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This paper studies cross sections inside black holes and conjectures a universal inequality: in a static
(d + 1)-dimensional asymptotically planar/spherical Schwarzschild-AdS spacetime of given energy E and
AdS radius ¢ 545, the “size of cross section” inside black holes is bounded by 87E¢ 545/ (d — 1). To support
this conjecture, it gives the proofs for cases with spherical/planar symmetries and some special cases
without planar/spherical symmetries. As one corollary, it shows that the complexity growth rate in
complexity-volume conjecture satisfies the upper bound argued by quantum information theory. This
makes a first step toward proving the conjecture that the vacuum black hole has fastest complexity growth
in the systems of same energy. It also finds a similar bound for asymptotically flat black holes, which gives

us an estimation on the largest interior volume of a large evaporating black hole.
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I. INTRODUCTION

Black holes, as ultradense objects in universe, exhibit
many fascinating physical and mathematical properties.
Particularly, many such properties can be presented by
some universal inequalities, such as the positive mass
theorem [1,2], the second law of black holes [3,4], the
Penrose inequality [5-9] and so on. Most of these universal
inequalities focus on the horizon and its exterior. However,
the recent developments suggested that the inner structures
of black holes may also play important roles in considering
the black hole physics. For example, the interior of black
hole play crucial role in holographic computational com-
plexity [10-16] and recent developments toward the
resolution of information paradox in holography [17-20].
The interior is important in the proposal of “quantum
Penrose inequality” [21,22]. It has been suggested that the
volume of interior of black hole may be relevant to the
information paradox [23-26]. The universal inequalities
about the inner structures of black holes are still lack of
exploring.

This paper makes a first step to explore a new universal
inequality about inner geometry of stationary black holes
and exhibits a few of applications in black hole physics.
The inequality arises from following simple question.
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Consider a (d + 1)-dimensional Schwarzschild-AdS black
hole, of which the metric reads

1
2
dS —Z—2 -

2 dz? i1
fdr +7+5,»jdx dx/|. (1)
Here f = 1/£3 45 — foz? and £ 45 is the AdS radius. Inside
horizon, z is time but ¢ is spatial coordinate. For a class of
special slices which are fixed “time” z, the volume reads
V = [dZ with £ = V,_\/=fz74 Here V4, :== [d9"Ix.
Geometrically, X can be interpreted as the “size” of a cross
section since its integration with respect to ¢ gives us the

volume of this slice. Different z will give us different size of
cross section. The direct computation shows that

3 < 8nEfgs/(d—1). (2)

Here E is the total energy/mass of the spacetime. This
paper conjectures that, for a stationary black hole, if
(i) outermost horizon is connected Killing horizon and
has positive surface gravity, (ii) the spacetime is asymp-
totically spherical/planar Schwarzschild-AdS [27,28], and
(iii) dominate energy condition and Einstein equation are
satisfied, then inequality (2) is always true. To support this
conjecture, this paper gives the proofs on some situations
which cover most of physical interesting cases.

Though it is not the original motivation of inequality (2),
this paper finds that the inequality (2) has important
application in holographic duality. It has been argued from
quantum information theory that the complexity growth

rate C(7) satisfies Lloyd’s bound [29]
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C(r) < 2E/x. (3)

Here C(r) is the complexity of a time-dependent system
and E is the total energy. This bound describes the
ultimate speed of quantum computations [29]. We will
show that, if the inequality (2) is true, then the complex-
ity growth rate of stationary black hole in “complexity-
volume” (CV) conjecture [10,11] always satisfies the
Lloyd’s bound (3). Any regular matter (satisfies dominate
energy condition) in the bulk always slows down the
complexity growth. This matches with a conjecture that
black hole has fastest information scrambling [30]. The
similar bound of growth rate was once conjectured in
“complexity = action” (CA) conjecture [13,14] but has
been found to be violated even in Schwarzschild black
holes [16,31-33]. The inequality (2) thus gives us a new
viewpoint to compare CV and CA conjectures.

It will also show that the inequality (2) has a generali-
zation asymptotic flat spacetimes T < ¢, E(@~1/(42) with a
dimension-dependent positive number c¢,;. We find that this
bound is relevant to “interior volume” of black hole
proposed by Ref. [23] and can give us an estimation on
the possible largest exterior volume of an evaporating
black hole.

II. CROSS SECTION INSIDE THE BLACK HOLE

We first clarify the precise definition of “size of cross
section.” Consider a (d + 1)-dimensional stationary black
hole with an outermost nondegenerated connected Killing
horizon. Assume &' to be Killing vector field which is
timelike outside. A cross section S,;_; is an arbitrary
spacelike (d — 1)-dimensional submanifold inside the
black hole (If there are inner horizons, then “inside black
hole” means the region between the outermost horizon and
next-outermost horizon). The size of this cross section is
defined as

2[51, 54—1] = flnjdzu- (4)

Sa-1

Here dX;; is the outer-past directed surface element of S,;_;
and n; is a unit normal covector of S,_; which satisfies
n'é; = 0. Geometrically, ¥ stands for the flux of vector
field £ in the surface S,_,. The cross section S,_; is trivial
if £/ tangent to S,_; as the size is zero. For nontrivial cross
section, n; is the unique future-directed time-like normal
covector. We only consider the maximally extended cross
section, i.e., the cross section which is not a real subset of
any other cross section.

In a general stationary (d + 1)-dimensional spacetime,
the metric can locally be expressed as

. _ o
ds? = 2 [=fd* + ydz* + 2v;drdx’ + hydx'dn)] (5)

with (8/0t)! =¢&'. The functions f,y,v; and h;; may
depend on {z,x'} but do not depend on 7. A nontrivial
cross section S,_; can be parametrized by z = zs(x') and
t = tg(x"). The position of cross section depends on the
choice of #4(x'), however, it is shown in Appendix A that its
size X[¢!, S, ] is independent of the choice on tg(x').
Based on this property, we can compute X[/, S, ;] by
choosing tg(x') = 0 and find

z[e:’,sd_l]:/_ (i)z‘d\/—f—|v|2\/de‘1x. ()

Here h := det(h;;), |v|* = h'v;v; and

hij = hij +}(aiZSast

is the induced metric of cross section {¢ = 0, z = zg(x")}.
See the Appendix A for mathematical proof on Eq (6).

Alternatively, we can choose the Bondi-Sachs coordi-
nates and metric reads [34,35]

1
ds? = = [—fe¥du® + 2¢*dudz
Z
+ gy(dxi = Uldu) () — Uidu)] (7

with (9/0u)! = ¢ and gauge 9.q = 0. The functions
f,p. U and q;; may depend on {z,x'} but do not depend
on u. A general cross section is parameterized by z =
zs(x) and u = ug(x?). It is still true that Z[&, S,_] is
independent of the choice on ug(x') and so we can compute
2[E, S,1] by choosing ug(x’) = 0. Then we find

Z[Sd—hfl]:/ ( ,)Z_deﬂ\/—f_ezﬂ|8z|2+2Uiaizdvd—1-
=Is x!
(8)

Here dV,_;:= ,/qd"'x and |0z = ¢"0,20;z. See the
appendix B for mathematical proof on Eq (8). For arbitrary
positive function p(x’), the coordinates transformation
{z = zp(x')} changes one allowed Bondi-Sachs coordi-
nates into an other. By this freedom, we can set the cross
section to have constant z. Under this gauge choice, we
have a simple formula,

= /z_ Z_deﬂ\/jded_l. (9)

This will be useful when we prove our inequality.
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III. EXAMPLES IN SOME SPECIAL CASES

Before we discuss and try to prove our bound in general
cases, it would be worthy of showing some examples.
These examples may give readers an intuition of generality
about this bound.

In the first example we consider Schwarzschild-AdS
black hole. We here give a detailed computation for the
inequality (2). The metric of a planar AdS-Schwarzschild
black hole is given by Eq. (1) with f = l/fAds foz?.
Here f is a positive parameter. The horizon then locates at
zn = (fof%ys) V4. The mass of the black hole is

m== Wy (10)

167
Due to planar symmetry, the maximal cross section must
have a constant z and so we have

max £ = max Vy_\/Py(z) = Vy_1/max Py(z),
Py(z) = —f(z). (11)

The maximal value of P,(z) is determined by following
equation

P(z) =0= f'(z)z—2df(z) = 0. (12)

For Schwarzschild black hole f(z) = 1/£345 — foz%, one
can find that the solution of Eq. (12) reads z¢ = z% :=
2/(fof%qs) and so we find

) :szde(Z)_ (13)

max Py(z) = Py(z,, 4

Then we obtain the inequality (2) for a planar AdS-
Schwarzschild black hole. We see that X can saturate the
upper bound in a planar Schwarzschild black hole.

The case will be a little complicated if we consider
the spherically or hyperbolically symmetric AdS-
Schwarzschild black hole. The function f will be

f=kz +f2——f02 )
AdS

The Eq. (11) becomes

max X = V,_;y/max Py(z)

Pu(2) = = |k +—— = for (14)

£ias
The solution of P/,(z) = 0 now satisfies

, 2 2(d- 1k
—
CaasSo dfo

Ly =

72, > 0. (15)

We take this expression into (14) and eliminate z¢ and z2¢
terms. After some algebras, we find
I/ﬂ2 2
max Py(z) — —A‘Zsfo
I/ﬁ2 f2
—p _Uads/o
d(Zm) 4
_ Ciasto (kzntRas(d — 1)* + dlkzp s . (16)

4 (dkbﬂgdszé + d - klxﬂidsZiy

The dominate energy condition implies f, > 0, so Eq. (15)
implies
k2, 6%45(d—=1)> > =(d—1) > —d*.

If k>0, we see that max P,(z) — £3,4/3/4 < 0. Thus,
in spherically symmetric AdS-Schwarzschild black
hole, the inequality (2) is still true but upper bound cannot
be attained. If k= -1, we see that maxP,(z)—
£34sf8/4 > 0. Thus, the hyperbolically symmetric black
hole violates our bound. This is the reason why we require
the spacetime should have asymptotically spherical/planar
symmetry.

In the second example, we consider planar or spherical
Reissner-Nordstrom AdS (RN-AdS) black hole. The metric
is still given by Eq. (1) but now the function f is given by

f=k?+ 1/l/ﬂAds - foz! + gz 2. (17)

Here § := ¢*> > 0 is the charge parameter. The mass of this
black is still given by Eq. (10). The maximal cross section
is still given by Eq. (11) but f now is replaced by Eq. (17)
and so P, = Py(z,§). Assume that z,(g) is the point
which maximizes P,. We then have

f/(zva)Zm_zdf(Zm’ q) =0 (18)

and
max Py = P(q) = =f(2,(7). 9)2>*(@)-  (19)
Here f'(z,g) = 0.f(z, @). It would be a little complicated

to solve Eq. (18) and compute Eq. (19) directly. We
compute the value of dP(g)/dg

dP(ZI)/ q = _8qf|szzm Zm( ) [f/(zm( ) 6) (ZI)
- 24f(e0(@)- Denl@) ™ 2D (20)

Noting the fact that z,,(§) satisfies Eq. (18), we obtain a
simple result

dP(E])/dZ] =—Zm (Z])_Zdac"/f|zm:zm(é) = _2;12 (é) <0. (21)
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When g = 0, the black hole is just planar or spherical

Schwarzschild black hole and we have P(0) < %. Thus,
we find that

2 2
fAde 0

Vg0,
4= 4

P(g) <P(0) <

This shows that the inequality (2) is still true for RN-AdS
black hole and the saturation can appear only when
Gg=k=0.

We note that, though we should restrict § to be non-
negative in physics, it is still a solution of Einstein’s
equation when g < 0, i.e., we replace ¢ — ig. Such black
hole is a solution for the Einstein-Maxwell system with a
phantom coupling of Maxwell field, i.e., Maxwell field
minimally couples to gravity with “wrong” sign. If we take
a negative value for g, then we see that P(g) > P(0) and
our inequality (2) may be violated. We note that such black
hole violates the dominant energy condition. This example
implies that we should propose a suitable energy condition
as a necessary condition for the inequality (2).

In the third example, we consider a nonstatic stationary
black hole. The simplest one is the BTZ black hole, of
which the metric reads [36,37]

1] - dz?
ds? = = |-F(2)dP + —— + (dp — J2dt/2)? | (22)
z f(z)
with f(z) = 1/£3%s — foz> +J?2*/4. Comparing with
Eq. (5) we see
v, =v=J72/2, f=f-T/4=F—- (23)
A general cross section between the outmost horizon
and inner horizon is a line and can be defined by

{z =2z5(¢),t = t5(¢h)}. Using Eq. (6), the size of a cross
section is given by

z:/ 772/ —f — v’d¢p
7=25(¢)
= / Z5° \/ fozz = 1/8% 4 — JP24/4dep

_ / \/mdqb (24)

Here Py(z) = (foz¢ —1/¢345)z7%. The mass of this
BTZ black hole reads M =V, f,/16z with V, =2z. Tt
is easy to find

max £ = / V Gras 34— 2/4dg

— v, \/ O 24— 2J4 < 8nlasM.  (25)

We see the BTZ black hole also satisfies our inequality (2)
and the bound is saturated only when J = 0.

IV. RELATIONSHIP TO COMPLEXITY
AND MAXIMAL INTERIOR VOLUME
OF BLACK HOLE

Though it is completely based on geometrical consid-
erations, the “size of cross section” has directly relationship
to the complexity growth rate in CV conjecture. The CV
conjecture (see Refs. [10-12] for more details) states that
the complexity of a boundary state in asymptotically AdS
spacetime is proportional to the maximal volume of space-
like codimension-one surface W, connecting boundary
time slices S; (7;) and Sg(zz), i.e.,

C= max VW]

, 26
OW =S, (1,)US(tz) GNE ( )

Here Gy is the Newton constant and we set Gy = 1 for
convenience, ¢ is a length scale associated to the bulk
geometry such as the horizon radius or AdS radius and
so on. We take £ = 47°¢ nqs/(d — 1) [38].

We choose coordinates gauge (5). The right boundary
slice is given by Sgp(tg) := g?BlRSRO, where S is initial
boundary slice defined by z=0 and 7= T(x') with
arbitrary function 7'(x’). Here ¢, is 1-parameter group of
diffeomorphisms generated by timelike Killing vector
(0/01)! at the boundary. The left boundary slice is given
by S.(t) = $_,, S1 and S is defined by t = —T(x'). In
this choice, for every fixed x’, the coordinate time of two
boundary slices always have opposite sign. We can para-
metrize W, by z = z(s, x') and t = #(s, x'). See Fig. 1. We
use the Penrose diagram of planar/spherical symmetric
black hole as example in Fig. 1 for visualization, however,
the computations and arguments can be applied into
arbitrary stationary AdS black holes. Two boundary slices
S; and Sy are given by s = +o0, i.e.,

FIG. 1. The schematic diagram about the boundary slices (left)
and extremal surface W, (right). In the right panel, the possible
inner horizons and singularities are irrelevant, so they are not
showed. For every fixed x/, the time (i.e., coordinate time t) of
two boundary time slices will always have opposite sign.

106001-4



UPPER BOUND ON CROSS SECTIONS INSIDE BLACK HOLES ...

PHYS. REV. D 102, 106001 (2020)

S, ={z=0,t=1t(—00,x")},
Sk ={z2=0,1=t(c0,x)}. (27)

and we have the relationship #(—o0, x') = —1(0c0, x').

As the spacetime is stationary, the maximal volume
depends on only the value of ¢; + 7z and we only need to
consider the symmetric time slices, i.e., t; = fz. In this
case, the extremal surface contains two parts (s < 0 and
s > 0). Noting the boundary condition (27) and the fact
that bulk geometry of one side is just the copy of the other,
we find that there is the following relationship

t(s,x") = —t(=s,x), z(s,x') = z(=s,x)  (28)
if W, is an extremal hypersurface. The intersections of two
parts (i.e., the parts of s > 0 and s < 0) is denoted by A,
which is given by #(0,x) = 0 and z = z(0,x') = z,(x').

The induced metric on W, reads

1 : ;
ds}, = — [=f(/ds + 9;1dx")* + y(z'ds + 9;zdx")?
z

@/

Here stand for the partial derivative with respect to s.
Now we define

N = —ft/2 +)(Z/2, Ni = T)it/ +}(z/aiz - ft/ait, (30)
and
I]ij = —fal-ta,-t +)(5',-Za,-z + Zv(iaj)t + h,j (31)

Then we have

2
dsyy

1 . o
Z—2 [Ndsz + 2N,~dsde + []deldx]]

The volume functional of W, now reads

VW, = / % /N = §IN;N;\/hd* ' xds.  (32)

Note that only N and N; depend on the value of 7. The
above volume functional is an analog of action functional.
The two variables #(s, x') and z(s, x') are two “fields” and
parameter s plays the role of “time.” Thus the canonical
momentum conjugate to “field” ¢ reads

P(so) = / 57 {,/N BHN,N; qd‘“
24N, 2 \/E

[SOZ,/N HIN.N; 2!

dd 1 (33)

From Eqgs. (30) we can find that

ON
or

N .
[ _foiu+uv.  (34)

= =2f7,
f or

Thus, we have

P(so) _/ —ft —HIN;(v; —faif)ﬂ
0 s=50 \/m Zd

The extremal surface is obtained by Euler-Lagrangian
equation of volume functional (32). The maximal volume
V, ie., the on-shell value of V, is only the function
t; +tg =7 and so we have Vi qen = Vonshen(7). The
growth rate then reads

d-lx. (35)

20— dV onoshell _ OV onshell ' (36)
dr Ot fixs,

As the partial derivative of on-shell action with respect
to canonical variable ¢ gives us the canonical momentum,
we see

£C = P(c0), (37)

As the volume functional does not depend on ¢ explicitly,
P(s) will be independent of s and so

P(o0) = P(s). (38)

We can compute P(c0) at s =0, i.e., at the surface A.
Equation (28) implies z'|, = 0 and 0;t|, = 0, so we find

f)ij|A = 77:'/3 N|, = —f1",

Thus

Nily =vit'. (39)

£C="P(0

/ &/l x=S[E A]. (40)

In RN-AdS black holes, it recovers the result reported by
Ref. [16] after we specify S} and Sg( to be equal-f slice of
boundary. We see that the complexity growth rate is given
by size of cross section A and so Eq. (3) suggests Eq. (2).
This offers a way to argue Eq. (2) by AdS/CFT corre-
spondence and information theory. In turn, the proof of
Eq. (2) is significant for CV conjecture.

If we move the boundary slices S; and Sy into the
horizon, then we find that ¢, is the tangent map of horizon.
The V o,snenn (7) becomes the “the maximal interior volume”
attached by the horizon slices S; and Sk, which captures
the idea of “how much space is inside” [23]. This quantities
is suggested to be relevant to the information paradox
[23-25]. From the above discussion, it is clear that the
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growth rate of such volume is still given by size of cross
section A.

V. PROOFS ON THE INEQUALITY

In this section, we will give proof of our bound. We use
the Bondi-Sachs coordinates (7). As we have argued at the
end of Sec. II, we can always choose the Bondi-Sachs
coordinates suitably so that the maximal cross section is

=Zwitha constant Z Using Cauchy-Schwartz inequality
and defining F(z) := V3!, [(=z7*'f)dV,_,, we have

max X2 < Vd_lF(Z)/ e?av,,. (41)
7=z

Here V,_;:= [dV, ;. Note that dV,, and V, , are
independent of z due to the gauge 0.q = 0. The require-
ment (ii) implies the boundary conditions f|._, = 0.

Assume that T;; is the energy momentum tensor of
matters. The Einstein’s equation shows that [35]

29" q"(0.q1)0.q;;  4xz

and
—(d = 1)z710,(z~)
e . ,
= e?[R +2(DP)?] — D?e¥ - Tqi]@zU’BZU/
d(d—1)e* .
( — Je — 22429, [9. (U /22472)]
Tl has
— 81772 (p - P). (43)

Here R and 9; are the scalar curvature and covariant
derivative of g;;. T'.. is the zz (null-null) component of 7';,
p=Tyn'n! and P =T, ;m'm’, where n’ and m! are
orthogonal future-directed timelike and outward spacelike
vectors of subspace spanned by {x'}. The dominate energy
condition implies 7,, > 0 and p — P > 0.

We note that the first term in the right-hand side (rhs) of
Eq. (42) is invariant under the coordinates transformation
x! = ¥ = X'(x), where X'(x) is independent of z. As g"/ is
the positive-defined metric of space spanned by {x'}, we
can find suitable coordinates transformation function X;', at
every point p so that ¢'/|, becomes diag {2 (p). L (p). ...,
Aa—1(p)} with 4;(p) >0 (note that 0.qy in this new
coordinates may not be diagonalized) and so

0" q"(0.41)0-41,= > _Ai(p)

ij

)(8 ‘b/) | >0. (44)

Then Eq. (42) implies 0,4 < 0. Combining it with the
boundary condition f|,_, = 0, we find # <0 and so

max X? < V2_ | F(2). (45)

After we integrate Eq. (43) on the transverse directions and
neglect the boundary terms, we have

d de*
d—Z(ZdF) = EEV
+f62’3[91+2( D)? — q;,A'AT — Q*]dV . L
d-1)z""v,,
(46)

Here A’ = ¢%0.U'/\/2 and Q = \/8z(p — P)e’/z. We
then focus on the following three cases.

The first case assumes that the spacetime is planar/
spherically symmetric or deviates from such background
only a little. Then the quantities 9,4 has order O(e) and

(0) (1) i
ij +€Qij (Z,X).

= O(e?). We then

the transverse metric becomes qu =gq;

The gauge 0,9 = 0 implies g ’fq
find that

— (d=1)(d=2)ePk + €D Y; + O(e2).
(47)

PR +2(Dp)’]

Here 9, is the covariant derivative operator of ql(?) and
Y; = D q}). Taking (47) into Eq. (46), neglecting the
boundary term, at the linear order of €, we have

d i) (d=2)ke  de¥
4y —
dZ Zd—l d+1f/2§ds

_ [ e?lq;;ATAT 4+ Q*]dV 4,

(d= 1V, +0(e?).  (48)

Near the boundary z — 0, 3, A’ and Q are required to decay
fast enough, so when z — 0 we find

F(z) = —272ka® + 1/ 8345 — foz] = Palz).  (49)
where f, gives us mass according to Eq. (10) and P,(z) is
defined by Eq. (14). For finite z and neglecting O(e?)
terms, Eq. (48) implies

d (d-2)k d

d
°F) < +
dZ( ) Zd—l Zdﬂfids

(50)

Here we have used the fact # < 0 and k > 0. Integrating it
and noting the asymptotically behavior (49), we find

F(z) < Py(2), (51)

106001-6
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We have shown that, in the case k > 0, the maximal value
of P4(z) is not larger than f3£% s/4, so Eq. (45) implies

SﬂEfAdS

max X < Vg 1 folass/2 = I-1

(52)

Under the requirement £ > 0, above bound can be saturated
only if k = 0.

In the second case we consider the asymptotically planar
Schwarzschild-AdS spacetimes when d > 4. AdS/CFT
duality conjectures that boundary is due to field theory
in flat space. In some special cases, the energy momentum
tensor of dual boundary field theory decays rapidly enough
when x' — oo. In this case, we can find qij = 6ij, 0, =0
when x — +o0. This means that R and (Dp)? will decay
zero rapidly and their integrations will be finite but
V4_1 = oo. In such special case, Eq. (46) reduces

d de* e[q:ATAT + Q*]dV ,_
—(F) =y _f 9 d_lQ] L (53
dz s (d=1)z""Vay
which yields

d d

24

dz( F) < R (54)

Here we have wused the facts that <0 and

q;;A’AJ + Q* > 0. We then obtain inequality (50) in the
case k=0 and so still obtain Eq. (52). It needs to
emphasize that there are some physically interesting cases
where the energy momentum tensor of dual boundary field
are not decay rapidly when x' — co. In this case we cannot
obtain Eq. (53). It is not clear currently if our inequality will
be still true.

In the third case, we assume that the spacetime is 3 + 1
dimensional. On the u = constant null sheet, we denote I',
to be a fixed z 2-d spacelike surface, of which the metric is
q:j(z.x). As q;;(z, x) is smooth between the maximal cross
section and asymptotic boundary, we find the surfaces
{I',|z € [z,0)} have a same topology. Because we require
that the spacetime geometry is asymptotically planar/
symmetric Schwarzschild-AdS black hole, the surface
I",|._o must be homeomorphic to a plane or a sphere. In
2-dimensional case, this means that all these surfaces in
{I'.|z € [z,0)} are globally conformally to a plane or
sphere. As the result, we can always find coordinates
transformation {x'} — {y’} and a scalar ®(z,y') suitably
for every I', so that

gidxide = 2P (y)dyidyl (55)

with k = 1 and 0. Here yg-)) = o;j and y,(-jl-) is the metric of a

unite sphere. Under the conformal transformation, we have

/ PR + 2DV,

/ ¥ 2k — 2@ + 2(DP)\/y P (y)d2y.  (56)

Here 9, is the covariant derivative operator of conformal

metric 7%, Take it into Eq. (46) and we have

2p - . ~
dpp = L / i+ (D) - D

dz #s V2

—yPAiA — 02\ [y Py, (57)

Here A’ = ¢~®A. V, is transverse volume and in general
we have

sz/\/c_]dzx:/ezq’

We now define

B2y £ / y®Pd?y.  (58)

k= kv / yBd2y. (59)

The value of k is constant and may be different from &.
However, it is clear that k>0 and k=0 iff k =0.
Equation (57) then leads to

d 3e% ke 1

3
—(3F) =
dz &F) PR P2V,

[ iy - %o
— AR - 7\ Pdy. (60)

As we require that the spacetime is asymptotically planar/
Schwartzchild AdS black hole, the function S, Al and Q
should decay to zero fast enough when z — 0. Thus, near
the AdS boundary, Eq. (60) reduces into

d 3

k
—(F)=——+—, 0, 61
dz (Z'F) %4 * 22 A (61)
which gives us the solution
F(z) = = |kZ* + —5—— fo2® z—0. (62)

2
l/ﬂAdS

Here the integration constant f, give us the mass according
to Eq. (10). For finite z, Eq. (60) leads to following
inequality
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d ko1 ) )
F)< b [ X](DP? - D0
dZ( ) 4f%ds 2 Z2V2 € [( ﬁ)

—yMAAT - 02 [y Dy, (63)

Here we have used the facts f < 0 and k > 0. Integrating
it with respect to z and noting the value of F(z) as z — 0,
we obtain

B
folz ¢+ ﬁ (64)

F(z) < =[ke* +1/(£34s) =

Here we define

/ZdZ/ 2/} gﬂ 5.92
- YI] A AJ Q2] y (65)

Here @i is the covariant derivative operator of y;;, Alis Al
in the conformal frame. If all functions involved in the
functional B; are free, B; has no upper bound or lower
bound. However, these functions are not free. Due to
Einstein’s equation, spacetime geometry is determined
by the distribution of matters. Because of Bianchi identity
and gauge 0,¢q = 0, there are 5 bulk degrees of freedom. In
fact we can use arbitrary 5 independent bulk variables. Here
we choose {®, W = /T, A", O} as 5 independent vari-
ables, i.e., B, = B.[®, W,Ai,Q]. It needs to note that
function # depends on {®, W,A’, Q} and is not a free
variable. In following we will use variational method to
show B, <0.

We first consider an enlightening example, saying a
smooth function f(x) with x € (00, o0). We can use two
steps to prove f(x) < a: (i) f(x) < aas |x| — oo and (ii) for
arbitrary saddle point x;, i.e., the point of f'(x;) =0,
we have f(x;) <a. This method can be generalized
into functional case. If {||®]|,||W||.||A"|].||Q||} = oo
(here ||-|| is a L? norm), the system will break the
spherical or planar symmetry strongly, which implies
10,9, T... |(DB)?] and  [D*®| ~ O(polynomial of N)
with a parameter N > 1. The Eq. (42) implies
e* ~ exp|—O(polynomial of N)], which implies that

/ezﬂ[(ﬁ)ﬂ)z - @%D} }/(]})dzy -0, asN — . (66)

Then we see B, < 0as N — oo by using the definition (65).
This finishes the first step. In the second step, we use
variational method to find all saddle points. The variation

with respect to ® shows D*e¢¥ = 0, which implies

0:/ezﬁf\i)zezﬂ\/fdzy:/(ii)ew)2 yPd2y (67

and so f3 is independent of y'. Take this into integration (65)
and we find on-shell value B,

zd
BZ|0n—sheH:_/ 2/}/ @2(1)4»]/ AAJ+Q2) d2

[ [ o

Thus, we find B, < 0. Then we obtain Egs. (51) and (52)
again for the case d = 3.

There is also a rigidity theorem for 3 + 1 dimensional
asymptotically plana/spherically AdS black hole: the
inequality (2) is saturated if and only if its geometry
outside maximal cross section is planar Schwarzschild-
AdS. The proof is as follows.

To reach the maximum, we need to saturate Eqs. (41),
(63) and (68). To saturate Cauchy-Schwartz inequality (41),
we need

d2y<0

(68)

0i(e?v/q) = 9i(fvq) = 0. (69)

ie., e*,/q and f,/q are independent of x'. To saturate
Eq. (63), we have to set

p=0=0,=0,0=0. (70)
Then Eq. (69) implies 0;q = 0 and so

f=f(2). (71)

Combining Eq. (70) and (42), noting dominate energy

condition requires 7, > 0, we find

This shows that R, which is the scalar curvature of qij
is independent of z. To saturate Eq. (68) we have to set
A" = Q = 0, which implies

U =0. (73)
Then take Egs. (70)—(73) into Eq. (43) and we find

6

_2 287 -3 - )
P0G = R+

(74)

so we see R is only function of z but independent of x'.
However, we have know R is independent of z, so R is
constant. Then we find R = 2k > 0 and Eq. (74) shows
f=k?+1/¢3 AdS — foz>. The metric outside the horizon
1 oo
ds? = = [~f(z)du? + 2dudz + g;;(x)]dx'dx’/.  (75)
z
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As the 2-d metric ¢;;(x) has constant curvature R = 2k, we
can always find suitable coordinates transformation x’ — ¥’
so that g;; becomes standard metric of sphere (k > 0) or
plane (k = 0). Thus, we show that its geometry outside
maximal cross section is Schwarzschild-AdS with planar or
spherical symmetry. On the other hand, we have known that
the planar Schwarzschild-AdS black hole can saturate the
bound but the spherical Schwarzschild-AdS black hole
cannot. Thus, we prove our rigidity theorem. It needs to
note that, there is no restriction on the geometry behind the
maximal cross section.

VI. SUMMARY AND DISCUSSION

To conclude, this paper proposed and discussed a new
universal inequality for the inner geometry of black holes.
This makes a first step toward the holographic proof on
the conjecture that vacuum black holes may be fastest
“computers” in nature [13,14]. Except for seeking the proof
about Eq. (2) in more general cases, many other aspects are
worthy of exploring in the future.

In the proofs of this paper, it is crucial that scalar
curvature of I', is nonnegative when z — oo. This is why it
requires that the spacetime is asymptotically planar/spheri-
cal Schwarzschild-AdS. The bound (2) can be violated by
asymptotically hyperbolic black holes. In fact hyperboli-
cally AdS black hole can have negative energy so Eq. (2) is
not true. It is interesting to study if there is other suitable
upper bound for hyperbolic case. In our above discussions
and proofs, we only consider Einstein theory. It would be
also interesting to consider other gravity theories.

Assume that there is a next-outermost horizon H, behind
the outermost horizon H;. In the limit ‘H, — H;, i.e., the
temperature 7y — 0, max £ — 0 but the total energy can
be arbitrarily large. This suggests that, in low temperature
limit, there may be an tighter upper bound controlled by
temperature. For example, in a BTZ black hole (22), the
function f can be rewritten in terms of

Fe (22 = 2})(2* - %) ' (76)

22,0
21258 Ags

Here z; < z, are inverse radii of horizons. Then we see
fo= (21 +23)/(2i53¢ 4s) and J =2/ (21 22¢ pas)- Then we
see Eq. (25) becomes

%-3

max X =V /% f2/4—J2/4=V )
LT E==om

(77)

On the other hand, the temperature 7'y and entropy S can be
expressed as
% -z

TH =
2783 457321

., S=Vi/z. (78)

Then one can verify max X = zT 5S¢ 45 and so we obtain a
new bound for BTZ black hole

Z S ﬂ’-THSfAdS‘ (79)

In the low temperature limit, this bound is much tighter
than inequality (2). It is interesting to check if a similar
bound is also true in general cases.

The bound can be generalized into asymptotic flat
spacetimes. It only needs to set k =1 and £pq5 — 0.
This leads to a different bound T < ¢,E@=1/(4-2) with a
dimension-dependent number c;. One find this result from
Eq. (51). By setting k = 1 and £qg5 — o0, we see that

F(z) < =z724(2% = foz9). (80)

The maximal value of the rhs in Eq. (80) is proportional to

f(z)(d—l)(d—Z), so Eq. (45) implies

max ¥ < ¢ E@-D/(d-2), (81)

Particularly, in four-dimensional spacetime, we have
¥ < 3v/372E2. The first evidence of this inequality was
reported by Ref. [23] based on the comparison between
Schwarzschild black hole and Reissner-Nordstrom black
hole. This inequality gives us a way to estimate the possible
largest volume inside black hole. For a black hole formed
by collapse, at the time 7 much later than the disappearance
of the collapsing matter, (9/9t)" is Killing vector approx-
imately, so we find that spatial volume attached at the
horizon is bounded by V(7) <7 x max X = 3/3722E’z.
For a large evaporating black hole of energy E, the
black hole will be quasistationary in a time order O(E®)
and so the maximal volume of space inside horizon is
order O(E>).
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APPENDIX A: SIZE OF CROSS SECTION
IN COORDINATES GAUGE (5)

Let us first explain how to obtain Eq. (6). For the
nontrivial cross section S;_;, we can always embed it into
the a d-dimensional spacelike manifold M of which unite
normal covector 7i; satisfies ;| s,., = nr- In following, we
will use x! = {1, xt, 7} to stand for d + 1 dimensional bulk
coordinates, x* = {t,x'} to stand for the coordinates of
d-dimensional spacelike submanifold M, and x’ to stand
for d — 1 dimensional coordinates of cross section S,_;.

We parametrize the surface M, to be z = z(z,x%). The
normal covector reads
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ity & (dz); — 2(dt); — (9;2)(dx"),. (A1)

The condition 7;|s,  =n; and &'n; = (9/91)'n; =0 implies

Z|8d—l = 0 (AZ)
Here dot means the partial derivative with respect to z. The
induced metric on this surface then reads,
»_ 1 223442 : i
ds? = 2 [—(f + x2%)de* + 2x20;zdrdx
20,dedx’ + (h;j + x0,20,z)dx'dx’].  (A3)
The choice for such d-dimensional manifold is not unique.
We can choose z = z(#, x') = zs(x') and so the metric of
M becomes

1 . ~ . .
ds(zl = Z_Z [—fdtz + 2vl~dtdx’ + hijdxldxj]- (A4)

Here h; ; = h;j +x0;z0,z. In this choice the Killing vector
&l lays in M, and is still a Killing vector of M. In the
submanifold M, we denote this Killing vector to be &.
The cross section S,_; then is given by a hypersurface
t = tg(x’) in M. Assume that dS,, is the directed surface
element of cross section S,;_; embedded in M ;. The size of
cross section then reads

Z[S41. ¢ = § &Hds,,.

(AS)

We consider a new cross section S,_;, which is given
by t = r5(x") in M,. See the schematic diagram Fig. 2.
Then we have

2808 = [ s, (A6)

Cross-section ;
J

Ly
~
I
~+

ot

—
=

N2

Cross-section
t=t S (X l)

Sub-manifold z=z(t,x') |

t

FIG. 2. The schematic diagram about the submanifold M,,
cross section S,_; and cross section S,_;. & = (0/0t)* is the
Killing vector which lays in M.

Using the Causs formula, we have

DiS-1.¢1) - 208 = [

=,

D,&dv. (A7)

Here Z,; is the d-dimensional region surrounded by Sd_l
and Sy_y, D, is the covariant derivative operator of
submanifold M,. As & is a Killing vector of M, & is
divergent free D,&" = 0. Then we find

Z[“S'(/i—l ) 51} = Z[Sd—l ) 51] .
Thus we proved that the value of £[S,_;, &] is independent

of the choice of tg(x'). Particularly, we can choose
tz(x") = 0 and so

ds, = \/—f — |v]2(dr), VR4 x.

Here |v|? == h"v;v;. Thus,

(A8)

E@mﬂzﬂ&wﬂz/ gds,

Sa-1

:/ _ Z_d\/—f— |v|2\/de‘1x. (A9)
7=z5(x")

x!

Thus, we obtain Eq. (6).

APPENDIX B: SIZE OF CROSS SECTION
IN BONDI-SACHS GAUGE

If we use the Bondi-Sachs coordinates gauge, the
spacelike hypersurface M, inside black hole then is
parametrized by z = z(u, x') and the induced metric reads

1
2

+ q;;(dx’ — U'du)(dx/ — U/du)]

ds? = = [—(f — 22)e*’du® + 2% 0;zdudx’
(B1)

Here dot means the partial derivative with respect to u. The
normal covector of M, reads
fip o (dz); — 2(du); = (9;2)(dx"),. (B2)

The condition 7|s  =n; and &'n; = (0/0u)'n; =0
implies

z

Szl—l — O (B3)
The choice for such d-dimensional manifold is also not
unique. We can choose z = z(u, x') = zg(x’) and so the
metric of M, becomes
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1 .
ds? = ) [(|U|2 - fezﬁ)duz + 2(62/351'2 - U;)dudx’
z
+ g;;dxidx]. (B4)

Here |U|> = U'U; and U; = g;;U’. In this choose, the
(0/0u)! is still tangent to M and so is the Killing vector
of Md'

In the submanifold M, the cross section S,_; then is
given by a hypersurface u = ug(x’) in M. Similar to the

former case, we can find that the size of cross section is
independent of the choice of ug(x’) and we obtain

1 ¢/ 261912 i
2[4, ¢ = _)Z—d\/—f—e 1922 + 2U70,2dV,,_,.
e

=z5(x") £

(BS)

Here dV,_; = \/qd‘"'x and |9z|* = ¢"0,20;z.
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