
 

Topological structure of a Nambu monopole in two-Higgs-doublet models:
Fiber bundle, Dirac’s quantization, and a dyon

Minoru Eto,1,2 Yu Hamada ,3 and Muneto Nitta4,2
1Department of Physics, Yamagata University, Kojirakawa-machi 1-4-12,

Yamagata, Yamagata 990-8560, Japan
2Research and Education Center for Natural Sciences, Keio University,

4-1-1 Hiyoshi, Yokohama, Kanagawa 223-8521, Japan
3Department of Physics, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan

4Department of Physics, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521, Japan

(Received 8 August 2020; accepted 20 October 2020; published 23 November 2020)

We find a topologically nontrivial structure of the Nambu monopole in the two-Higgs-doublet model
(2HDM), which is a magnetic monopole attached by two topologically stable Z strings (Z flux tubes) from
two opposite sides. The structure is in sharp contrast to the topological triviality of the Nambu monopole in
the Standard Model (SM), which is attached by a single nontopological Z string. It is found that the Nambu
monopole in the 2HDM possesses the same fiber-bundle structure as those of the ’t Hooft–Polyakov
monopole and the Wu-Yang description of the Dirac monopole, as a result of the fact that the
electromagnetic gauge field is well defined even inside the strings and is nontrivially fibered around
the monopole, while the Nambu monopole in the SM is topologically trivial because electroweak gauge
symmetry is restored at the core of the string. Consequently, the Nambu monopole in the 2HDM can be
regarded as an embedding of the ’t Hooft–Polyakov monopole into the SUð2ÞW gauge symmetry, and the
Dirac quantization condition always holds, which is absent for the Nambu monopole in the SM.
Furthermore, we construct a dyon configuration attached with the two strings.
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I. INTRODUCTION

Magnetic monopoles have attracted great interest from
many physicists since the seminal work by Dirac [1], which
improved the asymmetry between electric and magnetic
charges in the Maxwell equations and provided an explan-
ation for the electric charge quantization. While the
monopole originally suggested by Dirac (Dirac monopole)
is a singular point-like object accompanied by an infinitely
thin unphysical solenoid string (Dirac string), it was
reformulated by Wu and Yang [2] from the viewpoint of
fiber bundles without any string singularities.
In field theories, magnetic monopoles often appear as

topological solitons resulting from a nontrivial second
homotopy group π2 of the vacuum manifold, which were
first discovered by ’t Hooft and Polyakov [3,4] in the SOð3Þ
Georgi-Glashow model [5]. In such a model, the electric
charge quantization can be understood by the compactness
of the unbroken Uð1Þ subgroup. In the same model, Julia

and Zee [6] discovered a solution with both the electric and
magnetic charges, called a dyon. While the magnetic
monopoles and dyons theoretically play crucial roles in
understanding nonperturbative aspects of (non)supersym-
metric field theories [7–9], experimentally such monopoles
have never been found in reality, except for condensed-
matter analogues [10,11].
A magnetic monopole configuration in the Standard

Model (SM) was first considered by Nambu [12], which is
called the Nambu monopole. Since the Nambu monopole is
attached by a vortex string, which is a physical string with
finite thickness (unlike the Dirac string for the Dirac
monopole), it is pulled by the tension of the string and
cannot be stable. Nevertheless, the Nambu monopole may
be phenomenologically and cosmologically useful; for
instance, it has been suggested that it produces primordial
magnetic fields before their disappearance [13,14]. The
electric charge quantization and the dyon associated with
the Nambu monopole were also considered in Ref. [15].
The mathematical reason for the instability is its trivial
topology, that is, the vacuum manifold of the SM is S3

with a trivial second homotopy group π2. Likewise, the
vacuum manifold S3 has a trivial π0 for domain walls and a
trivial π1 for cosmic strings. Nontopological electroweak Z
strings (or magnetic Z fluxes) [16–21] have been studied
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extensively, but they were shown to be unstable for the
observed values of the Higgs mass mh ≃ 125 GeV and the
Weinberg angle sin2 θW ≃ 0.23 [22,23]. The Nambu
monopoles are the end points of these electroweak
Z strings [12].
On the other hand, the two-Higgs-doublet model

(2HDM)—in which one more Higgs doublets is added
to the SM—is one of the most popular extensions of the SM
with the potential to resolve many unsolved problems of the
SM (for reviews, see, e.g., Refs. [24,25]). Two-Higgs-
doublet fields also appear in supersymmetric extensions of
the SM [26,27]. In addition to the 125 GeV Higgs boson it
has four additional Higgs bosons, which could be directly
produced at the LHC, though there has been no signal thus
far, therefore placing lower bounds on the masses of these
additional scalar bosons. These lower bounds highly
depend on the parameter choices of the 2HDM. For more
detailed phenomenological studies, see, e.g., Refs. [28–32]
and references therein. One of the most remarkable aspects
of the 2HDM that distinguishes it from the SM may be that
it has a much richer vacuum structure than the SM, thereby
allowing for a variety of topologically stable solitons, in
addition to nontopological solitons [33–41] analogous to
the SM: domain walls [42–47], membranes [48,49], and
cosmic strings such as topological Z strings [44,45,50,51]
(see also Ref. [52]). In particular, it was found [44,45] that
the topological Z strings in Refs. [50,51] are global strings
confining non-Abelian fluxes in the cores, and are accom-
panied by non-Abelian moduli, analogous to non-Abelian
strings in dense QCD [53–57].
In our previous papers [58,59] we studied the Nambu

monopole in the 2HDM, which is a magnetic monopole
attached with two topological Z strings from two opposite
sides. The monopole is a regular solution of the equation of
motion (EoM) and is topologically and dynamically stable
when the Higgs potential has two global symmetries: a
global Uð1Þ symmetry that ensures the stability of the
topological Z strings, and a discrete symmetryZ2 exchang-
ing the topological Z strings. The string tensions pulling the
monopole are balanced due to the Z2 symmetry and the
monopole does not move (unlike the Nambu monopole in
the SM), and it can be regarded as a topologically stable Z2

kink on one string. Once the Z2 symmetry is explicitly
broken it starts to move along the string [59], and if the
global Uð1Þ symmetry is broken the string is attached by a
domain wall [44,45,50,51].
One might wonder if the Nambu monopole in the 2HDM

is not a true magnetic monopole from several viewpoints.
First, its topological features look different from those of
the ordinary magnetic monopole, such as the ’t Hooft–
Polyakov monopole, because the monopole is not isolated
but rather is attached with the two Z string. In other words,
there is no nontrivial π2 as in the SM. Second, the magnetic
charge of the monopole, 4π sin θW=e, is not an integer
multiple of 2π=e (where e is the electromagnetic coupling

constant), and it seems inconsistent with the Dirac quan-
tization condition.
In this paper we resolve the above two mysteries. We

show that the Nambu monopole in the 2HDM has the same
topological structure as the ’t Hooft–Polyakov monopole in
a certain sense, while the Nambu monopole in the SM is
topologically trivial. We consider an infinitely large sphere
S2 surrounding the monopole which the two Z strings pass
through, and investigate the fiber bundle of the electro-
magnetic gauge field on the base space S2. We find that the
electromagnetic field is well defined and regular every-
where on the sphere S2 and is nontrivially fibered like the
Wu-Yang description of the Dirac monopole, despite the
trivial π2.

1 This is a remarkable difference from the Nambu
monopole in the SM, in which the electromagnetic gauge
field cannot be defined at the center of the nontopological Z
string attached to the monopole since the electroweak
gauge symmetry is restored there. It has a topologically
trivial fiber bundle structure unlike the Wu-Yang fiber
bundle.2 Interestingly, the Nambu monopole in the 2HDM
can be regarded as an embedding of the ’t Hooft–Polyakov
monopole into the SUð2ÞW sector. Furthermore, we derive
the Dirac quantization condition from the single valuedness
of wave functions around the nontrivially fibered electro-
magnetic field. We find that the condition always holds if
the Z flux is taken into account as well, and thus there is no
inconsistency. This can be also understood from the fact
that the presence of the Z strings cannot be ignored because
they are observable even at the classical level, unlike the
Dirac string which is unobservable. We also consider a
dyon configuration in the 2HDM by describing a time-
dependent ansatz and give a general quantization condition
for the dyon charges, as in Ref. [15].
This paper is organized as follows. In Sec. II we give a

brief review of the ’t Hooft–Polyakov monopole and
consider the fiber bundle and the Dirac quantization
condition. In Sec. III we revisit the Nambu monopole in
the SM and contrast its topological properties with the
’t Hooft–Polyakov case. In Sec. IV, for later use, we give a
general definition for the electromagnetic gauge field and
the field strengths in the 2HDM. Then we consider the
topological properties of the electromagnetic gauge in
Sec. V. The dyon configuration in the 2HDM is considered
in Sec. VI. Our conclusion and discussion are presented in
Sec. VII. In Appendix Awe present some useful relations.

1Note that a nontrivial π2 is sufficient for a nontrivial fiber of
the electromagnetic gauge field because of the mathematical
relation π2ðG=HÞ ¼ π1ðHÞ, where G is a simple gauge group
breaking into H. Nevertheless, it is not necessary.

2The author of Ref. [15] insisted that the magnetic charge of
the Nambumonopole in the SM is topologically protected, but we
show that this is not the case. The author of Ref. [15] probably did
not pay enough attention to the fact that the electromagnetic
gauge symmetry is not defined at the center of the Z string due to
the vanishing field value of the Higgs doublet.
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In Appendix B we consider the background gauge con-
dition (which is used in Sec. VI). In Appendix C we present
a description in the singular gauge for the Nambu monop-
ole in the 2HDM.

II. REVIEW OF THE ’T HOOFT–POLYAKOV
MONOPOLE

A. The ’t Hooft–Polyakov monopole

In this section we briefly review the ’t Hooft–Polyakov
monopole, with a particular emphasis on its topological
properties. For more details, see, e.g., Ref. [60]. We start
with the Yang-Mills-Higgs model with the SUð2Þ gauge
group:

L ¼ −1
4
Wa

μνWμνa þ ðDμΦÞaðDμΦÞa − VðΦÞ; ð2:1Þ

with the potential term

VðΦÞ ¼ −m2
ΦðΦaÞ2 þ λððΦaÞ2Þ2; ð2:2Þ

where Φa (a ¼ 1, 2, 3) is the Higgs field in the adjoint
representation3 andWa

μ is the gauge field with field strength
Wa

μν ≡ ∂μWa
ν − ∂νWa

μ − gϵabcWb
μWc

ν. The Higgs vacuum is
given by

Φa
0 ¼ ð0; 0; vÞt; ð2:3Þ

with v≡mΦ=
ffiffiffiffiffi
2λ

p
. The vacuum (2.3) spontaneously breaks

SUð2Þ into Uð1Þ.
Let us consider a ’t Hooft–Polyakov monopole located at

the origin. In this paper, it is enough to consider an
asymptotic configuration describing the monopole at large
distances r → ∞, given by

Φaðθ;φÞ
���
∞
¼ v

xa

r
; gWa

i ðθ;φÞ
���
∞
¼ ϵiab

xb

r2
; ð2:4Þ

where θ and φ are the zenith and azimuth angles,
respectively. This is sometimes called the hedgehog gauge.
In this ansatz, an unbroken gauge group is determined by a
unit vector na defined by

na ≡ Φa

jΦj ; ð2:5Þ

with jΦj≡ ffiffiffiffiffiffiffiffiffiffiffiffi
ΦaΦa

p
. The vector na is regular everywhere

except for a region in which jΦj ¼ 0 (corresponding to the
center of the monopole). We denote the unbroken gauge
group by Uð1ÞEM. Indeed, the Higgs field in Eq. (2.4) is
invariant under the Uð1ÞEM rotation:

e−iαn
aσaΦeiαn

bσb ¼ Φ; ð2:6Þ

with Φ ¼ Φaσa=2, and α is an arbitrary constant. From
Eq. (2.4), na has a hedgehog structure at large distances,
na ∼ xa=r, and hence is a map from the two-dimensional
sphere S2 spanned by ðθ;φÞ at spatial infinity onto a two-
dimensional internal sphere S2 ≃ fnajðnaÞ2 ¼ 1g with a
unit winding number:

1

8π

Z
S2
dSkϵijkϵabcna∂inb∂jnc ¼ 1; ð2:7Þ

where the integration is performed on the two-dimensional
sphere surrounding the monopole at the spatial infinity.
In addition, at large distances it satisfies the following
identity:

ðDμnÞa ¼ ∂μna − gϵabcWb
μnc ¼ 0: ð2:8Þ

The electromagnetic field strength is defined by a
projection of the SUð2Þ field strength onto the Uð1ÞEM
subgroup,

FEM
ij ≡Wa

ijn
a ð2:9Þ

∼
1

g
ϵijk

xk

r3
ðfor r → ∞Þ; ð2:10Þ

and the magnetic field is

Bi ≡ 1

2
ϵijkFEM

jk ∼
1

g
xi

r3
: ð2:11Þ

Therefore, the ansatz (2.4) describes a magnetic monopole
with a magnetic charge qM ¼ R

S2 dSiBi ¼ 4π=g. Note that,
if one defines the electromagnetic gauge field Aμ as

Aμ ≡Wa
μna; ð2:12Þ

then Eq. (2.9) can be rewritten as

FEM
ij ¼ ∂iAj − ∂jAi þ

1

g
ϵabcna∂inb∂jnc; ð2:13Þ

where we have used Eq. (2.8). Thus, the electromagnetic
field strength is composed of a contribution purely from the
electromagnetic gauge field Aμ and an additional contri-
bution from the Higgs field Φ, which explains why there
can be a nonzero divergence of the magnetic flux.
We can consider a more general case where the magnetic

charge is larger than 4π=g. This is achieved by considering
an ansatz for Φa or na with a general winding number, i.e.,

1

8π

Z
S2
dSkϵijkϵabcna∂inb∂jnc ¼ m; ð2:14Þ

3Note that the true gauge group is SUð2Þ=Z2 in the presence of
the adjoint representation only. Nevertheless, for ease of notation
we will use SUð2Þ, which is the universal covering of SOð3Þ.
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wheremmust be an integer since it is a topological number.
In other words, such a configuration is in a topological
sector labeled by m ∈ Z of the second homotopy group
π2½SUð2Þ=Uð1Þ� ≃ π2ðS2Þ ¼ Z. The magnetic charge is
obtained by integrating Eq. (2.13) on S2,

qM ¼
Z
S2
dSkϵijkFEM

ij ¼ 4π

g
m; ð2:15Þ

where we have used the fact that the integration for Ai
vanishes as long as Ai is regular. Thus, qM is quantized with
the topological number m.

B. Singular gauge for the
’t Hooft–Polyakov monopole

It is instructive to see the ’t Hooft–Polyakov monopole in
a singular gauge (also called the string gauge). First, let us
consider the single monopole configuration with m ¼ 1 in
Eq. (2.4). To move from the hedgehog gauge to the string
gauge, we introduce a gauge transformation U such that

na
σa

2
→ ðn0Þa σ

a

2
¼ U†na

σa

2
U ¼ σ3

2
; ð2:16Þ

or, equivalently, na ¼ ðsin θ cosφ; sin θ sinφ; cos θÞt →
ðn0Þa ¼ ð0; 0; 1Þt. Such a transformation U is given by

Uðθ;φÞ ¼ e−iσ
3φ=2e−iσ

2θ=2eiσ
3φ=2

¼
�

cos θ
2

− sin θ
2
e−iφ

sin θ
2
eiφ cos θ

2

�
; ð2:17Þ

where we should note thatU is a singular function on θ ¼ π
(the negative side of the z axis) but not on θ ¼ 0.
By applying the singular transformation U to Eq. (2.4)

we obtain, at large distances,

Φa → Φa
0 ¼ ð0; 0; vÞt; ð2:18Þ

Wi → Wsing:
i ¼ U†

�
Wi −

i
g
∂i

�
U ¼ 1

2gr
1 − cos θ
sin θ

φ̂iσ
3;

ð2:19Þ

with Wi ≡Wa
i
σa

2
and φ̂i ¼ ð− sinφ; cosφ; 0Þt. The trans-

formed gauge field Wsing:
i has a line singularity at θ ¼ π,

which comes from the derivative U†∂iU, and hence this
gauge is dubbed the singular gauge. In this gauge, the
Higgs field is constant (at large distances), and thus the
electromagnetic gauge field is defined straightforwardly as
the σ3 direction of the SUð2Þ gauge field,

Ai ¼ tr½σ3Wsing:
i � ¼ 1

gr
1 − cos θ
sin θ

φ̂i

¼ 1

g
ð1 − cos θÞ∂iφ: ð2:20Þ

Let us calculate the electromagnetic field strength (2.13),
which is a gauge-invariant quantity and should match with
the result (2.10). The third term in Eq. (2.13) would naively
seem to vanish in this gauge. However, this is not true
because we have to take into account the singularity from
the derivative ∂iφ. Indeed, under the transformation U, the
third term transforms as

1

g
ϵabcna∂inb∂jnc → −

4π

g
ϵijθð−zÞδðxÞδðyÞ; ð2:21Þ

which describes an infinitely thin solenoid on θ ¼ π
(terminating at the origin), similarly to a Dirac string for
a Dirac monopole. This line singularity is completely
canceled by that from the gauge field (2.20), and thus
we obtain the field strength as

FEM
ij ¼

�
1

g
sin θ∂ ½iθ∂j�φþ 1

g
ð1 − cos θÞ∂ ½i∂j�φ

�

−
4π

g
ϵijθð−zÞδðxÞδðyÞ

¼ 1

g
ϵijk

xk

r3
; ð2:22Þ

which is regular, coinciding with Eq. (2.10). Therefore, this
configuration is an embedding of the Dirac monopole
(divergenceless Dirac potentialþ Dirac string) into the
SUð2Þ gauge fields.
The singularity in Ai is a gauge artifact in the sense that it

does not originally exist in the hedgehog gauge. Thus, it
should not be observed by a test particle with an electric
charge e ¼ g=2 [spin-1=2 representation of SUð2Þ]. We
thus obtain the condition that the Aharonov-Bohm (AB)
effect from the singularity is not observed by the test
particle,

e × qM ¼ g
2
qM ¼ 2πn; n ∈ Z; ð2:23Þ

which is nothing but the Dirac quantization condition.
Recalling that qM ¼ 4π=g, this condition is automatically
satisfied with n ¼ 1.
We consider a more general case with a multiple

topological number m > 1 in Eq. (2.14), which provides
a magnetic charge qM ¼ 4πm=g. In the singular gauge, the
electromagnetic gauge field producing the magnetic charge
is given by

Ai ¼
m
g
ð1 − cos θÞ∂iφ; ð2:24Þ
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which has also a singularity on θ ¼ π. The condition (2.23)
leads to

2πm ¼ 2πn; n ∈ Z; ð2:25Þ

which always holds withm ¼ n. Therefore, the Dirac string
appears in the singular gauge of the ’t Hooft–Polyakov
monopole, but it is always unobserved because the Dirac
quantization condition is ensured by the topological quan-
tization for π2ðS2Þ.

C. Wu-Yang monopole bundle

A fiber bundle is a topological space consisting of a base
space B and a fiber F. The fiber bundle is locally
homeomorphic to the direct product of the base space
and the fiber, B × F, but is not globally homeomorphic in
general. A famous example is the Möbius strip, which is a
nontrivial fiber bundle consisting of a circle as a base space
and a segment as a fiber. Locally it seems like a cylinder,
but it has an overall twist, which is only visible globally. In
order to study global structures of fiber bundles it is often
useful to divide the base space into several patches such
that the fiber bundle is homeomorphic to the direct product
on each patch. A nontrivial structure appears after gluing
the patches in a nontrivial way. For the Möbius strip, we
introduce two segments ½0; 2π� × ½−1; 1� and glue the two
ends 0 and 2π in such a way that ð0; xÞ ∈ ½0; 2π� × ½−1; 1� is
identified with ð2π;−xÞ ∈ ½0; 2π� × ½−1; 1�. It has a non-
trivial global twist (or Z2 action: x → −x) for the
segment ½−1; 1�.
Here we discuss the Dirac quantization condition from

the viewpoint of the fiber bundle. This provides us with a
clear connection with the Wu-Yang description of the Dirac
monopole [2], in which it is described in two patches and
there is no line singularity (Dirac string) like the one seen
above. Let us consider again the single monopole configu-
ration in Eq. (2.4). We introduce a two-dimensional sphere
S2 surrounding the monopole at spatial infinity parame-
trized by the azimuthal angle φ ∈ ½0; 2πÞ and the zenith
angle θ ∈ ½0; π�. Recall that jΦj2 ¼ v2 and na ¼ xa=r on
the sphere. To define the electromagnetic gauge field
globally on the sphere without any singularities, we divide
it into two patches, the hemispheres RN and RS,

RN ∶ 0 ≤ θ ≤
π

2
; RS ∶

π

2
≤ θ ≤ π; ð2:26Þ

which have an overlap region on the equator θ ¼ π=2, and
we introduce SUð2Þ gauge transformations defined on each
hemisphere:

RN ∶ UNðθ;φÞ ¼ e−iσ
3φ=2e−iσ

2θ=2eiσ
3φ=2

¼
�

cos θ
2

− sin θ
2
e−iφ

sin θ
2
eiφ cos θ

2

�
; ð2:27Þ

RS∶ USðθ;φÞ ¼ e−iσ
3φ=2e−iσ

2ðπ−θÞ=2eiσ3φ=2ðiσ2Þ

¼
�
e−iφ cos θ

2
− sin θ

2

sin θ
2

eiφ cos θ
2

�
: ð2:28Þ

Both transformations bring the hedgehog-like vector
na ¼ xa=r into the uniform vector in each region as

UN∶ na
σa

2
→ ðUNÞ†na σ

a

2
UN ¼ σ3

2
; ð2:29Þ

US∶ na
σa

2
→ ðUSÞ†na σ

a

2
US ¼ σ3

2
; ð2:30Þ

or, equivalently, Φa → Φa
0 ¼ ð0; 0; vÞ in both RN and RS.

Note that UN and US are regular on each hemisphere RN

and RS. On the two hemispheres, the unbroken gauge group
Uð1ÞEM is uniformly defined as the σ3 subgroup of SUð2Þ.
Since we have UNΦ ¼ USΦ ¼ ð0; 0; vÞt in the overlap

region of the two patches, θ ¼ π=2, the transition function
ðUSÞ−1UN must leave Φ invariant, i.e., ðUSÞ−1UN ∈
Uð1ÞEM. Indeed, we have

ðUSÞ−1UN ¼ eiφσ
3

; ð2:31Þ

and thus it does not change Φa
0 ¼ ð0; 0; vÞt. The transition

function is a map from the equator S1∶φ ∈ ½0; 2πÞ into
Uð1ÞEMð≃S1Þ with a winding number of unity, and hence
the two patches are glued in a topologically nontrivial way.
Let us define the electromagnetic gauge field after the

transformations in Eqs. (2.29) and (2.30) on each patch RN

and RS as

AN
i ≡W3

i ¼
1

g
1 − cos θ
r sin θ

φ̂i; ð2:32Þ

AS
i ≡W3

i ¼ −
1

g
1þ cos θ
r sin θ

φ̂i: ð2:33Þ

Importantly, they are regular on each patch, as desired.
On the equator θ ¼ π=2 they differ by the Uð1ÞEM gauge
transformation:

AN
i ¼ AS

i þ
2

gr
φ̂i ≡ AS

i þ ΔAi: ð2:34Þ

The difference ΔAi originates from the transition function
(2.31) as

ΔAi
σ3

2
¼ −i

g
½ðUSÞ−1UN �†∂i½ðUSÞ−1UN �: ð2:35Þ

We introduce the first Chern number, which character-
izes the topology of the fiber bundle with the fiber Uð1ÞEM
over the base space S2 surrounding the monopole, as
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Z
S2
c1 ≡ e

2π

Z
S2
FEM; ð2:36Þ

where c1 is called the first Chern class and S2 consists of
RN and RS. The magnetic charge of the monopole coincides
with the first Chern number up to an overall constant.
Substituting Eqs. (2.32) and (2.33) into Eq. (2.36), we haveZ

S2
c1 ¼

g
4π

Z
S1∶θ¼π=2

ðAN − ASÞ ¼ g
4π

Z
S1
ΔA ð2:37Þ

¼ 1

2π

Z
2π

0

dφ ¼ 1; ð2:38Þ

where FEM ≡ 1
2
FEM
ij dxi ∧ dxj, ANðSÞ ≡ ANðSÞ

i dxi and we
have used the definition of the electric charge e≡ g=2 and
Stokes’ theorem. From Eq. (2.37), the first Chern number
counts the winding number of the transition function on the
equator, and the nonzero value means that the two patches
RN and RS are nontrivially glued. Thus, the transition
function is in a nontrivial topological sector classified by
the first homotopy group π1ðS1Þ ¼ Z. In the language of
fiber bundles, this means that the topological space con-
sisting of the base space S2 and the fiber Uð1ÞEM is
nontrivial [not S2 ×Uð1ÞEM] and is homeomorphic to S3

(the Hopf fibration). Therefore, the configuration in
Eqs. (2.32) and (2.33) is regarded as an embedding of
the Wu-Yang description of the Dirac monopole into the
SUð2Þ gauge theory.
In this formulation, the Dirac quantization condition can

be expressed as the single valuedness of a wave function of
a test particle with an electric charge e. When the test
particle goes once around the equator θ ¼ π=2, it receives
the AB phase

θAB ¼ e
I

dxiAi: ð2:39Þ

In order for the wave function to be single valued, the two
effects calculated on the two patches RN and RS must be
equivalent. Thus, we obtain the condition

e
I
θ¼π=2

dxiΔAi ¼ 2πnðn ∈ ZÞ ð2:40Þ

⇔ 2π

Z
S2
c1 ¼ 2πn; ð2:41Þ

which is automatically satisfied with n ¼ 1 by Eq. (2.38).
This result can be extended to more general cases with
monopole charges larger than unity.
In this section we have looked at the ’t Hooft–Polyakov

monopole in two ways: in the singular gauge and in the
language of fiber bundles. While the former corresponds to
the Dirac monopole and the Dirac string, the latter is related
to the Wu-Yang description without the Dirac string. Both

provide the Dirac quantization condition, but it is auto-
matically satisfied due to the nontrivial second or first
homotopy groups, π2ðG=HÞ ¼ Z or π1ðS1Þ ¼ Z. In the
following sections, we study these for a Nambu monopole
in the SM and 2HDM.

III. NAMBU MONOPOLE IN THE
STANDARD MODEL

A. Hedgehog gauge

Here we discuss the Nambu monopole [12] in the SM in
the hedgehog gauge. The gauge-Higgs sector of the SM
Lagrangian is

L ¼ −
1

4
Wa

μνWaμν −
1

4
YμνYμν þ jDμΦSMj2

− λðjΦSMj2 − v2Þ2; ð3:1Þ

where ΦSM is the SM Higgs doublet. The covariant
derivative is DμΦSM ¼ ð∂μ − i g

2
Wa

μσ
a − i g

0
2
YμÞΦSM, where

W and Y are the SUð2ÞW and Uð1ÞY gauge fields,
respectively.
The Nambu monopole, which is a magnetic monopole

attached by a Z string (Z-flux tube), was first formulated by
Nambu [12]. Since the electroweak symmetry breaking
SUð2ÞW × Uð1ÞY → Uð1ÞEM is topologically trivial, nei-
ther the Nambu monopole nor the Z string can be
topologically stable. We consider a situation where the
monopole lies on the origin and the Z string emanating
from it is put on the positive side of the z axis (θ ¼ 0). At
large distances from the monopole, r → ∞, the configu-
ration describing the monopole is given by

ΦSM ¼ v

�
eiφfðθÞ cos θ

2

sin θ
2

�
; ð3:2Þ

gWa
i ¼ − cos2 θW

xa

r
hðθÞð1þ cos θÞ∂iφ

− ϵabc
xb

r
∂i

xc

r
; ð3:3Þ

g0Yi ¼ − sin2 θWjðθÞð1þ cos θÞ∂iφ; ð3:4Þ

where θW is the Weinberg angle. Here fðθÞ, hðθÞ, and jðθÞ
are profile functions that vanish on θ ¼ 0 (the positive side
of the z axis),

fð0Þ ¼ hð0Þ ¼ jð0Þ ¼ 0; ð3:5Þ

and thus the electroweak symmetry is restored (jΦSMj ¼ 0)
on θ ¼ 0 corresponding to the Z string (string-like defect).
As we move away from θ ¼ 0 on the large sphere, the

profile functions approach unity, and then we obtain the
following asymptotic forms:
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ΦSM ¼ v

�
eiφ cos θ

2

sin θ
2

�
; ð3:6Þ

gWa
i ¼ − cos2 θWnað1þ cos θÞ∂iφ − ϵabc

xb

r
∂i

xc

r
; ð3:7Þ

g0Yi ¼ − sin2 θWð1þ cos θÞ∂iφ: ð3:8Þ

These configurations seem to have a line singularity on
θ ¼ 0 corresponding to the Z string and thus are valid only
outside of the string. Note that the Z string is a regular and
physical object, unlike the Dirac string.
We introduce a unit vector as

naSM ≡Φ†
SMσ

aΦSM

jΦSMj2
; ð3:9Þ

transforming as the adjoint representation of SUð2ÞW ,
which is analogous to that of the ’t Hooft–Polyakov
monopole (2.5). Substituting Eqs. (3.6)–(3.8), we have4

naSM ¼ 1

f2c21=2 þ s21=2

�
f
x
r
; f

y
r
; f2c21=2 − s21=2

�

¼ ðsinΘSM cosφ; sinΘSM sinφ; cosΘSMÞ; ð3:10Þ

where we have defined

s1=2 ≡ sin
θ

2
; c1=2 ≡ cos

θ

2
; ð3:11Þ

and

sinΘSM ≡ f
f2c21=2 þ s21=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
r

; ð3:12Þ

cosΘSM ≡ f2c21=2 − s21=2
f2c21=2 þ s21=2

: ð3:13Þ

Note that naSM is singular at θ ¼ 0 because the electroweak
gauge symmetry is restored at θ ¼ 0 (jΦSMj ¼ 0).
We can define a Uð1Þ subgroup of SUð2ÞW that keeps

the vector naSM invariant, which is denoted by Uð1Þn.5 The
electromagnetic and Z field strengths are defined as super-
positions of Uð1Þn and Uð1ÞY [12]:

FEM
ij ≡ −sin θWnaSMWa

ij þ cos θWYij; ð3:14Þ

FZ
ij ≡ −cos θWnaSMWa

ij − sin θWYij: ð3:15Þ

From the fact that we cannot define the subgroup Uð1Þn at
θ ¼ 0 because naSM is ill defined there, it follows that the
electromagnetic and Z field strengths (3.14) and (3.15) are
not defined at θ ¼ 0. This is an important difference from
the ’t Hooft–Polyakov case.
To see the electromagnetic and Z fluxes at large distances

from the string core, it is convenient to use the asymptotic
forms in Eqs. (3.6)–(3.8) at θ ≫ 0. From Eq. (3.6), we can
see that naSM approaches a hedgehog structure,

naSM ¼ ðsin θ cosφ; sin θ sinφ; cos θÞt ¼ xa

r
: ð3:16Þ

Plugging this and the ansatz in Eqs. (3.6)–(3.8) into
Eqs. (3.14) and (3.15), we get the physical field strengths
at large distances as

FZ
ij ¼

4π cos θW
g

θðzÞϵ3ijδðxÞδðyÞ; ð3:17Þ

FEM
ij ¼ sin θW

g
ϵaij

xa

r3
: ð3:18Þ

Note that the δ-function singularity at θ ¼ 0 in FZ
ij comes

from the asymptotic forms at θ ≫ 0 and the true form has a
finite width (the Z string is a regular solution), decaying
exponentially like ∼ expð−mZρÞ. From Eq. (3.18), it is
clear that there is a magnetic flux from the origin in a
spherical hedgehog form. The total amount of the magnetic
flux ΦEM can be calculated by integrating the flux density
Bi ≡ 1

2
ϵijkFEM

jk as

ΦEM ¼
Z

d3x∂iBi ¼
4π sin θW

g
: ð3:19Þ

In addition, from Eq. (3.17) the Z fluxes only exist on the
positive side of the z axis as

ΦZjz>0 ¼
Z

d2xFZ
ijjz>0 ¼

4π cos θW
g

; ð3:20Þ

which flows on the z axis from the origin. Therefore, the
former indeed yields a long-range force, while the latter is
massive and confined around the string on θ ¼ 0. See Fig. 1
for a schematic picture of the Z and electromagnetic fluxes
for the Nambu monopole in the SM.

B. Fiber bundle

To clarify a (non)topological property of the Nambu
monopole in the SM, let us discuss the fiber bundle of the
electromagnetic gauge group Uð1ÞEM. We consider a two-
dimensional sphere S2 surrounding the monopole at spatial
infinity, where the single Z string passes through the sphere
(see Fig. 1). Here we make an important remark: the vector
naSM indicating the subgroupUð1Þn of SUð2ÞW is ill defined

4For the Higgs field to be regular at the center of the string,
ρ ¼ 0, the function fðθÞ must satisfy fðθÞ ∼ sin θ for θ → 0
[16,61,62].

5Although Uð1Þn keeps naSM invariant, it does not keep ΦSM
invariant, and thus Uð1Þn itself is not an unbroken subgroup.
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at the string center θ ¼ 0. As a result, we cannot define
Uð1Þn and hence Uð1ÞEM at the north pole θ ¼ 0 on S2.
Thus, we must consider the base space S2nfθ ¼ 0g ≃R2

with the fiber Uð1ÞEM, instead of S2. Obviously, we can
span R2 by a single patch and the fiber bundle is trivial:
R2 ×Uð1ÞEMð≃R2 × S1Þ. Therefore, this configuration is
topologically distinct from the previous case of the
’t Hooft–Polyakov monopole, and its topological structure
is trivial. As a result of the fact that the monopole has no
topological origin, i.e., the trivial fiber bundleR2×Uð1ÞEM,
the monopole does not provide the Dirac quantization
condition, and thus the magnetic charge is not quantized.
Indeed, the monopole can be removed by a continuous
deformation; for instance, we can deform the Z string into
the vacuum since the Z string is not topologically protected
[π1ðS3Þ ¼ 0 for the vacuum manifold S3 of the SM], and
hence the monopole disappears.

IV. DEFINITION OF THE ELECTROMAGNETIC
FIELD IN THE 2HDM

A. Two-Higgs-doublet model

Before turning to the Nambu monopole in the 2HDM,
here we clarify the definition of the electromagnetic gauge
group in the 2HDM. In a homogeneous vacuum in the
absence of any solitons, we can obviously define the
electromagnetic field and the field strength by a projection
of the gauge fields onto the unbroken direction. On the
other hand, it is nontrivial in the presence of solitons, in
which the Higgs fields, i.e., the unbroken direction of the
gauge symmetry, varies in the space. The definition without
solitons should be replaced by a more general definition for
the cases with varying vacuum expectation values (VEVs).
In the SM, the electromagnetic field strength is defined

by Eq. (3.14), which was given by Nambu in Ref. [12].
There are also other definitions (e.g., those in
Refs. [63,64]), although they are equivalent at large
distances from the solitons, in which DiΦSM ∼ 0 and
jΦEMj ∼ v. In the 2HDM, on the other hand, general
definitions for the electromagnetic field that can be applied
to the varying VEVs have not been given in the literature.
For later use, we present such a general definition of the
electromagnetic field in the presence of solitons in the
2HDM for the first time.
We start with the Lagrangian of the electroweak sector in

the 2HDM, in which there are two Higgs doublets Φ1 and
Φ2 with the same Uð1ÞY hypercharge þ1. The Lagrangian
is given by

L ¼ −
1

4
Wa

μνWaμν −
1

4
YμνYμν þ TrjDμHj2 − VðHÞ; ð4:1Þ

where Wμ and Yμ are the SUð2ÞW and Uð1ÞY gauge fields,
respectively. We have adopted the 2 × 2 matrix notation,
H ≡ ðiσ2Φ�

1;Φ2Þ [65]. The matrix fieldH transforms under
the electroweak SUð2ÞW ×Uð1ÞY symmetry as

H → exp

�
i
2
θaðxÞσa

�
H exp

�
−
i
2
θYðxÞσ3

�
; ð4:2Þ

where the group element acting from the left belongs to
SUð2ÞW and the other element acting from the right belongs
to Uð1ÞY . Therefore, the covariant derivative on H can be
expressed as

DμH ¼ ∂μH − i
g
2
σaWa

μH þ i
g0

2
Hσ3Yμ: ð4:3Þ

The VEVs of H are expressed by a diagonal matrix
hHi ¼ diagðv1; v2Þ, and the Higgs potential can be written
by using H as follows:

VðHÞ ¼ −m2
1TrjHj2 −m2

2TrðjHj2σ3Þ− ðm2
3 detHþH:c:Þ

þ α1TrjHj4 þ α2ðTrjHj2Þ2 þ α3TrðjHj2σ3jHj2σ3Þ
þ α4TrðjHj2σ3jHj2Þ þ ðα5 detH2 þH:c:Þ; ð4:4Þ

where jHj2 ≡H†H and we have imposed a (softly broken)
Z2 symmetry, Φ1 → þΦ1;Φ2 → −Φ2 (or, equivalently,
H → Hσ3). The relations between the parameters in
Eq. (4.4) and the conventional parametrization were shown
in Ref. [59].
In the next section, we will consider the topologically

stable Nambu monopole in the 2HDM. The stability is
realized by setting m3 ¼ α4 ¼ α5 ¼ 0 and α3 < 0 in the
potential [59], resulting in two global symmetries:

FIG. 1. Schematic picture of S2 surrounding the Nambu mo-
nopole in the SM. TheZ string passes through the north pole on S2,
and makes the electromagnetic gauge field singular at the string
core θ ¼ 0. As a result, it is well defined only on S2nfθ¼ 0g≃R2.
Such a base space can be spanned by a single patch.
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�
Uð1Þa∶ H → eiαH;

ðZ2ÞC∶ H → ðiσ2Þ†Hðiσ2Þ; Wμ → ðiσ2Þ†Wμðiσ2Þ; Yμ → −Yμ:
ð4:5Þ

As a result of the ðZ2ÞC symmetry, we have v1 ¼ v2
(tan β≡ v2=v1 ¼ 1).6

Using the two doublets, we define two unit vectors

na1 ≡Φ†
1σ

aΦ1

jΦ1j2
; na2 ≡Φ†

2σ
aΦ2

jΦ2j2
; ð4:6Þ

which are analogous to Eq. (3.9) in the SM and are ill
defined when jΦ1j ¼ 0 and jΦ2j ¼ 0, respectively.

B. na1 =n
a
2 case

We first assume that na1 ¼ na2 holds in regions where
Φ1 ≠ 0 and Φ2 ≠ 0, which we will encounter in the

subsequent sections. Taking the unitary gauge, this sit-
uation is realized when the doublets have the following
forms:

Φ1 ¼
�

0

Φ1;2

�
; Φ2 ¼

�
0

Φ2;2

�
; ð4:7Þ

where Φ1;2 and Φ2;2 are complex functions. This configu-
ration is sometimes called the neutral configuration in the
literature. We will relax this condition later.
In the presence of solitons, the Higgs fields H acquire

x-dependent VEVs, and then the gauge fields obtain
x-dependent masses as follows:

TrjDμHj2 ¼ jDμΦ1j2 þ jDμΦ2j2

⊃
X
f¼1;2

����
�
−
i
2
gWa

μσ
a −

i
2
g0Yμ

�
Φf

����
2

¼ 1

4

X
f

Φ†
fðg2Wa

μWbμσaσb þ g02YμYμ þ 2gg0Wa
μYμσaÞΦf

¼ 1

4

X
f

jΦfj2ðg2Wa
μWaμ þ g02YμYμÞ þ 2gg0

1

4

X
f

jΦfj2nafWa
μYμ: ð4:8Þ

In order to rewrite Eq. (4.8), we introduce an adjoint unit
vector na asX
f

jΦfj2naf ≡ na
X
f

jΦfj2

⇔ na ≡Φ†
1σ

aΦ1 þΦ†
2σ

aΦ2

jΦ1j2 þ jΦ2j2
¼

P
fjΦfj2nafP
fjΦfj2

; ð4:9Þ

which is well defined everywhere except for jΦ1j¼jΦ2j¼0.
We thus have

ð4:8Þ ¼ 1

4

X
f

jΦfj2ðgnaWa
μ þ g0YμÞ2

þ g2

4

X
f

jΦfj2ðδab − nanbÞWa
μWb

μ

≡ g2Z
4

X
f

jΦfj2ZμZμ þ g2

4

X
f

jΦfj2TrðW⊥
μ W⊥μÞ;

ð4:10Þ

where we have defined

Zμ ≡ − cos θWnaWa
μ − sin θWYμ; ð4:11Þ

W⊥
μ ≡ σa

2
ðδab − nanbÞWb

μ; ð4:12Þ

and gZ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. Equations (4.11) and (4.12) are the

neutral Z boson and the charged W boson, respectively.7

On the other hand, the massless electromagnetic gauge
field (photon) is defined by

Aμ ≡ − sin θWnaWa
μ þ cos θWYμ; ð4:13Þ

which is orthogonal to the Z field. We stress that the
electromagnetic and massive gauge bosons can be defined
everywhere unless Φ1 ¼ Φ2 ¼ 0.
Similarly, we can define the electromagnetic and Z field

strengths using na as

FZ
μν ≡ − cos θWnaWa

μν − sin θWYμν; ð4:14Þ
6The reader should not confuse the ðZ2ÞC symmetry with the

softly broken Z2 symmetry: Φ1 → þΦ1;Φ2 → −Φ2.
7Note that W⊥

μ itself is not an eigenstate of Uð1ÞEM.
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FEM
μν ≡ − sin θWnaWa

μν þ cos θWYμν; ð4:15Þ

respectively. Indeed, the latter satisfies the source-free
Maxwell equations

∂μFEM
μν ¼ 0; ∂μF̃EM

μν ¼ 0 ð4:16Þ

at large distances, and yields the long-range force. Note that
these definitions are analogous to those in the SM, but naSM
is replaced by na [Eq. (4.9)].

C. na1 ≠ na2 case

We consider the case of na1 ≠ na2 . In the unitary gauge,
this is realized when, e.g.,

Φ1 ¼
�

0

Φ1;2

�
; Φ2 ¼

�Φ2;1

Φ2;2

�
; ð4:17Þ

where Φ1;2, Φ2;1, and Φ2;2 are complex functions. In the
literature, this is sometimes called the charged configura-
tion. In such a case, there is no unbroken subgroup in the
SUð2ÞW × Uð1ÞY symmetry, and thus Uð1ÞEM is also
broken. To see this, we start with the mass terms for the
gauge fields again:

TrjDμHj2 ⊃
X
f¼1;2

����
�
−
i
2
gWa

μσ
a −

i
2
g0Yμ

�
Φf

����
2

¼ 1

4

X
f

jΦfj2ðg2Wa
μWaμ þ g02YμYμÞ

þ 2gg0
1

4

X
f

jΦfj2nafWa
μYμ: ð4:18Þ

Let us rewrite the last term in Eq. (4.18). Note that the
vector na defined in Eq. (4.9) is no longer normalized to
unity because of na1 ≠ na2 . Thus, we introduce an alternative
unit vector ña as

X
f

jΦfj2naf ≡ Cña

⇔ ña ≡Φ†
1σ

aΦ1 þΦ†
2σ

aΦ2

C
; ð4:19Þ

where C is a normalization factor,

C2 ¼ ðΦ†
1σ

aΦ1 þΦ†
2σ

aΦ2Þ2; ð4:20Þ

and is taken as C > 0.
Using Eq. (4.19) and dividing ðWa

μÞ2 into two parts, we
can rewrite Eq. (4.18) as

ð4:18Þ ¼ 1

4

X
f

jΦfj2g2ðñaWa
μÞ2 þ

1

4

X
f

jΦfj2g02ðYμÞ2

þ 2gg0
1

4
CñaWa

μYμ

þ g2

4

X
f

jΦfj2ðδab − ñañbÞWa
μWbμ

¼ 1

4

�
ñaWa

μ

Yμ

�T

M

�
ñaWa

μ

Yμ

�

þ g2

4

X
f

jΦfj2TrðW⊥
μ W⊥μÞ; ð4:21Þ

with

M ≡
0
B@

g2
P
f
jΦfj2 gg0C

gg0C g02
P
f
jΦfj2

1
CA ð4:22Þ

and

W⊥
μ ≡ σa

2
ðδab − ñañbÞWb

μ; ð4:23Þ

where W⊥
μ is the orthogonal component to ña, similarly

to Eq. (4.12).
The mass matrixM in Eq. (4.22) provides masses for the

Z gauge boson and photon. Unlike the previous case, the
matrix have two nonzero eigenvalues, and thus there is no
massless field. However, we can still define a photon as the
lighter component among the two massive gauge bosons.
To achieve this, let us diagonalize the mass matrixM by the
following basis transformation:

�
ñaWa

μ

Yμ

�
→ U

�
ñaWa

μ

Yμ

�
; ð4:24Þ

with

U ≡
�

cos ξ sin ξ

− sin ξ cos ξ

�
; ð4:25Þ

where ξ is an “effective Weinberg angle” satisfying

tan 2ξ ¼ rC tan 2θW; ð4:26Þ

with rC ≡P
f jΦfj2=C.

The mass eigenvalues and mass eigenstates are

1

4

�
ñaWa

μ

Yμ

�T

M

�
ñaWa

μ

Yμ

�
¼m2

Z

2
ZμZμþm2

γ

2
AμAμ; ð4:27Þ

with
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m2
Z ≡

P
fjΦfj2
4

ð1þ cos 2θW cos 2ξþ rC sin 2θW sin 2ξÞ;
ð4:28Þ

m2
γ ≡

P
fjΦfj2
4

ð1 − cos 2θW cos 2ξ − rC sin 2θW sin 2ξÞ;
ð4:29Þ

and

Zμ ≡ − cos ξñaWa
μ − sin ξYμ; ð4:30Þ

Aμ ≡ − sin ξñaWa
μ þ cos ξYμ: ð4:31Þ

Note that Aμ is the electromagnetic gauge field (photon),
but it is no longer massless, mγ ≠ 0. For arbitrary θW and
C ≠ 0, m2

γ < m2
Z always holds.

To compare with the previous result in the last sub-
section, let us reproduce the case of na1 ¼ na2 . It leads to
na ¼ ña, and hence rC ¼ 1 and ξ ¼ θW . The mass eigen-
states (4.30) and (4.31) reduce to the previous result,
Eqs. (4.11) and (4.13). The mass eigenvalues (4.28) and
(4.29) reduce to

m2
Z →

P
fjΦfj2
2

; m2
γ → 0; ð4:32Þ

which agree with the previous ones.
Note that we cannot use the above definition for C ¼ 0,

in which the vector ña is not well defined. Before
closing this section, let us see when such a case occurs.
Equation (4.20) can be rewritten as

C2¼ðΦ†
1Φ1Þ2þðΦ†

2Φ2Þ2þ2ðΦ†
1σ

aΦ1ÞðΦ†
2σ

aΦ2Þ: ð4:33Þ

Using the Fierz identity (A3), we have

2ðΦ†
1σ

aΦ1ÞðΦ†
2σ

aΦ2Þ ¼ 4jΦ†
1Φ2j2 − 2jΦ1j2jΦ2j2; ð4:34Þ

and thus

C2 ¼ ðjΦ1j2 − jΦ2j2Þ2 þ 4jΦ†
1Φ2j2 ≥ 0: ð4:35Þ

The equality holds when

jΦ1j2 ¼ jΦ2j2; Φ†
1Φ2 ¼ 0; ð4:36Þ

in which the second term in Eq. (4.18) vanishes, and thus
all Uð1Þ subgroups in SUð2ÞW are equivalent and not
mixed with the Uð1ÞY component.

V. TOPOLOGICAL PROPERTIES OF THE
NAMBU MONOPOLE IN THE 2HDM

Here we show that the Nambu monopole in the 2HDM
has a nontrivial topological structure as for the ’t Hooft–
Polyakov monopole and the Wu-Yang monopole, unlike in
the SM. This is one of the main results of this paper. In the
first subsection, we first give a brief review of the electro-
weak strings and Nambu monopole in the 2HDM. The
Nambu monopole in the 2HDM is a magnetic monopole
attached with two topological Z strings on the opposite
sides [58,59]. After that we look at the topological structure,
especially the fiber bundle of the electromagnetic gauge
field of the monopole. As we stated above, we assume the
Uð1Þa and ðZ2ÞC symmetries (4.5), but they are not
essential for the topological structure of the fiber bundle.

A. Nambu monopole in the 2HDM

We first consider vortex solutions in the 2HDM. As
studied in Refs. [42,44,45,50,51], the 2HDM with the
Uð1Þa symmetry [Eq. (4.5)] admits topological vortex
solutions. They can have (approximate) non-Abelian
moduli (it can be genuine non-Abelian moduli in the limit
of g0 → 0) and confine the electroweak magnetic fluxes
inside them, and hence are called the electroweak strings.
One of them is called the (1,0) string, whose field

configuration is given by

Hð1;0Þ ¼ v

�
fð1;0ÞðρÞeiφ 0

0 hð1;0ÞðρÞ

�
; ð5:1Þ

Zð1;0Þ
i ¼ −

cos θW
g

ϵ3ijxj

ρ2
ð1 − wð1;0ÞðρÞÞ; ð5:2Þ

where ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and φ is the rotation angle around the

z axis. The functions fð1;0Þ, hð1;0Þ, and wð1;0Þ satisfy the
boundary conditions

fð1;0Þð∞Þ ¼ hð1;0Þð∞Þ ¼ 1; wð1;0Þð∞Þ ¼ 0; ð5:3Þ

fð1;0Þð0Þ ¼ ∂ρhð1;0Þð0Þ ¼ 0; wð1;0Þð0Þ ¼ 1; ð5:4Þ

so that the configurations are regular at ρ ¼ 0. The precise
forms of the functions are determined by solving the EoMs,
but they are irrelevant in our following argument. In
Eq. (5.2) we have used the definition of the Z gauge field
[Eq. (4.11)], but it becomes trivial since the unit vector na is
constant na ¼ ð0; 0;−1Þ in the vortex configuration (5.1).
Due to the ðZ2ÞC symmetry in Eq. (4.5), we have another

stable vortex solution called the (0,1) string:

Hð0;1Þ ¼ v
�
hð0;1ÞðρÞ 0

0 fð0;1ÞðρÞeiφ
�
; ð5:5Þ

Zð0;1Þ
i ¼ cos θW

g

ϵ3ijxj

ρ2
ð1 − wð0;1ÞðρÞÞ; ð5:6Þ
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where the profile functions fð0;1Þ, hð0;1Þ, and wð0;1Þ also
satisfy the boundary conditions (5.3) and (5.4). The tension
of the (0,1) string is degenerate with that of the (1,0) string
as a result of the ðZ2ÞC symmetry.8 These configurations
are not in the vacuum around ρ ¼ 0, i.e., the cores of the
two Z strings. Note that, in contrast to the case of the SM,
the electroweak symmetry is not restored even around the
string cores ρ ∼ 0 because one doublet vanishes on ρ ∼ 0

while the other does not [for instance, fð1;0Þð0Þ ¼ 0 but
hð1;0Þð0Þ ≠ 0]. Therefore, one can even define the electro-
magnetic field inside the strings. This fact plays a crucial
role for the topological structure of the Nambu monopole in
the 2HDM, as seen below.
By rewriting Eqs. (5.1) and (5.5) as

Hð1;0Þ ¼ vei
φ
2ei

φ
2
σ3

�
fð1;0Þ 0

0 hð1;0Þ

�
; ð5:7Þ

Hð0;1Þ ¼ vei
φ
2e−i

φ
2
σ3

�
hð0;1Þ 0

0 fð0;1Þ

�
; ð5:8Þ

it is clear that both the (1,0) and (0,1) strings have winding
number 1=2 for the global Uð1Þa symmetry, and thus they
are topological vortex strings of the global type. Similarly
to standard global vortices, their tensions (masses per unit
length) logarithmically diverge.
On the other hand, they also have winding number�1=2

inside the gauge orbit Uð1ÞZ ∈ SUð2ÞW ×Uð1ÞY , which
leads to the Z fluxes flowing inside them. The magnitudes
of the fluxes of (1,0) and (0,1) strings are

Φð1;0Þ
Z ¼ 2π cos θW

g
; Φð0;1Þ

Z ¼ −
2π cos θW

g
ð5:9Þ

along the z axis, respectively. They are half of that of a
nontopological Z string in the SM because of the half
winding number. The Z flux is squeezed into a flux tube. In
other words, contributions to the energy from the non-
Abelian parts do not diverge.
There are physically different string configurations

with a different (non-Abelian) magnetic flux, with a
common winding number 1=2 for the global Uð1Þa.
Since they belong to the same topological sector classified
by the first homotopy group π1ðUð1ÞaÞ, one can contin-
uously deform one into the other (with some energy cost).9

Among them, the above two Z strings are the lightest
configurations as long as m2 ¼ α4 ¼ 0 and α3 ≤ 0 in the
potential (4.4) [44,59], and thus they are energetically
stable.

A configuration describing the Nambu monopole is
obtained by continuously connecting the two Z strings
with the Uð1Þa topological winding number kept, in which
a junction point is a source for the Z and electromagnetic
fluxes, and hence is a magnetic monopole. We consider the
case that (1,0) and (0,1) strings are put on the positive and
negative side of the z axis (θ ¼ 0; π), respectively, and the
monopole (junction point) is located at the origin. At large
distances from the origin, i.e., r → ∞, the Higgs field H
and the gauge fields Wμ and Yμ describing the monopole
(with the strings) are given as

H ¼ v

�
h1ðθÞ sin θ

2
h2ðθÞ cos θ2

−eiφf1ðθÞ cos θ2 eiφf2ðθÞ sin θ
2
;

�
ð5:10Þ

gWa
i ¼ − cos2 θWnajðθÞ cos θ∂iφ − ϵabcnb∂inc; ð5:11Þ

g0Yi ¼ − sin2 θWkðθÞ cos θ∂iφ: ð5:12Þ

The profile functions f1, h1 and f2, h2 satisfy similar
boundary conditions as those of the (1,0) and (0,1)
strings at the north pole (θ ¼ 0) and south pole (θ ¼ π),
respectively,

f1ð0Þ ¼ 0; ∂θh1ð0Þ ¼ 0; ð5:13Þ

f2ðπÞ ¼ 0; ∂θh2ðπÞ ¼ 0; ð5:14Þ

and they rapidly approach unity as we move from the north
and south pole, respectively. In addition, the profile
functions j and k satisfy the conditions,

jð0Þ ¼ jðπÞ ¼ kð0Þ ¼ kðθÞ ¼ 0 ð5:15Þ

and approach to unity far away from the poles.
Equation (5.10) indeed describes the (1,0) string [(0,1)
string] at θ ∼ 0 (θ ∼ π) up to the SUð2ÞW gauge trans-
formation.10 Thanks to the boundary conditions, the con-
figuration does not have line singularities at θ ¼ 0; π. Note
that one needs to introduce further r-dependent profile
functions in order to smear the point-like singularity at
r ¼ 0 and obtain a true solution of the EoMs. Nevertheless,
we do not care about the singularity at r ¼ 0 because we are
interested in topological properties of the monopole at large
distances from the monopole r → ∞.
It is worthwhile to look at the asymptotic forms of

Eqs. (5.10)–(5.12) far away from the north and south
poles. This is equivalent to considering an infinitely thin

8One can check that they are related by the ðZ2ÞC transformation
(4.5).

9In a certain limit of e ¼ 0 with the custodial symmetry, they
can be continuously deformed into each other without energy cost
by changing moduli.

10This is clear when one applies the SUð2ÞW gauge trans-
formation H → UH on U, which satisfies

Ujθ¼π ¼ 12×2; Ujθ¼0 ¼ −iσ2:
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monopole and strings. Using the asymptotic behaviors in
Eqs. (5.13)–(5.15), we have

H ¼ v

�
sin θ

2
cos θ

2

−eiφ cos θ
2

eiφ sin θ
2

�
; ð5:16Þ

gWa
i ¼ − cos2 θWna cos θ∂iφ − ϵabcnb∂inc; ð5:17Þ

g0Yi ¼ − sin2 θW cos θ∂iφ: ð5:18Þ

This asymptotic configuration seems to have line singu-
larities at θ ¼ 0 and π, which correspond to the cores of the
two Z strings [(1,0) and (0,1) strings, respectively] as
artifacts of asymptotic forms, and is valid only at large
distances from the line singularities, ρ → ∞. [Indeed, the
singularities are avoided because f1ð0Þ ¼ 0 and f2ðπÞ ¼ 0
in Eq. (5.10).]
Let us look at the Z and electromagnetic fluxes around

the monopole. To do so, we first consider the vectors na1 and
na2 defined by Eq. (4.6). From Eq. (5.10), we have

Φ†
1σ

aΦ1 ¼ v2
�
f1

x
r
; f1

y
r
; f21c

2
1=2 − h21s

2
1=2

�
; ð5:19Þ

Φ†
2σ

aΦ2 ¼ v2
�
f2

x
r
; f2

y
r
; h22c

2
1=2 − f22s

2
1=2

�
; ð5:20Þ

with c1=2 ≡ cos θ
2
and s1=2 ≡ sin θ

2
, and the unit vectors

defined by Eq. (4.6) are

na1 ¼
f1h1

f21c
2
1=2 þ h21s

2
1=2

�
x
r
;
y
r
;
f21c

2
1=2 − h21s

2
1=2

f1h1

�
; ð5:21Þ

na2 ¼
f2h2

h22c
2
1=2 þ f22s

2
1=2

�
x
r
;
y
r
;
h22c

2
1=2 − f22s

2
1=2

f2h2

�
: ð5:22Þ

Note that na1 and na2 are not well defined at θ ¼ 0 and
θ ¼ π, respectively, because the denominators vanish.
Furthermore, we require that the Uð1ÞEM is not broken

everywhere, which leads to na1 ¼ na2 everywhere except for
θ ¼ 0; π.11 We can explicitly confirm that this is true by
constructing a full solution of the EoMs, as in Refs. [58,59].
This leads to two conditions for the profile functions fi and
hi. The expressions are rather complicated so we do not
present them, although they are assumed implicitly in the
following.
We next consider the unit vector na defined by Eq. (4.9).

Substituting Eqs. (5.21) and (5.22), we obtain

na ¼ f1h1 þ f2h2
ðf21 þ h22Þc21=2 þ ðf22 þ h21Þs21=2

×

�
x
r
;
y
r
;
ðh22 þ f21Þc21=2 − ðh21 þ f22Þs21=2

f1h1 þ f2h2

�
; ð5:23Þ

which is regular and well defined everywhere, even at
θ ¼ 0; π. Indeed, na ¼ na2 ¼ ð0; 0; 1Þ for θ ¼ 0 and na ¼
na1 ¼ ð0; 0;−1Þ for θ ¼ π. (Recall that f1 → 0 and f2 → 0

for θ → 0 and π, respectively.) As we move from the string
core, ρ → ∞, na approaches the hedgehog one as in the ’t
Hooft–Polyakov case,

na ¼ ðsin θ cosφ; sin θ sinφ; cos θÞt ¼ xa

r
: ð5:24Þ

On the other hand, it becomes slightly deformes around
θ ∼ 0; π, as depicted in Fig. 2.

FIG. 3. Schematic picture of the two patches RN and RS

surrounding the Nambu monopole. The (1,0) and (0,1) strings
pass through RN and RS, respectively. The electromagnetic flux
ΦEM ¼ 4π sin θW=g spreads radially from the monopole (right
panel), while the Z flux,ΦZ ¼ 2π cos θW=g, is confined to each Z
string [(1,0) or (0,1) string] (left panel).

FIG. 2. Structure of the unit vectors na. (a): for the ’t Hooft–
Polyakov monopole, na is defined by Eq. (2.5) and is the
hedgehog structure. (b): for the Nambu monopole in the
2HDM, na is given by Eq. (5.25) and is not the hedgehog
structure. It becomes deformed around θ ∼ 0 and π.

11Note that although na1 (na2) is not defined at θ ¼ 0 (θ ¼ π),
the Uð1ÞEM is not broken even at θ ¼ 0; π. It is broken only when
both na1 and na2 are well defined and na1 ≠ na2 .
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For later use, we rewrite na at finite ρ [Eq. (5.23)] as

na ¼ ðsinΘ cosφ; sinΘ sinφ; cosΘÞ; ð5:25Þ
where ΘðθÞ is a “deformed zenith angle,” defined by

cosΘ≡ ðh22 þ f21Þc21=2 − ðh21 þ f22Þs21=2
ðf21 þ h22Þc21=2 þ ðf22 þ h21Þs21=2

; ð5:26Þ

sinΘ≡ ðf1h1þf2h2Þ
ðf21þh22Þc21=2þðf22þh21Þs21=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
r

: ð5:27Þ

Note that cos2Θþ sin2Θ ¼ 1 since jnaj2 ¼ 1, and
Θð0Þ ¼ 0, ΘðπÞ ¼ π. In the matrix representation,

n≡ na
σa

2
¼ 1

2

�
cosΘ sinΘe−iφ

sinΘeiφ − cosΘ

�
: ð5:28Þ

Because na1 ¼ na2 holds everywhere except for θ ¼ 0; π,
we can define the field strengths of the electromagnetic and
the Z gauge bosons by using Eqs. (4.14) and (4.15) and the
vector na [Eq. (5.25)]. However, the expressions are rather
complicated, and hence here we only consider the asymp-
totic forms far from the string cores ρ → ∞ by substituting
the asymptotic forms (5.16) [or Eq. (5.24)] into Eqs. (4.14)
and (4.15). Then, we obtain [58]

FZ
ij ¼

2π cos θW
g

z
jzj ϵ3ijδðxÞδðyÞ; ð5:29Þ

FEM
ij ¼ sin θW

g
ϵaij

xa

r3
: ð5:30Þ

From Eq. (5.30), it is clear that there is a magnetic flux
emanating from the origin in a spherical hedgehog form.
The total amount of magnetic flux ΦEM can be calculated
by integrating the flux density Bi ≡ 1

2
ϵijkFEM

jk as

ΦEM ¼
Z

d3x∂iBi ¼
4π sin θW

g
: ð5:31Þ

In addition, from Eq. (5.29) the Z fluxes only exist on the z
axis as

ΦZjz>0 ¼
Z

dx2FZ
ijjz>0 ¼

2π cos θW
g

¼ Φð1;0Þ
Z ; ð5:32Þ

ΦZjz<0 ¼
Z

dx2FZ
ijjz<0 ¼ −

2π cos θW
g

¼ Φð0;1Þ
Z ; ð5:33Þ

flowing on the positive and negative sides of the z axis,
respectively, from the origin. These Z-flux magnitudes
agree with those of the Z strings in Eq. (5.9). The total
Z-flux magnitude flowing from the monopole at the origin
can be calculated as

ΦZ¼
Z

dx3∂iBZ
i ¼ΦZjz>0−ΦZjz<0¼

4πcosθW
g

; ð5:34Þ

with BZ
i ≡ 1

2
ϵijkFZ

jk. Therefore, the total Z flux agrees with
that of the Nambu monopole in the SM [Eq. (3.20)]. See
Fig. 3 for a schematic picture of the Z and electromagnetic
fluxes from the monopole.
It is worth demonstrating the topological current of

Uð1Þa in the configuration. The topological current, cor-
responding to the winding of the Uð1Þa phase of the Higgs
field, is defined by

Ai ≡ ϵijk∂jJ k; ð5:35Þ

J i ≡ −itr½H†DiH − ðDiHÞ†H�: ð5:36Þ

Importantly, Ai is topologically conserved, ∂iAi ¼ 0, and
is independent of z, as can be seen by substituting
Eq. (5.16). This indicates that not only the string parts
but also the monopole itself at the origin have the
topological charge of Uð1Þa.

B. Fiber bundle for the Nambu monopole

Here we discuss the topological structure of the electro-
magnetic field of the Nambu monopole. In particular, we
investigate a fiber bundle consisting of the base space S2

surrounding the monopole and the fiber Uð1ÞEM.
Importantly, since the strings pass through the base space

S2 at θ ¼ 0; π (see Fig. 3), we cannot use the asymptotic
forms (5.16)–(5.18) on the sphere S2, which are singular at
the north and south poles. Thus, we have to use the smeared
one [Eqs. (5.10)–(5.18)] without the line singularities.
We should stress that the unit vector na [Eq. (5.25)] is

homotopically equivalent to the hedgehog one [Eq. (5.24)],
i.e., the map

naðθ;φÞ∶S2¼f0≤ θ≤ π;0≤φ< 2πg↦
S2¼fna ¼ðn1;n2;n3Þjðn1Þ2þðn2Þ2þðn3Þ2 ¼ 1g

ð5:37Þ

has a winding number of unity. The target space S2

corresponds to the order parameter space SUð2ÞW=Uð1Þn,
where Uð1Þn is a subgroup of SUð2ÞW that leaves na

invariant.12 Therefore, na has the same topological structure
as the ’t Hooft–Polyakov monopole [see Eq. (2.7) and
surrounding text], and the Nambu monopole in the 2HDM
can be regarded as an embedding of the ’t Hooft–Polyakov
monopole into the SUð2ÞW sector accompanied by the
Uð1ÞY flux.

12Although Uð1Þn keeps na invariant, it does not keep Φ1 or
Φ2 invariant, and thus Uð1Þn itself is not an unbroken subgroup.
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To see this more clearly, let us first consider the fiber
bundle of the Uð1Þn subgroup. Thanks to the fact that the
unit vector na in Eq. (5.23) or Eq. (5.25) is regular
everywhere, we can define the Uð1Þn subgroup on the
whole sphere S2 surrounding the monopole, unlike in the
case of the Nambu monopole in the SM. Thus, we should
divide S2 into two hemispheres RN and RS as in the case of
the ’t Hooft–Polyakov monopole (Sec. II),

RN∶0 ≤ θ ≤
π

2
; RS∶

π

2
≤ θ ≤ π; ð5:38Þ

which have an overlap region on the equator θ ¼ π=2. What
is different from the ’t Hooft–Polyakov monopole is that we
now have the Z strings at θ ¼ 0 and θ ¼ π, and thus the
strings pass thro ugh RN and RS (see Fig. 3). However, this
is irrelevant because na has no singularity even at the
centers of the Z strings.
Then, we introduce the SUð2ÞW gauge transformations

UN and US defined on each hemisphere,

RN∶ UNðθ;φÞ ¼ e−iσ
3φ=2e−iσ

2Θ=2eiσ
3φ=2

¼
�

cos Θ
2

− sin Θ
2
e−iφ

sin Θ
2
eiφ cos Θ

2

�
; ð5:39Þ

RS∶ USðθ;φÞ ¼ e−iσ
3φ=2e−iσ

2ðπ−ΘÞ=2eiσ3φ=2ð−iσ2Þ

¼
�
e−iφ cos Θ

2
− sin Θ

2

sin Θ
2

eiφ cos Θ
2

�
: ð5:40Þ

Note that we have used Θ instead of θ. Both trans-
formations bring the unit vector na into the uniform vector
in each region:

UN∶ na
σa

2
→ ðUNÞ†na σ

a

2
UN ¼ σ3

2
; ð5:41Þ

US∶ na
σa

2
→ ðUSÞ†na σ

a

2
US ¼ σ3

2
: ð5:42Þ

Note that UN and US are regular on each hemisphere RN

and RS. In this gauge, the subgroup Uð1Þn is uniformly
defined as the σ3 subgroup of SUð2ÞW on the two
hemispheres.
Similarly to Sec. II, it follows from the single valuedness

of na at θ ¼ π=2 that the transition function ðUSÞ−1UN

must leave na invariant, i.e., ðUSÞ−1UN ∈ Uð1Þn [not
Uð1ÞEM]. Indeed, noting that Θ ¼ π=2 for θ ¼ π=2, we
have

ðUSÞ−1UN ¼ eiφσ
3

; ð5:43Þ

which is the same as Eq. (2.31) and has a winding number
of unity.

Thus, the first Chern number associated with Uð1Þn is
obtained as

Z
S2
cðnÞ1 ¼ g

2π

Z
S2
Fn ¼ 1; ð5:44Þ

with Fn
ij ≡ naWa

ij (not FZ
ij or FEM

ij ). Therefore, the topo-
logical structure of Uð1Þnð⊂ SUð2ÞWÞ is completely the
same as the unbroken subgroup of the ’t Hooft–Polyakov
monopole.
Let us turn to the topological structure of Uð1ÞEM, which

is defined by the linear combination of Uð1Þn and Uð1ÞY
[Eq. (4.15)]. Since the divergence of the Uð1ÞY flux is
always zero, the global structure of the fiber Uð1ÞY is
trivial, i.e., the fiber bundle is a direct product: S2 ×Uð1ÞY .
Therefore, we can concentrate on the Uð1Þn part. We
consider the first Chern number associated with Uð1ÞEM,
which is given by13

Z
S2
cðEMÞ
1 ≡ −g

2π sin θW

Z
S2
FEM ¼ g

2π

Z
S2
Fn ¼

Z
S2
cðnÞ1 ¼ 1:

ð5:45Þ

This means that the magnetic charge is quantized because

cðnÞ1 is quantized as Eq. (5.44). Such a quantization
originates from the fact that the topological structure of
Uð1Þn of this monopole has the same topology as that of the
’t Hooft–Polyakov monopole (or the Wu-Yang monopole
bundle).
Finally, let us consider the Dirac quantization condition.

When a test particle with Uð1ÞY hypercharge Y and weak
isospin T3 ¼ 1=2 goes around the equator θ ¼ π=2, it
receives an AB phase, given by

θAB ¼ eQ
I
θ¼π=2

dxiAi þ gZTZ

I
θ¼π=2

dxiZi; ð5:46Þ

where we have used e ¼ g sin θW and

Q≡ T3 þ
Y
2
; ð5:47Þ

TZ ≡ T3 − sin2 θWQ: ð5:48Þ

Note that in Eq. (5.46) there is also a contribution from the
Z flux confined inside the two Z strings (the second term),
in addition to that from the electromagnetic gauge field
(the first term). Using the definitions of the gauge fields in
Eqs. (4.11) and (4.13) and noting that na ¼ ð0; 0; 1Þ on
each patch, we obtain

13We choose a normalization factor for cðEMÞ
1 such that it takes

an integer value under the integration.
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θAB ¼
I
θ¼π=2

dxi

�
−gT3W3

i þ g0
Y
2
Yi

�
: ð5:49Þ

The second term in Eq. (5.49) vanishes because the
Uð1ÞY fiber is trivial. We can calculate the AB phases in the
two patches RN and RS. Noting that the difference ofW3

i on
the two patches is given by

ΔW3
i ¼

−i
g
Trðσ3½ðUSÞ−1UN �†∂iðUSÞ−1UNÞ; ð5:50Þ

the condition for the single valuedness of the wave function
of the particle requires that the difference between the two
patches,

ΔθAB ¼ gT3

I
θ¼π=2

dxiΔW3
i ¼ 4πT3; ð5:51Þ

must be an integer multiple of 2π,

4πT3 ¼ 2πnðn ∈ ZÞ ⇔ T3 ¼
n
2
; ð5:52Þ

which is the Dirac quantization condition derived from the
Nambu monopole in the 2HDM. Recalling that T3 ¼ 1=2,
this is automatically satisfied with n ¼ 1. Remarkably, the
Dirac quantization condition for the Nambu monopole in
the 2HDM does not ensure the quantization of the electric
charges because the fiber bundle of Uð1ÞY is trivial and the
Uð1ÞY hypercharge cannot be quantized by the monopole.
Before closing this section, we give some remarks. In the

SM, in the presence of the Nambu monopole, the magnetic
charge is not quantized and the Uð1ÞEM and Z gauge fields
cannot have any topologically nontrivial structures. This is
because the electroweak symmetry is restored and hence
Uð1ÞEM cannot be defined at the center of the Z string. On
the other hand, in the 2HDM the magnetic charge is
quantized as in Eq. (5.45) because the topological charge

(first Chern number) cðnÞ1 is quantized. This originates from
the fact that the Nambu monopole in the 2HDM is an
embedding of the ’t Hooft–Polyakov monopole into the
SUð2ÞW sector. What makes the embedding possible is that
na defined by Eq. (4.9) is regular and well defined every-
where on the infinitely large sphere S2 surrounding the
monopole. The regularity means that the electroweak
symmetry is not restored on the whole sphere, even on
the cores of the Z strings. In this sense, the Nambu
monopole in the 2HDM is indeed a true magnetic monop-
ole although it is attached with the strings. This topological
argument is still valid even when the Uð1Þa and ðZ2ÞC
symmetries are explicitly broken in the potential
because the breaking effects do not affect the topology
of the ’t Hooft–Polyakov embedding in SUð2ÞW → Uð1Þn.
However, stability is no longer ensured in the presence
of such breaking terms because we have no nontrivial

second homotopy group π2 in the full symmetry breaking
SUð2ÞW × Uð1ÞY → Uð1ÞEM. The reader should not con-
fuse the topological properties of this monopole with the
topological stability. To stabilize the monopole, we need
nontrivial π0 and π1 associated with the ðZ2ÞC and Uð1Þa
symmetries, as studied in Ref. [58]. See Ref. [59] for the
unstable case without ðZ2ÞC.

VI. DYON IN THE 2HDM

Similarly to the electroweak dyon in the SM studied in
Ref. [15], we can consider a dyon configuration in the
2HDM. To do this, we consider the gauge moduli of
the Nambu monopole described by Eqs. (5.16)–(5.18).
Hereafter, we denote the Nambu monopole configuration in
the 2HDM by H̄, W̄a

μ, and Ȳμ. The SUð2ÞW adjoint vector
na defined in Eq. (4.9) can be rewritten in terms of the 2 × 2
matrix H as

na ¼ trðσ3H†σaHÞ
trðH†HÞ ; ð6:1Þ

which satisfies

ðD̄μnÞa ¼ 0 ð6:2Þ

at large distances from the strings, ρ → ∞, where D̄μ is the
covariant derivative consisting of W̄μ and Ȳμ. In addition,
the following identity holds:

H̄σ3 þ naσaH̄ ¼ 0: ð6:3Þ
This means that H̄ is invariant under the Uð1ÞEM gauge
transformation14:

exp

�
−iαna

σa
2

�
H̄ exp

�
−iα

σ3
2

�
¼ H̄; ð6:4Þ

with α being an arbitrary function.
Due to the Uð1ÞEM symmetry, the monopole has a

modulus (zero mode) under the following transformation:

H̄ → exp

�
−iαna

σa
2

�
H̄ exp

�
−iα

σ3
2

�
ð¼H̄Þ; ð6:5Þ

gW̄μ → exp

�
−iαna

σa
2

�
ðgW̄μ− i∂μÞexp

�
iαna

σa
2

�
; ð6:6Þ

g0Ȳμ → g0Ȳμ − exp ½iα�i∂μ exp ½−iα�ð¼g0ȲμÞ; ð6:7Þ

for constant α ∈ ½0; 2πÞ.
Let us make a dyon configuration from the Nambu

monopole. In the following, we are only interested in the

14The Uð1ÞEM transformation is defined as a combination of
the Uð1Þn and Uð1ÞY transformations.
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asymptotic forms at large distances from the string cores
ρ → ∞. If one wants to obtain a true configuration, it is
necessary to solve the full EoMs. The asymptotic form of
the dyon configuration is obtained by giving the monopole
a time-dependent excitation using a function γðxÞ ¼ γðt; xÞ,

H ¼ H̄; ð6:8Þ

gWa
μ ¼ gW̄a

μ − δμ0ðD̄μðnγðxÞÞÞa ¼ gW̄a
μ − δμ0na _γ; ð6:9Þ

g0Yμ ¼ g0Ȳμ þ δμ0∂μγðxÞ ¼ g0Ȳμ þ δμ0 _γ; ð6:10Þ

where _γ ¼ ∂tγ and we have used Eq. (6.2) in Eq. (6.9).
This excitation is regarded as applying the Uð1ÞEM trans-
formation (6.5)–(6.7) only for the time components with
α → γðxÞ. Due to this, the field strengths are changed from
those in the Nambu monopole. The difference is given as

δWa
i0 ¼ −

ðD̄iðn_γÞÞa
g

¼ −
na∂i _γ

g
; ð6:11Þ

δYi0 ¼ þ ∂i _γ

g0
; ð6:12Þ

and δWij ¼ δYij ¼ 0. For the electromagnetic and Z field
strengths,

δFEM
i0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
gg0

∂i _γ; ð6:13Þ

and the others do not change.
Let us obtain γ by solving the EoMs at large distances

from the string core, ρ → ∞. For the ansatz in Eqs. (6.8)–
(6.10), the EoMs reduce to the ordinary Maxwell equations
for the electric field,

∂0FEM
i0 ¼ 0; ∂iFEM

0i ¼ 0; ð6:14Þ

which lead to

∂i∂i _γ ¼ ∂0∂i _γ ¼ 0: ð6:15Þ

Note that the other components of the fields do not receive
backreactions from γ because the massive gauge compo-
nents decay exponentially at large distances and the Higgs
field does not couple to γ. Therefore, the other EoMs are
satisfied independently of γ.15

From Eq. (6.15), we have

_γ ¼ c0ðtÞ −
Λ
4πr

; ð6:16Þ

where Λ is an arbitrary constant and c0ðtÞ is an arbitrary
function of t. By the gauge-fixing condition [see Eq. (B5)
in Appendix B], we impose ̈γ ¼ 0 and hence _c0ðtÞ ¼ 0. We
thus obtain a general solution of γ as

γ ¼
�
c0 −

Λ
4πr

�
tþ const: ð6:17Þ

Substituting this into Eq. (6.13), we then get

Ei ¼ FEM
0i ¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
4πgg0

xi
r3

¼ Λ
e

1

4π

xi
r3
: ð6:18Þ

Therefore, the configuration in Eqs. (6.8)–(6.10) with
Eq. (6.17) indeed describes a dyon configuration with
electric charge q ¼ Λ=e.
So far, the electric charge q is arbitrary and continuous.

We finally discuss the charge quantization condition
for the dyon. Let us consider a pair of dyons with magnetic
and electric charges ðqM; q1Þ and ðqM; q2Þ, with qM ¼
4π sin2 θW=e. From the quantization condition for angular
momentum in quantum mechanics, we can derive the
condition (see Ref. [15]) as16

q1 − q2 ¼ ne; n ∈ Z: ð6:19Þ

If we use this condition for a dyon ðq1 ¼ qÞ and monopole
ðq2 ¼ 0Þ pair, we obtain

q ¼ ne; n ∈ Z; ð6:20Þ

and thus Λ in Eq. (6.17) must be quantized as Λ ¼ ne2.
Therefore, the electric charge of the dyon must be a
multiple of the minimal charge e.

VII. CONCLUSION AND DISCUSSION

We have studied the topological properties of the Nambu
monopole in the 2HDM. In the SM, the Nambu monopole
has no topological structures because the Uð1ÞEM gauge
field cannot be defined on the center of the Z string, where
the electroweak symmetry is restored. Thus, aUð1ÞEM fiber
bundle over a spatial surface S2 surrounding the monopole
is topologically trivial: Uð1ÞEM × S2. This is different from
the ’t Hooft–Polyakov monopole which has the same
structure as the Wu-Yang description of the Dirac monop-
ole, for whichUð1ÞEM is Hopf fibered over S2 with the total

15Of course, they are nonlinearly coupled around the cores of
the dyon and the string.

16Note that the analysis of the angular momentum around a
pair of dyons in Ref. [15] cannot be justified in the SM because
there is a singular point in the Z string where the electromagnetic
field cannot be defined, as stated in Sec. III. However, we can
apply the result to the case of the dyons in the 2HDM, in which
the electromagnetic field is well defined everywhere except for
the center of the monopole or dyon.
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space S3. As a result of the trivial topology, the magnetic
charge is not topologically quantized for the Nambu
monopole in the SM. On the other hand, the monopole
in the 2HDM has the same topological structure as the
’t Hooft–Polyakov monopole thanks to the fact that Uð1Þn
and hence Uð1ÞEM are well defined everywhere (except for
the center of the monopole), implying that the electroweak
gauge symmetry is broken everywhere including the string
cores. Concentrating on the SUð2ÞW → Uð1Þn sector, the
Nambu monopole can be regarded as an embedding of the
’t Hooft–Polyakov monopole, and the fiber bundle of
Uð1Þn on the base space S2 surrounding the monopole is
nontrivial, S3, as in the ’t Hooft–Polyakov and Wu-Yang
cases. Consequently, the Uð1ÞEM gauge field also has a
nontrivial topology on S2 and the electromagnetic flux is
fractionally quantized. We have shown that the Dirac
quantization condition (5.52) always holds for test particles
charged under the electroweak gauge symmetry.
We have also shown the dyon configuration in the 2HDM.

A stationary time-dependent excitation makes the Nambu
monopole a dyon, having both magnetic and electric
charges. Thus, the dyon behaves as a source for the electric
and magnetic fields and the Z magnetic flux. Considering
quantum effects, the electric charge of the dyon is quantized
by the minimal electric charge e ¼ g sin θW .
Before closing this paper, some discussions are

addressed here. It is known that the CP-violating θ term
g2θFF̃=32π2 in the Lagrangian changes the ’t Hooft–
Polyakov monopole into a dyon with a fractional electric
charge q ¼ ðn − θ=2πÞe, which is called the Witten effect
[66]. Let us discuss the Witten effect in the 2HDM. When
the couplings between the gauge fields and the SM
fermions are neglected, the θ term of the SUð2ÞW gauge
sector provides the same effect on the Nambu monopole in
the 2HDM.17 The couplings to the SM fermions make the θ
term unphysical since it can be eliminated by a redefinition
of the fermions and Higgs doublets. However, if the theory
has any explicit CP-violating parameters, they provide
similar effects through higher-order loop corrections after
integrating out perturbations around the monopole con-
figuration [66,67], resulting in the Nambu monopole with a
fractional electric charge. In fact, the 2HDM with fermions
in general admits several CP-violating parameters includ-
ing the Cabibbo-Kobayashi-Maskawa phase, such as
parameters in the Higgs potential, CP-violating Higgs
VEVs, and additional Yukawa couplings with the fermions.
How the induced fractional charge depends on the param-
eters is nontrivial, but it is calculable in principle. The
effects could be useful to probe the CP violation in the
2HDM using the Nambu monopole or dyon.
In this paper, we have considered a single Nambu

monopole or dyon configuration with the two strings. In

practice, there can also be an antimonopole or antidyon on
the string. Since the electric charges of the dyon and the
antidyon are arbitrary, we can assign electric charges of the
same sign for the pair, leading to an electrically repulsive
force between them. This can change the fate of the dyons
and monopoles in the early Universe as follows. In a
realistic 2HDM, the Uð1Þa symmetry should be explicitly
broken to give a mass for the CP-odd Higgs boson, which
results in domain walls (or membranes) attached to the
strings [45]. The strings pulled by the walls’ tension collide
with each other and reconnect, forming small string loops
stretched by walls inside the loop. Such small loops
immediately shrink and annihilate. However, if a string
loop has a dyon pair with electric charges of the same sign,
the dyons experience an electrically repulsive force, pre-
venting the loop from shrinking at a certain loop size. Thus,
the string loop with the dyon pair behaves as a long-lived
particle and can be abundant in the present Universe.
A quantitative discussion requires further studies, which
we leave for future work.
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APPENDIX A: FIERZ IDENTITIES

In this Appendix we summarize the Fierz identities. For
SUðNÞ generators Ta such that

TrðTaTbÞ ¼ 1

2
δab; ðA1Þ

the following relations hold:

TrðTaXÞTrðTaYÞ ¼ 1

2
TrðXYÞ − 1

2N
TrðXÞTrðYÞ; ðA2Þ

TrðTaXTaYÞ ¼ 1

2
TrðXÞTrðYÞ − 1

2N
TrðXYÞ; ðA3Þ

with arbitrary N × N matrices X, Y.
17The Witten effect for the Nambu monopole in the SM was

argued in Ref. [15].
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Using these relations, we have

ðΦ†σaΦÞðΦ†σaΦÞ ¼ Tr½σaΦΦ†σaΦΦ†�
¼ 2TrðΦΦ†ÞTrðΦΦ†Þ − TrðΦΦ†ΦΦ†Þ
¼ ðΦ†ΦÞ2: ðA4Þ

Other useful relations can also be derived (see Ref. [12]).

APPENDIX B: BACKGROUND
GAUGE CONDITION

Here we consider perturbations around a background
field configuration in the SUð2ÞW ×Uð1ÞY gauge theory.
Due to the gauge symmetry, perturbations in the direction
of the gauge orbit should be identified and any physical
perturbations should be orthonormal to the gauge orbit.
This is called the background gauge condition. Let δWμ,
δYμ be the perturbations around the background fields W̄μ,
Ȳμ. The orthonormality requires that the following con-
ditions hold:

hδWμjδηWμi ¼ 0; ðB1Þ

hδYμjδχYμi ¼ 0; ðB2Þ

where δηWμ and δχYμ are the gauge transformations with
the gauge functions ηaðxÞ and χðxÞ, respectively.
Using δηWμ ¼ D̄μη and δηYμ ¼ ∂μχ, these conditions

can be rewritten as

Z
d4xTrðδWμD̄μηÞ ¼ 0; ðB3Þ
Z

d4xδYμ∂μχ ¼ 0 ðB4Þ

for any ηðxÞ and χðxÞ. By integrating them by parts, we
obtain

D̄μδWμ ¼ ∂μδYμ ¼ 0; ðB5Þ
which are called the background gauge conditions.

APPENDIX C: SINGULAR GAUGE FOR THE
NAMBU MONOPOLE IN THE 2HDM

Here we derive the Dirac quantization condition for the
Nambu monopole in the 2HDM in a singular gauge. We
again start from Eqs. (5.10)–(5.12). Recall that the vector
na is Eq. (5.25).
By performing the gauge transformation

U ¼ eiσ
3φ=2eiσ

2Θ=2e−iσ
3φ=2

¼
�

cos Θ
2

− sin Θ
2
e−iφ

sin Θ
2
eiφ cos Θ

2

�
; ðC1Þ

which is singular only at θ ¼ π, na transforms as

n → U†nU ¼ σ3

2
; ðC2Þ

or, equivalently, na → ð0; 0; 1Þ. Under this transformation,
the two doublets transform as

Φ1 →U†Φ1 ¼
�
e−iφðf1c1=2 cosΘ2þh1s1=2 sinΘ

2
Þ

h1s1=2 cosΘ2 −f1c1=2 sinΘ
2

�
; ðC3Þ

Φ2 → U†Φ2 ¼
� ðh2c1=2 cos Θ2 þ f2s1=2 sin Θ

2
Þ

eiφðf2s1=2 cos Θ2 − h2c1=2 sin
Θ
2
Þ

�
; ðC4Þ

with s1=2 ¼ sin θ
2
and c1=2 ¼ cos θ

2
. Equation (C3) is singular

only at θ ¼ π, while Eq. (C4) is regular everywhere.
This singular transformation also gives a singularity at

θ ¼ π to the SUð2ÞW gauge field as

gWi →U†ðgWi − i∂iÞU

¼ − cos2 θW
σ3
2
jðθÞ cosθ∂iφþU†

�
σa
2
ϵiab

xb

r2
− i∂i

�
U

¼ − cos2 θW
σ3
2
jðθÞ cosθ∂iφþ σ3

2

1− cosθ
r sinθ

φ̂i

þOðθ− πÞ; ðC5Þ
where the last term denotes some regular terms that vanish
at θ → π. Equation (C5) has a singularity at θ ¼ π. In this
gauge, the electromagnetic gauge field is [note that Yi → 0
at θ → π due to kðπÞ ¼ 0]

Ai ¼ − sin θWW3
i þ cos θWYi

¼ sin θW
g

ð1 − cos θÞ∂iφþOðθ − πÞ; ðC6Þ

and we have

∂ ½iAj� ¼
2π sin θW

g

�
1 −

z
jzj
�
δðxÞδðyÞ: ðC7Þ

On the other hand, the Z gauge field is

Zi ¼ − cos θWW3
i − sin θWYi

¼ cos θW
gr

1 − cos θ
sin θ

φ̂i þOðθ − πÞ

¼ cos θW
g

ð1 − cos θÞ∂iφþOðθ − πÞ; ðC8Þ

which also has a line singularity at θ ¼ π.
Let us consider a test particle moving around the line

singularity, i.e., with φ from 0 to 2π and θ ∼ π, and
calculate the AB phase θAB:

exp½iθAB� ¼ exp

�
i
I
θ≈π

dxiðeQAi þ gZTZZiÞ
�
; ðC9Þ

where Q and TZ are defined in Eqs. (5.47) and (5.48).
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Equation (C9) reads

ðC9Þ ¼ exp

�
i
I
θ≈π

dxi

�
−gT3W3

i þ g0
Y
2
Yi

��

¼ exp

�
−iT3

I
θ≈π

dxið1 − cos θÞ∂iφ

�

¼ exp ð−4πiT3Þ: ðC10Þ

Since the line singularity is a gauge artifact, it must not
be observed, and we thus obtain the condition

4πT3 ¼ 2πnðn ∈ ZÞ ⇔ T3 ¼
n
2
; ðC11Þ

which is the same condition as Eq. (5.52) derived from the
argument on the fiber bundle. Note that we have to take into
account the line singularities in not only Ai but also Zi.
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