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This paper studies cross sections inside black holes and conjectures a universal inequality: in a static
(dþ 1)-dimensional asymptotically planar/spherical Schwarzschild-AdS spacetime of given energy E and
AdS radius lAdS, the “size of cross section” inside black holes is bounded by 8πElAdS=ðd − 1Þ. To support
this conjecture, it gives the proofs for cases with spherical/planar symmetries and some special cases
without planar/spherical symmetries. As one corollary, it shows that the complexity growth rate in
complexity-volume conjecture satisfies the upper bound argued by quantum information theory. This
makes a first step toward proving the conjecture that the vacuum black hole has fastest complexity growth
in the systems of same energy. It also finds a similar bound for asymptotically flat black holes, which gives
us an estimation on the largest interior volume of a large evaporating black hole.
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I. INTRODUCTION

Black holes, as ultradense objects in universe, exhibit
many fascinating physical and mathematical properties.
Particularly, many such properties can be presented by
some universal inequalities, such as the positive mass
theorem [1,2], the second law of black holes [3,4], the
Penrose inequality [5–9] and so on. Most of these universal
inequalities focus on the horizon and its exterior. However,
the recent developments suggested that the inner structures
of black holes may also play important roles in considering
the black hole physics. For example, the interior of black
hole play crucial role in holographic computational com-
plexity [10–16] and recent developments toward the
resolution of information paradox in holography [17–20].
The interior is important in the proposal of “quantum
Penrose inequality” [21,22]. It has been suggested that the
volume of interior of black hole may be relevant to the
information paradox [23–26]. The universal inequalities
about the inner structures of black holes are still lack of
exploring.
This paper makes a first step to explore a new universal

inequality about inner geometry of stationary black holes
and exhibits a few of applications in black hole physics.
The inequality arises from following simple question.

Consider a (dþ 1)-dimensional Schwarzschild-AdS black
hole, of which the metric reads

ds2 ¼ 1

z2

�
−fdt2 þ dz2

f
þ δijdxidxj

�
: ð1Þ

Here f ¼ 1=l2
AdS − f0zd and lAdS is the AdS radius. Inside

horizon, z is time but t is spatial coordinate. For a class of
special slices which are fixed “time” z, the volume reads
V ¼ R

dtΣ with Σ ¼ Vd−1
ffiffiffiffiffiffi
−f

p
z−d. Here Vd−1 ≔

R
dd−1x.

Geometrically, Σ can be interpreted as the “size” of a cross
section since its integration with respect to t gives us the
volume of this slice. Different zwill give us different size of
cross section. The direct computation shows that

Σ ≤ 8πElAdS=ðd − 1Þ: ð2Þ

Here E is the total energy/mass of the spacetime. This
paper conjectures that, for a stationary black hole, if
(i) outermost horizon is connected Killing horizon and
has positive surface gravity, (ii) the spacetime is asymp-
totically spherical/planar Schwarzschild-AdS [27,28], and
(iii) dominate energy condition and Einstein equation are
satisfied, then inequality (2) is always true. To support this
conjecture, this paper gives the proofs on some situations
which cover most of physical interesting cases.
Though it is not the original motivation of inequality (2),

this paper finds that the inequality (2) has important
application in holographic duality. It has been argued from
quantum information theory that the complexity growth
rate _CðτÞ satisfies Lloyd’s bound [29]
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_CðτÞ ≤ 2E=π: ð3Þ

Here CðτÞ is the complexity of a time-dependent system
and E is the total energy. This bound describes the
ultimate speed of quantum computations [29]. We will
show that, if the inequality (2) is true, then the complex-
ity growth rate of stationary black hole in “complexity-
volume” (CV) conjecture [10,11] always satisfies the
Lloyd’s bound (3). Any regular matter (satisfies dominate
energy condition) in the bulk always slows down the
complexity growth. This matches with a conjecture that
black hole has fastest information scrambling [30]. The
similar bound of growth rate was once conjectured in
“complexity ¼ action” (CA) conjecture [13,14] but has
been found to be violated even in Schwarzschild black
holes [16,31–33]. The inequality (2) thus gives us a new
viewpoint to compare CV and CA conjectures.
It will also show that the inequality (2) has a generali-

zation asymptotic flat spacetimes Σ ≤ cdEðd−1Þ=ðd−2Þ with a
dimension-dependent positive number cd. We find that this
bound is relevant to “interior volume” of black hole
proposed by Ref. [23] and can give us an estimation on
the possible largest exterior volume of an evaporating
black hole.

II. CROSS SECTION INSIDE THE BLACK HOLE

We first clarify the precise definition of “size of cross
section.” Consider a (dþ 1)-dimensional stationary black
hole with an outermost nondegenerated connected Killing
horizon. Assume ξI to be Killing vector field which is
timelike outside. A cross section Sd−1 is an arbitrary
spacelike (d − 1)-dimensional submanifold inside the
black hole (If there are inner horizons, then “inside black
hole” means the region between the outermost horizon and
next-outermost horizon). The size of this cross section is
defined as

Σ½ξI;Sd−1� ≔
Z
Sd−1

ξInJdΣIJ: ð4Þ

Here dΣIJ is the outer-past directed surface element of Sd−1
and nI is a unit normal covector of Sd−1 which satisfies
nIξI ¼ 0. Geometrically, Σ stands for the flux of vector
field ξI in the surface Sd−1. The cross section Sd−1 is trivial
if ξI tangent to Sd−1 as the size is zero. For nontrivial cross
section, nI is the unique future-directed time-like normal
covector. We only consider the maximally extended cross
section, i.e., the cross section which is not a real subset of
any other cross section.
In a general stationary (dþ 1)-dimensional spacetime,

the metric can locally be expressed as

ds2 ¼ 1

z2
½−fdt2 þ χdz2 þ 2vidtdxi þ hijdxidxj� ð5Þ

with ð∂=∂tÞI ¼ ξI . The functions f; χ; vi and hij may
depend on fz; xig but do not depend on t. A nontrivial
cross section Sd−1 can be parametrized by z ¼ zSðxiÞ and
t ¼ tSðxiÞ. The position of cross section depends on the
choice of tSðxiÞ, however, it is shown in Appendix A that its
size Σ½ξI;Sd−1� is independent of the choice on tSðxiÞ.
Based on this property, we can compute Σ½ξI;Sd−1� by
choosing tSðxiÞ ¼ 0 and find

Σ½ξI;Sd−1� ¼
Z
z¼zSðxiÞ

z−d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f − jvj2

q ffiffiffĩ
h

p
dd−1x: ð6Þ

Here h̃ ≔ detðh̃ijÞ, jvj2 ¼ h̃ijvivi and

h̃ij ≔ hij þ χ∂izS∂jzS

is the induced metric of cross section ft ¼ 0; z ¼ zSðxiÞg.
See the Appendix A for mathematical proof on Eq (6).
Alternatively, we can choose the Bondi-Sachs coordi-

nates and metric reads [34,35]

ds2 ¼ 1

z2
½−fe2βdu2 þ 2e2βdudz

þ qijðdxi −UiduÞðdxj −UjduÞ� ð7Þ

with ð∂=∂uÞI ¼ ξI and gauge ∂zq ¼ 0. The functions
f; β; Ui and qij may depend on fz; xig but do not depend
on u. A general cross section is parameterized by z ¼
zSðxiÞ and u ¼ uSðxiÞ. It is still true that Σ½ξI;Sd−1� is
independent of the choice on uSðxiÞ and so we can compute
Σ½ξI;Sd−1� by choosing uSðxiÞ ¼ 0. Then we find

Σ½Sd−1;ξI�¼
Z
z¼zSðxiÞ

z−deβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f−e2βj∂zj2þ2Ui∂iz

q
dVd−1:

ð8Þ

Here dVd−1 ≔
ffiffiffi
q

p
dd−1x and j∂zj2 ¼ qij∂iz∂jz. See the

appendix B for mathematical proof on Eq (8). For arbitrary
positive function pðxiÞ, the coordinates transformation
fz → zpðxiÞg changes one allowed Bondi-Sachs coordi-
nates into an other. By this freedom, we can set the cross
section to have constant z. Under this gauge choice, we
have a simple formula,

Σ ¼
Z
z¼z̄

z−deβ
ffiffiffiffiffi
−f

p
dVd−1: ð9Þ

This will be useful when we prove our inequality.
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III. EXAMPLES IN SOME SPECIAL CASES

Before we discuss and try to prove our bound in general
cases, it would be worthy of showing some examples.
These examples may give readers an intuition of generality
about this bound.
In the first example we consider Schwarzschild-AdS

black hole. We here give a detailed computation for the
inequality (2). The metric of a planar AdS-Schwarzschild
black hole is given by Eq. (1) with f ¼ 1=l2

AdS − f0zd.
Here f0 is a positive parameter. The horizon then locates at
zh ¼ ðf0l2

AdSÞ−1=d. The mass of the black hole is

M ¼ ðd − 1ÞVd−1

16π
f0: ð10Þ

Due to planar symmetry, the maximal cross section must
have a constant z and so we have

maxΣ ¼ maxVd−1
ffiffiffiffiffiffiffiffiffiffiffi
PdðzÞ

p
¼ Vd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxPdðzÞ

p
;

PdðzÞ ≔ −fðzÞz−2d: ð11Þ

The maximal value of PdðzÞ is determined by following
equation

P0
dðzÞ ¼ 0 ⇒ f0ðzÞz − 2dfðzÞ ¼ 0: ð12Þ

For Schwarzschild black hole fðzÞ ¼ 1=l2
AdS − f0zd, one

can find that the solution of Eq. (12) reads zd ¼ zdm ≔
2=ðf0l2

AdSÞ and so we find

maxPdðzÞ ¼ PdðzmÞ ¼
l2
AdSf

2
0

4
: ð13Þ

Then we obtain the inequality (2) for a planar AdS-
Schwarzschild black hole. We see that Σ can saturate the
upper bound in a planar Schwarzschild black hole.
The case will be a little complicated if we consider

the spherically or hyperbolically symmetric AdS-
Schwarzschild black hole. The function f will be

f ¼ kz2 þ 1

l2
AdS

− f0zd;

The Eq. (11) becomes

maxΣ ¼ Vd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxPdðzÞ

p

PdðzÞ ≔ −
�
kz2 þ 1

l2
AdS

− f0zd
�
z−2d: ð14Þ

The solution of P0
dðzÞ ¼ 0 now satisfies

zdm ¼ 2

l2
AdSf0

þ 2ðd − 1Þk
df0

z2m > 0: ð15Þ

We take this expression into (14) and eliminate zd and z−2d

terms. After some algebras, we find

maxPdðzÞ −
l2
AdSf

2
0

4

¼ PdðzmÞ −
l2
AdSf

2
0

4

¼ −
l2
AdSf

2
0

4

½kz2ml2
AdSðd − 1Þ2 þ d2�kz2ml2

AdS

ðdkl2
AdSz

2
m þ d − kl2

AdSz
2
mÞ2

: ð16Þ

The dominate energy condition implies f0 ≥ 0, so Eq. (15)
implies

kz2ml2
AdSðd − 1Þ2 > −ðd − 1Þ > −d2:

If k > 0, we see that maxPdðzÞ − l2
AdSf

2
0=4 < 0. Thus,

in spherically symmetric AdS-Schwarzschild black
hole, the inequality (2) is still true but upper bound cannot
be attained. If k ¼ −1, we see that maxPdðzÞ−
l2
AdSf

2
0=4 > 0. Thus, the hyperbolically symmetric black

hole violates our bound. This is the reason why we require
the spacetime should have asymptotically spherical/planar
symmetry.
In the second example, we consider planar or spherical

Reissner-Nordström AdS (RN-AdS) black hole. The metric
is still given by Eq. (1) but now the function f is given by

f ¼ kz2 þ 1=l2
AdS − f0zd þ q̃z2d−2: ð17Þ

Here q̃ ≔ q2 ≥ 0 is the charge parameter. The mass of this
black is still given by Eq. (10). The maximal cross section
is still given by Eq. (11) but f now is replaced by Eq. (17)
and so Pd ¼ Pdðz; q̃Þ. Assume that zmðq̃Þ is the point
which maximizes Pd. We then have

f0ðzm; q̃Þzm − 2dfðzm; q̃Þ ¼ 0 ð18Þ

and

maxPd ¼ Pðq̃Þ ≔ −fðzmðq̃Þ; q̃Þz−2dm ðq̃Þ: ð19Þ

Here f0ðz; q̃Þ ¼ ∂zfðz; q̃Þ. It would be a little complicated
to solve Eq. (18) and compute Eq. (19) directly. We
compute the value of dPðq̃Þ=dq̃

dPðq̃Þ=dq̃ ¼ −∂ q̃fjzm¼zmðq̃Þzmðq̃Þ−2d − ½f0ðzmðq̃Þ; q̃Þzmðq̃Þ

− 2dfðzmðq̃Þ; q̃Þ�zmðq̃Þ−2d−1
dzmðq̃Þ
dq̃

: ð20Þ

Noting the fact that zmðq̃Þ satisfies Eq. (18), we obtain a
simple result

dPðq̃Þ=dq̃¼−zmðq̃Þ−2d∂ q̃fjzm¼zmðq̃Þ ¼−z−2m ðq̃Þ< 0: ð21Þ
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When q̃ ¼ 0, the black hole is just planar or spherical

Schwarzschild black hole and we have Pð0Þ ≤ l2AdSf
2
0

4
. Thus,

we find that

∀ q̃ ≥ 0; Pðq̃Þ ≤ Pð0Þ ≤ l2
AdSf

2
0

4
:

This shows that the inequality (2) is still true for RN-AdS
black hole and the saturation can appear only when
q̃ ¼ k ¼ 0.
We note that, though we should restrict q̃ to be non-

negative in physics, it is still a solution of Einstein’s
equation when q̃ < 0, i.e., we replace q → iq. Such black
hole is a solution for the Einstein-Maxwell system with a
phantom coupling of Maxwell field, i.e., Maxwell field
minimally couples to gravity with “wrong” sign. If we take
a negative value for q̃, then we see that Pðq̃Þ > Pð0Þ and
our inequality (2) may be violated. We note that such black
hole violates the dominant energy condition. This example
implies that we should propose a suitable energy condition
as a necessary condition for the inequality (2).
In the third example, we consider a nonstatic stationary

black hole. The simplest one is the BTZ black hole, of
which the metric reads [36,37]

ds2 ¼ 1

z2

�
−f̃ðzÞdt2 þ dz2

f̃ðzÞ þ ðdϕ − Jz2dt=2Þ2
�

ð22Þ

with f̃ðzÞ ¼ 1=l2
AdS − f0z2 þ J2z4=4. Comparing with

Eq. (5) we see

vi ¼ v ¼ Jz2=2; f ¼ f̃ − J2z4=4 ¼ f̃ − v2: ð23Þ

A general cross section between the outmost horizon
and inner horizon is a line and can be defined by
fz ¼ zSðϕÞ; t ¼ tSðϕÞg. Using Eq. (6), the size of a cross
section is given by

Σ ¼
Z
z¼zSðϕÞ

z−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f − v2

q
dϕ

¼
Z

z−2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0z2S − 1=l2

AdS − J2z4S=4
q

dϕ

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2ðzSÞ − J2=4
q

dϕ ð24Þ

Here PdðzÞ ¼ ðf0zd − 1=l2
AdSÞz−2d. The mass of this

BTZ black hole reads M ¼ V1f0=16π with V2 ¼ 2π. It
is easy to find

maxΣ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2
AdSf

2
0=4 − J2=4

q
dϕ

¼ V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
AdSf

2
0=4 − J2=4

q
≤ 8πlAdSM: ð25Þ

We see the BTZ black hole also satisfies our inequality (2)
and the bound is saturated only when J ¼ 0.

IV. RELATIONSHIP TO COMPLEXITY
AND MAXIMAL INTERIOR VOLUME

OF BLACK HOLE

Though it is completely based on geometrical consid-
erations, the “size of cross section” has directly relationship
to the complexity growth rate in CV conjecture. The CV
conjecture (see Refs. [10–12] for more details) states that
the complexity of a boundary state in asymptotically AdS
spacetime is proportional to the maximal volume of space-
like codimension-one surface Wd connecting boundary
time slices SLðtLÞ and SRðtRÞ, i.e.,

C ¼ max∂Wd¼SLðtLÞ∪SRðtRÞ
V½Wd�
GNl

; ð26Þ

Here GN is the Newton constant and we set GN ¼ 1 for
convenience, l is a length scale associated to the bulk
geometry such as the horizon radius or AdS radius and
so on. We take l ¼ 4π2lAdS=ðd − 1Þ [38].
We choose coordinates gauge (5). The right boundary

slice is given by SRðtRÞ ≔ ϕ̂tRSR0, where SR0 is initial
boundary slice defined by z ¼ 0 and t ¼ TðxiÞ with
arbitrary function TðxiÞ. Here ϕ̂λ is 1-parameter group of
diffeomorphisms generated by timelike Killing vector
ð∂=∂tÞI at the boundary. The left boundary slice is given
by SLðtLÞ ≔ ϕ̂−tLSL0 and SL0 is defined by t ¼ −TðxiÞ. In
this choice, for every fixed xi, the coordinate time of two
boundary slices always have opposite sign. We can para-
metrize Wd by z ¼ zðs; xiÞ and t ¼ tðs; xiÞ. See Fig. 1. We
use the Penrose diagram of planar/spherical symmetric
black hole as example in Fig. 1 for visualization, however,
the computations and arguments can be applied into
arbitrary stationary AdS black holes. Two boundary slices
SL and SR are given by s ¼ �∞, i.e.,

FIG. 1. The schematic diagram about the boundary slices (left)
and extremal surface Wd (right). In the right panel, the possible
inner horizons and singularities are irrelevant, so they are not
showed. For every fixed xi, the time (i.e., coordinate time t) of
two boundary time slices will always have opposite sign.
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SL ¼ fz ¼ 0; t ¼ tð−∞; xiÞg;
SR ¼ fz ¼ 0; t ¼ tð∞; xiÞg: ð27Þ

and we have the relationship tð−∞; xiÞ ¼ −tð∞; xiÞ.
As the spacetime is stationary, the maximal volume

depends on only the value of tL þ tR and we only need to
consider the symmetric time slices, i.e., tL ¼ tR. In this
case, the extremal surface contains two parts (s < 0 and
s > 0). Noting the boundary condition (27) and the fact
that bulk geometry of one side is just the copy of the other,
we find that there is the following relationship

tðs; xiÞ ¼ −tð−s; xiÞ; zðs; xiÞ ¼ zð−s; xiÞ ð28Þ

if Wd is an extremal hypersurface. The intersections of two
parts (i.e., the parts of s ≥ 0 and s ≤ 0) is denoted by A,
which is given by tð0; xiÞ ¼ 0 and z ¼ zð0; xiÞ ¼ zAðxiÞ.
The induced metric on Wd reads

ds2W ¼ 1

z2
½−fðt0dsþ ∂itdxiÞ2 þ χðz0dsþ ∂izdxiÞ2

þ 2viðt0dsþ ∂jtdxjÞdxi þ hijdxidxj�: ð29Þ

Here “ 0” stand for the partial derivative with respect to s.
Now we define

N ¼ −ft02 þ χz02; Ni ¼ vit0 þ χz0∂iz − ft0∂it; ð30Þ

and

hij ¼ −f∂it∂jtþ χ∂iz∂jzþ 2vði∂jÞtþ hij: ð31Þ

Then we have

ds2W ¼ 1

z2
½Nds2 þ 2Nidsdxj þ hijdxidxj�:

The volume functional of Wd now reads

V½Wd� ¼
Z

z−d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − hijNiNj

q ffiffiffi
h

p
dd−1xds: ð32Þ

Note that only N and Ni depend on the value of t0. The
above volume functional is an analog of action functional.
The two variables tðs; xiÞ and zðs; xiÞ are two “fields” and
parameter s plays the role of “time.” Thus the canonical
momentum conjugate to “field” t reads

Pðs0Þ ¼
Z
s¼s0

∂
∂t0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − hijNiNj

q ffiffiffi
h

p
zd

�
dd−1x

¼
Z
s¼s0

∂N
∂t0 − 2hijNi

∂Nj

∂t0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − hijNiNj

q
ffiffiffi
h

p
zd

dd−1x: ð33Þ

From Eqs. (30) we can find that

∂N
∂t0 ¼ −2ft0;

∂Nj

∂t0 ¼ −f∂itþ vj: ð34Þ

Thus, we have

Pðs0Þ ¼
Z
s¼s0

−ft0 − hijNiðvj − f∂itÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − hijNiNj

q
ffiffiffi
h

p
zd

dd−1x: ð35Þ

The extremal surface is obtained by Euler-Lagrangian
equation of volume functional (32). The maximal volume
V, i.e., the on-shell value of V, is only the function
tL þ tR ¼ τ and so we have Von-shell ¼ Von-shellðτÞ. The
growth rate then reads

l _C ¼ dVon-shell

dτ
¼ ∂Von-shell

∂tR
����
fix tL

: ð36Þ

As the partial derivative of on-shell action with respect
to canonical variable t gives us the canonical momentum,
we see

l _C ¼ Pð∞Þ; ð37Þ

As the volume functional does not depend on t explicitly,
PðsÞ will be independent of s and so

Pð∞Þ ¼ PðsÞ: ð38Þ

We can compute Pð∞Þ at s ¼ 0, i.e., at the surface A.
Equation (28) implies z0jA ¼ 0 and ∂itjA ¼ 0, so we find

hijjA ¼ h̃ij; NjA ¼ −ft02; NijA ¼ vit0: ð39Þ

Thus

l _C¼Pð0Þ¼
Z
A
z−d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f− jvj2

q ffiffiffĩ
h

p
dd−1x¼Σ½ξI;A�: ð40Þ

In RN-AdS black holes, it recovers the result reported by
Ref. [16] after we specify SL0 and SR0 to be equal-t slice of
boundary. We see that the complexity growth rate is given
by size of cross section A and so Eq. (3) suggests Eq. (2).
This offers a way to argue Eq. (2) by AdS=CFT corre-
spondence and information theory. In turn, the proof of
Eq. (2) is significant for CV conjecture.
If we move the boundary slices SL and SR into the

horizon, then we find that ϕ̂λ is the tangent map of horizon.
The Von-shellðτÞ becomes the “the maximal interior volume”
attached by the horizon slices SL and SR, which captures
the idea of “how much space is inside” [23]. This quantities
is suggested to be relevant to the information paradox
[23–25]. From the above discussion, it is clear that the
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growth rate of such volume is still given by size of cross
section A.

V. PROOFS ON THE INEQUALITY

In this section, we will give proof of our bound. We use
the Bondi-Sachs coordinates (7). As we have argued at the
end of Sec. II, we can always choose the Bondi-Sachs
coordinates suitably so that the maximal cross section is
z ¼ z̄ with a constant z̄. Using Cauchy-Schwartz inequality
and defining FðzÞ ≔ V−1

d−1
R ð−z−2dfÞdVd−1, we have

maxΣ2 ≤ Vd−1Fðz̄Þ
Z
z¼z̄

e2βdVd−1: ð41Þ

Here Vd−1 ≔
R
dVd−1. Note that dVd−1 and Vd−1 are

independent of z due to the gauge ∂zq ¼ 0. The require-
ment (ii) implies the boundary conditions βjz¼0 ¼ 0.
Assume that TIJ is the energy momentum tensor of

matters. The Einstein’s equation shows that [35]

∂zβ ¼ −
zqikqjlð∂zqklÞ∂zqij

8ðd − 1Þ −
4πz
d − 1

Tzz: ð42Þ

and

−ðd − 1Þzd−1∂zðz−dfÞ

¼ e2β½Rþ 2ðDβÞ2� −D2e2β −
e−2β

2
qij∂zUi∂zUj

þ dðd − 1Þe2β
z2l2

AdS

− z2d−2Di½∂zðUi=z2d−2Þ�

− 8πz−2e2βðρ − PÞ: ð43Þ

Here R and Di are the scalar curvature and covariant
derivative of qij. Tzz is the zz (null-null) component of TIJ,
ρ ¼ TIJnInJ and P ¼ TIJmImJ, where nI and mI are
orthogonal future-directed timelike and outward spacelike
vectors of subspace spanned by fxig. The dominate energy
condition implies Tzz ≥ 0 and ρ − P ≥ 0.
We note that the first term in the right-hand side (rhs) of

Eq. (42) is invariant under the coordinates transformation
xi → x̃i ¼ XiðxÞ, where XiðxÞ is independent of z. As qij is
the positive-defined metric of space spanned by fxig, we
can find suitable coordinates transformation function Xi

p at
every point p so that qijjp becomes diag fλ1ðpÞ; λ2ðpÞ;…;
λd−1ðpÞg with λiðpÞ > 0 (note that ∂zqkl in this new
coordinates may not be diagonalized) and so

qikqjlð∂zqklÞ∂zqijjp¼
X
i;j

λiðpÞλjðpÞð∂zqijÞ2jp≥0: ð44Þ

Then Eq. (42) implies ∂zβ ≤ 0. Combining it with the
boundary condition βjz¼0 ¼ 0, we find β ≤ 0 and so

max Σ2 ≤ V2
d−1Fðz̄Þ: ð45Þ

After we integrate Eq. (43) on the transverse directions and
neglect the boundary terms, we have

d
dz

ðzdFÞ ¼ de2β

zdþ1l2
AdS

þ
R
e2β½Rþ 2ðDβÞ2 − qijAiAj −Q2�dVd−1

ðd − 1Þzd−1Vd−1
:

ð46Þ

Here Ai ¼ e−β∂zUi=
ffiffiffi
2

p
and Q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πðρ − PÞp
eβ=z. We

then focus on the following three cases.
The first case assumes that the spacetime is planar/

spherically symmetric or deviates from such background
only a little. Then the quantities ∂iβ has order OðϵÞ and

the transverse metric becomes qij ¼ qð0Þij þ ϵqð1Þij ðz; xiÞ.
The gauge ∂zq ¼ 0 implies qð0Þijqð1Þij ¼ Oðϵ2Þ. We then
find that

e2β½Rþ 2ðDβÞ2� ¼ ðd − 1Þðd − 2Þe2βkþ ϵD
∘ i
Yi þOðϵ2Þ:

ð47Þ

Here D
∘
i is the covariant derivative operator of qð0Þij and

Yi ≔ e2βD
∘ j
qð1Þij . Taking (47) into Eq. (46), neglecting the

boundary term, at the linear order of ϵ, we have

d
dz

ðzdFÞ ¼ ðd − 2Þke2β
zd−1

þ de2β

zdþ1l2
AdS

−
R
e2β½qijAiAj þQ2�dVd−1

ðd − 1Þzd−1Vd−1
þOðϵ2Þ: ð48Þ

Near the boundary z → 0, β; Ai andQ are required to decay
fast enough, so when z → 0 we find

FðzÞ → −z−2d½kz2 þ 1=l2
AdS − f0zd� ¼ PdðzÞ; ð49Þ

where f0 gives us mass according to Eq. (10) and PdðzÞ is
defined by Eq. (14). For finite z and neglecting Oðϵ2Þ
terms, Eq. (48) implies

d
dz

ðzdFÞ ≤ ðd − 2Þk
zd−1

þ d
zdþ1l2

AdS

: ð50Þ

Here we have used the fact β ≤ 0 and k ≥ 0. Integrating it
and noting the asymptotically behavior (49), we find

FðzÞ ≤ PdðzÞ; ð51Þ
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We have shown that, in the case k ≥ 0, the maximal value
of PdðzÞ is not larger than f20l

2
AdS=4, so Eq. (45) implies

maxΣ ≤ Vd−1f0lAdS=2 ¼ 8πElAdS

d − 1
: ð52Þ

Under the requirement k ≥ 0, above bound can be saturated
only if k ¼ 0.
In the second case we consider the asymptotically planar

Schwarzschild-AdS spacetimes when d ≥ 4. AdS=CFT
duality conjectures that boundary is due to field theory
in flat space. In some special cases, the energy momentum
tensor of dual boundary field theory decays rapidly enough
when xi → ∞. In this case, we can find qij → δij, ∂iβ → 0

when xi → �∞. This means that R and ðDβÞ2 will decay
zero rapidly and their integrations will be finite but
Vd−1 → ∞. In such special case, Eq. (46) reduces

d
dz

ðzdFÞ ¼ de2β

zdþ1l2
AdS

−
R
e2β½qijAiAj þQ2�dVd−1

ðd − 1Þzd−1Vd−1
; ð53Þ

which yields

d
dz

ðzdFÞ ≤ d
zdþ1l2

AdS

: ð54Þ

Here we have used the facts that β ≤ 0 and
qijAiAj þQ2 ≥ 0. We then obtain inequality (50) in the
case k ¼ 0 and so still obtain Eq. (52). It needs to
emphasize that there are some physically interesting cases
where the energy momentum tensor of dual boundary field
are not decay rapidly when xi → ∞. In this case we cannot
obtain Eq. (53). It is not clear currently if our inequality will
be still true.
In the third case, we assume that the spacetime is 3þ 1

dimensional. On the u ¼ constant null sheet, we denote Γz
to be a fixed z 2-d spacelike surface, of which the metric is
qijðz; xÞ. As qijðz; xÞ is smooth between the maximal cross
section and asymptotic boundary, we find the surfaces
fΓzjz ∈ ½z̄; 0Þg have a same topology. Because we require
that the spacetime geometry is asymptotically planar/
symmetric Schwarzschild-AdS black hole, the surface
Γzjz→0 must be homeomorphic to a plane or a sphere. In
2-dimensional case, this means that all these surfaces in
fΓzjz ∈ ½z̄; 0Þg are globally conformally to a plane or
sphere. As the result, we can always find coordinates
transformation fxig → fyig and a scalar Φðz; yiÞ suitably
for every Γz so that

qijdxidxj ¼ e2Φγðk̃Þij ðyÞdyidyj ð55Þ

with k̃ ¼ 1 and 0. Here γð0Þij ¼ δij and γ
ð1Þ
ij is the metric of a

unite sphere. Under the conformal transformation, we have

Z
e2β½Rþ 2ðDβÞ2�dV2

¼
Z

e2β½2k̃ − 2D̂2Φþ 2ðD̂βÞ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γðk̃ÞðyÞ

q
d2y: ð56Þ

Here D̂i is the covariant derivative operator of conformal

metric γðk̃Þij . Take it into Eq. (46) and we have

d
dz

ðz3FÞ ¼ 3e2β

z4l2
AdS

þ 1

z2V2

Z
e2β½k̃þ ðD̂βÞ2 − D̂2Φ

− γðk̃Þij Ã
iÃj −Q2�

ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y: ð57Þ

Here Ãi ¼ e−ΦAi. V2 is transverse volume and in general
we have

V2 ¼
Z ffiffiffi

q
p

d2x ¼
Z

e2Φ
ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y ≠

Z ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y: ð58Þ

We now define

k ≔ k̃V−1
2

Z ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y: ð59Þ

The value of k is constant and may be different from k̃.
However, it is clear that k ≥ 0 and k ¼ 0 iff k̃ ¼ 0.
Equation (57) then leads to

d
dz

ðz3FÞ ¼ 3e2β

z4l2
AdS

þ ke2β

z2
þ 1

z2V2

Z
e2β½ðD̂βÞ2 − D̂2Φ

− γðk̃Þij Ã
iÃj −Q2�

ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y: ð60Þ

As we require that the spacetime is asymptotically planar/
Schwartzchild AdS black hole, the function β, Ai and Q
should decay to zero fast enough when z → 0. Thus, near
the AdS boundary, Eq. (60) reduces into

d
dz

ðz3FÞ ¼ 3

z4l2
AdS

þ k
z2
; z → 0; ð61Þ

which gives us the solution

FðzÞ ¼ −
�
kz2 þ 1

l2
AdS

− f0z3
�
z−6; z → 0: ð62Þ

Here the integration constant f0 give us the mass according
to Eq. (10). For finite z, Eq. (60) leads to following
inequality
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d
dz

ðz3FÞ ≤ 3

z4l2
AdS

þ k
z2

þ 1

z2V2

Z
e2β½ðD̂βÞ2 − D̂2Φ

− γðk̃Þij Ã
iÃj −Q2�

ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y: ð63Þ

Here we have used the facts β ≤ 0 and k > 0. Integrating
it with respect to z and noting the value of FðzÞ as z → 0,
we obtain

FðzÞ ≤ −½kz2 þ 1=ðl2
AdSÞ − f0z3�z−6 þ

Bz

z3V2

: ð64Þ

Here we define

Bz̃ ¼
Z

z̃

0

dz
z2

Z
e2β½ðD̂βÞ2 − D̂2Φ

− γðk̃Þij Ã
iÃj −Q2�

ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y: ð65Þ

Here D̂i is the covariant derivative operator of γij, Ã
i is Ai

in the conformal frame. If all functions involved in the
functional Bz̃ are free, Bz̃ has no upper bound or lower
bound. However, these functions are not free. Due to
Einstein’s equation, spacetime geometry is determined
by the distribution of matters. Because of Bianchi identity
and gauge ∂zq ¼ 0, there are 5 bulk degrees of freedom. In
fact we can use arbitrary 5 independent bulk variables. Here
we choose fΦ;W ¼ ffiffiffiffiffiffiffi

Tzz
p

; Ãi; Qg as 5 independent vari-
ables, i.e., Bz ¼ Bz½Φ;W; Ãi; Q�. It needs to note that
function β depends on fΦ;W; Ãi; Qg and is not a free
variable. In following we will use variational method to
show Bz ≤ 0.
We first consider an enlightening example, saying a

smooth function fðxÞ with x ∈ ð∞;∞Þ. We can use two
steps to prove fðxÞ ≤ a: (i) fðxÞ ≤ a as jxj → ∞ and (ii) for
arbitrary saddle point xi, i.e., the point of f0ðxiÞ ¼ 0,
we have fðxiÞ ≤ a. This method can be generalized
into functional case. If fjjΦjj; jjWjj; jjÃijj; jjQjjg → ∞
(here jj · jj is a Lp norm), the system will break the
spherical or planar symmetry strongly, which implies

j∂zqijj; Tzz; jðD̂βÞ2j and jD̂2Φj ∼Oðpolynomial of NÞ
with a parameter N ≫ 1. The Eq. (42) implies
e2β ∼ exp½−Oðpolynomial of NÞ�, which implies that

Z
e2β½ðD̂βÞ2 − D̂2Φ�

ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y → 0; as N → ∞: ð66Þ

Then we see Bz ≤ 0 asN → ∞ by using the definition (65).
This finishes the first step. In the second step, we use
variational method to find all saddle points. The variation
with respect to Φ shows D̂2e2β ¼ 0, which implies

0 ¼
Z

e2βD̂2e2β
ffiffiffi
γ

p
d2y ¼

Z
ðD̂e2βÞ2

ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y ð67Þ

and so β is independent of yi. Take this into integration (65)
and we find on-shell value Bz

Bz̃jon-shell¼−
Z

z̃

0

dz
z2
e2β

Z
ðD̂2Φþγðk̃Þij Ã

iÃjþQ2Þ
ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y

¼−
Z

z̃

0

dz
z2
e2β

Z
ðγðk̃Þij Ã

iÃjþQ2Þ
ffiffiffiffiffiffiffi
γðk̃Þ

q
d2y≤0:

ð68Þ

Thus, we find Bz ≤ 0. Then we obtain Eqs. (51) and (52)
again for the case d ¼ 3.
There is also a rigidity theorem for 3þ 1 dimensional

asymptotically plana/spherically AdS black hole: the
inequality (2) is saturated if and only if its geometry
outside maximal cross section is planar Schwarzschild-
AdS. The proof is as follows.
To reach the maximum, we need to saturate Eqs. (41),

(63) and (68). To saturate Cauchy-Schwartz inequality (41),
we need

∂iðe2β ffiffiffi
q

p Þ ¼ ∂iðf ffiffiffi
q

p Þ ¼ 0; ð69Þ

i.e., e2β
ffiffiffi
q

p
and f

ffiffiffi
q

p
are independent of xi. To saturate

Eq. (63), we have to set

β ¼ 0 ⇒ ∂iβ ¼ ∂zβ ¼ 0: ð70Þ

Then Eq. (69) implies ∂iq ¼ 0 and so

f ¼ fðzÞ: ð71Þ

Combining Eq. (70) and (42), noting dominate energy
condition requires Tzz ≥ 0, we find

∂zqij ¼ 0: ð72Þ

This shows that R, which is the scalar curvature of qij
is independent of z. To saturate Eq. (68) we have to set
Ai ¼ Q ¼ 0, which implies

Ui ¼ 0: ð73Þ

Then take Eqs. (70)–(73) into Eq. (43) and we find

−2z2∂z½z−3fðzÞ� ¼ Rþ 6

z2l2
AdS

; ð74Þ

so we see R is only function of z but independent of xi.
However, we have know R is independent of z, so R is
constant. Then we find R ¼ 2k ≥ 0 and Eq. (74) shows
f ¼ kz2 þ 1=l2

AdS − f0z3. The metric outside the horizon

ds2 ¼ 1

z2
½−fðzÞdu2 þ 2dudzþ qijðxÞ�dxidxj: ð75Þ
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As the 2-d metric qijðxÞ has constant curvatureR ¼ 2k, we
can always find suitable coordinates transformation xi → x̃i

so that qij becomes standard metric of sphere (k > 0) or
plane (k ¼ 0). Thus, we show that its geometry outside
maximal cross section is Schwarzschild-AdS with planar or
spherical symmetry. On the other hand, we have known that
the planar Schwarzschild-AdS black hole can saturate the
bound but the spherical Schwarzschild-AdS black hole
cannot. Thus, we prove our rigidity theorem. It needs to
note that, there is no restriction on the geometry behind the
maximal cross section.

VI. SUMMARY AND DISCUSSION

To conclude, this paper proposed and discussed a new
universal inequality for the inner geometry of black holes.
This makes a first step toward the holographic proof on
the conjecture that vacuum black holes may be fastest
“computers” in nature [13,14]. Except for seeking the proof
about Eq. (2) in more general cases, many other aspects are
worthy of exploring in the future.
In the proofs of this paper, it is crucial that scalar

curvature of Γz is nonnegative when z → ∞. This is why it
requires that the spacetime is asymptotically planar/spheri-
cal Schwarzschild-AdS. The bound (2) can be violated by
asymptotically hyperbolic black holes. In fact hyperboli-
cally AdS black hole can have negative energy so Eq. (2) is
not true. It is interesting to study if there is other suitable
upper bound for hyperbolic case. In our above discussions
and proofs, we only consider Einstein theory. It would be
also interesting to consider other gravity theories.
Assume that there is a next-outermost horizonH2 behind

the outermost horizon H1. In the limit H2 → H1, i.e., the
temperature TH → 0, maxΣ → 0 but the total energy can
be arbitrarily large. This suggests that, in low temperature
limit, there may be an tighter upper bound controlled by
temperature. For example, in a BTZ black hole (22), the
function f can be rewritten in terms of

f ¼ ðz2 − z21Þðz2 − z22Þ
z21z

2
2l

2
AdS

: ð76Þ

Here z1 ≤ z2 are inverse radii of horizons. Then we see
f0 ¼ ðz21 þ z22Þ=ðz21z22l2

AdSÞ and J¼2=ðz1z2lAdSÞ. Then we
see Eq. (25) becomes

maxΣ ¼ V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
AdSf

2
0=4 − J2=4

q
¼ V1

z22 − z21
2z22z

2
1lAdS

: ð77Þ

On the other hand, the temperature TH and entropy S can be
expressed as

TH ¼ z22 − z21
2πl2

AdSz
2
2z1

; S ¼ V1=z1: ð78Þ

Then one can verify maxΣ ¼ πTHSlAdS and so we obtain a
new bound for BTZ black hole

Σ ≤ πTHSlAdS: ð79Þ

In the low temperature limit, this bound is much tighter
than inequality (2). It is interesting to check if a similar
bound is also true in general cases.
The bound can be generalized into asymptotic flat

spacetimes. It only needs to set k ¼ 1 and lAdS → ∞.
This leads to a different bound Σ ≤ cdEðd−1Þ=ðd−2Þ with a
dimension-dependent number cd. One find this result from
Eq. (51). By setting k ¼ 1 and lAdS → ∞, we see that

FðzÞ ≤ −z−2dðz2 − f0zdÞ: ð80Þ

The maximal value of the rhs in Eq. (80) is proportional to

f2ðd−1Þðd−2Þ0 , so Eq. (45) implies

maxΣ ≤ cdEðd−1Þ=ðd−2Þ: ð81Þ

Particularly, in four-dimensional spacetime, we have
Σ ≤ 3

ffiffiffi
3

p
π2E2. The first evidence of this inequality was

reported by Ref. [23] based on the comparison between
Schwarzschild black hole and Reissner-Nordström black
hole. This inequality gives us a way to estimate the possible
largest volume inside black hole. For a black hole formed
by collapse, at the time τ much later than the disappearance
of the collapsing matter, ð∂=∂tÞI is Killing vector approx-
imately, so we find that spatial volume attached at the
horizon is bounded by VðτÞ ≲ τ × maxΣ ¼ 3

ffiffiffi
3

p
π2E2τ.

For a large evaporating black hole of energy E, the
black hole will be quasistationary in a time order OðE3Þ
and so the maximal volume of space inside horizon is
order OðE5Þ.
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APPENDIX A: SIZE OF CROSS SECTION
IN COORDINATES GAUGE (5)

Let us first explain how to obtain Eq. (6). For the
nontrivial cross section Sd−1, we can always embed it into
the a d-dimensional spacelike manifoldMd of which unite
normal covector ñI satisfies ñIjSd−1

¼ nI . In following, we
will use xI ¼ ft; xi; zg to stand for dþ 1 dimensional bulk
coordinates, xμ ¼ ft; xig to stand for the coordinates of
d-dimensional spacelike submanifold Md and xi to stand
for d − 1 dimensional coordinates of cross section Sd−1.
We parametrize the surface Md to be z ¼ zðt; xiÞ. The

normal covector reads
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ñI ∝ ðdzÞI − _zðdtÞI − ð∂izÞðdxiÞI: ðA1Þ

The condition ñIjSd−1
¼nI and ξInI ¼ð∂=∂tÞInI ¼0 implies

_zjSd−1
¼ 0: ðA2Þ

Here dot means the partial derivative with respect to t. The
induced metric on this surface then reads,

ds2d ¼
1

z2
½−ðf þ χ _z2Þdt2 þ 2χ _z∂izdtdxi

2vidtdxi þ ðhij þ χ∂iz∂jzÞdxidxj�: ðA3Þ

The choice for such d-dimensional manifold is not unique.
We can choose z ¼ zðt; xiÞ ¼ zSðxiÞ and so the metric of
Md becomes

ds2d ¼
1

z2
½−fdt2 þ 2vidtdxi þ h̃ijdxidxj�: ðA4Þ

Here h̃ij ¼ hij þ χ∂iz∂jz. In this choice the Killing vector
ξI lays in Md and is still a Killing vector of Md. In the
submanifold Md, we denote this Killing vector to be ξμ.
The cross section Sd−1 then is given by a hypersurface
t ¼ tSðxiÞ in Md. Assume that dSμ is the directed surface
element of cross section Sd−1 embedded inMd. The size of
cross section then reads

Σ½Sd−1; ξI� ¼
Z
Sd−1

ξμdSμ: ðA5Þ

We consider a new cross section S̃d−1, which is given
by t ¼ tS̃ðxiÞ in Md. See the schematic diagram Fig. 2.
Then we have

Σ½S̃d−1; ξI� ¼
Z
S̃d−1

ξμdSμ: ðA6Þ

Using the Causs formula, we have

Σ½Sd−1; ξI� − Σ½S̃d−1; ξI� ¼
Z
Ξd

Dμξ
μdV: ðA7Þ

Here Ξd is the d-dimensional region surrounded by S̃d−1
and Sd−1, Dμ is the covariant derivative operator of
submanifold Md. As ξμ is a Killing vector of Md, ξμ is
divergent free Dμξ

μ ¼ 0. Then we find

Σ½Sd−1; ξI� ¼ Σ½S̃d−1; ξI�:

Thus we proved that the value of Σ½Sd−1; ξI� is independent
of the choice of tSðxiÞ. Particularly, we can choose
tS̃ðxiÞ ¼ 0 and so

dSμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f − jvj2

q
ðdtÞμ

ffiffiffĩ
h

p
dd−1x: ðA8Þ

Here jvj2 ≔ h̃ijvivj. Thus,

Σ½Sd−1; ξI� ¼ Σ½S̃d−1; ξI� ¼
Z
S̃d−1

ξμdSμ

¼
Z
z¼zSðxiÞ

z−d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f − jvj2

q ffiffiffĩ
h

p
dd−1x: ðA9Þ

Thus, we obtain Eq. (6).

APPENDIX B: SIZE OF CROSS SECTION
IN BONDI-SACHS GAUGE

If we use the Bondi-Sachs coordinates gauge, the
spacelike hypersurface Md inside black hole then is
parametrized by z ¼ zðu; xiÞ and the induced metric reads

ds2 ¼ 1

z2
½−ðf − 2_zÞe2βdu2 þ 2e2β∂izdudxi

þ qijðdxi −UiduÞðdxj −UjduÞ� ðB1Þ

Here dot means the partial derivative with respect to u. The
normal covector of Md reads

ñI ∝ ðdzÞI − _zðduÞI − ð∂izÞðdxiÞI: ðB2Þ

The condition ñIjSd−1
¼ nI and ξInI ¼ ð∂=∂uÞInI ¼ 0

implies

_zjSd−1
¼ 0: ðB3Þ

The choice for such d-dimensional manifold is also not
unique. We can choose z ¼ zðu; xiÞ ¼ zSðxiÞ and so the
metric of Md becomes

FIG. 2. The schematic diagram about the submanifold Md,
cross section Sd−1 and cross section S̃d−1. ξμ ¼ ð∂=∂tÞμ is the
Killing vector which lays in Md.
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ds2 ¼ 1

z2
½ðjUj2 − fe2βÞdu2 þ 2ðe2β∂iz −UiÞdudxi

þ qijdxidxj�: ðB4Þ

Here jUj2 ¼ UiUi and Ui ¼ qijUj. In this choose, the
ð∂=∂uÞI is still tangent to Md and so is the Killing vector
of Md.
In the submanifold Md, the cross section Sd−1 then is

given by a hypersurface u ¼ uSðxiÞ in Md. Similar to the

former case, we can find that the size of cross section is
independent of the choice of uSðxiÞ and we obtain

Σ½Sd−1; ξI� ¼
Z
z¼zSðxiÞ

eβ

zd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f − e2βj∂zj2 þ 2Ui∂iz

q
dVd−1:

ðB5Þ

Here dVd−1 ≔
ffiffiffi
q

p
dd−1x and j∂zj2 ¼ qij∂iz∂jz.
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