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In this paper we apply a recently proposed numerical algorithm for finding stationary phase points in
spin foam amplitudes. We study a spin foam amplitude with three vertices and a bulk face in 4D BF theory.
We fix the boundary coherent states to three possible triangulations, one with zero deficit angle on the bulk
face and two with nonzero deficit angle. We compute the amplitude numerically and we find a stationary
phase point already at low spins in all the three cases. We comment on how this result contrasts with the
claims of flatness problem in spin foam theories. We point out where these arguments may be misleading
and we propose further computations to definitively answer the question.
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I. INTRODUCTION AND MOTIVATIONS

The EPRL-FK spin foam theory [1,2] is an attempt to
define the dynamics of loop quantum gravity. It provides a
regularized, background-independent and Lorentz covari-
ant quantum gravity path integral with the definition of a
partition function on a triangulation. The theory assigns
transition amplitudes to spin network states on the boun-
dary of a triangulation.
Recovering general relativity (or at least a discrete

version of it) in the semiclassical limit is a fundamental
test for spin foam theories. The large spin limit of the EPRL
vertex amplitude has been largely explored in both
Euclidean [3] and Lorentzian versions [4]. Remarkably,
under a homogeneous rescaling of all the spins, the single
vertex amplitude with coherent boundary data contains the
Regge action, a discrete formulation of general relativity.
However, in the case of extended triangulations, the

semiclassical limit of the theory is not completely under-
stood. In particular, the question of what semiclassical
geometries dominate the summations over bulk degrees of
freedom is still open.
Different calculations suggest that the summation over

bulk degrees of freedom is dominated by flat geometries.1

This observation, often called flatness problem, has been
mentioned by Freidel and Conrady [5], Bonzom [6], and
Han [7]. Hellmann and Kamiński [8] proposed a different
analysis, based on the calculation of the wavefront set of the
spin foam partition function and a geometrical interpreta-
tion of its variables, and they found a similar problem.

A more refined stationary phase analysis of the
Euclidean EPRL model has been carried out by Oliveira
in [9]. They include all the constraints on the boundary data
necessary to obtain a nonexponentially suppressed vertex
amplitude. The initial claim that the flatness problem is not
present in that setting has been recently questioned by
Kaminski and Engle [10]. It has been suggested that taking
only large spins is not the right way to access the semi-
classical regime of the theory [11–13].
The importance of numerical methods for the inves-

tigation of spin foam theories grew considerably in recent
years. The software library sl2cfoam is a C based high-
performance library and is the foundation for the numerical
computation of general spinfoam amplitudes, both in 3 and
4 dimensions, with topological BF or Lorentzian EPRL
models [14]. The library is based on the factorization [15]
and was used to explore the large spin limit of both
models [16,17].
While still at the early stages, the evaluation of many-

vertices spinfoam amplitudes is possible. In a recent work
[18], we have developed an algorithm to determine the
existence and estimate the position of stationary phase points
in the summations over the spins of internal faces. We tested
its effectiveness applying it to BF spin foam theory in 3D
(the Ponzano-Regge model), where the stationary phase
points are directly connected to the solution of the equations
of motion of euclidean Regge calculus. We adapt the
algorithm to the BF spin foam theory in 4D. This topological
model is the starting point for the construction of physical
spin foam models like the EPRL model. For this reason,
there are many similarities between the two. For example,
the boundary states of the transition amplitudes are the same,
as well as the semiclassical geometries emerging from the
single vertex asymptotics. What geometries dominate the BF
transition amplitudes in the large spin limit is an interesting
question on its own.
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faces multiple of 4π=γ.
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In this work, we focus on theΔ3 triangulation, formed by
three 4-simplices sharing a common triangle. It is the
simplest triangulation with many vertices and a bulk face,
and it is the standard example used in the flatness problem
literature [8,9,19].
Solutions of the classical equation of motion dominate

the summation over the bulk degrees of freedom in the large
spin limit. We expect them to manifest through the presence
of stationary phase points. Note that in classical Regge
calculus, the Δ3 triangulation is too simple to give non-
trivial dynamics since boundary conditions fix all the
lengths. Hence, this triangulation is not a good example
to probe the large spin limit of the EPRL model if we
suppose the classical underlying theory to be (area-angle)
Regge calculus. Nevertheless, the study of this amplitude
can teach us some valuable lessons.
We find an unexpected result. We construct three

examples of the 4D Euclidean Regge Δ3 triangulation.
One is the flat triangulation characterized by a zero deficit
angle around the shared triangle. The other two are curved
triangulations. We compute the coherent amplitude asso-
ciated with each triangulation, and we look for stationary
phase points in the internal spin, dual to the shared triangle.
We find the presence of a stationary phase point in all the
cases. We estimate its value, and we find it compatible with
the area of the dual triangle of the prescribed triangulation.
If we apply arguments similar to the ones claiming

flatness of the EPRL model to BF theory, we would infer
that curved triangulations should be suppressed in the sum.
Therefore we would not expect to find any stationary phase
point in this case. This shows tension between our results
and the arguments declaring that the EPRL model is flat.
The paper is organized as follows. In Sec. II we review

the spin foam formulation of BF theory and the Δ3

transition amplitude. Section III describes the Regge
triangulations we use to construct the boundary data of
the amplitude. In Sec. IV we illustrate the algorithm we use
to search for stationary phase points and its application. We
review the main arguments of the flatness problem of the
EPRL model applied to the topological BF model in Sec. V.
We conclude with a summary of our numerical results and
their implications.
All the computations are performed on the CPT servers

in Marseille. Each machine is equipped with a 32 cores
CPU Intel(R) Xeon(R) Gold 6130 with a base frequency of
2.10 GHz and 196 GB of RAM. In the public repository
[20] we publish the C code used to calculate the transition
amplitudes along with the Wolfram Mathematica note-
books used to prepare the boundary data and to perform the
numerical stationary phase point analysis.

II. BF THEORY AND THE Δ3 TRANSITION
AMPLITUDE

General relativity in four dimensions can be written as a
BF theory with constraints. This is the starting point in the

construction of many spin foam models, as the Lorentzian
EPRL model. In this paper, we study the spin foam
formulation of the SUð2Þ BF theory on a four-dimensional
manifold. For a detailed overview of BF theory and its
relations with spin foam models, see [21] or [22]. A
triangulation Δ of the manifold is dual to a two-complex
Δ⋆ that consists of a set of vertices (dual to the 4-simplices),
edges (dual to the tetrahedra) and faces (dual to the
triangles). We assign an SU(2) holonomy ge to each
half-edge of the triangulation. The partition function of
the theory discretized on Δ is given by

ZðΔÞ ¼
Z Y

e

dge
Y
f

δðge1…genÞ; with ei ⊂ f; ð1Þ

the product ge1…gen is the holonomy around the face f,
and dge is the Haar measure on SUð2Þ. We expand the
delta function using the Peter-Weyl theorem as δðgÞ ¼P

jð2jþ 1ÞTrðDjðgÞÞ, where DjðgÞ are the Wigner matri-
ces of the SU(2) representation of spin j. We get

ZðΔÞ ¼
X
jf

Z Y
e

dge
Y
f

ð2jf þ 1ÞTrðDjfðge1…genÞÞ ð2Þ

ð3Þ

It is useful to introduce a graphical notation for spin foam
vertices. Every box represents one integral over SU(2), each
line is an irreducible representation of SU(2), and each edge
contains four lines. For more details on graphical notations
see [16,23]. We reorganized the partition function as a
product over the vertices ofΔ⋆ (4-simplices ofΔ) and a sum
over all the spins. Furthermore, the integrations over SU(2)
can be performed explicitly, introducing a sum per edge over
a 4-valent intertwiner space ie. We obtain the familiar form
for the partition function in terms of amplitudes

ZðΔÞ ¼
X
jf;ie

Y
f

Af

Y
e

Ae

Y
v

Av: ð4Þ

The face amplitude and the edge amplitude are given
respectively by the dimensional factors Af ¼ 2jf þ 1 and
Ae ¼ 2ie þ 1. The vertex amplitude Av is given by a f15jg
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symbol. In this work we use the f15jg symbols of the first
type (see Appendix A for our conventions).
Curiously, the vertex amplitude of this theory with

coherent boundary data contains the Regge action of a 4-
simplex in the large spin limit. This connection with discrete
gravity has been extensively studied both analytically [24]
and numerically [16], and is limited to a single vertex. The
topological nature of the model is encoded in the delta
functions that appear in triangulations with internal faces.
We study the spin foam transition amplitude of the Δ3

triangulation. The 2-complex dual to the Δ3 triangulation is
represented in Fig. 1. It is the simplest amplitude with
3 vertices, 18 boundary faces and one internal face. Each
vertex shares an edge with the other two and has three
boundary edges.

The boundary data consist of coherent states parame-
trized by 18 spins and 36 unit normals, one spin and two
normals per each strand of the spin foam diagram. We
denote with jabc each boundary spin and with x the internal
spin. In the next section, we study the four-dimensional
geometry we use to specify the boundary data; the nota-
tion will be clearer then. The spin foam transition ampli-
tude, omitting the summation over x and the associated
face amplitude, is represented using the graphical notation
in Fig. 1. We refer to (C1) in Appendix C for the com-
plete picture with all the spin labels and orientations of
the faces.
We perform the SU(2) integrals and obtain the Δ3

spin foam amplitude in terms of f15jg symbols (see
Appendix C for more details)

WΔ3
ðjf; n⃗faÞ ¼ ð−1Þχ

X
x

wΔ3
ðx; jf; n⃗faÞ

¼ ð−1Þχ
X
x

ð−1Þxð2xþ 1Þ
X
kb

�Y
b

ð−1Þkbð2kb þ 1Þ
�X

ia

�Y
a

ð2ia þ 1Þciaðn⃗faÞ
�

×

8<
:

i1 j345 k1 j145 i2
j235 x j134 j124 j245
j125 k2 j123 i3 j234

9=
;
8<
:

i4 j123 k2 j235 i5
j136 x j125 j256 j236
j356 k3 j156 i6 j126

9=
;
8<
:

i7 j156 k3 j136 i8
j145 x j356 j346 j146
j134 k1 j345 i9 j456

9=
;
ð5Þ

FIG. 1. Left: the 2-complex of the Δ3 triangulation. We highlight in red the bulk face. Right: the Δ3 spin foam amplitude in graphical
notation. We are omitting a summation over the internal spin x and a dimensional factor 2xþ 1. The boxes represent integrals over the
SUð2Þ group, and the strands are irreducible representations labeled by a spin jabc. The empty dots on the boundary represents the SU(2)
coherent states.
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where χ¼2ðj123þj234þj124þj134þj456þj156þj346 þ
j356þj235Þþj123þj345þj156 is a phase function only of
the boundary spins, ia are the boundary intertwiners, kb
are the internal intertwiners and the sum over the spin x is
bounded by triangular inequalities. The complex coeffi-
cients ciaðn⃗faÞ are the Livine-Speziale coherent inter-
twiners in the recoupling basis, they depend on the
normals n⃗fa and areas of the tetrahedron a (see Appendix B
for their definition).

III. THE Δ3 GEOMETRY

The Δ3 triangulation is formed by three 4-simplices,
sharing a common triangle. The boundary of the triangu-
lation consists of nine tetrahedra and the bulk consists of
three tetrahedra all sharing the common triangle x.
We associate to each boundary tetrahedron a coherent

state characterized by 4 spins, the areas of its faces, and
4 unitary vectors, the outward normals to the faces of the
tetrahedron. The triangulation is made of points, seg-
ments, faces and tetrahedra. We use the triangulation
representation in Fig. 2 as reference. The boundary spins
jabc are labeled by a triple of points a, b, c since they
correspond to triangles. We decide to focus on Regge
geometries, fully characterized by their 15 lengths lab
of the segment joining points a, b. Notice that all the
lengths belong to at least one boundary tetrahedron,
therefore fixing the boundary determines the triangulation
completely.
For simplicity and easier computability, we restrict our

analysis to geometries with a high degree of symmetry.
We require “cylindrical” symmetry forcing the three
4-simplices to be identical. This symmetry requires the
bulk triangle to be equilateral (l13 ¼ l35 ¼ l15) and the
bulk tetrahedra to be isosceles, having an equilateral base
and three identical isosceles faces (l12 ¼ l25 ¼ l23 ¼
l16 ¼ l36 ¼ l56 ¼ l34 ¼ l14 ¼ l45). The remaining three
lengths also have to be equal (l26 ¼ l24 ¼ l46).

Furthermore, we require all the areas of the boundary
triangles to be the same, and this fixes l13 ¼ l26. The
symmetry reduces the degrees of freedom of the Regge
triangulation from 15 to 2, for example, l12 and l13. In
terms of the lengths, we can compute all the geometric
quantities of the triangulations: areas, three and four-
dimensional volumes and two, three and four-dimensional
dihedral angles. It is interesting to compute the area of the
boundary triangles λ and α the 4D dihedral angle around the
bulk triangle of one 4-simplex:

λ ¼ 1

4
l13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2

12 − l2
13

q
; sin2α ¼ 3

4
l2
13

12l2
12 − 7l2

13

ðl2
13 − 3l2

12Þ2
:

ð6Þ

They are independent variables and under a linear rescaling
of the lengths λ scales quadratically while α does not scale.
In the following, we identify with λ the scale of the
triangulation.
Another interesting geometrical quantity for our analysis

is the value of the area of the shared triangle

xg ¼
ffiffiffi
3

p

4
l2
13 ¼ 3

�
6þ sin2 αþ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 α

p

48þ sin2 α

�1
2

λ: ð7Þ

For Regge geometries curvature can be expressed in terms
of deficit angles associated to triangles shared between
4-simplices. In the particular class of symmetric triangu-
lations we are considering the deficit angle associated with
the shared triangle is

δ ¼ 2π − 3α: ð8Þ

We parametrize the triangulations in this paper with λ
and δ instead of the two lengths. Once the triangulation is
specified, we compute all the normals of the boundary

FIG. 2. Left: the geometry of the Δ3 triangulation. The numbered circles correspond to points. Lines correspond to segments. Each
color corresponds to a different 4-simplex. The bulk triangle is highlighted in red. Right: the three 4-simplices are shown separately.
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tetrahedra to use them in defining the boundary coherent
states.
In this work we consider the flat triangulation charac-

terized by δ ¼ 0 at various scales λ, a first curved
triangulation characterized by δ ≈ 3.60 at scale λ ¼ 20,
and a second curved triangulation characterized by δ ≈ 2.47
at scale λ ¼ 20. The chosen parameters of the curved
triangulations are particularly convenient for this numerical
analysis. We motivate our choice of focusing on a single
scale for the curved configurations in the next section. All
the notebooks we used to compute all the geometric data
and the boundary normals for the three triangulations are
available in [20].

IV. NUMERICAL ANALYSIS

The algorithm in [18] is designed to determine the
presence and estimate the value of stationary phase points
in summations over spin foam bulk spins. We adapt it to the
amplitude in examination that we study for different
choices of boundary data. In this section, we briefly recall
features of the algorithm, and we highlight the differences
with the original version. We refer to the original paper for a
detailed explanation.
The amplitude (5) involves a sum over the spin x of

the internal face and the intertwiners kb of the three
internal edges. For brevity let us omit the dependence
on the boundary data jf, n⃗fa on the summand wΔ3

ðxÞ≡
wΔ3

ðx; jf; n⃗faÞ. First, we compute wΔ3
ðxÞ for each value of

the internal spin x using the library sl2cfoam [14]. We
focus on two quantities

PwðxÞ ¼
Xx

x0¼xmin

wΔ3
ðx0Þ; and RwðxÞ ¼

X
x0∈Icx

wΔ3
ðx0Þ; ð9Þ

where Icx is an interval centered in x with width 2c. We call
them respectively the partial sum and the running sum.

The algorithm is based on the behavior of these two
quantities in the presence of stationary phase points
for WΔ3

.
Suppose that x0 is a stationary phase point for WΔ3

. The
sum over the internal spin interferes destructively away
from x0 and constructively near x0. The partial sum PwðxÞ
stays roughly constant away from x0 and has a sudden
“jump” near x0. Similarly, the running sum RwðxÞ is close
to zero away from x0 and peaks at x0. The width of the peak
depends on the parameter c, the size of the interval that
characterizes the running sum.
Second, we consider RwðxÞ ¼ jRwðxÞc1RwðxÞc2RwðxÞc3 j

correlating three running sums with different interval sizes
ci and we use a Mathematica’s built-in function to locate
the peaks of RwðxÞ. We repeat this step for all the possible
triples of ci in a reference set. Since we are working at
smaller spins then [18] in this work we use as reference set
c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xmax − xmin
p

=2 plus or minus 50%. The numerical
estimate of the stationary phase point is given by the
average of the outcomes of this procedure with an error
given by the standard deviation (both values are rounded to
the nearest integer). This aims to eliminate the dependence
of our analysis from the choice of a particular interval.
The first triangulation we study is the flat one. We report

in Fig. 3 the running sum and the partial sum for this
configuration at λ ¼ 30.
Our algorithm is implemented in Mathematica, the

notebooks are available in [20]. We estimate the presence
of a stationary phase point for spin xn0 ¼ 40� 1. The value
of the geometric area shared by the three 4-simplices (7) for
the flat configuration is xg0 ¼ 1.34λ ≈ 40.2. It is in perfect
agreement with our numerical analysis.
To corroborate the result we repeat the analysis at other

scales λ ¼ 10, 12, 14, 16, 18, 20. We summarize in Table I
the numerical estimate of the stationary phase point and the
geometric area of the shared triangle. Signatures of the

FIG. 3. Flat configuration. Left: averaged running sum RwðxÞ with interval sizes 2,6, and 10. We normalize respect to the value of its
maximum. Right: real part of the partial sum PwðxÞ normalized respect the absolute value of the amplitude. In both plots, we mark with a
red line the value of the geometrical area of the bulk triangle, and with a green band the values of the numerical estimate of the stationary
phase point within one standard deviation.
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stationary phase point are present at all scales, and its
position is always compatible with its geometric counter-
part. We also note the resources necessary to perform the
computations on our server.

Notice that the agreement is excellent even at small
scales. This confirms the result of [16,17], the asymptotic
regime is reached already at relatively low spins. Moreover,
at larger scales λ, the computation becomes computation-
ally demanding both on memory and time. This motivated
us to focus only on λ ¼ 20 for other boundary data, the best
compromise in terms of results and our computational
resources.
We perform our numerical analysis also for boundary data

corresponding to the two curved triangulations we described
in III at scale λ ¼ 20. We report in Figs. 4 and 5 the running
sum and the partial sum for these configurations.
In both cases, we see a clear signature of the existence

of a stationary phase point. For the first curved configu-
ration we estimate the position of the stationary phase point
for spin xn1 ¼ 28� 1. It is compatible with the geometric
area (7) of the curved triangulation xg1 ¼ 1.39λ ≈ 27.8.
Analogously, for the second curved configuration we find a
stationary phase point at spin xn2 ¼ 25� 1. Also in this
case it is compatible with the expected geometric
area xg2 ¼ 1.26λ ≈ 25.2.

TABLE I. We compare the numerical estimate of the stationary
phase point with the geometrical area at different scales. For each
calculation, we report the time (in hours) and the memory (in GB)
required for these computations on our server. Time and memory
for λ ¼ 30 are an estimation based on the previous points. The
computation, in this case, was performed on multiple machines, a
piece at a time and took more than two months to complete.

numerical analytical memory (GB) time (h)

λ ¼ 10∶ 13� 1 13.4 2 0.2
λ ¼ 12∶ 16� 1 16.1 6 0.4
λ ¼ 14∶ 18� 1 18.8 16 0.9
λ ¼ 16∶ 21� 1 21.5 33 3
λ ¼ 18∶ 23� 1 24.1 65 7.8
λ ¼ 20∶ 26� 1 26.8 121 21
λ ¼ 30∶ 40� 1 40.2 ∼2500 ∼2700

FIG. 4. First curved configuration. Left: averaged running sum RwðxÞwith interval sizes 2,6, and 10. We normalize respect to the value
of its maximum. Right: real part of the partial sum PwðxÞ normalized respect the absolute value of the amplitude. In both plots, we mark
with a red line the value of the geometrical area of the bulk triangle, and with a green band the values of the numerical estimate of the
stationary phase point within one standard deviation.

FIG. 5. Second curved configuration. Left: averaged running sum RwðxÞ with interval sizes 2,6, and 10. We normalize respect to the
value of its maximum. Right: real part of the partial sum PwðxÞ normalized respect the absolute value of the amplitude. In both plots we
mark with a red line the value of the geometrical area of the bulk triangle, and with a green band the values of the numerical estimate of
the stationary phase point within one standard deviation.
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V. FLATNESS ARGUMENTS APPLIED TO WΔ3

In this section, we repeat the principal arguments for
flatness of the EPRL model, on BF theory. To be specific
we focus on the WΔ3

amplitude (5). We sketch the various
arguments to keep the exposition as clear as possible, and
we refer to the original papers for more details. The
arguments [5–7] are based on the large spins approximation
of the vertex amplitude. They approximate the integrals
over the group using saddle point techniques, and then they
look for stationary phase points in the sum over the bulk
degrees of freedom. Inserting a resolution of the identity in
terms of SU(2) coherent states in each internal edge the
summand of the amplitude reduces to

wΔ3
ðx; jf; n⃗faÞ ∝ A1ðx; jf; n⃗faÞA2ðx; jf; n⃗faÞA3ðx; jf; n⃗faÞ

ð10Þ

where Aiðx; jf; n⃗faÞ are the f15jg symbols contracted with
coherent intertwiners. The proportional symbol in (10)
indicates that we are omitting multiple dimensional factors
and the integrals coming from the resolution of the
identities we inserted. They both play no role in the
calculation we illustrate in this section.
If the boundary spins jf are large, we can safely assume

that also the spin of the bulk face x is large. The asymptotic
expansion of the coherent f15jg symbols was studied in
[16,24]: if the boundary data of the coherent vertex forms
the boundary a Euclidean 4-simplex, the amplitude can be
approximated with

Aiðx; jf; n⃗faÞ ≈ Niðx; jf; n⃗faÞ cosðSiðx; jf; n⃗faÞÞ ð11Þ

where the factor Ni contains numerical constants and the
hessian, both of them are not relevant for the following
considerations. The function Si ¼

P
f∈vi jfθf;i þ xθx;i is

the Regge action for the 4-simplex: the sum runs over
the triangles f (faces) belonging to the ith 4-simplex
(vertex) vi, jf are the areas of the triangles and θf;i the
4D dihedral angles around the triangle f of the 4-simplex i.
The dihedral angles can be reconstructed from orientation
invariant scalar products between the normals n⃗fa using the
spherical cosine law. In this analysis, we assume that vector
geometries play no role or can be ignored by selecting the
boundary data for the Δ3 amplitude appropriately.
In the large spin regime (10) is proportional to

wΔ3
ðxÞ ∝ cosðS1ðxÞÞ cosðS2ðxÞÞ cosðS3ðxÞÞ

¼ eiðS1ðxÞþS2ðxÞþS3ðxÞÞ þ eiðS1ðxÞþS2ðxÞ−S3ðxÞÞ

þ eiðS1ðxÞ−S2ðxÞþS3ðxÞÞ þ eið−S1ðxÞþS2ðxÞþS3ðxÞÞ þ c:c:;

ð12Þ

where we omitted the dependence on boundary spins jf and
normals n⃗fa that we consider fixed from this point on.

By linearity, we can search for stationary phase points of
each of the eight terms in (12) independently and sum the
results. We focus on the first term, the analysis of the others
is similar. The derivative of the Regge action Si respect to
the area x is given by δSiðxÞ=δx ¼ θx;i. The stationary
phase points are the solutions of the equation

δ

δx
ðS1ðxÞ þ S2ðxÞ þ S3ðxÞÞ ¼ θx;1 þ θx;2 þ θx;3 ¼ 0 ð13Þ

and this apparently implies that flat geometries dominate
the summation over the bulk degrees of freedoms in the
large spin limit. Notice that if we complete the analysis with
the other terms in (12) we would obtain that the oriented
deficit angle is vanishing. In this section we disregard this
additional but distinct complication, that was discussed in
length in the proper vertex literature [25].
The main counterargument to this analysis is that (11)

holds only if some constraints (closure and shape match-
ing) are satisfied by the boundary data. Therefore, the
variables are not independent and we cannot take the
variation in (13) without including the constraints in
the action.
Recently Oliveira [9] proposed a more accurate sta-

tionary phase point analysis taking into account also these
constraints. They studied the spin foam transition ampli-
tude on the Δ3 2-complex in the Euclidean EPRL model.
The original paper claimed that in this setting the flatness
problem was not present, however Kamiński and Engle
[10] corrected an oversight obtaining flatness once again.
The analysis is based on the Malgrange preparation
theorem. This approximation is valid in an entire neighbor-
hood of a solution of the closure and shape matching
constraints x0. The effect on (13) is the addition of a purely
imaginary term

δ

δx
ðS1ðxÞ þ S2ðxÞ þ S3ðxÞ þ iμðx − x0Þ2Þ
¼ θx;1 þ θx;2 þ θx;3 þ i2μðx − x0Þ ¼ 0; ð14Þ

where μ depends on everything but x. To solve (14) we
need both the real and the imaginary part to vanish.2 This is
possible only if x is a solution of the constraints x ¼ x0 and
the flatness condition is satisfied, θx;1 þ θx;2 þ θx;3 ¼ 0.
Hellmann and Kamiński [8] suggested an argument for

the flatness of the EPRL model based on a different
strategy. First, they perform the summation over the bulk
degrees of freedom and then they look for saddle points in
the integrals over the holonomies. In the large boundary
spins limit, the holonomies dominating the spin foam

2The same conclusion is obtained in [10] in a more rigorous
way. Instead of looking for stationary phase points they perform
the summation over x using the Poisson resummation. The
flatness condition is derived by requiring a nonexponentially
suppressed sum.
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integrals are the ones contained in the wavefront set [26] of
the partition function. The wavefront set of WΔ3

fixes the
product of the group elements around its bulk face gx ¼ 1.
If we parametrize gx ¼ expðiΘm⃗ · σ⃗=2Þ this condition
imposes Θ ¼ 0. Following [8] we can map3 gx into the
geometrical holonomy around the triangle shared by the
three 4-simplices. In this case, Θ can be interpreted as 2π
minus the deficit angle around the internal face, obtaining
the flatness condition.

VI. CONCLUSION

We presented a numerical exploration of the semiclass-
ical limit of the Δ3 transition amplitude in the 4D BF spin
foam model. We computed the transition amplitude with
coherent boundary data corresponding to Regge triangu-
lations, both flat and curved. We found a stationary phase
point in the sum over the bulk spin with value compatible
with the area of the dual triangle of the prescribed
triangulation in all the three cases.
This was at first surprising. The flatness problem argues

that the partition function of the EPRL spin foam theory, in
the semiclassical limit, is dominated by flat geometries.
Usually, this is interpreted as an indication that the sim-
plicity constraints, responsible for reducing a topological
BF theory to general relativity, are not imposed correctly.
The same arguments, applied directly to SU(2) BF spin
foam theory, indicate that curved geometries should be
suppressed in the large boundary spins limit. This is in
contradiction with our numerical result.
What is the resolution of this apparent tension? In Sec. V

we analyzed the most common flatness arguments, and we
discussed where they might be misleading. In particular,
some of them derive their results from factoring many-
vertices amplitudes as the product of single-vertex ampli-
tudes and then applying the known asymptotics expansion
[3] to each vertex. They conclude that contributions of flat
geometries dominate the stationary point analysis.
The same analysis can be applied to BF spin foam

models as they have a similar asymptotic. The tension with
our numerical calculation (which does not involve any
approximation) must come from the saddle-point analysis
of the many-vertices factorization. We suggest that the
angles appearing in this analysis should not be interpreted
as the deficit angles computed with a spin connection, i.e.,

as deficit angles à la Regge. This is indeed the simplest
explanation for the case under examination. The equations
of motion impose flatness of the BF connection but do not
require the deficit angles computed with the piecewise flat
metric (flat inside each 4-simplex) to vanish. The geometric
deficit angles can assume any value, as indeed we observe
in our numerical analysis.
In fact, the sums over the internal spins and the SU(2)

integrals of the transition amplitude can be performed
exactly, reducing it to a coherent f3njg symbol. The large
spin asymptotic of general coherent SU(2) invariants is well
understood [16,27]: the spin foam amplitude is not sup-
pressed if the boundary data satisfy closure and shape
matching constraints. The requirement of flat embedding in
four-dimensional Euclidean space is not necessary.
The same considerations may be partially applied to the

EPRL spin foam model and variations, but the picture is
less clear. Although these models have a semiclassical
vertex expansion similar to BF models, the simplicity
constraint are supposed to impose metricity on the spin
connection. Care is needed in interpreting the angles
appearing in the asymptotic analysis of EPRL amplitudes
as geometric deficit angles. Our results suggest that this
interpretation and the current flatness claims are mislead-
ing. To make any claim of flatness, we need to have a clear
understanding of the correct semiclassical spin foam
dynamics of many-vertices triangulations and its relation
with the associated Regge equations of motions.
In a recent paper [13], the authors explored the large spin

limit of an effective spin foam model related to area-angle
Regge calculus. They show that curved geometries are
suppressed unless one considers a small Immirzi parameter
in addition to large spins. They enrich their analysis with a
numerical study confirming their findings. This calculation
shows exactly the origin of the tension between our results
and the various flatness arguments. These works share the
common hypothesis that the asymptotic expression (11)
holds also for extended triangulations. We have preliminary
indications [28] that, while this expansion is correct for a
single vertex, more care is needed in the presence of
internal faces. All the flatness arguments become compat-
ible with our numerical result if the angles in (11) are not
dihedral angles. What these arguments require to vanish is
an angle related to the triangulation but that can not be
interpreted as a pure deficit angle.
To conclude, our result is twofold. On the positive side,

we showed that the flatness claims of the EPRL spin foam
models are misleading. In the context of BF spin foam
theory, we found an explicit counterexample in which they
are not valid. We argue that the same should be valid for the
EPRL model. We believe that flatness arguments do not
invalidate the EPRL model as a good candidate for the
LQG dynamics. On the negative side, we remark that the
semiclassical limit of spin foam theories is not yet well
understood. We find evidence that the geometric Regge
action does not emerge from the large spin limit of SU(2)

3For Regge boundary data, the coherent f15jg symbol has two
distinct saddle points. Up to gauge, the product of the two group
elements on a wedge at the saddle point is characterized by � the
dihedral angle associated with that wedge. Each solution is
responsible for one exponential forming the cosine in (11). If we
take the saddle points of the three vertices with angles with the
same sign, the angle of gx is � the sum of dihedral angles around
the shared triangle. With these two group elements, we use the
map between SUð2Þ × SUð2Þ and SOð4Þ to derive a nontrivial
SOð4Þ geometrical holonomy, that is a rotation of angle Θ on the
plane orthogonal to the shared triangle.
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BF theory. Our result suggests that this could also be the
case for other spin foam models like the EPRL model.
Therefore we should not content ourselves with the present
status of semiclassical spin foam analyses. We still lack a
complete study showing that the true Regge action with the
correct geometric interpretation arises for more involved
triangulations. In our opinion, this is an urgent problem: a
better understanding of the relation between quantum and
classical discrete geometry will be one of the most
important steps forward to make spin foam theories a
valuable candidate for quantum gravity.
We believe that numerics will play a central role in future

studies of spin foams. Thenumerical algorithmwedescribed
in this paper is powerful and can be applied to general amp-
litudes, with many vertices and internal faces, and different
theories.We plan to use it to make a direct comparison of the
large spin regime of BF and EPRL spin foam theories and
finally provide an answer to this important question.
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APPENDIX A: CONVENTION FOR THE
f15jg SYMBOL

The f15jg symbol we use in this work is the irreducible
f15jg symbol of first type, following the convention of
[29]. The definition and its graphical representation is the
following

ðA1Þ

¼ ð−1Þ
P

5

i¼1
jiþliþki

X
s

ð2sþ 1Þ
�
j1 k1 s

k2 j2 l1

�

×

�
j2 k2 s

k3 j3 l2

�
ðA2Þ

×

�
j3 k3 s

k4 j4 l3

��
j4 k4 s

k5 j5 l4

��
j5 k5 s

j1 k1 l5

�
:

ðA3Þ

APPENDIX B: COHERENT STATES

Coherent states are a fundamental ingredient to study the
semiclassical behavior of a spin foam amplitude. We briefly
review the conventions used in this paper. For more details
we refer to [30] or to other numerical works [14,16]. A
SU(2) coherent state jj; n⃗i in the irreducible representation
of spin j is given by the action on the lowest weight state
jj;−ji of a SU(2) group element gn corresponding to the
rotation that transforms the unitary vector z⃗ ¼ ð1; 0; 0Þ into
n⃗ ¼ ðsinΘ cosΦ; sinΘ sinΦ; cosΘÞ. This coherent state
minimizes the uncertainty in the two directions orthogonal
to n⃗. The Euler angles of group element gn are related to the
angles Θ and Φ by

gn ¼ e−iΦ
σz
2 e−iΘ

σy
2 eiΦ

σz
2 ; ðB1Þ

where we expressed the SU(2) generators iσ⃗=2 in terms of
the Pauli matrices. The scalar product between a coherent
state and a state in the magnetic basis is given by

hj; mjj; n⃗i ¼ hj; mjDðjÞðgnÞjj; n⃗i ¼ DðjÞ
m−jðgnÞ

¼ DðjÞ
m−jðΦ;Θ;−ΦÞ; ðB2Þ

where DðjÞ
m−jðΦ;Θ;−ΦÞ is the Wigner matrix element of gn

parametrized in terms of its Euler angles. These conven-
tions are used by sl2cfoam and Wolfram Mathematica.
SU(2) coherent states form an overcomplete basis in the

irreducible representation of spin j space

1ðjÞ ¼ ð2jþ 1Þ
Z
S2
dn⃗jj; n⃗ihj; n⃗j; ðB3Þ

where dn⃗ is the normalized measure on the sphere.
A 4-valent intertwiner in the recoupling basis is given by

jji; j12i ¼
X
m1

�
j1 j2 j3 j4
m1 m2 m3 m4

�ðj12Þ

× jj1m1ijj2m2ijj3m3ijj4m4i ðB4Þ

and the ð4jmÞ symbol is given by the contraction

�
j1 j2 j3 j4
m1 m2 m3 m4

�ðj12Þ

¼
X
m

ð−1Þj12−m
�

j1 j2 j12
m1 m2 m

��
j12 j3 j4
−m m3 m4

�
:

ðB5Þ
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Finally we can define a coherent tetrahedron as the projection on the intertwiner space of the tensor product of four SU(2)
coherent states. Each one of them is associated to a face of the tetrahedron with area ji and normal n⃗i

cj12ðn⃗iÞ ≔ hji; j12jj1; n⃗1; j2; n⃗2; j3; n⃗3; j4; n⃗4i ðB6Þ

¼
�

j1 j2 j3 j4
m1 m2 m3 m4

�ðj12Þ
Dðj1Þ

m1−j1ðgn1ÞD
ðj2Þ
m2−j2ðgn2ÞD

ðj3Þ
m3−j3ðgn3ÞD

ðj4Þ
m4−j4ðgn4Þ: ðB7Þ

The graphical representation of an SU(2) coherent state is given by a line ending on a little circle while the coherent states
coefficients are represented by

ðB8Þ

APPENDIX C: DERIVATION OF THE Δ3 SPIN FOAM AMPLITUDE

In this Appendix we derive the formula (5) for the spin foam transition amplitude associated to the Δ3 triangulation
starting from its integral representation. We use the SU(2) graphical calculus to represent the amplitude as

ðC1Þ

where we picked a conventional orientation of the faces that are capped by coherent states on both ends, represented by
empty circles. We label the 4-simplices using the five points, the edges, dual to a tetrahedron, are labeled by four points and
the faces, dual to triangles, are labeled by three points. We highlight in red the internal face x.
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We perform the integrations over SUð2Þ and we get

WΔ3
ðjf; n⃗faÞ ¼

X
x

ð2xþ 1Þ
X
kb

�Y
b

ð2kb þ 1Þ2
�X

ia

�Y
a

ð2ia þ 1Þciaðn⃗faÞ
�
× ðC2Þ

ðC3Þ

To keep the picture as simple as possible we opted for not using the graphical representation of the coherent tetrahedra
ciaðn⃗faÞ that we factorize. The “dipole” like diagrams contribute with a phase and the inverse dimension of the intertwiner
space

ðC4Þ

We invert the orientation of some internal lines to conform with (A1) and obtain theΔ3 transition amplitude in terms of three
f15jg symbols

WΔ3
ðjf; n⃗faÞ ¼ ð−1Þχ

X
x

ð−1Þxð2xþ 1Þ
X
kb

�Y
b

ð−1Þkbð2kb þ 1Þ
�X

ia

�Y
a

ð2ia þ 1Þciaðn⃗faÞ
�

ðC5Þ

ðC6Þ

with χ ¼ 2ðj123 þ j234 þ j124 þ j134 þ j456 þ j156 þ j346 þ j356 þ j235Þ þ j123 þ j345 þ j156. This phase is obtained from
the contributions of (C4) and ð−1Þ2j required to invert the orientation of an internal line of spin j. We finally derive (5).
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