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In this paper, we compute the higher derivative amplitudes arising from shift symmetric-invariant actions
for both the nonlinear sigma model and the special Galileon symmetries, and provide explicit expressions
for their Lagrangians. We find that, beyond leading order, the equivalence between shift symmetries,
enhanced single soft limits, and compatibility with the double copy procedure breaks down. In particular,
we have shown that the most general even-point amplitudes of a colored scalar satisfying the Kleiss-Kuijf
and Bern-Carrasco-Johansson relations are compatible with the nonlinear sigma model symmetries.
Similarly, their double copy is compatible with the special Galileon symmetries. We showed this by fixing
the dimensionless coefficients of these effective field theories in such a way that the arising amplitudes are
compatible with the double copy procedure. We find that this can be achieved for the even-point amplitudes
but not for the odd ones. These results imply that not all operators invariant under the shift symmetries
under consideration are compatible with the double copy.
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I. INTRODUCTION

In recent years, there has been a resurgent interest in
exploring the infrared behavior of field theories and its
implications (see e.g., [1] and references therein). While
most of the attention has been devoted to gauge theories,
interesting results have also been derived regarding the
infrared structure of scalar effective field theories (see e.g.,
[2–9].) For instance, Lorentz-invariant scalar field theories
have been classified in [2,3] according to their soft behavior
and their numbers of derivatives per field. Among these,
there are three interacting theories—the UðNÞ nonlinear
sigma model (NLSM), the Dirac-Born-Infeld (DBI) theory,
and the special Galileon (SGal) [2,10–12]—whose effec-
tive Lagrangians at lowest order in the derivative expansion
each contain a single free parameter. These theories arise
naturally in the Cachazo-He-Yuan (CHY) representation
[11–14], and are known collectively as “exceptional scalar
theories.”
Exceptional scalar theories display two noteworthy

properties at leading order. First, their scattering amplitudes

have an enhanced single soft limit, which follows from
the invariance of the actions under nonlinearly realized
symmetries. Because of this feature, higher-point ampli-
tudes can be obtained recursively from lower-point ones
using a modified version of the Britto-Cachazo-Feng-
Witten (BCFW) recursion relation [15–17]. The second
interesting property of exceptional scalar theories is that
they are part of a web of theories related to each other by
different implementations of color-kinematics replace-
ments [12,18–22]—see Fig. 1 in [23] for a pictorial
summary of these relations.
One of these color-kinematics relations is an especially

relevant one that is known as the double copy. The double
copy construction relates colored theories which satisfy
the color-kinematics duality with their “kinematic square”
[24–26] (for a pedagogical review see [27]). The best-
known version of this relation constructs gravitational1

scattering amplitudes as the double copy of Yang-Mills
(YM) scattering amplitudes. A similar double copy con-
struction connects two of the exceptional scalar theories
mentioned above giving rise to a relation that can be
summarized as NLSM2 ¼ SGal. From this perspective, the
NLSM and SGal can be thought of as scalar analogs of YM
and gravity. In fact, the origin of such correspondence has
been explored in different settings and can be understood
as following from YM2 ¼ gravity after performing a
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1The gravitational theory which corresponds to the double
copy of YM not only consists of a graviton but also a dilaton and
a 2-form field.
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“dimensional reduction” to extract the longitudinal modes
[12,20]. Recently, it has been shown that the double copy
holds not only for scattering amplitudes, but also for both
exact and perturbative classical solutions [28–52].
At lowest order in the derivative expansion, exceptional

scalar theories can be equivalently defined through their
symmetries, their enhanced single soft limits, and color-
kinematics dualities. Importantly though, the inclusion of
higher-order operators spoils this equivalence. For instance,
it is clear that corrections with a large enough number of
derivatives per field will not modify the soft limit, regard-
less of whether or not they preserve the symmetries.
However, the status of color-kinematics duality is a priori
less clear. In this paper, we focus on the NLSM2 ¼ SGal
relation and explore the extent to which higher derivative
corrections to these theories, consistent with their sym-
metries, are compatible with color-kinematics duality.
The analogous question has previously been asked for

the YM2 ¼ gravity correspondence, and the higher-order
operators of YM and their compatibility with the double
copy has been explored in [53–55]. While the Fμ

νFν
λFλ

μ

term was shown to be compatible with the double copy, not
all the OðF4Þ contributions are compatible—not even the
ones arising from the low energy limit of string theory. It is
presently unknown whether there are hidden symmetries
which only give rise to higher-order corrections that satisfy
the color-kinematics duality.
Higher-order corrections to the NLSM amplitudes have

been computed by several different methods. These con-
structions do not rely on the symmetries of the NLSM but
instead focus on satisfying the color-kinematics duality or
on the infrared behavior of the theory. One construction,
[56], consists of a rewriting of the open string amplitude in
terms of a function called the Z-function involved in a
Kawai-Lewellen-Tye (KLT)-like product with the YM
amplitude. The Z-function behaves as a doubly ordered
partial amplitude and satisfies the Kleiss-Kuijf (KK) [57]
and Bern-Carrasco-Johansson (BCJ) [24] relations. By
taking the Abelian and α0 → 0 limits, the Z-function
reduces to the NLSM partial amplitudes.2 Given this, it
has been proposed that the α0 corrections correspond to the
higher-order corrections to the NLSM. It is interesting to
note that all odd-point amplitudes arising from this con-
struction vanish. The theory giving rise to these amplitudes
has been dubbed the Abelian Z-theory. A second con-
struction [58] starts from the most general color-ordered
scalar 4-point amplitude up to eighth order in derivatives
and imposes cyclicity, the KK relations, and the BCJ
relations; all these requirements are highly constraining
and completely fix the scattering amplitude. In fact, this 4-

point amplitude coincides with that of the Abelian Z-
theory. The authors of [58] also considered the 5-point
amplitude, and showed that, while the contribution coming
from the NLSM Wess-Zumino term does not satisfy the
BCJ relations, there is a contribution at 14th order in
derivatives that is compatible with the double copy pre-
scription. Similarly, the 6-point function was computed up
to sixth order in derivatives. A third method [59] assumes
the pion double soft theorems [4,7,60] to compute the
higher-order corrections, and finds the same results as
the Abelian Z-theory plus an additional correction to the
4-point amplitude at order Oðp4Þ which does not obey
the BCJ relations. Earlier work along these lines was
previously performed in [61–63], and more recently in
[2,3,58,64]. This method has now been dubbed the soft
bootstrap. The soft bootstrap consists of constructing a
modified BCFW recursion relation for scattering ampli-
tudes based on the degree σ of its soft theorem, which is
defined by

Anðp1;…; pn−1; ϵpnÞ⟶ϵ→0
ϵσSn þ � � � ; ð1:1Þ

with Sn ≠ 0 a “soft factor” involving the first n − 1
momenta. Recently, it was shown that the soft bootstrap
approach can be extended to Oðp4Þ for the NLSM [65].
In [65], higher-point amplitudes at Oðp4Þ were obtained
by defining soft blocks for four and five pions and using
these as seeds in the soft bootstrap. As well as single-trace
amplitudes, multitrace amplitudes were also constructed,
and both the SUðNÞ and SOðNÞ NLSMs were considered.
Nevertheless, the extension to Oðp6Þ and higher is not
completely obvious. Lastly, another way of obtaining the
higher derivative corrections to the NLSM is through the
“extraction” of the longitudinal modes of YM, i.e., using
the techniques of [19,20]. This was done in [66], where
the leading-order Lagrangian of the Abelian Z-theory was
found from a dimensional reduction of the Fμ

νFν
λFλ

μ

YM term.
Higher-order corrections to the SGal amplitudes have

previously been considered in the literature, for instance in
[58] by using the soft bootstrap. Using this method, one can
compute the higher derivative corrections to a theory from
the leading-order amplitudes by assuming the single soft
limit. It has been shown that the special Galileon is the only
interacting theory satisfying the soft limit with σ ¼ 3
nontrivially [5,9,67]. This limit is not only satisfied non-
trivially by its leading-order amplitude but also by several
higher derivative corrections. It is important to note that not
all higher-order amplitudes can be constructed using the
soft bootstrap approach. This limitation follows from the
fact that the single soft limit can be trivially satisfied at
sufficiently high order; for a term in the Lagrangian of the
form ∂mϕn, the soft limit of degree σ becomes trivial if
σ ≤ m=n. Similarly, one should notice that satisfying a
single soft limit does not imply that the amplitude comes

2We should emphasize that this result does not imply that the
string spectrum includes NLSM scalars, but rather that informa-
tion about their tree-level scattering amplitudes is hidden in the
open string tree-level scattering amplitudes.
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from a shift symmetric theory.3 For example, a term such as
ð∂∂∂πÞ4 would lead to an amplitude with soft degree
σ ¼ 3, but it is not invariant under the special Galileon
symmetries. We should also note that the corrections
computed by using the soft bootstrap method include a
nonvanishing 5-point amplitude. A second approach con-
sists of finding the special Galileon corrections as the
double copy of the NLSM corrections. By considering the
double copy of the Abelian Z-theory one obtains the even-
point special Galileon higher-order amplitudes from [58].
Finally, a third approach towards computing the higher
derivative operators invariant under the special Galileon
symmetry was followed in [68]; the invariant Lagrangian
was constructed up to quartic order in the Galileon field
through a brane construction similar in spirit to [69,70].
From these results, it is clear that the definitions of the

exceptional scalar theories through their enhanced single
soft limits, through their symmetries, or through the double
copy, are only equivalent at leading order, and that this
equivalence breaks down when including higher-order
operators. In this paper, we will explore the definition of
these theories as given by their shift symmetries. We will
not only compute the on-shell scattering amplitudes, but we
will find the shift symmetric Lagrangians giving rise to
them. The Lagrangian is relevant for calculations such as
the classical perturbative double copy in [23]. We will rely

on a coset construction [71–73] to write down the most
general higher derivative corrections that are compatible
with the SGal and NLSM symmetries. We will then
constrain the NLSM coupling constants by demanding
that the on-shell scattering amplitudes satisfy the KK and
BCJ relations in order to be able to construct the double
copy. Here, we follow the approach of [53] and assume that
the double copy for higher-order operators follows in the
same way as it does for the leading-order ones. Our goal is
to understand whether the double copy of the higher-order
corrections to the NLSM obtained this way corresponds to
(a subset of) all possible higher-order corrections to the
SGal theory. A pictorial summary of our results is provided
in Fig. 1.
The rest of this paper is organized as follows. In Sec. II,

we give a short review of the coset construction which will
be used to build the higher derivative corrections to the
NLSM and the SGal. In Sec. III, we analyze the higher
derivative corrections to the SUðNÞ × SUðNÞ → SUðNÞ
NLSM in the large N limit, and in Sec. IV we explicitly
construct the higher-order Lagrangian of the SGal. In
Sec. V we explore the extent to which the higher derivative
corrections introduced in the previous two sections are
compatible with color-kinematics duality. Finally, we dis-
cuss our results and conclude in Sec. VI.

II. SHORT REVIEW OF THE COSET
CONSTRUCTION

We begin by giving a brief review of the coset con-
struction [71] for spontaneously broken space-time sym-
metries [72,73]. This construction is a method that allows
the systematic construction of an effective field theory
Lagrangian for Goldstone modes solely based on the

FIG. 1. Relations between the even-point scattering amplitudes for different definitions of the NLSM and the SGal. Even-point
amplitudes that are compatible with the double copy are also compatible with the NLSM and SGal symmetries. With respect to the odd-
point amplitudes, there is a 5-point amplitude at the 14th derivative order which satisfies the KK and BCJ relations. We have shown that
this amplitude cannot arise from a NLSM Lagrangian involving a Levi-Civita tensor. Nevertheless, it could be possible that it is
compatible with the NLSM symmetries. The double copy of this term leads to a 5-point amplitude at the 32nd derivative order which
could arise from the special Galileon but is not considered here.

3One could check if an amplitude comes from a shift
symmetric theory by looking at the double soft theorem, which
contains information about the algebra that is nonlinearly
realized. Note that the soft bootstrap approach in [58] only
considers single soft limits. Other approaches have considered
double soft limits [59], but their applications are more restrictive
than that of [58].
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knowledge of the symmetry breaking pattern. For recent,
more detailed discussions see also [74–77].
Consider a system whose ground state spontaneously

breaks a symmetry group G, which contains the
Poincaré group as a subgroup, down to a subgroup
H. In general, H may correspond to internal, space-time,
or a mixture of both types of symmetries. We will
denote the broken generators by Xα, the unbroken
translations by Pa, and the remaining unbroken sym-
metry generators by TA. The effective action for the
Goldstone bosons realizes both the unbroken trans-
lations and the broken symmetries nonlinearly, while
the other unbroken symmetries are implemented linearly
and are therefore manifest.
The starting point of a coset construction is a dramati-

zation of the most general symmetry transformation that is
generated by the broken generators together with an
unbroken translation4:

Ωðx; πÞ ¼ ex
aPaeπ

αXα : ð2:1Þ

Since Ω is defined only up to an overall unbroken
symmetry transformation it is an element of a coset, hence
the name of this construction. From this, one can define the
Maurer-Cartan form

Ω−1dΩ ¼ ωaPa þ ωαXα þ ωATA: ð2:2Þ

This is an element of the algebra, and as such it can be
written as a linear combination of all the generators. The
coefficients of this expansion can be calculated explicitly
using the algebra of G, the Baker-Campbell-Hausdorff
formula, and various identities involving matrix exponen-
tials. The coefficients can be conveniently parametrized as
follows:

ωa ¼ Ea
μdxμ; ð2:3aÞ

ωα ¼ ∇aπ
αEa

μdxμ; ð2:3bÞ

ωB ¼ AB
aEa

μdxμ: ð2:3cÞ

It can be shown [73] that the components Ea
μ play the role

of a vielbein, in the sense that the volume element
detðEÞddx is a scalar under G. One can also check that
the quantities ∇aπ

α—usually referred to as “covariant
derivatives” of the Goldstone modes—transform under G
as a (possibly reducible) linear representation of H. Thus,
contractions of such covariant derivatives that are mani-
festly invariant underH are also secretly invariant under the
full group G. Finally, the quantities AB

a transform as the

components of a connection, and can be used to introduce a
covariant derivative as follows:

∇a ≡ ðE−1Þaμ∂μ þ AB
aTB: ð2:4Þ

This definition allows us to calculate higher-order covariant
derivatives of the Goldstones or, for that matter, covariant
derivatives of any field that is charged under H.
We can now used the building blocks introduced above

to write down the most general effective action for the
Goldstone modes, which schematically takes the following
form:

S ¼
Z

ddx detðEÞfð∇aπ
α;∇b∇aπ

α; � � �Þ; ð2:5Þ

where all the indices are contracted in such a way as to
preserve the unbroken symmetries.
If only internal symmetries are broken, the number of

Goldstone modes is equal to the number of broken
generators—this is the usual Nambu-Goldstone theorem
[78,79]. However, when some of the symmetries that are
spontaneously broken are space-time symmetries, one can
usually obtain a nonlinear realization of the symmetries that
involves fewer fields [80]. Specifically, if commutation
with some unbroken translation P relates two multiplets
(under H) X and X0 of broken generators, i.e.,

½P; X0� ⊃ X; ð2:6Þ

then one can eliminate the Goldstones that would be
naively associated with X0 and express them in terms of
Goldstones of X and their derivatives. This is done by
imposing a set of so-called “inverse Higgs constraints”
[81], which amount to setting to zero (a subset of) covariant
derivatives of the Goldstones of X in the same representa-
tion as the Goldstones of X0. Given the transformation
properties of the Goldstone covariant derivatives, this
procedure can be shown to preserve all the symmetries
—including the ones that are nonlinearly realized.

III. HIGHER-ORDER LAGRANGIAN FOR THE
NONLINEAR SIGMA MODEL

In this section, we will consider a NLSM corresponding
to the symmetry breaking pattern GL ×GR → Gdiag, where
GL ¼ GR ¼ Gdiag ≡ G is a simple, compact, and internal
symmetry group. For simplicity we will also restrict our
attention to d ¼ 4 spacetime dimensions. We will first
derive the main building blocks of the effective Lagrangian
using a coset construction, and discuss two different
choices of coset parametrizations. Then, we will focus
on the particular case where G ¼ SUðNÞ, and write down
all possible higher derivative corrections up toOð∂8Þ in the
large-N limit. In this limit, our results will also apply
to G ¼ UðNÞ.

4Throughout this paper we will work with anti-Hermitian
generators. This will simplify the following equations by elimi-
nating many factors of “i”.
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A. Coset construction and lowest-order
effective Lagrangian

Let us choose the broken generators Xα that appear in the
coset parametrization (2.1) to be the generators of, say, GL.
Then the components of the Maurer-Cartan form in (2.1)
read

Ω−1∂μΩ ¼ Pμ þ 2fαβγðU−1∂μUÞβγXα; ð3:1Þ

where fαβγ are the structure constants of the group G, and
Uαβ is the adjoint representation of the abstract group
element eπ

αXα . To derive the result above, we used the fact
that, in the adjoint representation, the generators Xα are
normalized as

TrðXαXβÞ ¼ −
1

2
δαβ ðadjointÞ: ð3:2Þ

Note, however, that Eq. (3.1) follows exclusively from the
algebra of the group and the symmetry breaking pattern,
and it is valid in any representation.
The coset vielbein is trivial because the broken gener-

ators are all internal. Therefore, the covariant derivatives of
the Goldstones πα are simply

∇μπ
α ¼ 2fαβγðU−1∂μUÞβγ: ð3:3Þ

Moreover, the Maurer-Cartan form does not have compo-
nents along the unbroken generators, and therefore the
coset covariant derivatives defined in (2.4) reduce to
ordinary partial derivatives, i.e., ∇μ ¼ ∂μ.
Because the commutators of the broken generators Xα

with the unbroken generators TA of Gdiag read

½TA; Xβ� ¼ −fAβγXγ; ð3:4Þ

the covariant derivatives ∇μπ
α transform in the adjoint

representation under Gdiag. The effective Lagrangian must
be manifestly invariant under all unbroken symmetries, and
therefore up to quadratic order in derivatives it must be5

Lð2Þ
NLSM ¼ F2

8
∇μπ

α∇μπα; ð3:5Þ

where F is the symmetry breaking scale, and the factor of
1=8 has been added for later convenience. At lowest order
in the Goldstones, the covariant derivatives are equal to
ordinary derivatives, i.e., ∇μπ

α ≃ ∂μπ
α þOðπ∂πÞ, and

thus, the canonically normalized fields are ϕα ≡ Fπα=2.
Higher derivative corrections to the Lagrangian (3.5)
contain either higher powers of ∇μπ

α, or additional

ordinary derivatives [as opposed to covariant, because
the coset connection in (3.1) vanishes].
One of the advantages of the coset construction is that it

does not rely on a specific representation of GL × GR. This
makes it explicit that the dynamics of the Goldstone modes
depends solely on the symmetry breaking pattern, and not
on the particular representation of the order parameter that
realizes it. However, it can be instructive to rewrite the
lowest-order Lagrangian (3.5) that we obtained from the
coset construction by assuming a particular representation.
This will allow us to recast our result in a form that the
reader might be more familiar with.
To this end, we notice that Eqs. (3.1) and (3.3) imply that

the following identity must be valid in any representation:

ðU−1∂μUÞIJ ¼ ∇μπ
αðXαÞIJ ð3:6Þ

with UIJ ≡ ðeπαXαÞIJ. In an arbitrary representation of an
arbitrary group, the Xα’s are normalized according to

TrðXαXβÞ ¼ −T δαβ; ð3:7Þ

where T is the index of the representation. For instance, the
indices of the fundamental representations of SUðNÞ and
SOðNÞ are respectively equal to 1=2 and 2 [82]. Using the
result (3.6) together with the normalization condition (3.7),
it is easy to show that the lowest-order Lagrangian (3.5) can
be rewritten as

Lð2Þ
NLSM ¼ F2

8T
Trð∂μU−1∂μUÞ: ð3:8Þ

In the particular case of the fundamental representation of
G ¼ SUðNÞ, this reduces to the standard expression for the
lowest-order Lagrangian in chiral perturbation theory [83].

B. Alternative coset parametrization

The explicit form of the covariant derivatives (3.3)
crucially relies on our choice that the broken generators
Xα entering the coset parametrization (2.1) be the gener-
ators of GL. This choice is convenient because in this case
the Xα’s span a subgroup, but of course it is not the only
possible one, since the notion of broken generator is always
determined only up to the addition of unbroken generators.
Different choices for the Xα’s lead to coset parametrizations
which are related to each other by field redefinitions of the
Goldstones.
Another natural choice for the broken generators is

Xα ¼ 1ffiffi
2

p ðJLα − JRα Þ, where JL;Rα are the generators of

GL;R. It is easy to see that the components of the
Maurer-Cartan form in this case read

Ω−1∂μΩ ¼ Pμ þ
ffiffiffi
2

p
fαβγðU−1∂μUÞβγJLα

þ
ffiffiffi
2

p
fαβγðU∂μU−1ÞβγJRα : ð3:9Þ5We are working with a metric with “mostly minus” signature.
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By rewriting the right-hand side of this equation in terms of
broken (Xα) and unbroken [Tα ¼ 1ffiffi

2
p ðJLα þ JRα Þ] generators,

we can read off the coset covariant derivatives and con-
nections in this new parametrization:

∇μπ
α ¼ fαβγðU−1∂μU − U∂μU−1Þβγ; ð3:10aÞ

Aα
μ ¼ fαβγðU−1∂μU þU∂μU−1Þβγ: ð3:10bÞ

The effective Lagrangian at lowest order in the derivative
expansion is still (3.5), but now with a slightly different
expression for ∇μπ

α. Higher derivative corrections involve
higher powers of ∇μπ

α, or covariant derivatives ∇μf≡
∂μf þ ½Aα

μTα; f�. In what follows, we will use this alter-
native coset parametrization to write down all nonredun-
dant contributions to the NLSM effective Lagrangian up to
eighth order in derivatives. This will enable us to leverage
results that have already been derived in the context of
chiral perturbation theory [84–89].

C. Higher-derivative corrections for G= SUðNÞ
We will now specialize our analysis to the case

where G ¼ SUðNÞ and work in the large-N limit. This
will allow us to focus directly on those terms that are
relevant for the double copy construction—see Sec. VA
for more details—and as an added bonus will also reduce
the overall number of terms we need to include in the
Lagrangian. Moreover, we will omit redundant terms
that can be eliminated by a field redefinition (because
these are proportional to the lowest-order equations of
motion), by performing integrations by parts, or by using
the Bianchi and Levi-Civita identities summarized in the
Appendix A.
Another property that can be used to simplify the

Lagrangian after expanding in powers of the Goldstone
fields is the SUðNÞ completeness relation

ðJαÞIJðJαÞKL ¼ 1

2

�
1

N
δI

JδK
L − δI

LδK
J

�
; ð3:11Þ

where the first term, which would not be present for
G ¼ UðNÞ, leads to terms that are subleading in the
large-N limit. For particular values of N there exist addi-
tional trace relations that can further reduce the basis of
operators in the Lagrangian, but since we are interested in
results that have more general validity we will not employ
these here.
In order to make our notation a little more compact, we

will work with a particular representation of SUðNÞ—the
fundamental representation—and we will define the quantity

ðuμÞIJ ≡∇μπ
αðXαÞIJ: ð3:12Þ

We can then express the lowest-order effective Lagrangian
(3.5) directly in terms of uμ as follows:

Lð2Þ
NLSM ¼ −

F2

4
TrðuμuμÞ: ð3:13Þ

Once again, the canonically normalized field is ϕα ¼
Fπα=2.
The next-to-leading-order correction to this Lagrangian

contains four derivatives and an arbitrary number of
Goldstone fields, and reads [84]

Lð4Þ
NLSM ¼ c1TrðuμuνuμuνÞ þ c2TrðuμuμuνuνÞ þ � � � ;

ð3:14Þ
where the ci’s are constant dimensionless coefficients, and
the ellipsis represents terms with more than one trace,
which are negligible in the large N limit [90]. In the
particular case of N ¼ 3, the first term is redundant and can
be expressed as a combination of the second one with terms
involving more than one trace [83]; for N ¼ 2 the second
term is also redundant, and therefore all terms with four
derivatives can be written as multitrace terms [83].
At fourth order in derivatives, there is an additional

single-trace term that can be added to the Lagrangian. This
is the Wess-Zumino-Witten (WZW) term [91,92], and
unlike the terms in (3.14) it is invariant under G only up
to a total derivative. This term can be built by extending the
base manifold to five dimensions, and introducing the
invariant, exact 5-form

dβ≡ TrðuμuνuλuρuσÞdxμ ∧ dxν ∧ dxλ ∧ dxρ ∧ dxσ:

ð3:15Þ
Up to an overall coefficient, the integral of the 4-form β
over the space-time manifold is the WZW term. It is the
only 4-derivative term in the Lagrangian that gives rise to
odd-point functions. For instance, at leading order in an
expansion in canonically normalized Goldstone fields it
reads

LWZW ≃
c
F5

ϵμνλρϕα∂μϕ
β∂νϕ

γ∂λϕ
δ∂ρϕ

εTrðXαXβXγXδXεÞ:
ð3:16Þ

Notice that the WZW term vanishes for N ¼ 2, whereas for
N ¼ 3 the coefficient c is famously quantized [92].
Moreover, this term breaks the Z2 symmetry ϕ → −ϕ,
also known as intrinsic parity. Thus, this term (and others)
can in principle be omitted, if desired, by requiring that
such a symmetry be preserved.
The 6-derivative corrections to our NLSM Lagrangian

read [85–88]
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Lð6Þ
NLSM ¼ 1

F2
fd1Trðu · uhμνhμνÞ þ d2TrðhμνuρhμνuρÞ þ d3TrðhμνuρhμρuνÞ

þ e1TrðhμνuνuβuγuδÞϵμβγδ þ e2Trð∇μuν∇νuρ∇ρuμÞ þ f1Tr½ðu · uÞ3�
þ f2Trðu · uuμu · uuμÞ þ f3Trðu · uuμuνuμuνÞ þ f4TrðuμuνuρuμuνuρÞ
þ f5TrðuμuνuρuμuρuνÞ þ � � �g; ð3:17Þ

where hμν ¼ ∇μuν þ∇νuμ, and the ellipsis again denotes multitrace contributions which are negligible in the large-N limit.
Moreover, the terms proportional to the ei coefficients break intrinsic parity, just like the Wess-Zumino term does, and give
rise to odd-point amplitudes.
Finally, at eighth order in the derivative expansion we have [89]

Lð8Þ
NLSM ¼ 1

F4
fg1Trð∇μuν∇νuρ∇ρuσ∇σuμÞ þ g2Trð∇μuν∇ρuμ∇σuρ∇νuσÞ

þ g3Trð∇μuν∇ρuν∇μuσ∇ρuσÞ þ g4Trð∇μuν∇ρuσ∇νuμ∇σuρÞ þ � � �g; ð3:18Þ

where the ellipsis now denotes multitrace terms, terms
whose leading contribution in an expansion in powers of
fields contains more than four Goldstones, and odd intrinsic
parity terms.6 In what follows we will not need these terms,
since we will be calculating the 5- and 6-point functions
only up to Oðp6Þ.

IV. HIGHER-ORDER LAGRANGIAN FOR THE
SPECIAL GALILEON

We now turn our attention to the higher derivative
corrections to the special Galileon. Our goal is to find
the most general action invariant under the SGal sym-
metries in four space-time dimensions. These symmetries
act on the SGal field as [10]

δcπ ¼ c; ð4:1aÞ

δbπ ¼ bμxμ; ð4:1bÞ

δsπ ¼ sμνxμxν þ α2sμν∂μπ∂νπ; ð4:1cÞ

where c, bμ, and sμν (the latter being traceless and
symmetric) are the parameters of the symmetry trans-
formations, while α is a constant that is convenient to
introduce for normalization purposes. If π is a canonically
normalized field, then αmust have dimensions of ðmassÞ−3,
i.e., α≡ 1=Λ3. While ordinary Galileons are only invariant
under the first two shift symmetries [93], the special
Galileon also satisfies the third one [10]. The fact that δsπ ∼
x2 endows the leading-order special Galileon field with a
particularly soft infrared behavior [2].

A. Coset construction and lowest-order
effective Lagrangian

As is the case for any theory with nonlinearly realized
symmetries, the SGal theory can also be obtained from
a coset construction. This was first carried out in four
dimensions in [5], and later extended to arbitrary dimen-
sions in [94]. We will now briefly review this construction,
and in the next subsection we will use it to systemati-
cally write down higher-derivative corrections in four
dimensions.
The symmetry transformations (4.1) are associated,

respectively, with some generators C, Qa, and Sab, which,
together with the generators of the Poincaré group (Pa and
Jab) satisfy the following algebra [10]:

½Pa;Qb� ¼ ηabC; ð4:2aÞ

½Jab; Qν� ¼ ηacQb − ηbcQa; ð4:2bÞ

½Pa; Sbc� ¼ ηabQc þ ηacQb −
1

2
ηbcQa; ð4:2cÞ

½Qa; Sbc� ¼ −α2
�
ηabPc þ ηacPb −

1

2
ηbcPa

�
; ð4:2dÞ

½Sab; Scd� ¼ α2ðηacJbd þ ηbcJad þ ηbdJac þ ηadJbcÞ;
ð4:2eÞ

½Jab; Scd� ¼ ηacSbd − ηbcSad þ ηadScb − ηbdSca: ð4:2fÞ

The coset parametrization is, as usual, the most general
symmetry transformation that is realized nonlinearly. In this
case, this reads

Ω ¼ ex
aPaeπCeξ

aQae
1
2
σabSab : ð4:3Þ

6The remaining even-parity single-trace terms at eighth order
in derivatives are the terms 45-66 and 119-135 listed in the
supplemental material http://home.thep.lu.se/~bijnens/chpt/basis
.pdf of [89].
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The generators of Lorentz transformations, Jab, are instead
realized linearly, which means that Lorentz invariance of
the Lagrangian will be manifest. The Maurer-Cartan form
can be calculated using the algebra (4.2). It takes the form

Ω−1dΩ ¼ ωa
PPa þ ωa

QQa þ ωCCþ 1

2
ωab
J Jab þ

1

2
ωab
S Sab;

ð4:4Þ
with

ωa
P ¼ Ea

μdxμ ¼ ðcos ασÞabdxb − αðsin ασÞabdξb; ð4:5Þ

ωC ¼ ∇aπEa
μdxμ ¼ dπ þ ξadxa; ð4:6Þ

ωa
Q ¼ ∇cξ

aEc
μdxμ ¼

1

α
ðsin ασÞabdxb þ ðcos ασÞabdξb;

ð4:7Þ

ωab
S ¼ ∇cσ

abEc
μdxμ ¼

1

α
½Σ−1 sin αΣÞ�abcddσcd; ð4:8Þ

ωab
J ¼ Aab

c Ec
μdxμ ¼ ½Σ−1ðcos αΣ − 1Þ�abcddσcd; ð4:9Þ

and Σab
cd ≡ σacδ

b
d − σbdδ

a
c . Notice that, despite appearances,

these building blocks only depend on even powers of α.
This is because the algebra depends on α2, not on α.
Moreover, one can always eliminate α2 from the algebra by
an appropriate rescaling of the generators, and therefore
only its sign is really physical.

Since we are considering a space-time algebra, the
number of broken symmetries does not correspond to
the number of Goldstone bosons, and we can apply inverse
Higgs constraints that allow us to eliminate some of these
modes. In particular, we can demand that

∇aπ ¼ 0; ð4:10aÞ

∇aξb þ∇bξa −
1

2
ηab∇cξ

c ¼ 0; ð4:10bÞ

and solve these equations to express ξa and σab in terms of
derivatives of π as follows [94]:

ξa ¼ −∂aπ; ð4:11aÞ

σab ¼
1

α

�
ðtan−1α∂∂πÞab − ηab

4
ðtan−1α∂∂πÞcc

�
: ð4:11bÞ

Of course, this simply reflects the fact that we only need a
single field π to nonlinearly realize the special Galileon
symmetries, as shown in Eq. (4.1).
At lowest order in the derivative expansion, the

Lagrangian for any Galileon field (not just the special
one) is invariant under the symmetries only up to a total
derivative, i.e., the leading terms are WZW terms [74]. In
the particular case of the special Galileon, other than the
tadpole, there is only one such term. Following the standard
procedure to write downWZW terms [95], it can be built by
considering the exact 5-form [5,94]

dβ≡ X
n even

1

4
ωC ∧

�
1

6
ωa
Q ∧ ωb

Q ∧ ωc
Q ∧ ωd

Q þ ωa
Q ∧ ωb

Q ∧ ωc
P ∧ ωd

P þ 1

6
ωa
P ∧ ωb

P ∧ ωc
P ∧ ωd

P

�
ϵabcd: ð4:12Þ

Up to an overall constant, the coefficient of the 4-form β is
equal to the leading-order Lagrangian for the special
Galileon [10]:

LSGal ¼
1

2
ð∂πÞ2 − α2

12
ð∂πÞ2½ð□πÞ2 − ð∂μ∂νπÞ2�: ð4:13Þ

B. Higher-derivative corrections

Higher-order terms in the Lagrangian for the special
Galileon are exactly invariant under all the symmetries.
These can be built using the following ingredients:
(1) The components of the Goldstones’ covariant deriv-

atives that have not been set to zero by imposing
inverse Higgs constraints. A priori, these would be
∇aξ

a;∇½aξb�, and ∇aσ
bc. However, after solving the

inverse Higgs constraint (4.10b) one finds that
∇½aξb� ¼ 0 [94]. Thus, the only nontrivial compo-
nents are ∇aξ

a and ∇aσ
bc.

(2) Additional covariant derivatives, which according to
Eq. (2.4) are defined using the unbroken Lorentz
generators7 as ∇a ≡ ðE−1Þaμ∂μ þ 1

2
Abc
a Jbc.

(3) The determinant of the coset vierbein Eμ
a, to make

the integration measure in the action invariant under
the nonlinearly realized symmetries.

Based on the building blocks listed above, we conclude that
the most general action for the special Galileon must take
the form

S ¼
Z

d4x½LSGal þ detðEÞΔLð∇aξ
a;∇aσ

bc;∇aÞ�; ð4:14Þ

where ΔL contains all possible Lorentz-invariant combi-
nations of its arguments.

7With normalization conventions for the generators,
ðJabÞcd ¼ ηacηbd − ηadηbc.
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In Sec. V B, we will use this Lagrangian to study the
scattering amplitudes of the special Galileon. In order to be
exactly invariant under the standard Galileon symmetry, all
higher derivative corrections in ΔL must have at least two
derivatives acting on each field π. Hence, we will write

ΔL ¼ P∞
n¼0 ΔLð2nÞ, where the superscript 2n refers to the

number of additional derivatives. For example, keeping
in mind that ∇ξ ∼Oð0Þ and ∇σ ∼Oð1Þ according to
this derivative counting, the first two contributions to
ΔL are

ΔLð0Þ ¼ Að∇ξÞ; ð4:15Þ

ΔLð2Þ ¼ B1ð∇ξÞ∇b∇b∇aξ
a þ B2ð∇ξÞ∇b∇aξ

a∇b∇cξ
c þ B3ð∇ξÞ∇a∇bσab

þ ½B4ð∇ξÞηabηdeηcf þ B5ð∇ξÞηadηbeηcf þ B6ð∇ξÞϵabdeηcf�∇aσbc∇dσef ð4:16Þ

where A and Bi are functions of ∇aξ
a that admit a Taylor expansion around zero. Notice that higher coset covariant

derivatives cannot be integrated by parts as one might naively expect. Therefore, say, the first two terms in (4.16) are
independent structures that are both allowed by the symmetries.
In order to calculate the 4-point function at Oðp12Þ we only need to consider operators in ΔLð0Þ, ΔLð2Þ, and ΔLð4Þ that

can give rise to quartic self-interactions. To calculate the 5-point function atOðp10Þ and the 6-pt function atOðp12Þ, we also
include in ΔLð0Þ those operators that contribute at fifth and sixth order in the fields. To obtain explicit expressions for the
interaction vertices we will use the following expansions in powers of π:

detðEÞ ¼ 1þ α2

2

�
½ð∂∂πÞ2� − 1

4
ð□πÞ2

�
þ α4

4!

�
3½ð∂∂πÞ2�2 − 6½ð∂∂πÞ4� ð4:17Þ

þ 5

32
ð□πÞ4 − 3

2
½ð∂∂πÞ2�ð□πÞ2 þ 2½ð∂∂πÞ3�ð□πÞ

�
þ α6

6!

�
−

17

128
ð□πÞ6

þ 120½ð∂∂πÞ6� − 36□π½ð∂∂πÞ5� þ 45

2
ð□πÞ2½ð∂∂πÞ4� − 25

4
ð□πÞ3½ð∂∂πÞ3�

− 10½ð∂∂πÞ3�2 þ 75

32
ð□πÞ4½ð∂∂πÞ2� − 90½ð∂∂πÞ2�½ð∂∂πÞ4�

þ 30□π½ð∂∂πÞ2�½ð∂∂πÞ3� − 45

4
ð□πÞ2½ð∂∂πÞ2�2 þ 15½ð∂∂πÞ2�3

�
þOðπ8Þ;

∇aξ
a ¼ −□π þ 1

3
α2ð½ð∂∂πÞ3� − 1

16
ð□πÞ3Þ − 1

5
α4ð½ð∂∂πÞ5� − 5

48
ð□πÞ2½ð∂∂πÞ3�

þ 1

384
ð□πÞ5Þ þOðπ7Þ; ð4:18Þ

∇cσab ¼ ∂c∂b∂aϕ −
1

4
ηab∂c

□ϕþ α2
�
−
1

2
∂d∂cϕ∂h∂dϕ∂h∂b∂aϕ −

1

2
∂d∂bϕ∂h∂dϕ∂h∂c∂aϕ

−
1

2
∂d∂aϕ∂h∂dϕ∂h∂c∂bϕþ 1

4
ηab∂d∂fϕ∂h∂fϕ∂h∂d∂cϕþ 1

32
∂c∂b∂aϕð□ϕÞ2

−
1

128
ηabð□ϕÞ2∂c

□ϕþ 1

8
ηab∂d∂eϕ∂e∂cϕ∂d

□ϕ

�
þOðπ5Þ; ð4:19Þ

where [� � �] denotes a trace over the Lorentz indices. For
example, [ð∂∂πÞ3] stands for ∂μ∂νπ∂ν∂ρπ∂ρ∂μπ. The
number of operators in ΔLð2nÞ grows quickly with n.
However, this state of affairs simplifies considerably when
one realizes that the only nonvanishing tree-level contri-
butions to n-point on-shell amplitudes can come from
OðπmÞ vertices with m ≤ n and with at most n −m powers

of □π. This is because factors of □π vanish on-shell, and
therefore can be ignored unless they are acting on internal
lines of Feynman diagrams. As a result, the only operators
that are relevant to our calculations are

ΔLð0Þ → a0 þ a1∇aξ
a þ a2

2
ð∇aξ

aÞ2; ð4:20Þ
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ΔLð2Þ → b1∇aσbc∇aσbc þ b2∇aσ
ac∇bσbc; ð4:21Þ

ΔLð4Þ → c1∇aσ
de∇aσbc∇bσd

f∇cσef þ c2∇aσb
d∇aσbc∇cσ

ef∇dσef þ c3ð∇aσbc∇aσbcÞ2
þ c4∇a∇bσcd∇a∇bσcd þ c5∇aσcd∇a∇b∇bσ

cd þ c6∇aσcd∇a∇b∇cσb
d

þ c7∇aσbd∇a∇b∇cσc
d þ c8∇a∇a∇bσcd∇bσcd þ c9∇a∇b∇aσ

cd∇bσcd

þ c10∇a∇b∇cσa
d∇bσcd: ð4:22Þ

A few comments are in order at this point. First, we have
omitted from ΔLð4Þ those operators that, despite being
linearly independent from the ones shown, would yield
redundant interactions at quartic order. Second, it is easy to
see that this Lagrangian will give rise to higher derivative
corrections to the 2-point function of the form π□nπ. From
an EFT viewpoint, these terms should be treated perturba-
tively as one does with any other higher-derivative inter-
action, and not used to modify the propagator. (See for
instance footnote 1 in [96] for a brief discussion of this
point.) Finally, the second operator in ΔLð0Þ gives rise to a
cubic vertex. Nevertheless, this vertex does not contribute
to the scattering amplitudes since it vanishes when one leg
is on-shell.8 Similarly, higher derivative 3-point vertices
that do not vanish when one leg is on-shell (such as the
eighth derivative ones arising from ∇b∇b∇aξ

a and
∇a∇bσab) do not spoil the single soft limit due to the
large number of momentum factors involved in them. In
fact, it has been argued in [97] that using the leading-order
equations of motion one can show that these operators
should not contribute to the scattering amplitudes.

V. COMPATIBILITY WITH THE DOUBLE COPY

In this section we will analyze the corrections to the 4-,
5-, and 6-point amplitudes of the NLSM and SGal that
follow from the higher derivative operators introduced in
the previous two sections. We will be particularly interested
in understanding the extent to which these corrections are
compatible with the double copy procedure.

A. NLSM scattering amplitudes

We do this first for the NLSM introduced in Sec. III C
which is compatible with the double copy procedure. To
this end, we will expand the operators in Eqs. (3.14), (3.16),
(3.17), and (3.18) in powers of fields, and use the resulting
interactions to calculate the 4-, 5-, and 6-point on-shell
amplitudes for the Goldstones.
An important point to notice is that, in order to be

compatible with color-kinematics duality, the color struc-
ture of the scattering amplitudes must satisfy Jacobi
identities. This is a necessary but not sufficient condition

to guarantee the existence of the double copy, since one
also needs the correct kinematic behavior. Focusing on the
color factors arising from the higher-order corrections to
the NLSM, one sees that multitrace color factors can arise
at tree level. Crucially, for a general SUðNÞ group these are
not related to the single-trace color factors, and the color
factors associated with multitrace operators in the
Lagrangian would not necessarily satisfy Jacobi identities.
Whether or not these terms are compatible with a (modi-
fied) double copy procedure is still unknown. For examples
in which multitrace terms are analyzed and generalized
BCJ relations are considered see [98–100]. From now on,
we will neglect the multitrace terms, noting that, as we
discussed in Sec. III C, the large-N limit makes our
approach self-consistent. Restricting our attention to single-
trace operators, we see that the corresponding amplitudes
can be cast in the form

Aα1;…;αn
n ðp1;…; pnÞ
¼

X
σ∈Sn−1=Zn−1

Tr½Xα1Xασð2Þ…XασðnÞ �Anðp1; pσð2Þ;…; pσðnÞÞ;

ð5:1Þ

where Sn−1 is the set of all possible permutations of n − 1
objects, whereas Zn−1 is the subset of cyclic permutations.
The quantities Anðp1;…; pnÞ are known as color-ordered
(or partial) n-point amplitudes in the trace basis. In what
follows, we denote these quantities simply as An½1;…; n�.
Our explicit results for A4 up to Oðp8Þ, and for A5 and A6

up to Oðp6Þ can be found in Appendix B.
The existence of a double copy also requires the color-

ordered amplitudes to have a special kinematic structure. In
fact, we must demand that they satisfy the KK [57] and BCJ
[24] relations, which can be expressed respectively as

An½1; fαg; n; fβg� ¼ ð−1Þjβj
X

σ∈OPðfαg;fβTgÞ
An½1; σ; n�; ð5:2Þ

Xn
i¼3

Xi

j¼3

s2jAn½1; 3;…; i; 2; iþ 1;…; n� ¼ 0: ð5:3Þ

In these relations, fαg and fβg are subsets of the external
particle labels, jβj is the number of elements in the subset

8We thank Jiri Novotny and Filip Preucil for making us aware
of this fact.
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fβg, the superscript T denotes the reverse ordering, OP
denotes ordered permutations,9 and s2j ¼ ðp2 · pjÞ2 is the
usual Mandelstam variable. The fact that the leading-order
NLSM amplitudes arising from the Lagrangian in
Eq. (3.13) satisfy these relations was shown in [101].
Imposing that the conditions above are satisfied places
constraints on the dimensionless coefficients that appear in
Eqs. (3.14), (3.16), (3.17) and (3.18), as we will now
discuss.
Let us start by considering the color-ordered 4-point

amplitude. The most general form it can take while
satisfying the KK and BCJ relations up to eighth order
in derivatives is [58]

A4½1;2;3;4� ¼
C2

F2
tþC6

F6
tðs2 þ t2 þ u2Þ þC8

F8
tðstuÞ þ � � � ;

ð5:4Þ

where s, t, and u are the usual Mandelstam variables, and
Ci are constants with the subscript “i” labeling the powers
of momenta in the corresponding term. As we already
alluded to in the Introduction, this amplitude corresponds to
that of the Abelian Z-theory [56]. The first term in
particular follows directly from the lowest-order NLSM
Lagrangian in Eq. (3.13).
We would like to understand what constraints need to be

imposed on the coefficients of higher-order corrections to
recover an amplitude of the form (5.4). At the 4-derivative
level, the contribution arising from the terms in Eq. (3.14) is
of the form

A4 ∝
c1
F4

t2 þ c2
F4

�
s2 þ stþ t2

2

�
: ð5:5Þ

This satisfies the KK relations above if c1 ¼ −c2, but the
BCJ relation cannot be satisfied. We must therefore set
c1 ¼ c2 ¼ 0, which is consistent with the fact that (5.4)
does not contain any term quartic in momenta. Although
there is no 1=F4 correction that is compatible with color-
kinematics duality, it is interesting to point out that there
exists a 1=F4 correction that satisfies the NLSM double soft
limit and reads A4 ∝ st=F4 [59]. One should note that this
amplitude cannot be obtained from Eq. (3.14). When it
comes to the 6- and 8-derivative corrections, one can show
that they satisfy both the KK and BCJ relations only if

d3 ¼ d1 þ d2; g1 þ g2 ¼ 0; and g3 þ 2g4 ¼ 0:

Moving on to the 5-point amplitude, we must require that
all the contributions with less than 14 derivatives vanish.
This is because, as discussed in the Introduction, the
leading color-ordered 5-point amplitude that is compatible

with color-kinematics duality is known to have 14 deriv-
atives [58]. This means that the coefficient in front of the
Wess-Zumino term must vanish. Similarly, we must have
e1 ¼ e2 ¼ 0 in Eq. (3.17).
It is also interesting to explore whether the 14th

derivative order 5-point amplitude which is compatible
with color-kinematics duality can be obtained from a
Lagrangian satisfying the NLSM symmetries. In order to
make some progress towards this question, we will make a
few extra assumptions. Assuming that the pions are
pseudoscalars and that the theory is invariant under parity,
ϕaðt;xÞ → −ϕaðt;−xÞ; it has been shown that only terms
with odd number of Levi-Civita tensors have odd numbers
of Goldstones [92]. In this case, the general form of the
5-point NLSM amplitude is

A5½1; 2; 3; 4; 5� ¼ ϵμνλρp
μ
1p

ν
2p

λ
3p

ρ
4Γðp1; p2; p3; p4; p5Þ;

ð5:6Þ

where Γ is some scalar function constructed from the
Goldstone momenta. Rather than calculating this amp-
litude explicitly by considering all possible terms in the
Lagrangian that could contribute up to Oðp14Þ, we have
followed a different approach. We have constructed the
most general 5-point amplitude of the form (5.6) at Oðp14Þ
and verified explicitly that it cannot satisfy the KK and BCJ
relations. This means that the term found in [58] cannot be
invariant under the NLSM symmetries when considering
pseudoscalar pions in a parity invariant theory. In a more
general NLSM setting, a 5-point amplitude at 14th deriva-
tive order could arise from two different kinds of operators.
The contact terms could come from operators of the form
∇4ð∇uÞ5 and ∇8ð∇uÞ3. Meanwhile, the pole terms would
come from a 4-point vertex of order pn and a 3-point vertex
of order p16−n which comes from an operator ∇10−nð∇uÞ3.
The calculation of the amplitude arising from these terms
seems intractable and would not be perform here.
Finally, we consider the 6-point amplitude up to Oðp6Þ.

The 4-derivative contribution to this amplitude vanishes by
virtue of the requirements already imposed on the 4-point
amplitude. Meanwhile, the 6-derivative contribution arising
from Eq. (3.17) satisfies the KK and BCJ relations if

d3 ¼ d1 þ d2; f3 ¼ −8d1; f4 ¼ −
8

3
ð2d1 þ 5d2Þ;

and f5 ¼ 8ðd1 þ 2d2Þ:

Furthermore, this amplitude is equal to the Abelian Z-
theory result if

d2 ¼ −
1

64
−
d1
4
; f1 ¼ −

1

12
þ 4d1;

and f2 ¼
1

8
þ 2d1:

9These are permutations that preserve the ordering of the set
fαg ∪ fβTg—see e.g., page 35 of [27] for some useful examples.
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B. SGal scattering amplitudes

We now consider the scattering amplitudes arising from
the higher derivative special Galileon Lagrangian. Explicit
expression for the 4- and 6-point amplitudes up to Oðp12Þ
can be found in Appendix D.
Before turning our attention to the double copy, it is

worth discussing briefly the single soft limit of the 4-point
amplitude, which reads

A4 ¼ −
2

Λ6
stuþ 1

Λ10

�
b1 þ b2

40

�
ðs5 þ t5 þ u5Þ

þ ðc1 − 6c2Þ
26Λ12

s2t2u2 þ 1

Λ12
ðc2 þ c3 þ c4Þ

× ðs6 þ t6 þ u6Þ þOðp14Þ: ð5:7Þ
The fact that the term with eight derivatives is not present
comes from a nontrivial cancellation happening in detðEÞ.
This cancellation is crucial to have a soft theorem with
degree σ ¼ 3. By comparing our results with the ones
obtained with the soft bootstrap method [58], we find
agreement. The term s6 þ t6 þ u6 receives contributions
proportional to the coefficients c2, c3, and c4. We have
checked explicitly that these coefficients can enter the
6-point amplitude without affecting the enhanced soft limit.
In fact, the authors of [58] agree that such term is possible.10

We note that the leading contribution to the 5-point
amplitude arising in the soft bootstrap case at Oðp14Þ does
not come from a Lagrangian with special Galileon sym-
metry. This amplitude could arise from terms such as
ϵbcde∇b∇c∇d∇e∇aξa and ϵbcde∇b∇c∇d∇aσea, nevertheless
the resulting amplitude vanishes. As a matter of fact, up to
the 14th derivative order we have checked that all con-
tributions to the 5-point amplitude vanish. This is consistent
with the results found in [97]. While a proof for all
derivative orders is unavailable, these results seem to
indicate that odd-point amplitudes arising from a special
Galileon invariant theory vanish on-shell.
We now compare the special Galileon amplitudes with

the double copy of the most general colored ordered scalar
amplitudes satisfying the KK and BCJ relations. While the
even-point amplitudes correspond to the NLSM ones with
dimensionless coefficients constrained as in the previous
section, we will also include for completeness a 5-point
amplitude A�

5 at 14th derivative order which does not arise
from a parity invariant NLSM Lagrangian, and yet enjoys
the same single soft limit. Using these building blocks, we
can construct the KLT double copy as follows:

ADC
4 ð1; 2; 3; 4Þ ¼ −s12A4½1; 2; 3; 4�A4½1; 2; 4; 3�; ð5:8Þ

ADC
5 ð1; 2; 3; 4; 5Þ ¼ s12s34A�

5½1; 2; 3; 4; 5�
× A�

5½2; 1; 4; 3; 5� þ Pð2; 3Þ; ð5:9Þ

ADC
6 ð1; 2; 3; 4; 5; 6Þ
¼ −s12s45A6½1; 2; 3; 4; 5; 6�ðs35A6½1; 5; 3; 4; 6; 2�
þ ðs34 þ s35ÞA6½1; 5; 4; 3; 6; 2�Þ þ Pð2; 3; 4Þ; ð5:10Þ

where Pð2; 3Þ denotes all the permutations of the momenta
p2 and p3, and so on.
By comparing the scattering amplitudes obtained from

the SGal Lagrangian with the ones obtained from the KLT
double copy shown above, we find that we need to set
c2 ¼ c3 ¼ c4 ¼ 0 since the term s6 þ t6 þ u6 does not
arise in the double copy. This shows that, by constraining
the coefficients of the allowed operators in both the NLSM
and the SGal, we can maintain their relation through the
double copy. At this point, we lack a compelling argument
which explains these constraints, but we discuss some
possibilities in the next section. To conclude, we should
mention that the leading-order 5-point amplitude that can
be obtained as the double copy of a colored scalar arises at
Oðp32Þ. Understanding whether this could arise from a
special Galileon invariant action is beyond the scope of this
paper, but it would seem implausible given that all the
computed odd-point amplitudes vanish on-shell.

VI. DISCUSSION AND CONCLUSIONS

We have constructed the higher derivative Lagrangians
for both the nonlinear sigma model and the special Galileon
by using building blocks given by the coset construction.
The explicit form of these Lagrangians would be particu-
larly important to calculate the radiation emitted at higher
orders in the context of the classical perturbative double
copy of [23]. Here, however, we focused on the on-shell
scattering amplitudes arising from these shift-symmetric
Lagrangians, and discussed their compatibility with the
double copy. Without the Lagrangian realization, we would
not be able to tell if a scattering amplitude arises from a
shift symmetric theory.
For the NLSM, we have analyzed whether it is possible

to obtain amplitudes which satisfy the KK and BCJ
relations by imposing constraints on the dimensionless
coefficients appearing in our Lagrangian. We showed that
this is possible for the 4-point amplitude up to the eighth
derivative order. On the other hand, we found that the
leading-order 5-point amplitude which satisfies KK and
BCJ relations does not arise from a theory invariant under
the UðNÞ-NLSM symmetries and parity. Nevertheless, it is
still possible that a Lagrangian which does not involve any
Levi-Civita tensors could give rise to such 5-point ampli-
tude. For the 6-point amplitude, we have found that the
NLSM amplitudes up to Oðp6Þ can satisfy these relations
provided the coupling constants satisfy certain constraints.
At this stage, we are not aware of any symmetry that would
enforce these constraints. Moreover, we have not explored
whether these tunings happen to be technically natural.
However, it is worth noticing that the constrained10Private communication with the authors of [58].
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amplitudes still admit more than one free parameter. In
principle, it might seem surprising that an amplitude with
more than one free parameter satisfies the KK and BCJ
relations, but we believe that this is due to the fact that,
when this happens, the σ ¼ 1 soft limit is trivially satisfied.
It is also relevant to mention that the Abelian Z-theory
amplitudes correspond to a subset of the constrained
NLSM amplitudes involving only one free parameter.
When combined, these results show that, at least up to
the derivative order we have considered, the most general
colored-scalar theory compatible with color-kinematics
duality is not merely a subset of the UðNÞ NLSM.
We have also explicitly constructed the higher-order

Lagrangian invariant under the special Galileon sym-
metries, and have used this to understand the disagreement
between the different definitions of the special Galileon. It
was previously shown that the even-point amplitudes of a
scalar field with soft degree σ ¼ 3, except for the s6 þ
t6 þ u6 term, match the scattering amplitudes obtained as
the double copy of the most general colored scalar
satisfying the KK and BCJ relations [58]. In [58], it was
also shown that there is a 5-point amplitude with soft
degree σ ¼ 3 but too few momenta to arise from the double
copy. This is the first instance in which the definitions of
the special Galileon based on its single soft limit or the
double copy procedure have turned out to be inequivalent;
in other words, the most general scalar field amplitudes
with a soft degree σ ¼ 3 do not correspond to the double
copy of the most general colored scalar satisfying the KK
and BCJ relations. In order to restore the equivalence, one
could only consider even-point amplitudes and remove the
s6 þ t6 þ u6 term from the 4-point amplitude.
In our construction, we are able to constrain the

dimensionless coefficients on both the NLSM and the
SGal side in order to maintain their relation through
the double copy. This is possible since only the even terms
(up to the computed derivative orders) on the NLSM side
satisfy the KK and BCJ relations, this matches the fact that
the only nonvanishing amplitudes of the SGal are the even
ones. It would be interesting to analyze the origin on the
constraints set on the Wilsonian coefficients of these EFTs.
A possibility worth exploring is if these constraints are
related to the positivity bounds of EFTs that allow for a
local, analytic, unitary UV completion [102,103], or other
unitary conditions such as those in [104–106].
We have also discussed whether the 5-point amplitude

arising as the double copy of the 14th derivative color-
ordered amplitude which satisfies KK and BCJ relations
could come from a theory with the SGal symmetries. We do
not construct this amplitude since its calculation through
Feynman rules seems intractable. Developing amplitude
methods along the lines of the soft bootstrap method
applied in [65] that can compute higher-order corrections
appears to be a more promising approach. Nevertheless, it
seems unlikely that odd-point amplitudes arise from the

SGal invariant action; a complete proof could follow the
lines of the analysis in [97].
As summarized in Fig. 1, the results for both the NLSM

and the SGal higher-order amplitudes tell us that the
definitions of the exceptional scalar theories based on their
symmetries, single soft limits, or double copy relations are
not equivalent beyond leading order. As we mentioned in
the Introduction, there are various methods for computing
the higher derivative on-shell scattering amplitudes, but
only a few that also obtain the corresponding Lagrangians.
Given this, it would be interesting to explore whether the
most general higher derivative corrections compatible with
the double copy can be obtained as a dimensional reduction
of higher-order operators of Yang-Mills theories and
gravity, in the spirit of [19,20,66].
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APPENDIX A: USEFUL IDENTITIES FOR
SIMPLIFYING THE NLSM LAGRANGIAN

When considering the alternative coset parametrization
for the NLSM of Sec. III B, we have a nonzero connection
given by Eq. (3.10b). The geometric structure of the coset
space allows us to define a field strength, Γμν, correspond-
ing to this connection by

½∇μ;∇ν�X ¼ ½Γμν; X�; Γμν ¼
1

4
½uμ; uν�: ðA1Þ

This field strength satisfies the Bianchi identity

∇μΓνρ þ∇νΓρμ þ∇ρΓμν ¼ 0; ðA2Þ
which is useful in simplifying the NLSM Lagrangians.
On the other hand, there are identities that specifically

help us to simplify the odd intrinsic parity terms. These are
Levi-Civita identities which follow from the fact that, in 4d,
a completely antisymmetric tensor with five indices is zero,
that is,

gαβϵγρτη − gαγϵβρτη − gαρϵγβτη − gατϵγρβη − gαηϵγρτβ ¼ 0:

ðA3Þ
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Contracting a tensor Tαβγρτη in every possible way with the one above leads to the (independent) identities:

ð−Tα
α
γρτη þ Tαγ

α
ρτη − Tαγρ

α
τη þ Tαγρτ

α
η − Tαγρτη

αÞϵγρτη ¼ 0; ðA4Þ

ðþTα
α
γρτη þ Tγα

α
ρτη þ Tγαρ

α
τη − Tγαρτ

α
η þ Tγαρτη

αÞϵγρτη ¼ 0; ðA5Þ

ð−Tαγ
α
ρτη þ Tγα

α
ρτη − Tγρα

α
τη þ Tγρατ

α
η − Tγρατη

αÞϵγρτη ¼ 0; ðA6Þ

ðþTαγρ
α
τη − Tγαρ

α
τη þ Tγρα

α
τη − Tγρτα

α
η þ Tγρταη

αÞϵγρτη ¼ 0; ðA7Þ

ð−Tαγρτ
α
η þ Tγαρτ

α
η − Tγρατ

α
η þ Tγρτα

α
η − Tγρτηα

αÞϵγρτη ¼ 0: ðA8Þ

When the tensor Tαβγρτη is constructed out of uμ and ∇μ, these identities can be used to simplify the NLSM Lagrangian.

APPENDIX B: HIGHER-ORDER NLSM AMPLITUDES

In this Appendix, we report the explicit expressions for the color-ordered amplitudes arising from the NLSM single-trace
interactions in Eqs. (3.14), (3.16), (3.17), and (3.18). As a cross-check of our calculations, we have verified that these
amplitudes have the correct infrared behavior by computing the double soft limit of the 6-point amplitude.

In what follows, we will denote by AðjÞ
n ½1;…; n� the OðpjÞ contribution to the n-point on-shell color-ordered amplitude.

With this notation, the 4-point color-ordered amplitude of the NLSM up to the eighth derivative order is given by a sum of
the following terms:

Að2Þ
4 ½1; 2; 3; 4� ¼ −

2

F2
t; ðB1Þ

Að4Þ
4 ½1; 2; 3; 4� ¼ 16

F4

�
c1t2 þ c2

�
s2 þ stþ t2

2

��
; ðB2Þ

Að6Þ
4 ½1; 2; 3; 4� ¼ 32

F6

�
−
3d1
2

�
s2tþ st2 þ t3

3

�
þ d2t3 þ d3t

�
s2 þ stþ t2

2

��
; ðB3Þ

Að8Þ
4 ½1; 2; 3; 4� ¼ 16

F8

�
g1 þ g2

4
s2ðs2 þ 2stþ t2Þ þ g3

4
t2
�
s2 þ stþ t2

2

�
þ g4

4
t4
�
; ðB4Þ

where s, t, and u are the usual Mandelstam variables defined as

s ¼ ðp1 þ p2Þ2; t ¼ ðp1 þ p3Þ2; u ¼ ðp1 þ p4Þ2: ðB5Þ

The 5-point partial amplitude up to sixth derivative order is given by

Að4Þ
5 ½1; 2; 3; 4; 5� ¼ 5c

F5
ϵμνλρp

μ
1p

ν
2p

λ
3p

ρ
4; ðB6Þ

Að6Þ
5 ½1; 2; 3; 4; 5� ¼ 64e1

F7
ϵμνλρp

μ
1p

ν
2p

λ
3p

ρ
4½p1 · ðp3 þ 2p4Þ þ p2 · ðp4 − p3Þ�

þ 2e2
3F7

ð32s324 þ 3ð14s25 þ 9s34 þ 7s35Þs224 þ 3ð14s225 þ 2ð6s34 þ 7s35Þs25
− 9s234 − 7s235 − 6s34s35Þs24 − 32s334 − 10s335 þ 6s25s234 − 3ð5s25 þ 14s34Þs235
þ 30s225s34 þ 3ð5s225 − 2s34s25 − 14s234Þs35 þ s223ð6s24 þ 57s25 − 51s34 þ 6s35Þ
þ 3s23ð16s224 þ 2ð13s25 − 5s34 þ 2s35Þs24 þ 3ð5s225 þ 2s34s25 − 7s234 − 4s235
þ 4ðs25 − 2s34Þs35ÞÞ þ 10s325Þ: ðB7Þ
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Finally, the 6-point partial amplitude up to sixth derivative order is

Að2Þ
6 ½1; 2; 3; 4; 5; 6� ¼ 2

F4

�
s13s46
s123

þ s15s24
s234

þ s26s35
s345

− s24 − s26 − s46

�
; ðB8Þ

Að4Þ
6 ½1; 2; 3; 4; 5; 6� ¼ 4

F6

�
c1½s14s26 þ s13ðs25 þ s26Þ þ s24s35 þ s15ðs26 þ s36Þ þ ðs15 þ s25Þs46

−
2

3
ðs14s26 þ s13ðs24 þ s25 þ 2s26Þ þ s15ð2s26 þ s36Þ þ ð2s15 þ s25 þ s35Þs46Þ�

þ c2½s23s45 þ ðs13 þ s14 þ s24Þs56 þ s12ðs35 þ s36 þ s46 þ s56Þ

−
2

3
ððs13 þ 2s14 þ s24 þ s34Þs56 þ s12ðs34 þ s35 þ 2s36 þ s46 þ 2s56ÞÞ�

þ 2

3s123
ðs45 − 2s46 þ s56Þ½2c1s13ðs12 þ s23Þ þ c2ððs12 þ s13Þs23þs12ðs13 þ s23ÞÞ�

þ cycð1; 2; 3; 4; 5; 6Þ
�
; ðB9Þ

Að6Þ
6 ½1; 2; 3; 4; 5; 6� ¼ 2

F8

�
32ð3f1ðs16s23s45 þ s12s34s56Þ þ 2f2ðs12s36s45 þ s16s34s52

þ s23s41s56Þ þ f3ðs16s24s35 þ s12s46s35 þ s13s26s45 þ s15s23s46 þ s13s24s56 þ s34s51s62Þ
þ 6f4s14s36s52 þ 2f5ðs14s26s35 þ s15s36s42 þ s25s31s46ÞÞ

þ
�
1

3
ð2d1ððs12 − 2s13 þ s14Þs256 þ ðs41 − 2s42 þ s43Þs256 þ s12ðs34 − 2s35 þ s36Þðs34 þ s35 þ s36Þ

þ s12ðs63 − 2s64 þ s65Þðs63 þ s64 þ s65ÞÞ þ 2d2ððs62 − 2s63 þ s64Þs251 þ s13ðs24 − 2s25 þ s26Þs31
þ s46ðs51 − 2s52 þ s53Þðs51 þ s52 þ s53Þ þ ðs13 − 2s14 þ s15Þðs13 þ s14 þ s15Þs62Þ
þ d3ððs13 þ s14 þ s15Þs16ðs23 − 2s24 þ s25Þ þ ðs13 − 2s14 þ s15Þs16ðs23 þ s24 þ s25Þ
þ 2s13ðs14 − 2s15 þ s16Þs32 þ 2s51ðs52 − 2s53 þ s54Þs61 þ s45ðs51 þ s52 þ s53Þðs61 − 2s62 þ s63Þ
þ s45ðs51 − 2s52 þ s53Þðs61 þ s62 þ s63ÞÞ þ d4ð2s12s31ðs34 − 2s35 þ s36Þ
þ 2ðs12 − 2s13 þ s14Þs51s65 þ ðs41 þ s42 þ s43Þðs51 − 2s52 þ s53Þs65
þ ðs41 − 2s42 þ s43Þðs51 þ s52 þ s53Þs65 þ s12ðs13 þ s14 þ s15Þðs63 − 2s64 þ s65Þ
þ s12ðs13 − 2s14 þ s15Þðs63 þ s64 þ s65ÞÞÞ þ 2d1s12ðs34ðs35 − 2s36Þ þ s36ðs35 þ s46Þ
þ ðs46 − 2s36Þs56Þ þ 2d2ððs13ðs14 − 2s15Þ þ s14s15Þs26 þ ðs15ðs25 − 2s35Þ þ s25s35Þs46Þ
þ d3ðs16ðs15ðs24 − 2s23Þ þ s13ðs24 − 2s25Þ þ s14ðs23 þ s25ÞÞ
þ ðs16ðs25 − 2s35Þ þ s26ðs15 þ s35Þ þ ðs25 − 2s15Þs36Þs45Þ þ d4ðs12ððs14 − 2s15Þs36 þ ðs13 þ s15Þs46Þ
þ ðs12ðs14 − 2s13Þ þ s15ðs24 − 2s34Þ þ s25ðs14 þ s34Þ þ ðs24 − 2s14Þs35Þs56Þ

þ 16

s123
ðð4c1ðs13ðs12 þ s23ÞÞ þ 2c2ðs12ðs13 þ s23Þ þ s23ðs12 þ s13ÞÞÞð4c1ðs46ðs45 þ s56ÞÞ

þ 2c2ðs56ðs45 þ s46Þ þ s45ðs46 þ s56ÞÞÞÞ

þ 4

3

�
1

s456
ðd1ð−s13s212 þ s213s12 þ 4s13s23s12 − s13s223 þ s213s23Þ þ d2ð2s13s212 − 2s213s12

þ 4s13s23s12 þ 2s13s223 − 2s213s23Þ þ d3ð2s13s212 þ 2s23s212 þ 2s223s12 − 2s213s23Þ þ d4ð2s23s212
− 2s213s12 þ 2s223s12 þ 2s13s223ÞÞðs45 − 2s46 þ s56Þ þ

1

s345
ðd1ð−s35s234 þ s235s34 þ 4s35s45s34

− s35s245 þ s235s45Þ þ d2ð2s35s234 − 2s235s34 þ 4s35s45s34 þ 2s35s245 − 2s235s45Þ þ d3ð2s35s234
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þ 2s45s234 þ 2s245s34 − 2s235s45Þ þ d4ð2s45s234 − 2s235s34 þ 2s245s34 þ 2s35s245ÞÞðs12 þ s61 − 2s62Þ

þ 1

s345
ðs34 − 2s35 þ s45Þðd1ð−s62s212 þ s262s12 þ 4s61s62s12 þ s61s262 − s261s62Þ þ d2ð2s62s212

− 2s262s12 þ 4s61s62s12 − 2s61s262 þ 2s261s62Þ þ d3ð2s61s212 þ 2s261s12 − 2s262s12 þ 2s261s62Þ

þ d4ð2s61s212 þ 2s62s212 þ 2s261s12 − 2s61s262ÞÞ
�
þ 1

s456
ðs12 − 2s13 þ s23Þðd1ð−s46s245 þ s246s45

þ 4s46s56s45 − s46s256 þ s246s56Þ þ d2ð2s46s245 − 2s246s45 þ 4s46s56s45 þ 2s46s256 − 2s246s56Þ
þ d3ð2s46s245 þ 2s56s245 þ 2s256s45 − 2s246s56Þ þ d4ð2s56s245 − 2s246s45 þ 2s256s45 þ 2s46s256ÞÞ

þ 1

s561
ðd1ð−s24s223 þ s224s23 þ 4s24s34s23 − s24s234 þ s224s34Þ þ d2ð2s24s223 − 2s224s23 þ 4s24s34s23

þ 2s24s234 − 2s224s34Þ þ d3ð2s24s223 þ 2s34s223 þ 2s234s23 − 2s224s34Þ þ d4ð2s34s223 − 2s224s23 þ 2s234s23

þ 2s24s234ÞÞð−2s51 þ s56 þ s61Þ þ
1

s561
ðs23 − 2s24 þ s34Þðd1ðs56s251 þ s61s251 − s256s51 − s261s51

þ 4s56s61s51Þ þ d2ð−2s56s251 − 2s61s251 þ 2s256s51 þ 2s261s51 þ 4s56s61s51Þ þ d3ð−2s61s251 þ 2s256s51

þ 2s56s261 þ 2s256s61Þ þ d4ð−2s56s251 þ 2s261s51 þ 2s56s261 þ 2s256s61ÞÞÞ þ cycð1; 2; 3; 4; 5; 6Þ
��

; ðB10Þ

where cycð1; 2; 3; 4; 5; 6Þ denotes cyclic permutations of f1;…; 6g, sijk ≡ sij þ sjk þ sik and sij ≡ ðpi þ pjÞ2.

APPENDIX C: ABELIAN Z-THEORY AMPLITUDES

The Abelian Z-theory amplitudes can be found in [56,107]. These amplitudes coincide with the most general color-
ordered amplitudes satisfying the KK and BCJ relations found in [58]. For completeness, we report here the results for the
4-point amplitude up to eighth derivative order, and for the 6-point amplitude up to sixth derivative order:

A4½1; 2; 3; 4� ¼
C2

F2
tþ C6

F6
tðs2 þ t2 þ u2Þ þ C8

F8
tðstuÞ þ � � � ; ðC1Þ

A6½1; 2; 3; 4; 5; 6� ¼
C2
2

F4

�
s13s46
s123

þ s15s24
s234

þ s26s35
s345

− s24 − s26 − s46

�

þ C2C6

F8

�
s312 þ 2s234s212 þ 2s45s212 − 2s2342s12 − 4s23s34s12 þ 2s123s34s12

þ 4s23s234s12 − 4s123s234s12 þ 2s34s234s12 þ 2s23s45s12 −
1

2
s123s45s12

þ 4s23s345s12 þ s34s345s12 −
1

2
s45s345s12 þ 2s23s56s12 þ

1

3
s34s56s12

þ s123s2342 þ s1232s234 − 2s23s123s234 − 4s123s34s234 þ
4

3
s123s234s345

−
ðs12 þ s23Þðs212 þ s23s12 þ s223Þðs45 þ s56Þ

s123
þ cycð1; 2; 3; 4; 5; 6Þ

�
þ � � � : ðC2Þ

APPENDIX D: SPECIAL GALILEON AMPLITUDES

In this Appendix, we show the special Galileon 4-point and 6-point scattering amplitudes up to Oðp12Þ. The 5-point
amplitude was found to vanish up Oðp14Þ. The 4-point amplitude reads

A4 ¼ −
2

Λ6
stuþ 1

Λ10

�
b1 þ b2

40

�
ðs5 þ t5 þ u5Þ þ ðc1 − 6c2Þ

26Λ12
s2t2u2

þ 1

Λ12
ðc2 þ c3 þ c4Þðs6 þ t6 þ u6Þ þOðp14Þ: ðD1Þ
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Meanwhile, the 6-point amplitude is given by

A6 ¼ −
2

Λ12

�
s12s13s23s46s56s45

s123
þ s12s16s26s34s35s45

s126
þ s13s16s24s25s36s45

s136
þ s14s15s23s26s36s45

s145

þ s14s15s23s26s36s45
s236

þ s13s16s24s25s36s45
s245

þ s12s16s26s34s35s45
s345

þ s12s13s23s46s56s45
s456

þ s12s14s24s35s36s56
s124

þ s12s15s25s34s36s46
s125

þ s13s14s25s26s34s56
s134

þ s13s15s24s26s35s46
s135

þ s14s16s23s25s35s46
s146

þ s15s16s23s24s34s56
s156

þ s15s16s23s24s34s56
s234

þ s14s16s23s25s35s46
s235

þ s13s15s24s26s35s46
s246

þ s13s14s25s26s34s56
s256

þ s12s15s25s34s36s46
s346

þ s12s14s24s35s36s56
s356

�
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