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Assuming that the degrees of freedom of a black hole are finite in number and of fermionic nature, we
naturally obtain, within a second-quantized toy model of the evaporation, that the Bekenstein bound is a
consequence of the Pauli exclusion principle for these fundamental degrees of freedom. We show that
entanglement, Bekenstein, and thermodynamic entropies of the black hole all stem from the same
approach, based on the entropy operator whose structure is the one typical of Takahashi and Umezawa’s
thermofield dynamics. We then evaluate the von Neumann black hole-environment entropy and noticeably
obtain a Page-like evolution. We finally show that this is a consequence of a duality between our model and
a quantum dissipativelike fermionic system.
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I. INTRODUCTION

This paper moves from the results of previous research
[1] but reversing the point of view. There, Bekenstein’s
argument that a black hole (BH) reaches the maximal
entropy at disposal of a physical system (i.e., that it
saturates the Bekenstein bound [2]), leads to two main
proposals: i) the degrees of freedom (d.o.f) responsible for
the BH entropy have to take into account both matter and
spacetime and hence must be of a new, more fundamental
nature than the d.o.f we know (with Feynman [3], here we
call such d.o.f “Xons”, see also [4] and [5]); ii) the Hilbert
space H of the Xons of a given BH is necessarily finite
dimensional

dimH ¼ eSBH ; ð1Þ

with SBH the Bekenstein entropy. With these, in [1] it was
shown that the (average) loss of information is an unavoid-
able consequence of the nonvanishing relic entanglement
between the evaporated matter and the spacetime.
In search of a unifying view of the various types of

entropies involved in the BH evaporation (i.e., Bekenstein,
thermodynamical, and entanglement entropies, see, e.g.,
[6]), here we reverse that logic. Namely, we start off by

supposing that in a BH only free Xons exist (hence, there
can only be one kind of entropy at that level), and we
suppose that they are finite in number and fermionic in
nature. This amounts to having a finite dimensional H.
With these assumptions, here we show that the evaporation
is a dynamical mechanism producing a maximal entangle-
ment entropy, equal to the initial entropy of the BH.
This is an instance of the Bekenstein bound, obtained

here with arguments that do not assume preexisting geo-
metrical (spatiotemporal) concepts. In fact, for a full
identification with the standard formulae (see [7], where
the bound is rigorously defined in quantum field theory
(QFT) and, e.g., the review [8]) one needs to associate
geometrical concepts to the Xons. For instance, one could
make each d.o.f correspond to one elementary Planck cell.
Nonetheless, in our picture we do not need the exact
expression of the bound. What is crucial is that the Xons are
taken to be finite in number and fermionic, otherwise the
entanglement entropy would just indefinitely grow without
reaching a maximal value. It is suggestive, though, that
taking on board the geometric picture of Xons as quanta of
area (Planck cells), the horizon of the BH is of nonzero size
as an effect of a Pauli exclusion principle. Before entering
the details of what we just discussed, let us now briefly put
our work into the context of current literature.
Bekenstein entropy [9,10] is traditionally regarded as a

measure of our ignorance about the d.o.f, which formed the
BH [10–13], and as a consequence of the no-hair theorem
[14]. However, other interpretations have been proposed in
literature, as in Loop Quantum Gravity (LQG), where BH
entropy is a counting of microstates corresponding to a
given macroscopic horizon area A [15,16]. Along these
lines, Bekenstein proposed a universal upper bound for
the entropy of any physical system contained in a finite
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region [2], which is saturated by BHs. This implies [17] that
the entropy of every system in a finite region is bounded
from above by the Bekenstein entropy of a BH, whose
horizon coincides with the area of the boundary of that
region (see [7] and also [8]).
Using the approach of QFT in curved spacetimes,

Hawking discovered the black body spectrum of BH radia-
tion [18]. In the meantime, Umezawa and Takahashi
developed their thermofield dynamics (TFD) [19] (see also
Ref. [20]), that immediately appeared to be a fruitful tool to
describe BH evaporation [21]. In [22], with the help of an
entropy operator, whose structure is natural in TFD, the
BH-radiation entropy is viewed as an entanglement entropy
of radiation modes with their “TFD-double” (the modes
beyond the horizon).
Although the relation between QFT in curved spacetime

and TFD was studied already in Refs. [23,24], the renewed
interest comes in connection with the AdS=CFT corre-
spondence [25], where in a two-sided anti-de Sitter BH, the
specular asymptotic region is mapped into two copies of a
conformal field theory. The thermal nature of the BH is then
naturally seen through TFD. Extensions to incorporate
dissipative effects are in the recent [26,27].
Since a BH, initially described as a pure state, could end

up in a mixed state (this is actually the view of [1]),
questions arise on the unitary evolution, as first noticed by
Hawking [28] and then extensively discussed, from differ-
ent points of view, see e.g., Refs. [29–39]. In particular,
in Refs. [31,40] Page studied the bipartite system BH-
radiation, in a random (Haar distributed) pure state,
computing the radiation entanglement entropy as function
of the associated thermodynamical entropy. He found a
symmetric curve (Page curve) which goes back to zero
when the BH is completely evaporated. In Ref. [36] he
postulated that entanglement entropy, as a function of time,
follows the minimum between Bekenstein and radiation
thermodynamic entropy (Conjectured Anorexic Triangular
Hypothesis). Recently [41], a Page curve was also derived
from holographic computations [42].
As said, in this paper we reverse the line of reasoning of

Ref. [1] and present a simple, purely quantum toy model
of the dynamics of BH evaporation, focusing on the
fundamental d.o.f. In Sec. II the basic assumptions are
the finiteness of slots (quantum levels) available for the
system and the fermionic nature of such d.o.f. The finite-
ness of the Hilbert space of states follows from the Pauli
exclusion principle. In Sec. III we compute the von
Neumann entropy of the subsystems during their evolution.
This is remarkably given by the expectation value of the
TFD entropy operator [22], and it has the same qualitative
behavior of a Page curve: it starts from zero and ends in
zero while its maximum is reached at half of the evapo-
ration process. That maximum is identified here with the
Bekenstein entropy of the BH at the beginning of the
evaporation. We can, therefore, argue that Bekenstein

bound itself descends from the Pauli principle. In Sec. IV
we explain the relation with TFD by mapping our model to
an equivalent description as a dissipativelike system. The
last section is left to our conclusions, while in the Appendix
we show the connection between TFD and von Neumann
entropies in the present context.
Throughout the paper we adopt units in which

c ¼ ℏ ¼ 1.

II. BASIC ASSUMPTIONS AND MODEL
OF BH EVAPORATION

We assume that the fundamental d.o.f are fermionic (BH
models based on fermions are available in literature, see,
e.g., the Sachdev-Ye-Kitaev model [43,44]). As a conse-
quence, each quantum level can be filled by no more than
one fermion. This assures that the Hilbert space H of
physical states with a finite number of levels is finite
dimensional. In fact, if the fundamental modes were
bosons, then the requirement that the number of slots
available were finite would not have been sufficient to
guarantee the finiteness of dimH. Let us recall now that, in
the picture of [1], it is only at energy scales below those of
quantum gravity (e.g., at the energy scales of ordinary
matter) that the field modes are distinguishable from those
“making” the spacetime, hence we can write

HF ⊗ HG ⊆ H: ð2Þ

Here F and G stand for “fields” and “geometry”, respec-
tively. In other words, at low energy, the F-modes will form
quantum fields excitations, that is, the quasiparticles (from
the Xons point of view) immersed into the spacetime
formed by the G-modes.
Now, say N is the total number of quantum levels (slots)

available to the BH. The evaporation consists of the
following steady process: N → ðN − 1Þ→ ðN − 2Þ→ � � �.
That is, the number of free Xons steadily decreases, in favor
of the Xons that, having evaporated, are arranged into
quasiparticles and the spacetime they live in. One might
think of a counter that only sees free Xons and hence keeps
clicking in one direction as the BH evaporates till its
complete stop.
In this picture: i) there is no preexisting time because the

natural evolution parameter is the average number of free
Xons; and ii) there is no preexisting space to define the
regions inside and outside the BH because a distinction of
the total system into two systems, say environment (I) and
BH (II), naturally emerges in the way just depicted. With
this in mind, in what follows we shall nonetheless refer to
system I as outside and to system II as inside. It is a worthy
remark that other authors do use the geometric notions of
exterior and interior of BHs even at fundamental levels
[29]. Even though this can be justified, see, e.g., [4], and
permits one to produce meaningful models, see, e.g., [39],
our approach does not require it. The Hilbert space of
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physical states is then built as a subspace of a larger tensor
product (kinematical) Hilbert space

H ⊆ HI ⊗ HII: ð3Þ

We now assume that such a Hilbert space can be con-
structed with the methods of second quantization. This
provides a language contiguous to the language of QFT,
which should be recovered in some limit. Therefore, BH
and environment modes will be described by two sets of
creation and annihilation operators, which satisfy the usual
canonical anticommutation relations

fχτn; χ†τ0n0g ¼ δτ;τ0δnn0 ; ð4Þ

with n; n0 ¼ 1;…; N, τ ¼ I; II, and all other anticommu-
tators equal to zero. Then, we introduce the simplified
notation

χI n ¼ an ⊗ 1III ≡ an; χII n ¼ 1II ⊗ bn ≡ bn: ð5Þ

We suppose that the initial state is

j0; Ni≡ j0; 0;…; 0iI ⊗ j1; 1;…; 1iII; ð6Þ

where both kets, I and II, have N entries and

j1; 1;…; 1iII ¼ b†1b
†
2…b†N j0; 0;…; 0iII: ð7Þ

The state in Eq. (6) represents the BH at the beginning of
the evaporation process with all the slots occupied by free
Xons. Although the Xons, during the evaporation, are
progressively arranged into less fundamental structures
(and hence no longer are the d.o.f to be used for the
emergent description), we keep our focus on them. For us
this “transmutation” only helps in identifying what to call
“inside” and what to call “outside” so that evaporation is
the process that moves the Xons from II to I. In this way, the
final state (for which there are no free Xons left, as they all
recombined to form fields and spacetime), has the form

jN; 0i≡ j1; 1;…; 1iI ⊗ j0; 0;…; 0iII; ð8Þ

where

j1; 1;…; 1iI ¼ a†1a
†
2…a†N j0; 0;…; 0iI: ð9Þ

In order to construct a state of the system compatible
with the previous assumptions, let us consider the evolved
operators as

cnðσÞ ¼ eiψnðbn cos σ þ an e−iφn sin σÞ; ð10Þ

dnðσÞ ¼ eiψnðe−iφnan cos σ − bn sin σÞ; ð11Þ

where on σ we shall comment soon. Equations (10) and
(11) define a canonical transformation

fcnðσÞ; c†mðσÞg ¼ fdnðσÞ; d†mðσÞg ¼ δnm: ð12Þ

We thus get the evolution of the initial state (6) as

jΨðσÞi≡YN
n¼1

c†nðσÞj0iI ⊗ j0iII

¼
YN
n¼1

e−iψnðb†n cos σ þ a†n eiφn sin σÞj0iI ⊗ j0iII:

ð13Þ

Strictly speaking, σ should be regarded as a discrete
parameter, counting the free Xons that leave the BH,
according to the picture described above (see also the
discussion in the next section). Nonetheless, in order to
simplify computations, and with no real loss of generality,
we use the continuous approximation. Given our initial
state [Eq. (6)] and final state [Eq. (8)], σ can be seen as an
interpolating parameter describing the evolution of the
system from σ ¼ 0 corresponding to the beginning of
the evaporation till σ ¼ π=2, corresponding to complete
evaporation.
Let us also notice that the linear canonical transformation

defined in Eqs. (10) and (11) is very general, given the
requests. In fact, if we mix creation and annihilation opera-
tors, cnðσÞ ∼ ðan þ b†nÞ, one cannot interpolate Eqs. (6)
and (8). Furthermore, the choice of phases introduced does
not affect any of the results presented. This is a conse-
quence of the fact that we are working with two types of
modes (BH and environment). If we had more than two, we
would have to deal with one or more physical phases, as is
well known in quark and neutrino physics [45]. We can thus
safely set φn ¼ 0 ¼ ψn.
With our choice of parameters, the state (13) can also be

written as

jΨðσÞi ¼
YN
i¼1

X
ni¼0;1

CiðσÞða†i Þni ðb†i Þ1−ni j0iI ⊗ j0iII; ð14Þ

withCi ¼ ðsin σÞniðcos σÞ1−ni . This form would suggest the
following generalization

jΦðσÞi ¼
YN
i¼1

X
ni;mi¼0;1

DiðσÞða†i Þni ðb†i Þmi j0iI ⊗ j0iII; ð15Þ

with Di ¼ ðsin σÞni ðcos σÞmi . However, we easily compute

jΦð0Þi ¼ j01;…; 0NiII ⊗ j11;…; 1NiII
þ j01;…; 0NiII ⊗ j01;…; 0NiII; ð16Þ
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which is incompatible with our boundary condition (6).
In order to enforce the latter, we need to impose the
constraint mi ¼ 1 − ni.

III. ENTROPY OPERATORS, PAGE CURVE,
AND THE BEKENSTEIN BOUND

The Hilbert space of physical states has the dimension

Σ≡ dimH ¼ 2N: ð17Þ

The state defined in Eq. (13) is an entangled state. This is
due to the fact that c†nðσÞ cannot be factorized as an and bn
in Eq. (5), i.e., it cannot be written as c†n ¼ AI ⊗ BII, where
AI (BII) acts only on HI (HII).
To quantify such entanglement, we define the entropy

operator for environment modes as in TFD [19,20,22]

SIðσÞ ¼ −
XN
n¼1

ða†nan ln sin2σ þ ana
†
n ln cos2 σÞ: ð18Þ

We also define the entropy operator for BH modes in a
rather unconventional way:

SIIðσÞ ¼ −
XN
n¼1

ðb†n bn ln cos2σ þ bn b
†
n ln sin2 σÞ: ð19Þ

The reason for such unconventional definition will be clear
in the next section. For the moment, notice that we have
two different operators for I and for II, but we see that since

ha†naniσ ¼ sin2σ ¼ 1 − hb†nbniσ; ð20Þ

then

SIðσÞ≡ hSIðσÞiσ
¼ −Nðsin2 σ ln sin2 σ þ cos2 σ ln cos2 σÞ
¼ hSIIðσÞiσ ≡ SIIðσÞ; ð21Þ

where h…iσ ≡ hΨðσÞj…jΨðσÞi. Therefore, the averages of
the operators coincide, as it must be for a bipartite system.
This entropy is the entanglement entropy between envi-
ronment and BH when the system evolves. Remarkably, it
has a behavior in many respects similar to that of the Page
curve [31], as shown in Fig. 1.
The maximum value is

Smax ¼ N ln 2 ¼ ln Σ; ð22Þ

so that

Σ ¼ eSmax : ð23Þ

As we see here through Eq. (23) [that is the analogue of
Eq. (1)], in our model dimH is related to the maximal

entanglement (von Neumann) entropy of the environment
with the BH (and, of course, vice versa). This happens
exactly when the modes have half probability to be inside
and half probability to be outside the BH,1 and then a large
amount of bits are necessary to describe the system. Thus,
the system has an intrinsic way to know how big is the
physical Hilbert space, hence to know how big is the BH at
the beginning of the evaporation: when the maximal
entanglement is reached, that value of the entropy Smax
tells how big was the original BH. Hence, Smax must be
some function ofM0,Q0, J 0, i.e., the initial mass, charge,
or angular momentum of the BH.
This maximal entropy bound is obtained here as a mere

consequence of the finiteness of the fermionic fundamental
d.o.f, hence of a Pauli principle. No geometric notions
(distance, area, Planck length, etc.) are employed. When
such notions are eventually introduced, this bound must
correspond to the Bekenstein bound. In other words, the
necessary dynamical map connecting the Xons to fields
and geometry will be introduced in such a way that this
fundamental nongeometrical bound becomes the emergent
geometrical Bekenstein bound. A brief discussion on the
dynamical map is offered in the last section.
Therefore, for a full identification of Smax with SBH we

need more than what we have here. In particular, we need
the concept of area that, somehow, is what has been evoked
in LQG [15,16] when in (22) one identifies

N ≡ A

4πγl2P
ffiffiffi
3

p ; ð24Þ

where γ is the Immirzi parameter. We shall comment more
on this later.
We want now to bring into the picture the two missing

pieces: how the entropy of the BH, that should always
decrease, and the entropy of the environment, that should
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FIG. 1. The von Neumann entropy as a function of σ in the case
N ¼ 1000.

1Recall that we have an intrinsic nongeometric notion of the
partition into inside/outside.
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always increase (hence, can be related to a standard
thermodynamical entropy), actually evolve in our model.
To this end, let us introduce the following number
operators:

N̂I ¼
XN
n¼1

a†n an; N̂II ¼
XN
n¼1

b†n bn; ð25Þ

that count the number of modes of the radiation and the
number of modes of the BH, respectively. Although it
should be clear from the above example, it is nonetheless
important to stress now again that, in our formalism, the full
kinematical Hilbert spaces associated to both sides have
fixed dimensions (dim HI ¼ dim HII ¼ 2N), while only a
subspace H ⊆ HI ⊗ HII such that dimH ¼ 2N is the one
of physical states. Note that H cannot be factorized, and
this is the origin of BH/environment entanglement.
Nonetheless, one could think that the physical Hilbert

spaces of the two subsystems have to take into account only
the number of modes truly occupied at any given stage of
the evaporation. Hence, the actual dimensions would be
2NIðσÞ and 2NIIðσÞ, where one easily finds that

NIðσÞ≡ hN̂Iiσ ¼ Nsin2σ; ð26Þ

and

NIIðσÞ≡ hN̂IIiσ
¼ N − NIðσÞ ¼ Ncos2σ: ð27Þ

Recall that σ is, in fact, a discrete parameter essentially
counting the diminishing number of free Xons (as said
earlier and shown in greater detail later).
In other words, when we take this view, the partition

into I and II becomes in all respects similar to the one of
Page [31], that is

2N ¼ 2NIIðσÞ × 2NIðσÞ ≡ n ×m; ð28Þ

with n ¼ 2N; 2N−1;…; 1 and m ¼ 1;…; 2N−1; 2N , while σ
runs in discrete steps in the interval ½0; π=2�. Number
fluctuations, which makes it necessary to invoke the entire
Hilbert space H at each stage, represent a measure of
entanglement of these modes, as we shall see below. It is
then natural to define the Bekenstein entropy as

SBH ≡ ln n ¼ N ln 2 cos2 σ; ð29Þ

and the environment entropy2 as

Senv ≡ ln m ¼ N ln 2 sin2 σ: ð30Þ

The plots of the three entropies SI , SBH, and Senv are
shown in Fig. 2 and must be compared with similar results
of Ref. [36]. There are, though, two main differences worth
stressing. First, we have a common single origin behind all
involved entropies, as explained. Second, since the overall
system here is based on the most fundamental entities, the
curve for SI cannot be always below the other two, as
happens in [36], but its maximum Smax must reach the
starting point of SBH (and the ending point of Senv). In our
case, the inequality

SI ≤ SBH þ Senv ¼ Smax; ð31Þ

is always satisfied. Note also that the dynamics of our
system is unitary because we keep our focus on the
evaporated Xons and not on the emerging structures, as
was done in [1]. Hence, we are not in the position here to
spot the relic entanglement between fields and spacetime
that would make the curves for SBH and SI end at a nonzero
value. The latter is precisely the source of the information
lost in the quasiparticle picture of [1]. Whether or not this
formally unitary evolution is physically tenable at the
emergent level, and the impact of this on the validity of
the Stone–von Neumann uniqueness theorem [20,46,47] in
a quantum system with a finite-dimensional Hilbert space,
is under scrutiny in ongoing research [48]. Recently, the
relation between unitarity and the existence of a maximal
entropy has been also investigated in Ref. [49].
It is worth noticing that the total entropy SBH þ Senv in

Eq. (31) is a constant along the evolution parameter σ: it is
tempting to recognize this as a generalized second law
(GSL), saturated in this case, due to the fact that we are
probing the fundamental non-coarse-grained level of the
Xons. However, we stress again here that σ cannot be
directly related to time evolution yet and hence a

0.5 1.0 1.5

100

200

300

400

500

600

700

FIG. 2. Here we plot: SBH in black, monotonically decreasing;
Senv in green, monotonically increasing; SI in red with a Page-
like behavior. Note that the maximal value of SI, Smax coincides
with the initial BH entropy, as well as with the final environment
entropy, as inferred in the text. The plots are done for N ¼ 1000.

2We could also call it thermodynamical entropy in comparison
with the nomenclature of Ref. [31].
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comparison with a GSL can be premature. Instead, one
could expect that a proper GSL should arise from the
coarse-grained description given by a dynamical map,
something that was already hinted to in [1] due to the
presence of the final residual entropy.
It is perhaps worthwhile to stress that Eq. (21) represents

exactly a von Neumann entropy. We can write the density
matrix ρðσÞ ¼ jΨðσÞihΨðσÞj and evaluate the reduced
density matrices ρI ¼ TrIIρ and ρII ¼ TrIρ [50]. We can
then easily check that (see Appendix)

SIðσÞ ¼ −TrIðρIðσÞ ln ρIðσÞÞ
¼ −Nðcos2 σ ln cos2 σ þ sin2 σ ln sin2 σÞ
¼ −TrII ðρIIðσÞ ln ρIIðσÞÞ ¼ SIIðσÞ: ð32Þ

Let us now consider some simple cases
(i) If N ¼ 1, then we have

jΨðσÞi ¼ cosσj0iI ⊗ j1iII þ sinσj1iI ⊗ j0iII: ð33Þ

In general, this is an entangled state whose maximal
entanglement is reached for σ ¼ π=4:

jΨðπ=4Þi ¼ 1ffiffiffi
2

p ðj0iI ⊗ j1iII þ j1iI ⊗ j0iIIÞ: ð34Þ

(ii) For N ¼ 2 we have

jΨðσÞi ¼ cos2σj0102iI ⊗ j1112iII
þ sin2 σj1112iI ⊗ j0102iII
þ cos σ sin σj0112iI ⊗ j1102iII
þ cos σ sin σj1102iI ⊗ j0112iII: ð35Þ

It is then clear that the mean number (20) represents
the probability of the nth mode to “leave the BH
phase” (to go from II to I).

As mentioned earlier, σ for us is a continuous approxi-
mation of a discrete parameter that counts the Xons
transmuting from being free (in the BH, II) to being
arranged into fields and spacetime (that is what happens,
eventually, in I). Now we can formalize that statement by
inverting Eq. (26) and getting

σðNIÞ ¼ arcsin

ffiffiffiffiffi
NI

N

r
: ð36Þ

When NI is constrained to be an integer NI ¼ m, the
σðNIÞ ¼ σm is discretized. Therefore, the evolution param-
eter is just a way of counting how many modes jumped out.
It cannot be regarded as time, which should emerge, like
space, at low energy from Xons dynamics. The von
Neumann entropy as a function of σ ¼ σm is reported
in Fig. 1.

We could then expect that at each step the number of
BH/environment modes was fixed. What is the meaning of
fluctuations of N̂I and N̂II on jψðσÞi? A direct computation
shows that

ΔNIðσÞ ¼ ΔNIIðσÞ ¼
ffiffiffiffi
N

p
sinð2σÞ
2

; ð37Þ

where ΔNj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂2

jiσ − hN̂ji2σ
q

is the standard deviation of

N̂j on jΨðσÞi. In agreement with the general results of
Ref. [51], Fig. 3 clearly shows that this is a measure of the
entanglement. Moreover, for N ¼ 1, ðΔNjðσÞÞ2 is propor-
tional to the linear entropy or impurity

ðΔNjðσÞÞ2 ¼ 2SjLðσÞ; j ¼ I; II; ð38Þ

defined as [50,52]

SjL ≡ 1 − Trρ2j : ð39Þ

Note that ΔNj can be easily discretized as explained above.
We finally turn our attention to the generator of the
canonical transformations in (10) and (11) (with our choice
of parameters)

anðσÞ≡ dnðσÞ ¼ e−i σG anð0Þei σG; ð40Þ

bnðσÞ≡ cnðσÞ ¼ e−i σGbnð0Þei σG; ð41Þ

where one can easily check that

G ¼ i
XN
n¼1

ða†n bn − b†n anÞ: ð42Þ

With the above recalled limitations, the existence of such
unitary generators is guaranteed by the Stone–von
Neumann theorem and, in the general meaning of [16],
it can be seen to enter the Wheeler–DeWitt equation

0.5 1.0 1.5

2
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N

FIG. 3. ΔNj as a function of σ in the case N ¼ 1000.
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HjΨðσÞi ¼ 0; ð43Þ

with H ≡ i∂σ −G. This constrains the kinematical Hilbert
space HI ⊗ HII to the physical Hilbert space H as
previously extensively commented. Let us remark that
for σ ¼ σm, Eq. (43) becomes a linear difference (recursion)
equation.

IV. CONNECTION WITH DISSIPATIVE
SYSTEMS

In the previous section we have shown how our toy
model possesses a Page-like behavior for entanglement
entropy and this can be easily computed by means of the
TFD entropy operator. We now ask if this is a mere
coincidence or if the connection with TFD can be made
more precise.
Let us perform the canonical transformation

An ¼ an; Bn ¼ b†n: ð44Þ
This is not a special Bogoliubov transformation [53]. In
fact, this transformation can be obtained from

An ¼ an cos θn − b†n sin θn; ð45Þ

Bn ¼ b†n cos θn þ an sin θn; ð46Þ

for θn ¼ 0. Then it is not connected with the identity.
However, we can still define vacua in the new representation

Anj0iA ¼ Bnj0iB ¼ 0: ð47Þ

One can check that

j0iA ¼ j0iI; ð48Þ

j0iB ¼j1112…1NiII: ð49Þ

The second relation follows from the fact that ðb†nÞ2 ¼ 0.
Therefore, the generator (42) becomes

G ¼ i
XN
n¼1

ðA†
nB

†
n − BnAnÞ: ð50Þ

This is nothing but the (fermionic version of the) interac-
tion Hamiltonian of quantum dissipative systems, as intro-
duced in Ref. [54] (see also [55]). This operator noticeably
coincides with the generator of a special Bogoliubov
transformation. Therefore, jΨðσÞi has a TFD-vacuum-like
structure [19,20]

jΨðσÞi ¼
YN
n¼1

ðcos σ þ sin σA†
nB

†
nÞj0iA ⊗ j0iB

¼ e−
1
2
SAðσÞjIi; ð51Þ

with jIi ¼ exp ðPN
n¼1 A

†
nB

†
nÞj0iA ⊗ j0iB, and the entropy

operators

SA ¼ −
XN
n¼1

ðA†
nAn ln sin2 σ þ An A

†
n ln cos2 σÞ; ð52Þ

SB ¼ −
XN
n¼1

ðB†
n Bn ln sin2 σ þ Bn B

†
n ln cos2 σÞ: ð53Þ

Therefore, through (44), we have now the usual entropy
operators of TFD [19,20,22] to be compared with the
unusual definitions of (19): SI ¼ SA and SII ¼ SB.
The physical picture here is that, when the system

evolves, a pair of A and B particles is created. The
B-modes enter into the BH, annihilating BH modes, while
the A-modes form the environment. This mechanism is
heuristically the same as the one proposed by Hawking [18]
and, lately, formalized via the tunneling effect [56].
The A- and B-modes do not discern explicitly fields and

geometric d.o.f. However, taking the view of Ref. [1], some
d.o.f are indeed responsible for the reduction of the BH’s
horizon area during the evaporation and annihilators of
geometric modes can be defined. In order to make this idea
more precise, we can decompose An in their geometric (G)
and field (F) parts as follows:

An ¼
X
k

ðgk;n Ak
G;n ⊗ 1IF;n þ fk;n 1IG;n ⊗ Ak

F;nÞ; ð54Þ

where k labels the emergent modes. Equation (54) can be
regarded as a dynamical (Haag) map at linear order [20].
The full dynamical map—available once the quantum
theory of gravity is specified—should connect the
fundamental d.o.f to the emergent notions of geometry
and fields. The coefficients of the map should then lead to
the Hawking thermal behavior of the latter at the emergent
level. Note that the action of A†

n on j0iA, creates both a
matter mode and a geometric mode outside the horizon:
the region of spacetime surrounding the BH and available
to an external observer increases because the horizon area
decreases.
Let us remark that, in this picture, a relationship of the

form (54) makes sense only for A-modes (or equivalently
a-modes) and not for B-modes (or equivalently b-modes).
In fact, by definition, the former are the ones which
rearrange to form matter and geometry, in contrast with
the latter which describes free Xons. As previously stated,
such a distinction is at the basis of our intrinsic notion of
interior/exterior of the BH. A more detailed analysis of this
issue will be addressed in a forthcoming work.
It is only once we have the notion of area that we could

try to fix N in terms of the BH parameters M0, Q0, J 0,
and of the Planck length lP. In fact, as remarked in
Refs. [57,58], a quantum of BH horizon area measures
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ΔA ¼ α l2P; ð55Þ
where α is a constant to be fixed. Therefore, the BH entropy
assumes the form3

SBH ¼ αN
4

; ð56Þ

where N is the number of Planck cells that, as remarked in
the Introduction, would correspond to the number of our
quantum levels/slots.
The value of α was fixed to α ¼ 4 ln 3 in Ref. [57], by

means of arguments based on Bohr’s correspondence
principle, and to α ¼ 8π in Ref. [58], by means of argu-
ments based on the BH quasinormal modes. In our case, a
comparison between (56) and (22) gives

α ¼ 4 ln 2: ð57Þ
This value agrees with the condition α ¼ 4 ln k with k
integer, whichwas proposed inRef. [57], in order to constrain
the number of microstates Σ to an integer [see Eq. (23)].
Therefore, our model gives k ¼ 2. A comparison with the
standard Bekenstein formula, when Q0 ¼ 0 ¼ J 0, gives

N ¼ 4πM2
0

l2P ln 2
; ð58Þ

which, of course, is again Eq. (24) when the area is expressed
in terms of M0 and the Immirzi parameter is fixed to
ln 2=ð ffiffiffi

3
p

πÞ. In fact, both derivations—ours and LQG’s—
rely on the identification of the entropy with SBH. Clearly, a
more detailed analysis, beyond these qualitative arguments,
will be possible only once a complete dynamical map will be
available.

V. CONCLUSIONS

We assumed here that the d.o.f of a BH are finite in
number and fermionic in nature and, hence obey a Pauli
principle. Then, within the approach of second quantiza-
tion, we naturally obtained that the BH evaporation is a
dynamical mechanism producing a maximal entanglement
entropy equal to the initial entropy of the BH. This
phenomenon is an instance of the Bekenstein bound,
obtained here with arguments that do not assume preexist-
ing spatiotemporal concepts. Of course, for a full identi-
fication with the standard formulae (see, e.g., [7,8]), one
needs to link geometrical concepts, such as elementary
Planck cells, to such fundamental d.o.f.
We then showed that entanglement, Bekenstein, and

environment (thermodynamic) entropies here are all natu-
rally obtained in the same approach, based on an entropy
operator whose structure is the one typical of TFD.

Through such an operator, we have evaluated the von
Neumann BH–environment entropy and noticeably
obtained a Page-like evolution.
We finally have shown that the latter is a consequence of

a duality between our model and a dissipativelike fermionic
quantum system, and hence it has a natural TFD-like
description.
Many directions for further research need be thoroughly

explored, the most important being a reliable dynamical
map from the fundamental modes to the emergent fields/
spacetime structures. This would pave the road for the
investigation of important aspects of the emergent picture,
such as the Hawking thermality of the field sector. Moreover,
a geometric interpretation of the results presented here would
allow one to investigate the discreteness of the spectrum of
quasinormal modes, which is known to be related to the
quantization of the BH horizon’s area (see Ref. [58]).
Anyway, even in the absence of a full dynamical map,
we believe that our simple, although nontrivial, consider-
ations are necessary to fully take into account the fascinating
and far-reaching consequences of the Bekenstein bound.
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APPENDIX: EQUIVALENCE OF TFD ENTROPY
AND VON NEUMANN ENTROPY

In this Appendix we explicitly show the equivalence of
the TFD entropy of Eq. (21) with the von Neumann entropy
of Eq. (32). We first present the computation in the simplest
cases of Eqs. (33) and (35), and then we shall focus on the
computation of the von Neumann entropy. Let us note that
the expectation value of the TFD entropy operators [see
Eq. (21)] immediately follows from Eq. (20).

(i) In the case N ¼ 1, the density matrix reads

ρðσÞ¼ cos2σj0iIj1iIIIIh1jIh0jþsin2σj1iIj0iIIIIh0jIh1j

þsinð2σÞ
2

ðj0iIj1iIIIIh0jIh1jþj1iIj0iIIIIh1jIh0jÞ;
ðA1Þ

where we omitted tensor product symbols. The
reduced density matrices have the following form:

ρIðσÞ ¼ cos2σj0iIIh0j þ sin2σj1iIIh1j; ðA2Þ

ρIIðσÞ ¼ cos2σj1iIIIIh1j þ sin2σj0iIIIIh0j: ðA3Þ
3This is equal to SBH, defined in Eq. (29), only before the

evaporation when SBH ¼ Smax.
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Eq. (32) follows immediately from these ex-
pressions.

(ii) In the case N ¼ 2, we directly report the reduced
density matrices:

ρIðσÞ ¼ cos4σj00iIIh00j þ sin4σj11iIIh11j

þ sin22σ
4

ðj01iIIh01j þ j10iIIh10jÞ; ðA4Þ

ρIIðσÞ ¼ cos4σj11iIIIIh11j þ sin4σj00iIIIIh00j

þ sin2ð2σÞ
4

ðj01iIIIIh01j þ j10iIIIIh10jÞ:
ðA5Þ

It follows that

SIðσÞ ¼ −sin4 σ ln sin4 σ − cos4 σ ln cos4 σ

− 2 sin2 σ cos2 σ ln ðsin2 σ cos2 σÞ
¼ SIIðσÞ: ðA6Þ

By using the relations lnðabÞ ¼ ln aþ ln b and
cos2σ þ sin2σ ¼ 1, we get

SIðσÞ ¼ −2ðsin2 σ ln sin2 σ þ cos2 σ ln cos2 σÞ
¼ SIIðσÞ; ðA7Þ

which is equal to Eq. (32) for N ¼ 2.
One could repeat similar computations for all N. However,
it is simpler to use the correspondence of our model with a
TFD/dissipative system via Eq. (44). As already known in
TFD, the “thermal vacuum” can be rewritten in the form

jΨðσÞi ¼
X
n¼0;1

ffiffiffiffiffiffiffiffiffiffiffiffi
wnðσÞ

p
jniAjniB; ðA8Þ

where jnAiA, jnBi are eigenstates of the number operators

N̂A ¼
XN
n¼1

A†
nAn; N̂B ¼

XN
n¼1

B†
nBn: ðA9Þ

Moreover, the coefficients wn are given by

wnðσÞ ¼
YN
j¼1

C2
jðσÞ; ðA10Þ

and Cj were first introduced in Eq. (14). The density matrix
thus reads

ρðσÞ ¼
X
n¼0;1

wnðσÞjniAjniBBhnjAhnj; ðA11Þ

from which the reduced density matrices are easily derived:

ρAðσÞ ¼
X
n¼0;1

wnðσÞjniAAhnj ðA12Þ

ρBðσÞ ¼
X
n¼0;1

wnðσÞjniBBhnj: ðA13Þ

The von Neumann entropy reads [19,22,27]

SAðσÞ ¼ SBðσÞ ¼ −
X
n¼0;1

wnðσÞ ln wnðσÞ: ðA14Þ

Finally, Eq. (32) follows from substituting the explicit form
of wn [cf. Eq. (A10)] into the last expression.
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