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In this work, we use a specific parametrization of the hypergeometric approximants [the one by Mera
et al. in Phys. Rev. Let. 115, 143001 (2015)] to approximate the seven-loop critical exponent ν for the
Oð2Þ-symmetric ϕ4 model. Our prediction gives the result ν ¼ 0.6711ð7Þ which is compatible with
the value ν ¼ 0.6709ð1Þ from the famous experiment carried on the space shuttle Columbia. On the other
hand, our result is also compatible with recent precise theoretical predictions that are excluding the
experimental result. These theoretical results include nonperturbative renormalization group calculations
[ν ¼ 0.6716ð6Þ], the most precise result from Monte Carlo simulations [ν ¼ 0.67169ð7Þ] as well as the
recent conformal bootstrap calculations [ν ¼ 0.67175ð10Þ]. Although our result is compatible with
experiment, the plot of the renormalization group result versus the number of loops suggests that higher
orders are expected to add significantly to the accuracy and precision of the ν exponent in a way that may
favor the theoretical predictions.
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Rychkov wrote a nice commentary [1] on the recent
conformal bootstrap (CB) prediction for the critical expo-
nent ν of the Oð2Þ model [2] which can describe the 4He
superfluid phase transition. The CB work in Ref. [2]
confirmed the most precise result of Monte Carlo (MC)
simulations in Ref. [3,4] but excluded the experimental
result in Ref. [5]. These facts have been summarized by
Rychkov where he outlined the current status of the
predictions of both theoretical and experimental results.
The CB and MC results, in conjunction with the recent
result from nonperturbative renormalization group (NPRG)
calculations [6], have asserted what can be called the λ-
point dispute between theory and experiment which lasts
for a decade. Resummation of the perturbation series for the
associated renormalization group (RG) function, on the
other hand, so far is not precise enough to favor either
experiment or the mentioned nonperturbative theoretical
calculations.
The λ-shape behavior describing the change in specific

heat vs temperature for the helium superfluid transition is
characterized by the critical exponent α. In fact, the specific
heat critical exponent α is related to the exponent ν by the
hyperscaling relation α ¼ 2–3ν. Using this relation, the

critical exponent ν for the 4He superfluid transition can be
extracted from the α value in Ref. [5] as ν ¼ 0.6709ð1Þ.
As mentioned above, this result is in contradiction with
both the recent Monte Carlo (MC) simulation result of
ν ¼ 0.67169ð7Þ [3] and bootstrap calculations of ν ¼
0.67175ð10Þ [1,2]. Note that in Refs. [6,7], it has been
stated that the recent NPRG result [ν ¼ 0.6716ð6Þ] also
excludes the experimental result. In other words, while
MC, CB and NPRG predictions are compatible with each
other, they exclude the result of the famous experiment by
Lipa et al. in Ref. [5] that leads to the above result for ν (all
these results and others are listed in Fig. 1).
The best-known result from resummation of renormal-

ization group functions at fixed dimension (d ¼ 3) is
ν ¼ 0.6703ð15Þ [9]. It is clear that this result is not precise
enough and has not been improved since its appearance in
1998 as explained by Rychkov in Ref. [1]. Also, the
resummation of the ε expansion of RG functions is known
to have slower convergence than the resummation of RG
functions at fixed dimensions [10]. This may explain the
significant difference (see Fig. 1) between theoretical (MC,
CB, NPRG) as well as experimental results and the recent
six-loop (ε-expansion) resummation result [ν¼0.6690ð10Þ]
[8]. In fact, although the fixed-dimension and the
ε-expansion RG results have uncertainties of the same
order of magnitude, one can realize that the experimental as
well as MC and CB results exclude the prediction of the
six-loop ε expansion in Ref. [8]. In this work, we show that
(unlike the six-loop expansion) the seven-loop ε expansion
for the exponent ν of the Oð2Þ model gives a precise result
that enables it to play a role in the λ-point dispute. To do
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that, we use a modified parametrization of the hyper-
geometric resummation algorithm [11].
The hypergeometric approximants suggested by Mera

et al. in Ref. [11] use the hypergeometric function

2F1ða1; a2; b1;−σxÞ to approximate a divergent series with
an n! growth factor (zero radius of convergence). Although
this approximant can give accurate results [12–17], it has
been realized (by the same authors) that it suffers from a
genuine problem as the expansion of 2F1ða1; a2; b1;−σxÞ
has a finite radius of convergence [12,14,18]. To overcome
this issue, the tip of the branch cut is forced to lie at the
origin [14,18]. In Ref. [19], we have shown that the
numerator parameters (a1, a2) represent the strong-
coupling asymptotic behavior and thus knowing them
can accelerate the convergence. On the other hand, employ-
ing parameters from the large-order asymptotic behavior of
the given perturbation series is well known to accelerate the
convergence of resummation algorithms too [10,20]. For
the problem under consideration in this work, the large-
order parameters are more important than the strong-
coupling parameters as the first are well known in quantum
field problems while the second are not. However, the
approximant 2F1ða1; a2; b1;−σxÞ cannot accommodate the
large-order parameters because its expansion does not have
the same form of large-order behavior that the given
perturbation series has. In fact, as stated by Mera et al.,
the parameter σ ought to take large values to account for the
missing n! factorial growth factor [12,18]. Apart from this,
one needs to find a way to change the parametrization of the
approximant to make it able to give explicitly the n! growth
factor of the given series.
In Ref. [21], we suggested the parametrization of the

form 2F1ða1; a2;b1;−b1σxÞ. If the parameter b1 takes large
values, then we have the following limit:

lim
b1→∞

ð2F1ða1; a2;b1;−b1σxÞÞ ¼ 2F0ða1; a2;−σxÞ: ð1Þ

In fact the expansion of 2F0ða1; a2;−σxÞ has an n! growth
factor [22] and thus the parameter σ can be taken from the
large-order behavior of the given series.
For more details of how to apply the new parametriza-

tion, consider a quantity Q whose first four perturbative
terms are known:

QðxÞ ≈ 1þ
X3
1

dixi: ð2Þ

This quantity can be approximated by the hypergeometric
approximant 2F1ða1; a2; b1;−b1σxÞ such that

a1a2σ ¼ d1;

a1ð1þ a1Þa2ð1þ a2Þ
2ð1þ b1Þ

b1σ2 ¼ d2;

a1ð1þ a1Þð2þ a1Þa2ð1þ a2Þð2þ a2Þðb1Þ2σ3
6ð1þ b1Þð2þ b1Þ

¼ d3: ð3Þ

The three unknown parameters ða1; a2; b1Þ are then
obtained by solving the above set of equations.
In case one knows M þ 1 orders, one can approximate

the series for QðxÞ by the generalized hypergeometric
function:

QðxÞ ≈ kþ1Fkða1; a2;……::akþ1; b; b2;…:bk;−bσxÞ; ð4Þ

with M ¼ 2kþ 1. This strategy has been followed in
Ref. [21] and led to accurate results for different examples.
In this work, however, instead of solving for the

parameter b, we shall use it as an input and set it as large
as possible and then solve for the other parameters. This
setting is very suitable to approach the limit in Eq. (1).
Before we use the algorithm to tackle the problem of the

critical exponent ν of the model under consideration, let us
first apply it to an example for which the exact value is
known. To do that, consider the seven-loop expansion of
the reciprocal of the critical exponent ν for the Ising case of
the OðNÞ-vector model (N ¼ 1) [23]:

ν−1 ¼ 2.0000 − 0.33333ε − 0.11728ε2 þ 0.12453ε3

− 0.30685ε4 þ 0.95124ε5 − 3.5726ε6 þ 15.287ε7;

ð5Þ

with σ ¼ 1
3
[10]. The exact value for ε ¼ 2 (two dimen-

sions) is ν ¼ 1. Taking b ¼ 170 (the maximum value one
can use due to Γ functions defining the coefficients of the
hypergeometric series), one can approximate this series by
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FIG. 1. In this graph, we show the predictions from seven-loop
resummation (this work), the recent MC prediction from Ref. [3],
the conformal bootstrap result [2], the NPRG result [6], the
experimental result from Ref. [5], six-loop resummation from
Ref. [8] and the five-loop result from Ref. [9].
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ν−1ðεÞ ≈ 2.0000 − 0.33333ε4F3

�
a1; a2; a3; a4; 170; b2; b3; 170

�
−
1

3

�
ε

�
: ð6Þ

We find the following values for the parameters:

a1 ¼ 0.0411154; a2 ¼ 13.3176;

a3 ¼ −0.470683; a4 ¼ −2.29587

b1 ¼ −2.28074; b2 ¼ 0.245782:

For ε ¼ 2, these parameters lead to the result νð2Þ ¼
0.977203. To see how our idea improved the prediction
of the algorithm, we obtained ν−1 by using the original
hypergeometric approximant (with the parametrization
presented in Ref. [11]) which has the parametrization

ν−1ðεÞ≈2.0000−0.33333ε3F2ða1;a2;a3;b1;b2;dεÞ: ð7Þ

This parametrization gives the result νð2Þ ≈ 0.964952.
Note that, the more sophisticated Borel algorithm with
conformal mapping resummation for the six-loop expan-
sion of the same series in Ref. [8] gives the result
νð2Þ ≈ 0.952ð14Þ. Although the algorithm we follow here
in this work might be the simplest one, it gives an accurate
result as shown above. One can even refine the result by
taking larger values for the parameter b but in this case to
overcome the machine limit one can use the limiting case

ν−1ðεÞ ≈ lim
b→∞

�
2.0000 − 0.33333ε4F3

�
a1; a2; a3; a4; b; b2; b3; b

�
−
1

3

�
ε

��

¼
�
2.0000 − 0.33333ε4F2

�
a1; a2; a3; a4; b2; b3;

�
−
1

3

�
ε

��
:

In such a case one has to resort to the representation of the
hypergeometric function 4F2ða1; a2; a3; a4; b2; b3; ð− 1

3
ÞεÞ

in terms of the Meijer-G function [24]. Using this and the
value of b ¼ 105, we get the value νð2Þ ¼ 0.98499. This
example shows clearly that the simple algorithm we use in
this work can give challenging results and thus is trusted to
tackle the λ-point anomaly for the 4He superfluid phase
transition as our main problem.
Now consider the seven-loop critical exponent for the

Oð2Þ case given by [23]

ν−1¼2.0000−0.40000ε−0.14000ε2þ0.12244ε3

−0.30473ε4þ0.87924ε5−3.1030ε6þ12.419ε7; ð8Þ

which again can be approximated by (σ ¼ 3=10)

ν−1ðεÞ ≈ 2.0000 − 0.40000ε4F3

×

�
a1; a2; a3; a4; b; b2; b3; b

�
−

3

10

�
ε

�
:

ð9Þ

again taking b ¼ 105 and ε ¼ 1, we get the result
ν ¼ 0.67094. Note that the five-loop resummation for
the same series gives ν ¼ 0.6680ð35Þ [9] while the six-
loop resummation gives ν ¼ 0.6690ð10Þ [8] and the exper-
imental result is 0.6709(1) [5]. Apart from the uncertainty
in the calculation which we did not discuss yet, one can

realize that our result shows a significant improvement of
the accuracy of the critical exponent ν obtained previously
from the resummation of the ε expansion of RG functions.
This can be clarified by comparing with other nonpertur-
bative predictions like the Monte Carlo result which gives
ν ¼ 0.67169ð7Þ [3], the NPRG result that gives the
prediction ν ¼ 0.6716ð6Þ [6] and the conformal bootstrap
prediction result ν ¼ 0.6719ð11Þ [25]. However, as we
mentioned above, a more precise bootstrap result of
ν ¼ 0.67175ð10Þ recently appeared in Refs. [1,2].
To know what is the situation of the precision of our

resummation result among all other predictions, one needs
to offer an estimate for the size of the error in the calculated
result. In fact, the sources of errors differ from one
theoretical method to another. For the algorithm we use,
the error is due to the unknown higher terms in the
perturbation series as well as the arbitrary parameters in
the resummation algorithm. Also for MC calculations,
errors are due to Monte Carlo statistical errors and
systematic errors associated with the correction to scaling
[1]. Other methods like NPRG and CB also have their own
sources of errors. So it is very natural to have different
precisions from different methods. An improvement of
some calculation can be decided by comparison with
previous calculations within the same method. For instance,
looking at Fig. 1, one can realize that our seven-loop
prediction shows a significant improvement for both
accuracy and precession when compared to the five-loop
and six-loop predictions.
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The algorithm we follow seems to have no arbitrary
parameters which one can optimize and thus find the
uncertainty in the result. However, a deep understanding
of the simple algorithm we follow can find some implicit

arbitrariness in its parametrization. As an example, one can
find different hypergeometric functions that can approximate
a given order of the perturbation series. For instance, the
seven-loop expansion in Eq. (8) can be approximated by

ν−1ðεÞ ≈ 2.00005F4ða1; a2; a3; a4; a5; b; b2; b3; b4; bð−σÞεÞ;
ν−1ðεÞ ≈ 2.0000 − 0.40000ε4F3ða1; a2; a3; a4; b; b2; b3; bð−σÞεÞ;
ν−1ðεÞ ≈ 2.0000 − 0.40000ε − 0.14000ε2 þ 0.12244ε33F2ða1; a2; a3; b; b2; bð−σÞεÞ;
ν−1ðεÞ ≈ 2.0000 − 0.40000ε − 0.14000ε2 þ 0.12244ε3 − 0.30473ε4 þ 0.87924ε52F1ða1; a2; b; bð−σÞεÞ: ð10Þ

All these approximants are legal and use the same content
of information and have the n! growth factor at the limit
b → ∞. Of course they give different approximations and
the question is which one we should select. To answer this
question, one also notices that the six-loop resummation
can also be approximated by different hypergeometric
functions. A natural choice is then to select a pair of
approximants for six and seven loops that has the fastest
convergence or equivalently we select the pair that min-
imizes the difference (Δ) defined as

Δ ¼ jν7k − ν6k0 j; ð11Þ

where k defines the hypergeometric approximant (kFk−1)
used while superscripts denote the number of loops
involved. We found that the approximant

ðν−1Þ74 ¼ 2.0000

− 0.40000ε 4F3ða1; a2; a3; a4;b; b2; b3;bð−σÞεÞ;

for the seven-loop resummation and the approximant

ðν−1Þ64 ¼ 2.0000 − 0.40000ε

− 0.14000ε23F2ða1; a2; a3; b; b2; bð−σÞεÞ;

for the six-loop resummation give the smallest difference
of Δ ¼ 0.0004. This could be used as an uncertainty and
our seven-loop resummation result can be taken as
ν ¼ 0.67094ð4Þ. This method of error calculation has been
used in different references (see for instance Sec. 16.6.1 in
Ref. [10]).
We have another source of arbitrariness which can be

taken from the form of the large-order behavior of the given
perturbation series as

0.3 0.4 0.5 0.6
1.45

1.46

1.47

1.48

1.49

FIG. 2. The hypergeometric approximant in Eq. (9) for the
seven-loop resummation of ν−1 vs σ which defines the width
w ¼ x − y of the most stable region of the curve. The curve falls
down for σ < 0.2 (not shown in the figure).
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FIG. 3. In this figure, we plot our hypergeometric resummation
results for the three-dimensional critical exponent ν of the Oð2Þ
model vs the number of loops (n) used. One can realize that the
distribution of the data is not saturated enough to claim that the
seven-loop result is the best RG result that one can achieve and
thus shows the need for more orders.
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QðxÞ ≈
Xn
0

dixi;

dn ¼ αn!ð−σÞnnb
�
1þO

�
1

n

��
; n → ∞: ð12Þ

In fact, the parameter α for the given model is known and
has the value α ¼ 5.892 × 10−4 [26] but none of our
equations have been constrained to account for it. The
explicit form of α [Eqs. (4.19,4.10) in Ref. [26] ] depends
on 1

Nþ8
¼ σ

3
which means that one can account for its

variation by varying the parameter σ and then finding the
variance of ν74 defined as [8]

Varσðν7kðσÞÞ ¼ min
x≤σ≤y

ðmax
x≤σ≤y

ðν7kðσÞ − ν7
k
0 ðσ0ÞÞÞ:

The width w ¼ y − x is chosen according to the stability
region in the curve of the seven-loop exponent ν7kðσÞ
(see Fig. 2).
Based on the shape of the curve in Fig. 2, we choose

w ¼ 0.2 where we vary σ around its exact value of 0.3 from
0.2 to 0.4. We use an adapted form of the method detailed
in Ref. [8] where our error can be taken as the minimum of

Δðσ; k; k0Þ ¼ jν7kðσÞ − ν6k0 ðσÞj þ Varσðν7kðσÞÞ: ð13Þ

This form of error is closer in shape to the one used in
Ref. [8] but adapted in view of the shape in Fig. 2 as well as
the behavior of the six-loop result vs σ (not shown in
figures). The error value obtained is Δmin ≈ 7 × 10−4 while
the predicted value of ν is 0.6711(7). As shown in Fig. 1,
this result shows a significant improvement to the resum-
mation results of the same series in the literature. In fact,
one can easily realize that by moving from six to seven
loops, the RG result is more precise and accurate as it has
been shifted toward the MC and BC results.
Our prediction is compatible with both experiment as

well as MC, BC and NPRG results. However, in view of
Fig. 3, we see that the seven-loop result is not sufficiently
leveling off the curve for ν vs the number of loops n. In fact,
the tangent of the curve becomes smaller as a function of n
but not small enough to claim a stable shape. This shape of
the curve is thus suggesting a possibility for smaller error as

well as a higher value in the exponent ν to come from future
higher orders. In other words, the future eight-loop result
might exclude the experimental result the sameway NPRG,
MC and CB results do. For a summary of comparison
between our results and other methods, see Table I.
To conclude, we used a simple parametrization of the

hypergeometric approximant that enables it to accommo-
date the large-order parameters for the sake of convergence
acceleration. The modified hypergeometric algorithm was
tested first for the two-dimensional Ising case where the
exact critical exponent is well known. The prediction of the
modified hypergeometric algorithm for the seven-loop ε
expansion is very close to the exact result and better than
the prediction of the unmodified algorithm as well as the
six-loop resummation result from the Borel algorithm.
Motivated by the success of the modified hypergeomet-

ric algorithm in the two-dimensional case, we tackled the
controversial three-dimensional case for ν of the Oð2Þ
model. In fact, for ε ¼ 1, one expects even better con-
vergence than the two-dimensional case. We calculated the
exponent ν for the Oð2Þ-symmetric case and got the value
ν ¼ 0.6711ð7Þ which is compatible with the experimental
result [ν ¼ 0.6709ð1Þ] as well as the theoretical calcula-
tions from the NPRG method [ν ¼ 0.6716ð6Þ], the more
precise CB result (ν ¼ 0.67175ð10Þ) and the MC result
[ν ¼ 0.67169ð7Þ]. Note that NPRG, CB and MC results
exclude the experimental one.
The plot of the exponent ν vs the number of loops

suggests that the seven-loop result in this work might not be
the most precise or accurate prediction that one can obtain
from a resummation of RG perturbations. The shape of the
curve reinforces the expectation of a more accurate as well
as precise result to come from the future eight-loop order of
the perturbation series. In other words, there is still room
for the RG result to agree with both MC and CB predictions
but exclude the experimental result.
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TABLE I. Our resummation for the seven-loop critical exponent ν for theOð2Þ scalar ϕ4 model in three dimensions. We list also in the
table the famous experimental result from Ref. [5], the most precise result from Monte Carlo simulations [3], the NPRG prediction from
Ref. [6] as well as conformal bootstrap results [1,2]. To show the significant improvement that the seven-loop resummation adds to the
previous resummation results of the same series, we list the Borel algorithm with conformal mapping (BCM) results for five loops [9]
and six loops from Ref. [8].

Method ε7: This work MC: [3] Experiment: [5] CB: [1,2] NPRG: [6] ε6; BCM: [8] ε5; BCM: [9]

ν 0.6711(7) 0.67169(7) 0.6709(1) 0.67175(10) 0.6716(6) 0.6690(10) 0.6680(35)
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