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We calculate the three- and four-loop corrections to the massless fermion propagator in three-
dimensional quenched quantum electrodynamics with four-component fermions. The three-loop correction
is finite and gauge invariant but the four-loop one has singularities except in the Feynman gauge where it is
also finite. Our results explicitly show that, up to four loops, gauge-dependent terms are completely
determined by lower order ones in agreement with the Landau-Khalatnikov-Fradkin transformation.
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I. INTRODUCTION

Three-dimensional quantum electrodynamics (QED3) is
an archetypal gauge field theory model of strongly inter-
acting relativistic planar fermions. In Euclidean space, it is
described by the action

S ¼
Z

d3x

�
1

4
F2
μν þ Ψ̄iγμDμΨi

�
; ð1Þ

where Dμ ¼ ∂μ − ieAμ, i ¼ 1; 2;…nf with nf the number
of four-component massless Dirac fermion flavors,
Euclidean gamma matrices satisfy γ†μ ¼ γμ, fγμ; γνg ¼ δμν
and the gauge coupling constant e2 has dimension of mass.
For the past 40 years, this super-renormalizable model

served as a toy model for exploring several key problems
in quantum field theory such as infrared (IR) singularities
in low-dimensional massless particle theories [1–5] (see
recent progress in [6,7]) and dynamical symmetry breaking
and fermion mass generation [8–18] (see recent progress
in [19–23]). In the last 30 years, considerable interest in
QED3 also came from its applications to condensed matter
physics systems with relativisticlike gapless quasiparticle

excitations at low-energies such as high-Tc superconduc-
tors [24–26], planar antiferromagnets [27], and graphene
[28] (for graphene, see reviews in Ref. [29]).
A slight simplification of QED3 takes place in the

so-called quenched limit in which closed fermion loops
are set to zero (this amounts to take nf ¼ 0). This limit
arose as a useful approximation in the study of the lattice
representation of four-dimensional quantum chromody-
namics (QCD4), see [30], where it was shown that a
reasonable estimate of the hadron spectrum could be
obtained by eliminating all internal quark loops. The
quenched limit, and other approximation schemes such
as the ladder (rainbow) approximation, were used in
QED4 for a long time to try solving nonperturbatively a
more manageable truncated set of Schwinger-Dyson equa-
tions (see Refs. [31–33] and references therein to earlier
papers). The quenched approximation in QED4 is now still
in use in order to include QED effects in lattice QCD
calculations (see the recent Ref. [34] and discussions
therein).
In a recent paper [7], we studied the gauge covariance

of the massless fermion propagator of quenched QED3 in
a linear covariant gauge in dimensional regularization
(following Refs. [33,35,36]). At this point, let us note that,
as in the four-dimensional case, both the fermion propa-
gator and vertex function of QED3 possess the important
property of being covariant under the Landau-Khalatnikov-
Fradkin (LKF) transformations [37,38]. These transforma-
tions, which have a simple form in coordinate space, allow
one to compute Green’s functions in an arbitrary covariant
gauge provided they are known in a particular gauge (for
applications of the LKF transformations to QED3, see the
papers [39] and the review in Ref. [40]).

*pikelner@theor.jinr.ru
†vgusynin@bitp.kiev.ua
‡kotikov@theor.jinr.ru
§teber@lpthe.jussieu.fr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 105012 (2020)

2470-0010=2020=102(10)=105012(9) 105012-1 Published by the American Physical Society

https://orcid.org/0000-0002-5155-2986
https://orcid.org/0000-0003-2378-3821
https://orcid.org/0000-0002-1408-2735
https://orcid.org/0000-0002-4792-2569
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.105012&domain=pdf&date_stamp=2020-11-10
https://doi.org/10.1103/PhysRevD.102.105012
https://doi.org/10.1103/PhysRevD.102.105012
https://doi.org/10.1103/PhysRevD.102.105012
https://doi.org/10.1103/PhysRevD.102.105012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The analysis of the LKF transformation of the
massless fermion propagator of quenched QED3 carried
out in [7], led us to reconnect with the long-standing
issue of IR singularities in QED3. In particular, we
concluded that, exactly in three dimensions (d ¼ 3), all
of the odd perturbative coefficients of the massless
fermion propagator, starting from the third order one,
have to vanish in any gauge in order for quenched
QED3 to be free of (IR) singularities. It turns out that
there is a widespread opinion that quenched perturbation
theory is IR finite [1] and recent lattice studies of
quenched QED3 seem to confirm it [6]. Usually, the
presence of IR divergences is related to fermion loops.
This is because, for dimensional reasons, higher-order
diagrams contain higher powers of momentum in the
denominator. For example, the two-loop fermion self-
energy diagram with vacuum polarization gives rise to a
logarithmic divergence [1] which corresponds to a 1=ε
pole in dimensional regularization in d ¼ 3 − 2ε [2].
However, for the same dimensional reasons, higher-
order quenched diagrams can lead to IR divergences,
too. Indeed, it is easy to see that, at four loops, e.g., the
diagram with an insertion of three one-loop fermion
self-energies into a fermion line is logarithmically
divergent in gauges different from the Landau gauge
(this was for the first time mentioned in Ref. [3]). The
question then is whether IR divergences of separate
diagrams cancel in their sum or not. The LKF trans-
formation by itself is unable to provide explicit values
for the coefficients in a given gauge. Order by order
calculations are therefore required (at least in a given
gauge) in order to analyze the IR finiteness of QED3 in
accordance with our statement above.
In the present paper, we undertake this task and explicitly

calculate the fermion propagator of quenched QED3 at
three and four loops in an arbitrary linear covariant gauge
and in dimensional regularization in d ¼ 3 − 2ε. We find
that the three-loop correction is finite and gauge invariant.
Accordingly, the four-loop one has singularities. Our exact
results show that, up to four loops, gauge-dependent terms
are completely determined by lower order ones in perfect
agreement with properties of the LKF transformation
following the study [7].
The paper is organized as follows. In Sec. II, we specify

our notations, provide some details of the calculations and
present the results for the three and four-loop corrections
to the fermion propagator. In Sec. III, we briefly recall the
LKF transformation for the fermion propagator in
momentum space and check its consistency with our
four-loop perturbative results. Some predictions beyond
four-loops are also presented. In Sec. IV, a representative
sample of the computed diagrams is presented by focusing
on the Landau gauge. The results are summarized and
discussed in Sec. V.

II. FERMION PROPAGATOR: THREE- AND
FOUR-LOOP COEFFICIENTS

A. Notations

In the following, we shall consider a Euclidean space of
dimension d ¼ 3 − 2ε. The general form of the fermion
propagator SFðp; ξÞ in some gauge ξ reads:

SFðp; ξÞ ¼
i
p
Pðp; ξÞ; ð2Þ

where the tensorial structure, e.g., the factor p containing
Dirac γ matrices, has been extracted and Pðp; ξÞ is a scalar
function of p ¼

ffiffiffiffiffi
p2

p
.

It is convenient to first express Pðp; ξÞ as

Pðp; ξÞ ¼ 1

1 − σðp; ξÞ ; ð3Þ

where the one-particle-irreducible part, σðp; ξÞ, can be
represented as

σðp; ξÞ ¼
X∞
m¼1

σmðξÞ
�

α

2
ffiffiffi
π

p
p

�
m
�
μ̄2

p2

�
mε

: ð4Þ

Here, σmðξÞ are the coefficients of the loop expansion of the
fermion self-energy, α ¼ e2=ð4πÞ is the dimensionful
coupling constant and μ̄ is the MS scale.
Following our previous paper [7], the fermion propaga-

tor can be equivalently represented as

Pðp; ξÞ ¼
X∞
m¼0

amðξÞ
�

α

2
ffiffiffi
π

p
p

�
m
�
μ̄2

p2

�
mε

; ð5Þ

where amðξÞ are now the coefficients of the loop expansion
of Pðp; ξÞ. As will be seen in Sec. III, the form (5) is
convenient to study the properties of the propagator under
the LKF transformation.
In both Eqs. (4) and (5), the expansion has been written

in terms of the dimensionless ratio α=p with an additional
conventional factor of 1=ð2 ffiffiffi

π
p Þ. Its exact form is coming

from the consideration of four-dimensional QED in [35]
(see also Ref. [7] and discussions therein). Up to four loops,
the coefficients amðξÞ and σmðξÞ are related to each other as

a1 ¼ σ1; a2 ¼ σ2 þ σ21; a3 ¼ σ3 þ 2σ2σ1 þ σ31;

a4 ¼ σ4 þ 2σ3σ1 þ σ22 þ 3σ2σ
2
1 þ σ41: ð6Þ

B. Calculational details

In quenched QED at one, two, three, and four loops we
encountered 1, 2, 10, and 74 fermion self-energy diagrams,
respectively. Let us note that the two-loop diagrams of
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QED3 were considered earlier in [1,2]. These papers mainly
focused on the IR divergent two-loop diagram (with a
fermion loop insertion) which is absent in the quenched
case. In [2], higher order diagrams were considered but still
with fermion loop insertions. To the best of our knowledge,
the two-loop quenched QED3 fermion propagator was
calculated in [39]. Moreover, all two-loop diagrams of
QED3 were computed in [41] (see also the last paper in
[29]) and their ε expansion provided near d ¼ 3. The fact
that the first singularities in the fermion propagator of
QED3 without vacuum polarization arise at four loops was
mentioned for the first time in Ref. [3]. However, three- and
four-loop corrections to the quenched QED3 fermion
propagator have not been previously computed. As will
be shown in the next subsections, the three-loop correction
is finite but IR singular diagrams do appear at four loops in
the quenched case (in agreement with [3]) and there are
42 of them, the sum of which will be analyzed in the
following.
In order to compute all of these diagrams and extract

from them the unrenormalized fermion self-energy of
QED3 up to four loops, we first considered the correspond-
ing results for the unrenormalized QCD quark propagator.
The exact expression for the latter, written in terms of a set
of master integrals and valid for arbitrary space-time
dimension d and arbitrary gauge-fixing parameter ξ, is
available up to four loops from [42] and also shipped with
the FORCER package [43] designed for the reduction of
four-loop massless propagator-type integrals. The fermion
propagator of QEDd is obtained from this QCDd result
upon performing the following substitutions:

CA ¼ dabcdA dabcdA ¼ dabcdA dabcdF ¼ 0;

CF ¼ dabcdF dabcdF ¼ TF ¼ 1: ð7Þ

After that, the quenched limit of QEDd is obtained by
setting nf ¼ 0 which discards all diagrams with closed
fermion loops.
The main remaining task was then to compute all

required propagator-type master integrals in an ε expansion
around d ¼ 3 (ε ¼ ð3 − dÞ=2). This could be achieved with
the help of the dimensional recurrence and analyticity
(DRA) method [44], which expresses the integrals in the
form of fast convergent sums. The latter are then evaluated
with high-precision numerical values. This in turn allows us
to reconstruct the analytic expression of master integrals (in
any space-time dimension) with the help of the PSLQ

algorithm [45] once an adequate basis of transcendental
constants is defined.
We note that near d ¼ 4 (ε ¼ ð4 − dÞ=2), such calcu-

lations yield the expansions of all needed masters [46]. The
results are well-known and available in input form for the
SUMMERTIME package [47] with the package itself and also
from [48].

The case d ¼ 3 − 2ε is less well known and was
considered in the paper [47] from which the ε expansion
of most of the needed master integrals for the current
calculation is available. The successful reconstructions of
[47] around d ¼ 3, were carried out using a basis of
transcendental constants consisting only of multiple zeta
values (MZV) and alternating MZVs. As remarked already
in [47], such a basis is too restrictive to enable the
representation of all of the masters and some of them were
left unreconstructed.
In our work we successfully reconstructed all the needed

integrals and found agreement with results of [46] using a
basis consisting of MZV and alternating MZVs. On top of
that, we encountered one of the constants left unknown in
[47]. By a careful analysis of the representation of one such
integrals with known closed form expressions in the form
of the 3F2 functions [41],

1 we found that elements of its ε
expansion belong to the set of generalized polylogarithms
(GPLs) with fourth-root of unity alphabet. Extending our
PSLQ basis to include the full set of GPLs with fourth root of
unity arguments we successfully reconstructed its analyti-
cal value

ð8Þ

where we factored out the four-loop sunset integral to
follow the normalization prescriptions of [47]. In Eq. (8),
C ¼ Cl2ðπ=2Þ is Catalan’s constant and ClnðθÞ is Clausen’s
function which, for even weight, can be expressed through
the classical polylogarithm as Cl2kðθÞ ¼ ImLi2kðeiθÞ. As
can be understood from the above result, the required
extension of the basis of transcendental constants includes
polylogarithms with fourth-root of unity argument, in
the present case Clausen’s function (see, for example,
Ref. [50], where GPLs with second, fourth, and sixth root
of unity arguments appear).

C. Results for the fermion self-energy (4)

We now present our results for σmðξÞ, which can be
represented as

σmðξÞ ¼ σmð0Þ þ ξσ̃mðξÞ; ð9Þ

where we have explicitly separated the part independent
from ξ which corresponds to the full result in the
Landau gauge.

1The results of [41] were obtained based on the general
approach of Ref. [49], where a class of more complicated
diagrams with three arbitrary indices was studied and the
corresponding results were expressed in terms of combinations
of 3F2-hypergeometric functions of unit argument.
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Considering the first two orders of the ε expansion, we
have for the coefficients σmð0Þ

σ1ð0Þ ¼ 0; ð10aÞ

σ2ð0Þ ¼ π

�
3π2

4
− 7 − ðð1 − 3l2Þπ2 þ 12Þε

�
; ð10bÞ

σ3ð0Þ ¼ π5=2
�
43π2

4
− 105þ ε

�
2ð185 − 105l2 þ 137ζ3Þ

−
π2

6
ð451 − 171l2Þ

��
; ð10cÞ

σ4ð0Þ ¼ π2
��

43

6
π2 − 70

�
1

ε
þ σ̄4 þ

5954

3
þ 173

18
π2

−
513

10
π4
�
; ð10dÞ

where σ̄4 contains the most complicated part

σ̄4 ¼ 209l42 þ 5016a4 þ 4264Cl4ðπ=2Þ

þ
�
533

3
C − 930l2

�
π2 þ 2078

3
ζ3; ð11Þ

and

l2 ¼ ln 2; a4 ¼ Li4ð1=2Þ; ζn ¼ Linð1Þ; ð12Þ

where Lin are polylogarithms.
With the same accuracy, we have for the coefficients

σ̃mðξÞ

σ̃1ðξÞ ¼ −
π3=2

2
ð1 − 2ð1 − l2ÞεÞ; ð13aÞ

σ̃2ðξÞ ¼ πξ

�
1 −

π2

4
− ð4 − ð1 − l2Þπ2Þε

�
; ð13bÞ

σ̃3ðξÞ ¼ π5=2
�
3π2

4
− 7þ

�
1 −

π2

8

�
ξ2

þ ε

�
−40 − 14l2 þ

π2

2
ð4þ 9l2Þ

þ
�
2l2 − 4þ 3π2

4
ð1 − l2Þ

�
ξ2
��

; ð13cÞ

σ̃4ðξÞ ¼ π2
��

70 −
43π2

6

�
1

ε
þ 520

3
−
π2

9
ð881þ 42l2Þ

þ 129π4

27
−
548

3
ζ3 þ ξ

�
28 −

33π2

4
þ 9π4

16

�

þ ξ3
�
−
4

3
þ 3π2

4
−
π4

16

��
: ð13dÞ

We would like to note that the finite parts (ϵ ¼ 0) of the
coefficients σ1ðξÞ and σ2ðξÞ coincide with the correspond-
ing ones in Ref. [41].
Moreover, from Eqs. (10d) and (13d), we notice that

σ4ðξÞ ¼ π2
�
43

6
π2 − 70

� ð1 − ξÞ
ε

þOðε0Þ; ð14Þ

i.e., the total four-loop contribution is finite in the
Feynman gauge.

D. Results for the fermion propagator (5)

As in the case of σmðξÞ in (9), it is convenient to present
the results for amðξÞ in the form

amðξÞ ¼ amð0Þ þ ξãmðξÞ; ð15Þ

where we have also explicitly separated the part indepen-
dent from ξ which corresponds to the full result in the
Landau gauge.
Since σ1ðξÞ ∼ ξ, we see from (6) that aið0Þ ¼ σið0Þ for

i ≤ 3 and thus aið0Þ with i ≤ 3 can straightforwardly be
read off from Eqs. (10a), (10b), and (10c). In agreement
with (6), we have for a4ð0Þ

a4ð0Þ¼ σ4ð0Þþπ2
�
3π2

4
−7

�
2

;

¼ π2
��

43

6
π2−70

�
1

ε
þ σ̄4þ

6101

3
−
8

9
π2−

4059

80
π4
�
;

ð16Þ

where σ̄4 was defined in Eq. (11).
With the same accuracy, we have for the coefficients

ãmðξÞ

ã1ðξÞ ¼ σ̃1ðξÞ ¼ −
π3=2

2
ð1 − 2ð1 − l2ÞεÞ; ð17aÞ

ã2ðξÞ ¼ πξð1 − 4εÞ; ð17bÞ

ã3ðξÞ ¼ π5=2ε

�
43π2

4
− 105þ 2ξ2

�
; ð17cÞ

ã4ðξÞ ¼
π2

3

��
210 −

43π2

2

�
1

ε
þ 520þ 2π2

3
ð32 − 21l2Þ

− 548ζ3 þ 6ξ

�
7 −

3π2

4

�
− ξ3

�
: ð17dÞ

We would like to note that the finite parts (ϵ ¼ 0) of the
coefficients a1ðξÞ and a2ðξÞ coincide with the correspond-
ing ones in Ref. [39] (see also Ref. [7] and discussions
therein).
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From the above results, we see that the coefficients ãmðξÞ
(m ¼ 2, 3, 4) have simpler forms than the corresponding
coefficients σ̃mðξÞ. Moreover, as in the case of σ4ðξÞ, we
notice from Eqs. (16) and (17d) that

a4ðξÞ ¼ σ4ðξÞ þOðε0Þ;

¼ 2π2

3

�
43π2

4
− 105

�
ð1 − ξÞ 1

ε
þOðε0Þ; ð18Þ

i.e., the total four-loop contribution is finite in the
Feynman gauge.

III. LKF TRANSFORMATION

A. Comparison with the perturbative results up
to four loops

It is convenient to introduce the x-space representation
SFðx; ξÞ of the fermion propagator as

SFðx; ξÞ ¼ =xXðx; ξÞ; ð19Þ

which is related by the Fourier transform to SFðp; ξÞ in (2).
The LKF transformation expresses the covariance of the
fermion propagator under a gauge transformation. It can be
derived by standard arguments, see, e.g., [37,38], and its
general form can be written as (see Refs. [35,36]):

SFðx; ξÞ ¼ SFðx; ηÞeDðxÞ; ð20aÞ

DðxÞ ¼ e2Δμ2ε
Z

ddq
ð2πÞd

e−iqx

q4
; Δ ¼ ξ − η; ð20bÞ

in d ¼ 3 − 2ε. The calculation [33] yields:

DðxÞ ¼ −
αΔ
2πμ

Γð1=2 − εÞ
1þ 2ε

ðπμ2x2Þ1=2þε: ð21Þ

The LKF transformation (20) relates [7] the coefficients
akðξÞ and amðξÞ in (5) as

akðξÞ ¼
Xk
m¼0

ð−2ΔÞk−mamðηÞΦðm; k; εÞϕðk −m; εÞ; ð22Þ

where

Φðm; k; εÞ ¼ Γð3=2 −m=2 − ðmþ 1ÞεÞΓð1þ k=2þ kεÞ
Γð1þm=2þmεÞΓð3=2 − k=2 − ðkþ 1ÞεÞ ;

ð23Þ

and

ϕðl; εÞ ¼ Γlð1=2 − εÞ
l!ð1þ 2εÞlΓlð1þ εÞ : ð24Þ

Consider amðξÞ with m ≤ 4. Keeping only the first two
orders of the ε expansion, we have:

a0ðξÞ ¼ a0ðηÞ ¼ 1; ð25aÞ

a1ðξÞ ¼ a1ðηÞ −
π

2
δð1þ 2εðl2 − 1ÞÞa0ðηÞ; ð25bÞ

a2ðξÞ ¼ a2ðηÞ −
4

π
δð1 − 2εðl2 þ 1ÞÞa1ðηÞ

þ δ2ð1 − 4εÞa0ðηÞ; ð25cÞ

a3ðξÞ ¼ a3ðηÞ þ 6πεδa2ðηÞ − 12εδ2a1ðηÞ
þ 2πεδ3a0ðηÞ; ð25dÞ

a4ðξÞ ¼ a4ðηÞ −
2δ

3πε
ð1þ 2εð3 − l2ÞÞa3ðηÞ − 2δ2a2ðηÞ

þ 8δ3

3π
a1ðηÞ −

δ4

3
a0ðηÞ; ð25eÞ

where δ ¼ ffiffiffi
π

p
Δ.

Setting η ¼ 0, i.e., choosing the initial gauge as the
Landau gauge, we can see that our results for ãmðξÞ are
completely determined by alðξÞ, (l < m), i.e., by the
coefficients of lower orders in agreement with the proper-
ties of the LKF transformation.
Moreover, the results of Eqs. (25) are in full agreement

with the perturbative results presented in Sec. II D.

B. Beyond four loops

As can be seen from (18), the singularity of the four-loop
coefficient a4ðξÞ is ∼ð1 − ξÞ, i.e., the fermion propagator
including up to four-loop corrections is finite in the
Feynman gauge. This intriguing fact calls for a closer
examination of higher order contributions and, as a first try,
we will proceed by using the LKF transformation.
We therefore consider a5ðξÞ and a6ðξÞ. From Eq. (22),

we have:

a5ðξÞ ¼ a5ðηÞ þ
45

2
πεδa4ðηÞ −

15

2
δ2a3ðηÞ − 15πεδ3a2ðηÞ

þ 15εδ4a1ðηÞ −
3

2
πεδ5a0ðηÞ; ð26aÞ

a6ðξÞ ¼ a6ðηÞ þ
4δ

5πε
a5ðηÞ − 9δ2a4ðηÞ þ

2δ3

πε
a3ðηÞ

þ 3δ4a2ðηÞ −
12δ5

5π
a1ðηÞ þ

δ6

5
a0ðηÞ: ð26bÞ

We may then take the η gauge as the Feynman gauge and
consider a5ðξÞ and a6ðξÞ with accuracies OðεÞ and Oðε0Þ,
respectively. This yields

a5ðξÞ ¼ a5ð1Þ −
15

2
πðξ − 1Þ2a3 þOðεÞ; ð27aÞ
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a6ðξÞ ¼ a6ð1Þ þ
4ðξ − 1Þ
5

ffiffiffi
π

p
ε

a5ð1Þ þ
2

ffiffiffi
π

p ðξ − 1Þ3
ε

a3

þOðε0Þ; ð27bÞ

where we took into account the fact that the finite part of a3
is gauge-independent.
From these results, we see that the LKF transformation

gives information about the ξ dependence of a5ðξÞ and
a6ðξÞ, as expected. Some singularities may still be hidden
in a6ð1Þ and further understanding of the singular structure
of a6ðξÞ requires explicit five- and six-loop computations
(at least in a specific gauge).

IV. DIAGRAMS IN THE LANDAU GAUGE

As we discussed in Sec. II B, there is a total of 87
diagrams to compute in order to derive the fermion
propagator of quenched QED3 up to four-loops with an
arbitrary gauge-fixing parameter ξ. The results presented in
Secs. II C and II D, were obtained by computing all of these
diagrams.
In order to provide the interested reader with a repre-

sentative sample of the graphs, we focus in this section on
the Landau gauge. The reason is that it is the gauge where
there is the least number of diagrams as most of them
vanish in the limit ξ ¼ 0. Moreover, as discussed in Sec. III,
it is enough to compute the fermion propagator in this
gauge as the LKF transformation allows us to reconstruct
the full ξ dependence of the propagator.
In the Landau gauge, there is no one-loop contribution

and there are 1, 4, and 30 diagrams at two, three, and four
loops, respectively; so there is a total of 35 diagrams.
Focusing on the leading order contribution to the
ε-expansion of these diagrams, the two- and three-loop
contributions will be considered with an accuracyOðεÞ and
the four-loop contributions with an accuracy Oðε0Þ. So,
amongst the 30 four-loop diagrams only the eight divergent
ones need to be considered (the other 22 diagrams are
finite). Moreover, taking into account the fact that mirror
conjugate graphs take the same value, we are left with only
three distinct graphs at three loops and four distinct graphs
at four loops. Hence a total of eight distinct diagrams
contribute to the Landau gauge quenched QED3 fermion
propagator up to four loops.
For the sake of clarity, we explicitly display the distinct

graphs together with their values. The single diagram
contributing at two-loop level is given by

ð28Þ

At three loops, the two benz diagrams in (29c) are mirror
conjugate to each other and therefore share the same value.
Hence, the three distinct three-loop graphs read:

ð29aÞ

ð29bÞ

ð29cÞ

Similarly, the four-loop diagrams are grouped in pairs of
mirror conjugate graphs and the four leading contributions
are given by

ð30aÞ

ð30bÞ

ð30cÞ
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ð30dÞ

Summing all of the above contributions order by order in
the loop expansion yields the coefficients σið0Þ (i ¼ 1–4) in
agreement with Eqs. (10) at the leading order of the ε
expansion. With the accuracy used, these coefficients are
equal to the coefficients aið0Þ (i ¼ 1–4). Substituting them
in Eqs. (25) with η ¼ 0 allows us to reconstruct the gauge-
dependent part of aiðξÞ (i ¼ 1–4) in agreement with
Eqs. (17) at the leading order of the ε expansion.

V. SUMMARY AND CONCLUSION

In the present paper, we have examined the perturbative
structure of the massless fermion propagator of quenched
QED3 up to four loops.
Our study was motivated by our recent publication [7]

where the gauge covariance of the fermion propagator of
quenched QED3 was studied using the LKF transformation
in dimensional regularization (d ¼ 3 − 2ε). This nonper-
turbative transformation revealed an interesting parity
effect, whereby the contributions of odd orders, starting
from the third one, to even orders are accompanied by
singularities taking the form of poles, ε−1, in dimensional
regularization. In turn, even orders produce contributions to
odd ones, starting from the third order, which are ∼ε.
Following arguments in favor of the IR (and ultraviolet)

perturbative finiteness of massless quenched QED3 [1,6]
and therefore assuming the existence of a finite limit as

ε → 0, we concluded in Ref. [7] that, exactly in d ¼ 3, all
odd coefficients a2tþ1ðξÞ in perturbation theory, except a1,
should be exactly zero in any gauge.
This statement needed a check since analytical expres-

sions for the fermion self-energy diagrams were known
only at two-loop order. This is what we have done in the
present paper by computing the three- and four-loop
corrections to the massless fermion propagator, i.e., the
coefficients a3ðξÞ and a4ðξÞ, directly in the framework of
perturbation theory (see Sec. IV for some details on the
computed diagrams in the Landau gauge). We found that
a3ðξÞ is finite and gauge-independent when ε → 0. The
coefficient a4ðξÞ is, on the other hand, singular which
violates the status of IR perturbative finiteness of massless
quenched QED3. The obtained singularity is such that all of
its gauge-fixing dependent terms are entirely determined by
lower order contributions in agreement with the properties
of the LKF transformation.
In closing, let us note that the four-loop singularities

were found to contribute to the coefficient a4ðξÞ with a
factor ∼ð1 − ξÞ, and, thus, a4ðξÞ is finite in the Feynman
gauge. The reason for this intriguing effect is not clear at
present and its elucidation requires additional research.
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