OF COMPOSITE
RAMOND FIELDS

We are interested in the two- and three-point functions of
composite Ramond fields in the marginally perturbed
theory,

SdefðλÞ ¼ Sorb þ λ

Z
d2uOðintÞ

2 ðu; ūÞ ð16Þ

where λ is a dimensionless coupling constant, and the

deformation operator OðintÞ
2 is an SN-invariant SU(2) scalar,

preserving N ¼ ð4; 4Þ supersymmetry. Its explicit form

OðintÞ
2 ðu; ūÞ ¼ ðĜ1

−1=2Ḡ
2
−1=2 −G2

−1=2
¯̂G1
−1=2ÞO2ðu; ūÞ þ c:c:

ð17Þ

is a sum of descendants of the twist-two NS chiral field O2

with conformal dimensions Δ2 þ Δ̃2 ¼ 1 and SU(2)
charges j3 ¼ 1

2
¼ j̃3. See, e.g., [14].

The conformal dimension of the composite operator
R�
m1
R�
m2
ðz; z̄Þ, at the free orbifold point, is given by the sum

of the dimensions of its constituents, i.e.,

ðΔR
m1;m2

; Δ̃R
m1;m2

Þ ¼
�
m1 þm2

4
;
m1 þm2

4

�
:

The first nontrivial correction to the two-point function

hR−
m1
R−
m2
ð∞ÞRþ

m2
Rþ
m1
ð0Þiλ ð18Þ

appears at second order in perturbation theory,

λ2

2

Z
d2z2

Z
d2z3hR−

m1
R−
m2
ðz1; z̄1ÞOðintÞ

2 ðz2; z̄2Þ

×OðintÞ
2 ðz3; z̄3ÞRþ

m2
Rþ
m1
ðz4; z̄4Þi: ð19Þ

Conformal invariance fixes the form of the four-point
functions up to an arbitrary function Gðu; ūÞ ¼ GðuÞḠðūÞ
of the anharmonic ratio u ¼ z12z34=z13z24 and its complex
conjugate ū,

hR−
m1
R−
m2
ðz1; z̄1ÞOðintÞ

2 ðz2; z̄2ÞOðintÞ
2 ðz3; z̄3ÞRþ

m2
Rþ
m1
ðz4; z̄4Þi

¼ jz14j4−m1−m2

jz13z24j4
Gðu; ūÞ: ð20Þ

One can further make a suitable change of variables and
factorize the integral (19). As a result we get for the first
nontrivial correction to the two-point function,

λ2π

jz14jm1þm2
log

Λ
jz14j

Z
d2uGðu; ūÞ; ð21Þ

where Λ is an ultraviolet cutoff, and we have used SLð2;CÞ
invariance to fix three points in the correlation function,
so that

Gðu; ūÞ ¼ hR−
m1
R−
m2
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðu; ūÞRþ

m2
Rþ
m1
ð0Þi:

ð22Þ

A. Connected and disconnected functions

The SN-invariant function (22) is a sum over the group
orbits,

Gðu; ūÞ ¼
X
SN

hR−
h−1∞ ðm1Þh∞R

−
h−1∞ ðm2Þh∞ð∞ÞOðintÞ

h−1
1
ð2Þh1ð1Þ

×OðintÞ
h−1u ð2Þhuðu; ūÞR

þ
h−1
0
ðm2Þh0R

þ
h−1
0
ðm1Þh0ð0Þi ð23Þ

summation being over every h∞; h1; hu; h0 ∈ SN. Each
individual term in this sum corresponds to one of the
possible individual permutations resulting from the com-
position of the six permutation cycles ðniÞ, ordered by (the
radial order of) the points zi where the twists σðniÞðziÞ are
located. Following [36], we will denote the permutation of
the twist field σðniÞðziÞ by the cycle ðniÞzi , labeled by a
position index. The cycles in Eq. (23) are accordingly
denoted as ðm1Þ∞ðm2Þ∞ð2Þ1ð2Þuðm2Þ0ðm1Þ0. (Imposing an
ordering is crucial, since SN is non-Abelian.) Every
permutation contributing to the sum (23) must satisfy
the condition

ðm1Þ∞ðm2Þ∞ð2Þ1ð2Þuðm2Þ0ðm1Þ0 ¼ 1; ð24Þ

otherwise the correlation function vanishes. Some of the
correlators in the rhs of Eq. (23) factorize in different ways,
and some will be completely connected.
A term in the sum (23) will be (fully) connected when

one of the elements of ð2Þ1 ¼ ðk;lÞ, say k, overlaps with
ðm1Þ∞, and the other element, l, overlaps with ðm2Þ∞.
Because of (24), a similar overlap will happen for ð2Þu,
ðm1Þ0 and ðm2Þ0. In this case, there is always a number

sc ¼ m1 þm2 ð25Þ

of different elements entering the permutation ðm1Þ∞×
ðm2Þ∞ð2Þ1ð2Þuðm2Þ0ðm1Þ0.
A four-point function in the sum (23) can factorize

in three qualitatively different ways which do not
vanish. Factorization depends on the existence of cycles
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commuting with all the others, which is regulated by the
different possibilities of overlapping the elements of the
cycles ð2Þ1 and ð2Þu with the other cycles, since (m1) and
(m2) are always disconnected. The first possibility is that
ð2Þ1 and ð2Þu commute with every Ramond-operator
cycles. Then the four-point function splits into

hOðintÞ
ð2Þ ð1ÞOðintÞ

ð2Þ−1ðu; ūÞihR−
ðm1ÞR

−
ðm2Þð∞ÞRþ

ðm1ÞR
þ
ðm2Þð0Þi ð26Þ

with ðm1Þ∞ðm2Þ∞ðm1Þ0ðm2Þ0 ¼ 1. In this case, the integral

(19) is over the “vacuum bubbles” hOðintÞ
ð2Þ ð1ÞOðintÞ

ð2Þ−1ðu; ūÞi,
which diverge. These divergences are natural in perturba-
tion theory, and can be eliminated by proper normalization
of the correlation functions,

hR−
m1
R−
m2
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðu; ūÞRþ

m1
Rþ
m2
ð0Þiλ

h1iλ
: ð27Þ

We will assume this normalization from now on but
omit the h1iλ, so terms like (27) are henceforth excluded
from (22).
The other two possibilities are of a very different nature.

If the pairs of cycles with lengths m1 or m2 commute with
the other cycles, then we have the factorizations

hR−
ðm2Þð∞ÞRþ

ðm2Þ−1ð0Þi
× hR−

ðm1Þð∞ÞOðintÞ
ð2Þ ð1ÞOðintÞ

ð2Þ ðu; ūÞRþ
ðm1Þð0Þi; ð28aÞ

and

hR−
ðm1Þð∞ÞRþ

ðm1Þ−1ð0Þi
× hR−

ðm2Þð∞ÞOðintÞ
ð2Þ ð1ÞOðintÞ

ð2Þ ðu; ūÞRþ
ðm2Þð0Þi; ð28bÞ

where ðm1Þ∞ð2Þ1ð2Þuðm1Þ0 ¼ 1 in (28a), and ðm2Þ∞ð2Þ1×
ð2Þuðm2Þ∞ ¼ 1 in (28b), so as to satisfy (24). Note that, if a
term in (28) factorizes further, it has the form (26) and is
canceled by (27). We are going to call functions like (28)
partially disconnected (and, hereafter, when we say just
“disconnected function” we implicitly mean partially dis-
connected). Denote by k;l the elements of ð2Þ1 ¼ ðk;lÞ1,
then look at the permutation ðm1Þ∞ðm2Þ∞ð2Þ1. There are
two qualitatively different ways in which the factorizations
(28) happen, as follows.
(1) Only one of the elements of ð2Þ1, say k, overlaps

with ðm2Þ∞, while the other element, l, does not
overlap with any of the (m1) nor the (m2) cycles.
This gives a factorization (28b).
A factorization (28a) happens when one of the

elements of ð2Þ1, say k, overlaps with ðm1Þ∞, and
the other element, l, does not overlap with any of the
(m1) nor the (m2) cycles. In any case, there is always
a number

s ¼ m1 þm2 þ 1 ð29Þ

of distinct elements entering the permutation (24).
(2) Both k and l overlap with ðm2Þ∞ or, instead, both

overlap with ðm1Þ∞. These possibilities are mutually
exclusive, since ðm1Þ∞ and ðm2Þ∞ do not share
elements.
Concerning the number of different elements

appearing in the permutation, in Case 2) there are
two different situations. For simplicity, let us drop
indices and call the “nonfactorized” permutation
simply ðmÞ∞ð2Þ1ð2ÞuðmÞ0. We can use SN symmetry
to fix ðmÞ∞ ¼ ð1; 2; 3;…; mÞ and ð2Þ1 ¼ ð1;lÞ.
(a) In the generic case, we have l ≠ 2 and l ≠ m.

Then the permutation splits into ð1; 2;…;
l;…; mÞ∞ð1;lÞ1 ¼ ð1;…;l − 1Þðl;…; mÞ.
Hence there is a number m of distinct elements
which should also appear in ð2ÞuðmÞ0 so that
ðmÞ∞ð2Þ1ð2ÞuðmÞ0 ¼ 1. Counting these ele-
ments together with the other “factorized” ones,
we find

s ¼ m1 þm2 ð30Þ

distinct elements entering the r.h.s. of (24).
(b) However, if l ¼ 2 or l ¼ m, then the permuta-

tion ð1; 2; 3;…; mÞ∞ð1;lÞ1 collapses to a cycle
with length m − 1. For example, if l ¼ m, then

ð1; 2; 3;…; mÞ∞ð1; mÞ1 ¼ ð1; 2;…; m − 1Þ:

Now the permutation ð2ÞuðmÞ0, which must
equal the inverse cycle, can accommodate
one more distinct element, which is not in
f1; 2;…; mg, because

ðr; 1Þuðr;m − 1;…; 2; 1Þ0 ¼ ðm − 1;…; 2; 1Þ

for any r ∈ ½1; N�, not only for r ¼ m. There are,
therefore, mþ 1 elements entering the “non-
factorized” permutation, hence s¼m1þm2þ1
distinct elements entering the permutation (24),
the same number (29).

The sum over orbits preserves the cycle structure of
factorized functions, hence the function (23), normalized as
(27), splits into three terms:

Gðu; ūÞ ¼ Gcðu; ūÞ þ Gm1
ðu; ūÞ þ Gm2

ðu; ūÞ; ð31Þ

where

Gcðu; ūÞ
¼ hR−

m1
R−
m2
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðu; ūÞRþ

m1
Rþ
m1
ð0Þiconn ð32Þ

and
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Gm1
ðu; ūÞ ¼ hR−

m1
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðu; ūÞRþ

m1
ð0Þi ð33Þ

Gm2
ðu; ūÞ ¼ hR−

m2
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðu; ūÞRþ

m2
ð0Þi ð34Þ

(Note the twist indices without parenthesis, indicating
that each of the correlators are (multiple) sums over orbits.)
We emphasize that all correlators are normalized as (27), and
the “conn” in (32) indicates that there is no factorization of
the composite operators. TheRamond two-point functions in
(28) have disappeared because of the normalization (7)—
after summing over orbits, the factored two-point functions
are hðR�

mp
Þ†R�

mp
i ¼ 1. The functions Gm1

and Gm2
are four-

point functions of noncomposite operators, and have been
considered in [27]. The integral (21) over these terms does
not vanish, hence renormalization of the Ramond fields is
required to cancel the logarithmic divergence in Eq. (21).We
will return to this point later. Formost of the remaining of this
section, we focus on function Gc.

B. Large-N limit

We are interested in theories with N ≫ 1. To find the
N-dependence of the correlation functions, following [36],
we can first organize the sum (32) according to the conjugacy
classes α of the symmetric group. This is very convenient
because SN-invariance implies that every term belonging to
the same conjugacy class α must give the same result. For
large N it is further convenient to separate permutations
inside a class according to the number s of distinct “active”
elements, i.e., elements which undergo nontrivial permuta-
tions.3 Then (we omit the “conn” hereafter)

Gcðu; ūÞ ¼
X
s

X
αs

Cs;αsðNÞhR−
gαs∞
R−
g0αs∞

ð∞ÞOðintÞ
gαs
1

ð1Þ

×OðintÞ
gαsu

ðu; ūÞRþ
g0αs

0

Rþ
gαs
0

ð0Þi; ð35Þ

where αs is the set of permutations belonging to class
α ¼ ∪sαs and involving s distinct active elements. The
individual permutation appearing in the twists in (35),
gαs∞g0αs∞gαs1 g

αs
u g0

αs
0 g

αs
0 ∈ αs, is onearbitrary representative ofαs.

The numerical symmetry factor Cs;αsðNÞ counts the
number of elements in αs times normalization factors
SrðNÞ, r ¼ 1;…; 6, present in the definition of SN-invariant
fields. Note there is one factor of 1=SrðNÞ for every cycle
ðnrÞ entering the permutation, including the two cycles in
each composite operator, since Cm1m2

¼ Sm1
Sm2

. The sym-
metry factor Cs;αsðNÞ can be computed exactly with some
combinatorics similar to what is done in [28,36] and,
when N ≫ nr, as we can ignore overlappings, its large-N
dependence can be found with a very simple argument
due to [28]—there are s different elements entering the

permutation, which can be chosen in Ns ways; meanwhile,
1=Snr ∼ N−1

2
nr , the 1

2
in the exponent due to Snr being a

normalization factor for the two-point function hσnrσnri
(where there are nr distinct active elements). Hence

Cαs;sðNÞ ¼ Ns−1
2

P
q
r¼1

nr ½ϖðnrÞ þ Oð1=NÞ�; ð36Þ
where the functionϖðnrÞ does not depend onN. It turns out
that (even the exact) result does not depend on the class α,
only on s. Here, for the function (35), q ¼ 6 and
n1 ¼ m1 ¼ n6, n2 ¼ m2 ¼ n5, n3 ¼ 2 ¼ n4. But we have
used a notation such that the result holds for a q-point
function involving q single twists of length nr, r ¼ 1;…; q.
In particular, it holds for the partially disconnected four-
point functions (which have q ¼ 4).
The exponent of N in (36) can be recast into an

interesting form using the Riemann-Hurwitz formula

g ¼ 1

2

Xq
r¼1

ðnr − 1Þ − sþ 1 ð37Þ

for the genus g of a surface Σ which is a ramified covering
of the sphere possessing s sheets and q ramification points
with ramification orders4 nr [28,36]. In terms of g,

CsðNÞ≡ CgðNÞ ∼ N−g−1
2
qþ1ðϖ þ Oð1=NÞÞ: ð38Þ

Using Σ as a covering surface of the base sphere is the
standard way of calculating correlation functions in the
orbifold theory [40], as we will do later. Equation (38)
shows that the leading contribution at large N comes from
surfaces of genus zero. The specific power of N−1

2
qþ1 for

g ¼ 0 then depends on the number q of ramification points
of the covering surface.
We can thus replace the sum over s in (35) by a sum over

genera,

Gcðu; ūÞ ¼
Xgmax

g¼0

CgðNÞ
X
αg

hR−
g
αg
∞
R−
g0

αg
∞
ð∞ÞOðintÞ

g
αg
1

ð1Þ

×OðintÞ
g
αg
u
ðu; ūÞRþ

g0
αg
0

Rþ
g
αg
0

ð0Þi

¼ ϖ þ Oð1=NÞ
N

1
2
q−1

XHc

a¼1

hR−
ðn1Þ∞R

−
ðn2Þ∞ð∞ÞOðintÞ

ðn3Þ1ð1Þ

×OðintÞ
ðn4Þuðu; ūÞR

þ
ðn5Þ0R

þ
ðn6Þ0ð0Þia

þ higher − genera ð39Þ

3For example, the permutation (259)(3)(14)(7) has five active
elements: 1, 2, 4, 5 and 9.

4In the standard definition [37–39], the order of the ramifi-
cation points is nr − 1, not nr, but we make this abuse of language
for convenience. Recall that the ramification points ft1;…; tqg ∈
Σ are points on the covering surface Σ, whose image under the
covering map zðtÞ are the branching points fz1;…; zsg ∈ S2cover
of the base sphere. In general, q ≥ s.
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In (39) we have kept only terms at leading-order in 1=N,
and corresponding to g ¼ 0. This is still a sum over Hc
conjugacy classes satisfying g ¼ 0, and we label the
representative functions for each of these classes by an
index a ¼ 1; 2; 3;…. The number Hc is a “Hurwitz
number” [31,36], which will be determined in two different
ways in Sec. III C and in Appendix B.
It is well known that there is a fundamental interplay

between the permutation cycles dictating the monodromy
of the correlation functions and the properties of the
corresponding covering surfaces, addressed by Hurwitz
Theory [28,31,36].5 The number s of sheets of Σ is equal to
the number of distinct elements entering nontrivially in the
permutations of the twisted correlation function. We have
seen in Sec. III A that the different types of disconnected
functions have different s. For the factorized two-point
functions in (28), we have q ¼ 2 ramification points of
order m ¼ ðm1 orm2Þ, and s ¼ m; hence Eq. (37) gives
g2 ¼ 0 and Eq. (38) shows that these functions go to a
constant ∼N0 at large N.
Meanwhile, the corresponding factorized noncomposite

four-point functions in (28) have q ¼ 4 ramification points
of orders m; 2; 2; m, with m ¼ ðm2 orm1Þ; their s depends
on the types of factorization: for Types 1) and 2b), s ¼
mþ 1 hence g ¼ 0, giving a dependence ∼N−1. For Type
2a), however, s ¼ m, hence g ¼ 1, giving a subleading
dependence ∼N−2 because of the higher genus.
The connected four-point function (32) containing

composite operators has sc ¼ m1 þm2, but with q ¼ 6
ramification points. The Riemann-Hurwitz formula (37)
gives

gc ¼ 0; ð40Þ

but Eq. (38) shows that these functions also contribute at
order N−2—not because of a higher genus, but because of
the higher number of ramification points.

C. Covering maps

The use of the covering surfaceΣ as a powerful tool for the
computation of twisted correlation functionswas introduced
by Lunin and Mathur [40]. A covering surface Σ of the base
sphereS2base, whereGðu; ūÞ is defined, is given by amap zðtÞ,
with t ∈ Σ and z ∈ S2base, and with multiple inverses taðzÞ
corresponding to the branches introduced by the twist
operators in Gðu; ūÞ. The ramification points “replace”
the twist operators, so on Σ, where there is only one single
untwisted copy of the fields XiðtÞ, Xi†ðtÞ, ϕiðtÞ.
Here we want to find the genus-zero covering surface

Σc ¼ S2cover for the connected function Gc in (32). We must
explicitly construct a covering map z∶ S2cover → S2base such
that

zðtÞ ≈ b1tm1ðt − t0Þm2 as z → 0 ð41aÞ

zðtÞ ≈ 1þ b2ðt − t1Þ2 as z → 1 ð41bÞ

zðtÞ ≈ uþ b3ðt − xÞ2 as z → u ð41cÞ

zðtÞ ≈ b4tm1 as z → ∞ ð41dÞ

The powers impose the correct monodromies of the
inverse maps taðzÞ around the position of the twists in
z ¼ f0; 1; u;∞g ∈ S2base. Because of the branching points,
Σc will have a number of sheets equal to the number of
distinct elements entering the permutations in twists, given
by (25),

sc ¼ m1 þm2: ð42Þ

It is a theorem in the theory of Riemann surfaces that a
holomorphic map from the Riemann sphere to the Riemann
sphere has the form zðtÞ ¼ f1ðtÞ=f2ðtÞ, where f1 and f2 are
polynomials of degrees d1; d2 ∈ N. From condition (41d),
we know that d1 − d2 ¼ m1, hence d1 > d2. On the other
hand, the larger degree d1 is equal to the number of inverse
maps taðzÞ, hence to sc, so d1 ¼ m1 þm2. To be consistent
with (41a), we thus must have f1 ¼ Atm1ðt − t0Þm2 . Also
d2 ¼ m1 − sc ¼ m2, so f2 ¼ Bðt − t∞Þm2 . Adjusting the
constants A and B so that, as required by (41b), zðt1Þ ¼ 1,
we thus have

zðtÞ ¼
�
t
t1

�
m1

�
t − t0
t1 − t0

�
m2

�
t1 − t∞
t − t∞

�
m2

: ð43Þ

Imposing that the map (43) locally satisfies the conditions
(41b) and (41c) near the points t1 and x implies that

1

z
dz
dt

¼ m1t2 þ ½ðm2 −m1Þt0 − ðm1 þm2Þt∞�tþm1t0t∞
tðt − t0Þðt − t∞Þ

¼ 0 ð44Þ

where the second equality holds at z ¼ t1; x. In other words,
x and t1 are the roots of the quadratic equation in the
numerator. Using the relation between the coefficients and of
this equation and its two roots, we find two relations between
the parameters t1; t0; t∞ and x. We have the choice of fixing
one of the t1; t0; t∞, and the two relations fix the other two as
a function of x, which is the image of the “free” point u. We
choose

t0 ¼ x − 1;

t1 ¼
ðx − 1Þðm1 þm2x −m2Þ

m1 þm2x
;

t∞ ¼ x −
m2x

m2xþm1

ð45Þ
5See [37,38,39] for a friendly introduction.

CORRELATION FUNCTIONS OF COMPOSITE RAMOND FIELDS … PHYS. REV. D 102, 106004 (2020)

106004-7



leading to the map uðxÞ ¼ zðxÞ

uðxÞ ¼
�xþ m1

m2

x − 1

�
m1þm2

�
x

x − 1þ m1

m2

�
m1−m2

: ð46Þ

The form of a ratio of polynomials is analogous to the map
found byArutyunov and Frolov in [30].Whenm1 ¼ m2, the
map degenerates to a considerably simpler function

uðxÞ ¼
�
xþ 1

x − 1

�
2m

ðm1 ¼ m2 ¼ mÞ: ð47Þ

There is an evident asymmetry in the maps (43) and (46)
when we exchange m1 and m2. This is because in our
derivation of zðtÞ it was convenient to place ramification
points at t ¼ 0 and t ¼ ∞, and we chose to place the points
of order m1 at these locations. Of course, we could just as
well have chosen to place the points of order m2 at
t ¼ 0;∞, in which case we would find

z̃ðtÞ ¼
�
t
t̃1

�
m2

�
t − t̃0
t̃1 − t̃0

�
m1

�
t̃1 − t̃∞
t − t̃∞

�
m1

; ð48Þ

ũðxÞ ¼
�xþ m2

m1

x − 1

�
m2þm1

�
x

x − 1þ m2

m1

�
m2−m1

: ð49Þ

The maps zðtÞ and z̃ðtÞ are isomorphic, one can pass from
one to another with a Möbius transformation, and describe
the same covering surface Σc; this is shown in Appendix A.
We are going to use henceforth the map (43). For must
purposes we can assume, without loss of generality, thatm1

is the greater of fm1; m2g. Note that when m2 ¼ 1,
corresponding to the trivial twist σð1Þ, our maps zðtÞ and
uðtÞ reduce to the well-known expressions for noncompo-
site operators (see, e.g., [27]).
One way of confirming the correctness of our covering

map is to use the fact6 that the number Hc—known as the
Hurwtiz number—counting the different coverings of the
sphere S2base, with fixed number of ramification points of a
fixed order, is equal to number of equivalence classes of
permutations satisfying Eq. (24) and the conditions for
connectedness which lead to (25). The number of different
covering surfaces is equal to the number of solutions
xaðu�Þ, a ¼ 1;…;Hc of the equation uðxÞ ¼ u� for a fixed
u�. Inspection of the map (46) (or of the map (49) as well)

shows that uðxÞ ¼ u� reduces to a polynomial equation of
order 2 maxðm1; m2Þ, hence

Hc ¼ 2 maxðm1; m2Þ: ð50Þ

The fact that, indeed, Hc is also the number of solutions to
Eq. (24) modulo global SN transformations is shown in
Appendix B. Note thatHc is therefore the number of terms
in the sum (39).

D. Computation of the connected four-point function

We now use the covering maps to compute Gcðu; ūÞ,
following the stress tensor method [29–31]. The Ward
identity for the stress-energy tensor gives

F ¼ hTðzÞR−
m1
R−
m2
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðuÞRþ

m2
Rþ
m1
Þð0Þi

hR−
m1
R−
m2
ð∞ÞOðintÞ

2 ð1ÞOðintÞ
2 ðuÞRþ

m2
Rþ
m1
ð0Þi

¼ 1

ðz − uÞ2 þ
HðuÞ
z − u

þ � � � ð51Þ

If one is able to obtain independently the function HðuÞ,
then (51) leads to a simple differential equation,

∂u logGðuÞ ¼ HðuÞ; ð52Þ

which determines the holomorphic part of Gðu; ūÞ ¼
GðuÞḠðūÞ; the antiholomorphic part ḠðūÞ is found by
the analogous procedure with the antiholomorphic stress-
tensor T̃ðz̄Þ. The function HðuÞ inherits the monodromy
conditions of its twists, and is rather complicated.
Nevertheless, with the aid of the covering map, one can
find a function HðxÞ, parametrized by x, and solve the
equation

∂x logGðxÞ ¼ u0ðxÞHðxÞ; ð53Þ

obtained by a change of variables from u to x in (52). To
obtain Gðu; ūÞ, we must then invert the map (46),
Gðu; ūÞ ¼ C0

P
a GðxaðuÞÞḠðx̄aðūÞÞ. The Hc inverses of

uðxÞ each correspond to a representative of one of the
conjugacy classes in (39).7 The inverses xaðuÞ can only be
obtained locally, but for our purposes GðxÞ is sufficient,
and this can be found exactly. Let us show how.
We compute the equivalent of (51) on the covering

surface, namely

Fcoverðt; xÞ ¼
hTðtÞR−ð∞ÞR−ðt∞ÞOðintÞðt1; t̄1ÞOðintÞðx; x̄ÞRþðt0ÞRþð0Þi
hR−ð∞ÞR−ðt∞ÞOðintÞðt1; t̄1ÞOðintÞðx; x̄ÞRþðt0ÞRþð0Þi : ð54Þ

6See, e.g., [36].
7The numberHc of equivalence classes is encoded in the covering map, as discussed at the end of Sec. III C, but the symmetry factors

carrying the N-dependence in (39) is not.
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Note how each part of the composite operator Rþ
m1
Rþ
m2
ð0Þ

has been lifted to a different point on S2cover, viz. Rþ
m1
ð0Þ

goes to t ¼ 0 and Rþ
m2
ð0Þ goes to t ¼ t0, with a similar thing

happening with Rþ
m1
Rþ
m2
ð∞Þ being lifted to ∞ and t∞. The

absence of indicesm1; m2; 2 in (54) is because the twists are
trivialized on S2cover, σðnÞ ↦ 1, and also

P
I ϕ

a
I ↦ nϕa.

Thus, for example, from (7), we have

R�ðtÞ ¼ exp

�
� i
2
½ϕ1ðtÞ þ ϕ2ðtÞ�

�
: ð55Þ

The preimage OðintÞðt; t̄Þ of the interaction operator (17)
is a sum of terms containing ∂XiðtÞ or ∂Xi†ðtÞ and
exponentials of ϕaðtÞ, which can be expressed schemati-
cally as OðintÞðtÞ ¼ V− þ Vþ where

V�ðt; t̄Þ≡ ½ð� � �Þ∂XðtÞ þ c:c:�∶e�i
2
½ϕ1ðtÞ−ϕ2ðtÞ�∶ ð56Þ

with ð� � �Þ containing antiholomorphic fields including
∂̄Xðt̄Þ and exponentials of ϕ̃aðt̄Þ. The complete expressions
can be found, e.g., in Sec. 2.3 of [14], but all we need here
is the holomorphic fermionic factor ∶e�i

2
ðϕ1−ϕ2Þ∶, and the

fact that holomorphic8 bosons always appear “linearly” as
∂X or ∂X†. This is sufficient for seeing that, after
computing contractions, one can always rewrite expres-
sions in the numerator of (54) as proportional to the
correlation function in the denominator. See, e.g.,
[27,41]. The final result is that

Fcoverðt;xÞ¼
ðt1−xÞ2

ðt− t1Þ2ðt−xÞ2

þ1

4

��
1

t− t∞
−

1

t− t0
−
1

t

�
2

þ
�

1

t− t1
−

1

t−x

�
2
�
:

ð57Þ
We now must map from t to z by inverting (43). Similar

calculations can be found in [30,32]; here we outline the
main steps for the case of our map (43). Taking the
logarithm of the ratio zðtÞ=zðxÞ, we find the power series

X∞
k¼1

bkðz − uÞk ¼ ðt − xÞ2
X∞
k¼0

akðt − xÞk

hence t − x ¼
X∞
k¼1

ckðz − uÞk=2; ð58Þ

where the ck can be solved order by order in terms of the
coefficients ak and bk. To find the pole in (51), we just need
the first three ck, namely

c1 ¼ ∓
ffiffiffiffiffi
b1
a0

s
;

c2 ¼ −
a1b1
2a20

;

c3 ¼ ∓ 5a21b
2
1 − 4a0a2b21 þ 4a30b2

8a7=20 b1=21

ð59Þ

in which we must insert

a0 ¼
m1½m1 þm2ð2x − 1Þ�

2m2x2

a1 ¼ −
m1½m2

1 þ 3m1m2xþm2
2ð3x2 − 1Þ�

3m2
2x

3

a2 ¼
1

4

�ðm1 þm2xÞ4
m3

2x
4

−m2 −
m1

x4

�

b1 ¼
�
m1 þm2ðx − 1Þ

m2x

�
m1−m2

�m1

m2
þ x

x − 1

�−m1−m2

b2 ¼ −
1

2

�
m1 þm2ðx − 1Þ

m2x

�
2ðm1−m2Þ�m1

m2
þ x

x − 1

�−2ðm1þm2Þ

We thus obtain two sets (the covering surface near z ¼ u
has two sheets) of solutions ckðxÞ, k ¼ 1, 2, 3.
The transformation of (57) is governed by the trans-

formation of the stress-tensor,

Fþþðz; xÞ ¼ 2ft; zg þ
�
dt
dz

�
2 2ðt1 − xÞ2
ðtðzÞ − t1Þ2ðtðzÞ − xÞ2

þ 1

2

�
dt
dz

�
2
��

1

tðzÞ − t∞
−

1

tðzÞ − t0
−

1

tðzÞ
�

2

þ
�

1

tðzÞ − t1
−

1

tðzÞ − x

�
2
�

ð60Þ

where ft; zg is the Schwarzian derivative, ft; zg ¼ ðt00t0 Þ0 −
1
2
ðt00t0 Þ2 and tðzÞ is any of the two inverse maps near z ¼ u,

given by (58) with the two sets of solutions for c1, c2, c3—
both solutions give the same result, and their addition
results in the factor of 2 appearing in the rhs of (60).
Extracting the coefficient of the pole ∼ðz − uÞ−1 to get
HðxÞ, and multiplying by u0ðxÞ, we find the rhs of Eq. (53)
as a function of x. Then, integrating Eq. (53), we obtain the
connected four-point function

Gþþ
c ðxÞ ¼ Cþþ

c x1þm2−m1ðx − 1Þ2þm1þm2

×
�
xþm1

m2

�
2−m1−m2

�
xþm1 −m2

m2

�
1þm1−m2

×

�
xþm1 −m2

2m2

�
−4
: ð61Þ

We have introduced indices þþ in (61) because we
now want to distinguish the case for the other possible

8Of course, the same is true for the antiholomorphic
sector: V�ðt; t̄Þ can be organized instead as V�ðt; t̄Þ ¼
½ð� � �Þ∂̄Xðt̄Þ þ c:c:�∶e�i

2
½ϕ̃1ðt̄Þ−ϕ̃2ðt̄Þ�∶, with holomorphic fields hid-

den in the ellipsis.
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composite Ramond field, Rþ
m1
R−
m2
. The second-order cor-

rection of the two-point function of this neutral field is
given by the same expression (20) where now GðuÞ has the
form

G−þðuÞ ¼ hR−
m1
Rþ
m2
ð∞ÞOint

2 ð1ÞOint
2 ðuÞRþ

m1
R−
m2
ð0Þi: ð62Þ

Instead of Eq. (60), we now have

F−þðz; uÞ ¼ 2ft; zg þ
�
dt
dz

�
2 2ðt1 − xÞ2
ðtðzÞ− t1Þ2ðtðzÞ − xÞ2

þ 1

2

�
dt
dz

�
2
��

−
1

tðzÞ − t∞
þ 1

tðzÞ− t0
−

1

tðzÞ
�

2

þ
�

1

tðzÞ− t1
−

1

tðzÞ− x

�
2
�
;

which leads to a different HðxÞ, and to the solution of (53)
being

G−þ
c ðxÞ ¼ C−þ

c x2þm2−m1ðx − 1Þ1þm1þm2

×
�
xþm1

m2

�
1−m1−m2

�
xþm1 −m2

m2

�
2þm1−m2

×

�
xþm1 −m2

2m2

�
−4
: ð63Þ

Again, there are other contributions G−þ
m1

and G−þ
m2

, coming
from factorizations like in (33)–(34). These noncomposite
four-point functions again reduce to what has been com-
puted in [27].

E. Noncomposite contributions and the full function

One can use the stress-tensor method allied with the
covering surface technique to compute the noncomposite
functions Gmp

ðu; ūÞ, p ¼ 1, 2, as well; see [27,41]. As
mentioned before, the covering surfaces of these functions
have only four ramification points, and at genus zero the
covering map is

zpðtÞ ¼
�
t
t1

�
mp
�
t − t0
t1 − t0

��
t1 − t∞
t − t∞

�
; ð64Þ

upðxÞ ¼
xmp−1ðxþmpÞmpþ1

ðx − 1Þmpþ1ðxþmp − 1Þmp−1
ð65Þ

where t0 ¼ x − 1, t∞ ¼ x − xðxþmpÞ−1 and t1 ¼ t0t∞=x.
As mentioned, these maps can be obtained by making
m1 ¼ mp and m2 ¼ 1 in (43) and (46), as it was to be
expected. The function upðxÞ has Hp ¼ 2mp inverses.
Proceeding with the stress-tensor method, we find for the

correlators (33)–(34)

Gmp
ðxÞ ¼ Cmp

x
5ð2−mpÞ

4 ðx − 1Þ5ð2þmpÞ
4 ðxþmpÞ

2−3mp
4

× ðxþmp − 1Þ2þ3mp
4

�
xþmp − 1

2

�
−4
: ð66Þ

Restoring the symmetry factors CgðNÞ given by Eq. (39)
in the genus expansion, and taking only the terms with
g ¼ 0, the function Gðu; ūÞ in Eq. (31) can be found from
the functions GðxÞ computed above as

Gðu;ūÞ¼ϖðm1Þ
N

X2m1

a¼1

Gm1
ðx1;aðuÞÞḠm1

ðx̄1;aðūÞÞ

þϖðm2Þ
N

X2m2

a¼1

Gm2
ðx2;aðuÞÞḠm2

ðx̄2;aðūÞÞ

þϖðm1m2Þ
N2

X2maxðm1;m2Þ

a¼1

GcðxaðuÞÞḠcðx̄aðūÞÞ ð67Þ

where xp;aðuÞ are the inverses of upðxÞ. TheN-independent
factors ϖ will not be relevant for our discussion. Note that,
since (66) is computed with the genus-zero map (64), it
only takes into account the terms of types 1) and 2b)
discussed in Sec. III A. These are the leading contributions,
at order N−1, to the disconnected noncomposite four-point
functions. The terms of type 2a), which contribute at order
N−2 to (33)–(34), must be computed with a map corre-
sponding to the appropriately ramified genus-one covering
surface. In summary, Eq. (67) contains every genus-zero
contribution, but not every N−2 contribution.

IV. OPEs AND FUSION RULES

We now use Eq. (67) to examine various possible OPEs,
by taking the coincidence limit of the operators in the four-
point functions. Expressing the functions GcðxÞ as explicit
functions of u is impossible in general, because one would
need to know all the inverses xaðuÞ, but to find the OPEs we
only need to invert the functions locally, which can done by
expanding the functions uðxÞ near the singular points.
Exploring the OPE channels gives us one more check of
formulas (61) and (63) for G�þ

c ðxÞ, since they must yield
consistent fusion rules with the known ones for the
disconnected functions. Also, the OPEs allow us to fix
the integration constants C�þ

c and Cmp
which are unde-

termined by the stress-tensor method.
We first consider the contributions from the connected

functions Gþþ
c ðxÞ and G−þ

c ðxÞ given in Eqs. (61) and (63).
For each function, we analyze two short-distance behaviors:

the limit u → 1 corresponding to the OPEOðintÞ
2 ðuÞOðintÞ

2 ð1Þ,
and the limit u → 0, corresponding to the OPE between

OðintÞ
2 ðuÞ and the composite Ramond operator.
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A. OPE of two deformation operators

Let us start with the OPE of two interaction terms

OðintÞ
2 ðuÞOðintÞ

2 ð1Þ. This corresponds to taking the limit
u → 1 in the correlation function (32). Among the solutions
of uðxÞ ¼ 1, only two contribute nonsingular terms in the
expansion of GcðxÞ, namely x → ∞ or x → m2−m1

2m2
(they

correspond to x → t1). Each of these solutions give a
different OPE channel, corresponding to a different con-

formal family in ½OðintÞ
2 � × ½OðintÞ

2 �. Let us consider first
x → ∞; inverting uðxÞ asymptotically, it follows that

xðuÞ ¼ −
4m1

1 − u
þ 1

2

�
1þ 4m1 −

m1

m2

�
þ Oð1 − uÞ: ð68Þ

Expanding Gþþ
c ðxÞ accordingly, we get

Gþþ
c ðxðuÞÞ ¼ Cþþ

c x2
�
1 −

�
1þ 4m1 −

m1

m2

�
1

x
þ O

�
1

x2

��

¼ 16m2
1C

þþ
c

ð1 − uÞ2 þ 0 ×
1

1 − u
þ nonsing: ð69Þ

From counting the dimensions, it is clear that this

channel corresponds to the identity operator, i.e., ½OðintÞ
2 �×

½OðintÞ
2 ð1Þ� ∼ ½1� þ � � �. The absence of subleading singular-

ities ensures that there is no operator of dimension 1 in this
OPE, as it should be for a truly marginal deformation.

Taking each “component” OðintÞ
ðklÞ of the SN-invariant oper-

ator OðintÞ
2 to have a normalized two-point function,

hOðintÞ
ðklÞð1ÞOðintÞ

ðklÞðu; ūÞi ¼
1

j1 − uj4 ; ð70Þ

which can always be done by adjusting the deformation
parameter λ, the structure constant of this OPE is one, and
inserting it back into the four-point function we find that

1

ð1 − uÞ2 ¼
hR−

ðm1ÞR
−
ðm2Þð∞ÞRþ

ðm2ÞR
þ
ðm1Þð0Þi

ð1 − uÞ2

¼ 16m2
1C

þþ
c

ð1 − uÞ2 ; ð71Þ

where the two-point function is inherited from the original
four-point function representative of the conjugacy class in
this channel. Hence

Cþþ
c ¼ 1

16m2
1

: ð72Þ

Now let us consider the terms that appear in the second
channel. Inverting uðxÞ near x ¼ m2−m1

2m2
,

xðuÞ −m2 −m1

2m2

¼
�
3

64

ðm2
1 −m2

2Þ2
m1m4

2

�1
3ð1 − uÞ13 þ � � � ð73Þ

Expanding Gþþ
c ðxÞ around x ¼ m2−m1

2m2
, we get to the

following behavior of the function in this channel,

Gþþ
c ðxðuÞÞ ¼ C

ð1 − uÞ4=3 þ 0 ×
1

1 − u

þ b

ð1 − uÞ2=3 þ
a

ð1 − uÞ1=3 þ nonsing: ð74Þ

where a, b, C are constants, with

C ¼ 4Cþþ
c

3
4
3

ðm1 þm2Þ2
m2

2

�
m4

1m
4
2

ðm2
1 −m2

2Þ2
�1

3

¼ 1

4 × 3
4
3

ðm1 þm2Þ2
m2

2m
2
1

�
m4

1m
4
2

ðm2
1 −m2

2Þ2
�1

3

: ð75Þ

Note that once we come back to the base sphere, the
asymmetry in m1, m2 introduced by our choice of covering
map disappears [after taking into account Eq. (72)].
Dimensional analysis of the leading term ∼ð1 − uÞ4=3 in
(74) determines that this channel corresponds to the OPE

OðintÞ
2 OðintÞ

2 ∼ C223σ3 þ � � �. The appearance of the twist

field σ3 is not surprising because the interaction OðintÞ
2 is

constructed using σ2, and the above OPEs follow the SN
group multiplication rule σ2σ2 ∼ 1þ σ3. The subleading
term in (74) would correspond to an operator of dimension
one, and its absence is again a confirmation of the correct
behavior of the function Gþþ

c ðu; ūÞ.
The behavior in Eqs. (69) and (74) matches precisely the

one found for the disconnected functions Gmp
, described in

detail in [41]. Such consistency of the fusion rule

½OðintÞ
2 � × ½OðintÞ

2 � ¼ ½1� þ ½σ3�

is another check of the connected function (61). For the
disconnected functions, the identity channel gives that

Cmp
¼ 1

16m2
p

ð76Þ

by the same argument as above.

B. OPE of the deformation operator and the
composite Ramond field

Let us turn to the limit u → 0. It corresponds to the
OPE of the interaction field with the composite Ramond

field: OðintÞ
2 ðuÞRþ

m1
Rþ
m2
ð0Þ. Solving uðxÞ ¼ 0, we find the

channels
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x → −m1=m2; for m1 ≶ m2 ð77aÞ

x → 0 for m1 > m2 ð77bÞ

x → ðm2 −m1Þ=m2 for m1 < m2 ð77cÞ

Let us consider the common channel (77a) first,

xðuÞ þm1=m2 ¼ c1u
1

m1þm2 þ c2u
2

m1þm2 þ � � �

where the coefficients ci are readily computable. From here
one gets for the correlation function in this channel,

Gþþ
c ðuÞ ¼ m

m2−3m1
m1þm2

1 m
m1−3m2
m1þm2

2 u−1þ
2

m1þm2 þ � � � ð78Þ

with C (another) constant. Dimensional analysis of (78)
shows that the OPE in question has the following possible
forms:

OðintÞ
2 ðuÞRþ

m1
Rþ
m2
ð0Þ ∼ Xσm1þm2

ð0Þ

where X is some operator of dimension

ΔX ¼ 9=4
m1 þm2

ð79Þ

and R-charge 1, acing on the twist field, or

OðintÞ
2 ðuÞRþ

m1
Rþ
m2
ð0Þ ∼ X̃Rþ

m1þm2
ð0Þ

where X̃ has dimension

ΔX̃ ¼ 2

m1 þm2

ð80Þ

and R-charge 1=2. This second form should be connected
to previous results [17,42] where similar three-point func-
tions, but with the chiral field O2, instead of its descendent

OðintÞ
2 , were considered. In both cases, the numerical factor

in (78) plays the role of (the square of) the structure
constant.
In the channel (77b), where m1 > m2, we have

x ¼ c1u
1

m1−m2 þ c2u
2

m1−m2 þ � � �

leading to

Gþþ
c ðuÞ ¼ Cu−1þ

1
m1−m2 þ � � � ð81Þ

Once again, we expect to find a twist σm1þm2
in this

channel, since this is the only possible combination of the
twists σm1

, σm2
and σ2 in the conjugacy classes that

compose the connected function—i.e., the twist σ2 joins

the other two cycles. The exponent above implies that we
can therefore have the OPE

OðintÞ
2 ðuÞRþ

m1
Rþ
m2
ð0Þ ∼ Yσm1þm2

ð0Þ

where Y is now some operator of dimension ΔY ¼ 5
4
m1

m2
1
−m2

2

þ
3
4
m2

m2
1
−m2

2

and R-charge 1. Alternatively, we could also find, as

above,

OðintÞ
2 ðuÞRþ

m1
Rþ
m2
ð0Þ ∼ ỸRþ

m1þm2
ð0Þ

where now Ỹ has dimensionΔỸ ¼ 1
m1−m2

, and R-charge 1=2.
If we finally look to the third channel (77c), we find

nothing new: we get simply the results for channel (77b),
but with m1 and m2 interchanged. This was to be expected
as, we emphasize, the functions on the base sphere are
symmetric under m1 ↔ m2.

C. The case of m1 =m2

Now let us consider the behavior of our correlation
function when m1 ¼ m2 ¼ m. The highly simplified uðxÞ
is now given by Eq. (47). We can compute the correlation
function with the same procedure as before, and find simply

Gþþ
c ðxÞ ¼ Cþþ

c x−2ðx − 1Þ2mþ2ðxþ 1Þ−2mþ2:

In the limit u → 1 with x → ∞ we find again a behavior
showing that the identity appears in the product of
interaction fields, and in the other limit, u → 1 with
x → 0, the coefficient in front of the contribution of the
field σ3 vanishes, so in this case there is no such channel in
the OPE of two interaction terms. When u → 0, one single
solution survives: x → −1, and the function scales as

Gþþ
c ðuÞ ¼ c u−1þ1

m þ � � �

This means that, if one accepts our suggestions above, only
descendants of σ2m or R2m appear on the rhs of the OPE,
and the term like σ0 is absent, as it should be, of course.

D. OPEs from the four-point function
with neutral composite operators

We turn next to consider the short-distance behavior of
the two-point function (63) of the neutral composite fields
Rþ
m1
R−
m2
. Its behavior as u → 1, corresponding to the OPE

of the two interaction terms, is exactly the same as
discussed above, as expected for consistency, and yields
Cþ−
c ¼ 1=16m2

1 in the identity channel.
The limitu → 0 accounts for theOPEOðintÞ

2 ðuÞRþ
m1
R−
m2
ð0Þ.

In the channel x → −m1=m2,

Gþ−
c ðuÞ ∼ Cu−1þ

1
m1þm2 þ � � �
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This result leads to the following possible suggestions for
the OPE:

OðintÞ
2 ðuÞRþ

m1
R−
m2
ð0Þ ∼ Yσm1þm2

ð0Þ

where Y is some operator of dimension ΔY ¼ 5=4
m1þm2

and
R-charge zero, or

OðintÞ
2 ðuÞRþ

m1
R−
m2
ð0Þ ∼ ỸR�

m1þm2
ð0Þ

with Ỹ having ΔỸ ¼ 1
m1þm2

, and R-charge ∓1.
The channel x → 0 leads to

Gþ−
c ðuÞ ∼ Cu−1þ

2
m1−m2 þ � � �

and one possible interpretation of this scaling for the form
of the OPE is

Oint
2 ðuÞRþ

m1
R−
m2
ð0Þ ∼ Xσm1þm2

ð0Þ

where X has ΔX ¼ 9=4
m1þm2

and R-charge zero; alternatively,

OðintÞ
2 ðuÞRþ

m1
R−
m2
ð0Þ ∼ X̃R�

m1þm2
ð0Þ

with X̃ having ΔX̃ ¼ 2
m1þm2

, and R-charge ∓1. Notice that
X has the same dimension as found for the operator X in
Eq. (79), but X is R-charged while X is R-neutral.
Similarly, X̃ and X̃ have equal dimensions given by
(80), but different R-charges.

V. RENORMALIZATION AND
ANOMALOUS DIMENSIONS

The two-point function of the composite Ramond fields
R�
m1
R�
m2
, evaluated at second order in the deformed orbifold

SCFT2 (21), contains, in the large-N limit, a log jz14j
correction term together with the logarithmic divergence

λ2π logΛ
Z

d2uGðu; ūÞ

¼ λ2π logΛ
�Z

d2xju0ðxÞGcðxÞj2

þ
Z

d2xju01ðxÞGm1
ðxÞj2 þ

Z
d2xju02ðxÞGm2

ðxÞj2
�
:

ð82Þ

For each of the three functions composing (31), we have
made a change of integration variables d2u ¼ d2xju0ðxÞj2
with the maps uðxÞ given in Eqs. (46) and (65). We are
forced to do this change of variables, since we have
calculated in (61), (63) and (66) the explicit form of the
correlation functions parametrized by x.

We start with the integral

Iþþ
c ¼

Z
d2xju0ðxÞGþþ

c ðxÞj2

∼
Z

d2x

���� ðx − 1Þðxþ m1

m2
Þ

ðxþ m1−m2

2m2
Þ2

����2 ð83Þ

and, with one more change of variables,

y ¼ −4m2ðm1 þm2Þ−2ðx − 1Þðm2xþm1Þ;

we arrive at

Iþþ
c ∼

Z
d2y

jyj2
j1 − yj3 ¼

1

Γð−1Þ ¼ 0: ð84Þ

The same happens in the case of R-neutral composite
Ramond field Rþ

m1
R−
m2
—now Gþ−

c ðxÞ is given by Eq. (63)
and its integral is

Iþ−
c ¼

Z
d2uGþ−

c ðu; ūÞ

¼
Z

d2xju0ðxÞG−þ
c ðxÞj2

∼
Z

d2x

���� xðxþ
m1−m2

m2
Þ

ðxþ m1−m2

2m2
Þ2
����2: ð85Þ

Again by a further change of the variables,

yðxÞ ¼ −4m2ðm1 −m2Þ−2
�
xþm1 −m2

m2

�
x;

we get exactly the same result as before,

Iþ−
c ∼

Z
d2y

jyj2
j1 − yj3 ¼ 0: ð86Þ

Hence the connected partGc of the four-point function (20)
does not contribute to the anomalous dimensions of any of
the considered composite operators.
We next compute the contributions coming from the

last two terms, Gm1
ðxÞ and Gm2

ðxÞ, in Eq. (82), i.e., the
disconnected part of the function. Using (66) and (65),
the last two integrals in Eq. (82) take the form [27]

JRðnÞ ¼
�
nþ 1

16n

�
2
Z

d2yjyj2aj1 − yj2bjy − wnj2c;

wn ≡ 4n
ðnþ 1Þ2 ; ð87Þ

where n ¼ m1 or n ¼ m2, and a ¼ 1
2
þ 1

4
n, b ¼ − 3

2
,

c ¼ 1
2
− 1

4
n. Evaluation of the above integrals JRðmpÞ

can be performed by applying the Dotsenko-Fateev method
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[43,44]. The final result can be written in terms of
combinations of hypergeometric functions which asymp-
tote to finite, small numbers when n is large [27].
The first consequence of the existence of finite non-

vanishing terms in Eq. (82) is the renormalization of the
conformal dimensions of the composite twisted Ramond
fields. In order to cancel the logΛ divergent terms, we
follow the standard QFT rules, i.e., dressing each one of the
“bare” Ramond fields to get their renormalized counter-
parts

R�ðrenÞ
mp ðz; z̄Þ ¼ Λ1

2
πλ2JRðmpÞR�

mp
ðz; z̄Þ: ð88Þ

Therefore the λ2-corrected conformal dimensions of the
composite Ramond fields in deformed orbifold SCFT2

takes the form

ΔR
m1;m2

ðλÞ þ Δ̃R
m1;m2

ðλÞ

¼ m1 þm2

2
þ 1

2
πλ2ðjJRðm1Þj þ jJRðm2ÞjÞ; ð89Þ

and the two-point functions of the composite Ramond
fields can be rewritten as

hR−
m1
R−
m2
ðz1; z̄1ÞRþ

m1
Rþ
m2
ðz4; z̄4Þirenλ

h1iλ
¼ 1

jz14jm1þm2þπλ2ðjJRðm1ÞjþjJRðm2ÞjÞ

¼ 1

jz14jm1þm2
½1 − πλ2ðjJRðm1Þj þ jJRðm2ÞjÞ log jz14j

þOðλ4Þ�: ð90Þ

A similar renormalization occurs for the R-neutral
composite Ramond fields Rþ

m1
R−
m2
; in fact both type of

composite Ramond fields (charged and neutral) turn out to
have equal conformal dimensions, but different R-charges.
We have to note another important implication of the

above result, concerning the nonvanishing finite parts in the
integral in Eq. (82). It allows one to also derive the nonzero
correction to the three-point function

hR−
m1
R−
m2
ð∞ÞOðintÞ

2 ð1ÞRþ
m1
Rþ
m2
ð0Þiλ

¼ λðJRðm1Þ þ JRðm2ÞÞ þ � � � ; ð91Þ

which in fact is providing the value of the structure constant
at the first order in perturbation theory in λ.
The fact that at the second order in perturbation theory

the purely connected part GcðxÞ of the SN invariant 4-point
function (20) gives no contributions to the two-point
function of the composite Ramond fileds R�

m1
R�
m2
, while

those of the so-called “disconnected” parts Gmp
ðxÞ yield

nonvanishing contributions raises the question: Could one

impose appropriate restrictions on the values of the twists
mp that select the BPS-protected from the lifted (non-
protected) composite Ramond states?
The answer is hidden in the structure of cycles entering

connected and partially disconnected functions, as
described in Sec. III A. For an operator to be protected,
it must only posses the connected part ofGðu; ūÞ, hence the
cycles ðm1Þðm2Þ must be such that the partially discon-
nected functions are impossible. We get a partially dis-
connected functionGm1

ðxÞwhen a cycle of the deformation
operator, ð2Þ ¼ ðklÞ, with k;l ∈ ½1; N�, is such that one of
its elements, say l, coincides with one of the elements of
the cycle (m1) and the second one, k, does not belong
neither to (m1) nor to (m2). Similarly, the function Gm2

ðxÞ
is made of terms with l ∈ ðm2Þ. It is then clear that, when
the cycles (m1) and (m2) are such that

m1 þm2 ¼ N; ð92Þ

there is no k ∈ ½1; N� which does not belong to either
cycle ðmpÞ, hence we have no disconnected contributions.
Thus the family of composite fields R�

ðm1ÞR
�
ðm2Þ satisfying

(92) is protected: they do not receive any corrections
to their “free orbifold point” conformal dimensions
ΔR

m1;m2
þ Δ̃R

m1;m2
¼ 1

2
N. In all other cases, since

m1 þm2 < N, one is able to choose k ∈ ½1; N� that is
not in (m1) nor in (m2). Then we have both connected and
partially-disconnected contributions to the four-point func-
tions and, as a result these composite Ramond states (and
fields) are lifted, i.e., they get λ2 dependent corrections (89)
to their conformal dimensions.
Note that, while we have been considering the SN-

invariant operator R�
m1
R�
m2
, we could also ask the fate of

“individual,” non-SN-invariant operators R�
ðm1ÞR

�
ðm2Þ, made

by individual cycles (m1) and (m2), with no sum over group
orbits. It is not hard to see that the discussion above still
holds: only operators with cycles satisfying Eq. (92) are
protected. All other individual operators R�

ðm1ÞR
�
ðm2Þ

undergo a renormalization of their dimensions obeying
Eq. (89). This is because the deformation action, and hence

OðintÞ
2 , must necessarily be an SN-invariant object, hence we

must always sum over the group orbits of the cycles
ð2Þ ¼ ðklÞ of the deformation operator, and ðklÞ will
always assume all possible values.

VI. CONCLUDING REMARKS

Coherent superpositions of twisted Ramond states are an
important ingredient in the holographic duality between the
two-charge extremal black hole solutions of type IIB
supergravity and the VEVs of operators in the SCFT2

[9]. Comparison between the bulk SUGRA solutions and
the D1-D5 orbifold SCFT2 data is based on the conjecture
that every chiral NS field On and certain BPS twisted
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Ramond ground states are not affected by the marginal
interaction (16), i.e., the values of such VEVs are
λ-independent.
In the broadly used interpretation of twisted states in

terms of multiwinding of mi-component strings, the
composite operators

Qq
i¼1 R

�
mi
ðz; z̄Þ, with

Pq
i¼1mi ¼ N,

correspond to twisted Ramond ground states9 j0��iR of the
orbifold SCFT2 with central charge corb ¼ 6N. The double-
cycle operators considered here—the winding of only two
components, i.e., q ¼ 2 and m1 þm2 ¼ N—are the sim-
plest example of such ground states, apart from the
maximal-twist single-cycle Ramond fileds R�

N [27]. The
selection rule we have found means that, while there is a
renormalization of individual states j0��

mi
iR, corresponding

to the mi-component strings, the double-wound states
j0��iR with total weight Δ ¼ 1

4
N, composed by two

mi-component strings with m1 þm2 ¼ N, is protected.
For now, the renormalization properties of products of more
than two operators is still an open question, but our
preliminary investigations suggest that the “double-
winding” selection rule generalizes to multiwound states.
This is, indeed, the behavior expected for j0��iR composed
by several component strings: the nonlifting of multiwound
Ramond ground states with weight Δ ¼ 1

4
N has been used

to identify them with two-charge geometries. Operators
½R�

k ðz; z̄Þ�N=k are holographically dual to axially symmetric
bulk geometries with a Zk orbifold singularity at the
end of the long AdS3 × S3 throat; hence the operators with
m1 ¼ m2 ¼ m ¼ 1

2
N, described in the present paper, yield

a geometry with a conic singularity of ZN=2 type, see [11].
The j0��iR are also related to excited states of the D1-D5-P
system via appropriate integer or fractional spectral flows,
respectively describing “neck” or “cap” degrees of freedom
in the three-charge geometries [11]. Note that it is not hard
to find the four-point functions for these excited states,
given the ground state functions described here.
Let us mention a few more open problems that are under

investigation. The first is the renormalization and the
protection rules of R-neutral (but “internal” SU(2) dou-
blets) twisted Ramond fields R0

n, and of the corresponding
R-neutral composite operators, such as ðR0

nÞ2 and R�
mR0

n.
These fields, and their (left-right asymmetric) descendants,
are important for the construction of microstates of the
three-charge extremal black hole in the D1-D5-P system
[13]. Another open question is about eventual λ-dependent
changes to three-point functions which are appropriate
generalizations of hR−

m1
R−
m2
ð∞ÞO2ð1ÞRm1þm2

ð0Þiλ, as for
example those considered in the recent papers [17,45].
To conclude, the problems solved in the present paper are

based on the construction of the appropriate covering maps
and the derivation of the renormalization of two- and three-
point functions involving composite twisted Ramond fields

in the deformed D1-D5 orbifold SCFT2. An important
byproduct of our investigations is a simple selection rule
that allows us to separate between protected and lifted
states. These results can be easily generalized for composite
twist fields σm1

σm2
and for chiral NS fields OmOn, since

the covering map to be used is the same as the one we
have constructed (46). Our preliminary results indicate
that the case of twist fields seems to be identical to the
Ramond case, while composite chiral NS fields, similarly
to the single-cycle On fields, seem to be free of any
renormalization [41].
In fact, the most important problem behind the question

about the origins and the specific features of the protected
and lifted states is the lack of a complete description of the
(super)symmetry algebra of the deformed orbifold SCFT2,
and the lack of knowledge of the structure of its null vectors
and the eventual classification of its unitary representations.
Many partial recent results [46–49] provide important hints
about different aspects of this problem. We believe that the
information extracted from the specific 3-, 4-, and 5-point
functions of (composite) twisted Ramond fields in the free
orbifold point, together with the developments of the
methods of the calculations of certain integrals of them,
also might provide relevant indications about the spectra of
the representations of the deformed D1-D5 orbifold model.
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APPENDIX A: ISOMORPHISM BETWEEN
COVERING MAPS

To prove that the maps zðtÞ and z̃ðtÞ in (43) and (48) are
isomorphic, we must show that they are related by an
automorphism of the cover S2cover ¼ C ∪ ∞. In other words,
we must show that there is a Möbius transformation
f∶ S2cover → S2cover such that

z ¼ z̃ ∘ f: ðA1Þ

Composing the Möbius transformation

fðtÞ ¼ atþ b
ctþ d

; ad − bc ≠ 0; ðA2Þ

with the function z̃, given by (48), we have9In the notation of Ref. [11].
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z̃ ∘ fðtÞ ¼
�
1

t̃1

atþ b
ctþ d

�
m2

� atþb
ctþd − t̃0
atþb
ctþd − t̃∞

�m1
�
t̃1 − t̃∞
t̃1 − t̃0

�
m1

¼
�
1

t̃1

atþ b
ctþ d

�
m2

� ða − t̃0cÞtþ b − t̃0d
ða − t̃∞cÞtþ b − t̃∞d

�
m1

×

�
t̃1 − t̃∞
t̃1 − t̃0

�
m1

and we must find a, b, c, d such that this equals

zðtÞ ¼
�
t
t1

�
m1

�
t − t0
t1 − t0

�
m2

�
t1 − t∞
t − t∞

�
m2

:

By inspection, the parameters must satisfy the conditions

a=c¼ t̃∞; b=d¼ t̃0; b=a¼−t0; d=c¼−t∞

hence

ad − bc ¼ t∞ − t0
t0

bc ¼ bc
ðx − 1Þð1þm2x=m1Þ

≠ 0

for x ≠ ∞.

APPENDIX B: COMBINATORIAL DERIVATION
OF THE HURWITZ NUMBER FOR

CONNECTED FUNCTIONS

Here we show that

Hc ¼ 2 maxðm1; m2Þ ðB1Þ

by counting how many different equivalence classes of
permutations of the kind

ðm1Þ∞ðm2Þ∞ð2Þ1ð2Þuðm2Þ0ðm1Þ0 ¼ 1; ðB2Þ

are there, such that
Cond.1 Cycles ðm1Þ∞ and ðm2Þ∞ are disjoint (commute);
Cond.2 Cycle ð2Þ1 shares one element with ðm1Þ∞ and
another with ðm2Þ∞;

Cond.3 Cycles ðm1Þ0 and ðm2Þ0 are disjoint (commute);
Cond.4 Cycle ð2Þu shares one element with ðm1Þ0 and
another with ðm2Þ0.

One can fix the leftmost cycles as

ðm1Þ∞ðm2Þ∞ð2Þ1
¼ð1;2;…;m1Þðm1þ1;m1þ2;…;m1þm2Þð1;m1þ1Þ
¼ ð1;2;…;m1;m1þ1;m1þ2;…;m1þm2Þ ðB3Þ

which is the most general form of satisfying Cond.1–
Cond.2 modulo global SN transformations. (And now we
cannot use SN transformations anymore.) For example,
with m1 ¼ 4 and m2 ¼ 3, we fix

ðm1Þ∞ðm2Þ∞ð2Þ1 ¼ ð1; 2; 3; 4Þð5; 6; 7Þð1; 5Þ
¼ ð1; 2; 3; 4; 5; 6; 7Þ: ðB4Þ

To satisfy Eq. (B2), we the remaining cycles must be the
inverse of (B3),

ðm1 þm2;…; 2; 1Þ ¼ ð2Þuðm2Þ0ðm1Þ0: ðB5Þ

So our task reduces to counting in how many ways one can
decompose the cycle in the lhs into a product of cycles with
the structure in the rhs and satisfying Cond.3–Cond.4.
Our approach is to choose one element k among the

m1 þm2 elements in the cycle in the lhs of (B5) to be one
of the two elements of ð2Þu ≡ ðk;lÞ. Once this is done,
there are two ways of decomposing ðm1 þm2;…; k;…; 1Þ
according to the cycle structure in (B5), namely

(i) Choose the mth
2 element to the right of k to be l; or

(ii) Choose the mth
1 element to the right of k to be l.

For example, choosing k ¼ 6 in the inverse of (B4) by
marking it in green, the corresponding possible ways of
fixing l are marked in red:

ð7; 6; 5; 4; 3; 2; 1Þ ¼ ð6; 3Þð3; 5; 4Þð6; 7; 2; 1Þ
ð7; 6; 5; 4; 3; 2; 1Þ ¼ ð6; 2Þð6; 1; 7Þð2; 5; 4; 3Þ

Choosing next k ¼ 5,

ð7; 6; 5; 4; 3; 2; 1Þ ¼ ð5; 2Þð2; 4; 3Þð5; 1; 7; 6Þ
ð7; 6; 5; 4; 3; 2; 1Þ ¼ ð5; 1Þð5; 7; 6Þð1; 4; 3; 2Þ

As we go on choosing the sites in ðm1 þm2;…; 1Þ one
by one, once we arrive at m1 sites away from the starting
point, all possible decompositions have already been found,
and start repeating. In our example, the site at distance m1

from 6 is 2, and the possible decompositions are

ð7; 6; 5; 4; 3; 2; 1Þ ¼ ð6; 2Þð6; 1; 7Þð2; 5; 4; 3Þ
ð7; 6; 5; 4; 3; 2; 1Þ ¼ ð5; 2Þð2; 4; 3Þð5; 1; 7; 6Þ

which we had already found before. In summary, we have
found two different decompositions for each one out of m1

elements (where m1 > m2). This proves (B1).
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