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We study the modular symmetry in 72 and orbifold comfactifications with magnetic fluxes. There are
|M| zero modes on T? with the magnetic flux M. Their wave functions as well as massive modes behave as
modular forms of weight 1/2 and represent the double covering group of I' = SL(2,Z), I' = SNL(Z 7).
Each wave function on 72 with the magnetic flux M transforms under T'(2|M|), which is the normal
subgroup of S’Z(Z Z). Then,
We also study the modular symmetry on twisted and shifted orbifolds 72/Zy. Wave functions are
decomposed into smaller representations by eigenvalues of twist and shift. They provide us with reduction

M| zero modes are representations of the quotient group flz\ = r/T(2|M|).

of reducible representations on 72.
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I. INTRODUCTION

The standard model (SM) is now well established.
However, the origin of the flavor structure of quarks and
leptons is still one of the mysteries of the SM. Various
studies have been carried out to understand the flavor
structure. One of the interesting approaches is to impose
some non-Abelian discrete flavor symmetries [1-9] on the
flavors of quarks and leptons. Various discrete symmetries
such as Sy, Ay, A(3N?), A(6N?) are used. Then, these
flavor symmetries are broken by vacuum expectation
values (VEVs) of gauge singlet scalars, the so-called
flavons in order to realize the masses and the mixing
angles of quarks and leptons. However, a complicated
vacuum alignment is required.

Superstring theory predicts six-dimensional (6D) com-
pact space in addition to our four-dimensional (4D) space-
time. Such a compact space may provide us with origins
of non-Abelian discrete flavor symmetries. (See, e.g.,
[10,11].) In particular, the torus as well as orbifolds has
the modular symmetry as geometrical symmetry. Zero
modes transform under the modular symmetry. That is,
the modular symmetry is a flavor symmetry in a sense. This
transformation behavior has been studied in magnetized
D-brane models [12-15] and heterotic orbifold models
[16-20]. (See also [21-23].) However, the modular flavor
symmetry is different from the conventional flavor
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symmetries. Yukawa couplings as well as higher order
couplings are not singlets, but transform under the modular
symmetry.

Interestingly, the modular symmetry includes the finite
modular groups I'y for N = 2, 3, 4, 5, which are isomorphic
to S5, Ay, S4, As [24], respectively. Recently inspired by
these aspects, a new bottom-up approach of flavor models
has been studied extensively [25—41]. In those models, some
finite modular groups are applied as the flavor symmetries.
Furthermore, it is notable that the Yukawa couplings are
functions of the modulus 7, which describes the shape of the
compact space, and are assigned to modular forms, which
transform nontrivially under the modular transformations.
The flavor modular symmetry can be broken by the VEV of
the modulus 7z without flavons.

As mentioned above, the modular symmetry is quite
important from both top-down and bottom-up approaches.
That could become a bridge to connect high and low energy
scales. Our purpose of this paper is to study the modular
symmetry in more detail. We study how wave functions
on T? with magnetic flux transform under the modular
symmetry. Furthermore, we also study twisted and shifted
orbifolds. Orbifold twist and shift decompose wave func-
tions by their eigenvalues. That provides us with reduction
of reducible representations. Also, it provides us with a new
approach to construct three-generation models from the
phenomenological viewpoint.

This paper is organized as follows. In Sec. II, we briefly
review the modular symmetry on 72 and modular forms.
After reviewing T2 with magnetic flux in Sec. Il A, we
study the modular symmetry on the magnetized 72 in
Sec. IIT B. We find that the wave functions on the magnetized
T? are transformed under the modular transformations like
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modular forms of weight 1/2 for ['(2|M|). We also study the
modular symmetry on various magnetized 72/Z, orbifolds
in Secs. IV-VI. In Sec. IV, we study that on the 7%/Z
twisted orbifolds. In Sec. V, we study that on the 7%/Zy
shifted orbifolds. Furthermore, in Sec. VI, we study that on
the T?/Z, twisted and shifted orbifolds. In those sec-
tions, we find that the modular symmetry remains on the
T?/Z, twisted orbifold and the “full” shifted 7%/Zy
orbifolds. In particular, the full 72/Z, shifted orbifold is
consistent with the 72/ Z, twisted orbifold. Section VII is
the conclusion. Appendix A shows the extension for the
generalized CP symmetry with the modular symmetry on
the magnetized T°. Appendix B shows the detail calcu-
lation of discussion in Sec. III B. Appendix C shows
examples of the magnetized 7%/Z, twisted and shifted
orbifold models.

II. MODULAR SYMMETRY AND
MODULAR FORMS

In this section, we briefly review the modular symmetry
on 72 and the modular forms. (See e.g., [42-45]. See also
[34].) First, we review the modular symmetry on 72. The
torus 72 can be constructed as division of the complex
plane C by a two-dimensional (2D) lattice A, i.e.,
T? ~ C/A. The lattice A is spanned by two lattice vectors
er (k =1, 2). We denote the complex coordinate of C as u
and that of the T2 as z=u/e,. We also introduce
the complex modulus parameter z=e,/e; (Imz>0).
However, there is some ambiguity in choice of the lattice
vectors. The lattice spanned by the following lattice vectors
e, (k=1,2),

()= (2 2)(2)
e ¢ d)\e )’

y = (“: Zﬁ) esSL2.z)=T. (1)

C

is the same lattice spanned by the lattice vectors e, (k = 1, 2).
Under the above SL(2, Z) transformation, the coordinate of
T? and the modulus are transformed as

u ,_u Z
z=—od=—=—"—, 2
r e, el cdr+d (2)
/ / /
. ey , e, dt+b
=t osld=S=— . 3
Y e ey dr+d (3)

This is the modular transformation. The group I' = SL(2, Z)
is generated by two generators,

S G

They satisty the following algebraic relations':

§? =1, §*=(8ST)* =1L (5)

Under S and T, the coordinate of 72 and the modulus, (z, 7),
are transformed as

S: (z,7) = (——,——), T: (z,7) = (z,t+1). (6)

Note that —I: (z,7) = (—z,7).

Next, we review the modular forms. The principal
congruence subgroup of level N, T'(N) is the normal
subgroup of I' defined by

= o= (% F)erl(% )
_ (é ‘1)) (modm}, (7)

where we have I'(1) ~I'. The modular forms f(r) of
weight k for I'(N) are holomorphic functions of z which
transform as

" 1/

o) = (@e s, n= (4

Here, k is an integer while k is even for N = 1, 2 because of
—I € I'(N). The above modular forms of weight k for I'(N)
transform as

Fr(e)) = (¢ + dVpln) £ (2), yz(“, )er,

under [" transformation, where p is a unitary representation
of the quotient group I'y, = I'/T’(N). Thus, the representa-
tion of 'y, p, satisfies the following relations:

p(S)* = [p(S)p(T)) = p(T)" =1,
p(S)*p(T) = p(T)p(S)*. (10)

Note that since the relation (—1)*p(=I) =1 should be
satisfied, it is required that p(=I) = I [p(-I) = —I] when k
is even [odd]. Consequently, when k is even, p becomes
a representation of 'y =T/T(N), where we define
[=T/{£I} and T(N)=T(N)/{£I}(N =1,2) while
['=T(N)(N >2). As mentioned in Sec. I, 'y are

"They satisfy (ST~')3 = -1, (ST")6 =1.
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isomorphic to I', ~ 83, I';~A,, T'y~S,, and I's ~ As.
Furthermore, we define the automorphy factor as

a b
o=@t o= (% ")er
¢ d
which satisfies
Ji(r1r2.7) = Ji(r1, r2(0) i (r2. 7). r.r2 €. (12)

In the next section, we study the modular symmetry for
wave functions on the magnetized 72. In the following
analysis, we extend the above discussion on modular
forms.

III. MODULAR SYMMETRY IN THE
MAGNETIZED T2 MODEL

We consider ten-dimensional N =1 supersymmetric
Yang-Mills theory, as an effective field theory of magnet-
ized D-brane models of superstring theory, compactified on
T? x T? x T? with nonvanishing magnetic fluxes. Magnetic
fluxes induce degenerate zero modes corresponding to
flavors of quarks and leptons as well as massive modes.
In particular, we focus on one 72 with a magnetic flux, and
start with 6D theory. In this case, the wave function of the
fermion on 6D space-time, A(X), is decomposed into the

wave function on 4D space-time, w{,(x), and the wave

function on T2, y(z) as follows:

W0 =YY vimeve. (13

where we chose y},(z) as the eigenstate of the 2D Dirac
operator i), as

iDayrh(2) = muyh(2). (14)

Here, we denote the nth excited and jth degenerate wave
function as y/{l, and also we denote the coordinates of 6D
space-time, 4D space-time, and T2 as X, x, and z,
respectively. Then, the 6D action for massless fermion
A(X) is reduced to 4D action as

Xy (x) (iPs + m, )yrk (x). (15)

In this section, we study the modular symmetry for the
wave functions on the magnetized T72.

A. Wave functions on magnetized T

First, we briefly review the wave functions on 72 ~ C/A
with U(1) magnetic flux” [46]. The metric on 72 is given by

0 5
ds* = 2h,,dz'dz", h = el|2<l 0). (16)
2
The U(1) magnetic flux on 72,
inM
= dz A dz, 17
Imz ¢ ¢ (17)
should satisfy the quantization condition,
/F:27zM, Mez (18)
TZ

It is induced from the following vector potential:

A =A.dz + A.dz
itM _ inM
__ 74 P)dp 4 T dz
Fme &+ Odat o (24 Q)dz
M _

:mlm((Z—FC)dz), (19)

where ¢ is a Wilson line. The above vector potential
satisfies the following boundary conditions:

A(z+1)=A(z2) + d(%lmz) =A(z) +dy(z), (20)

A(z+1) =A(z) + d<zn—ﬂ/ilm%z> = A(z) +dy»(z), (21)

which correspond to U(1) gauge transformation.
Then, the wave functions on the 72 with the above gauge
background satisty the following boundary conditions:

w(z+ 1) = enOy(z) = ™52y (2),  (22)

wl(z+7) = enly(s) = M5y (2),  (23)
where we consider the unit U(1) charge, ¢ = 1. Note that
the quantization condition M € Z originates from the

above boundary conditions. The zero-mode wave function
of the two-dimensional spinor with charge ¢ =1,

wM<z>=("’L(Z)>, V() =vR). (24)

is obtained by solving the zero-mode Dirac equation,

*The following analysis in this paper can be applied for U(N)
magnetic fluxes.
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i(y*D, +y*D;)y™(z) = 0, (25)

where y%, y* are written by

1 /0 2 . 1/0 0
t=— . = . (26

satisfying {y%,7°} = 2h%, and we denote the covariant
derivative as D, =0, —iA,(D; = 0; —iA:). From Eq. (26),
each component of Eq. (25) is described by

. 2i _
Dyl (z) = é—lDzw”f (z) =0, (27)

—iDyM(z) = z—liDzy/l”(z) =0. (28)

When the magnetic flux M is positive, ¥ (z) and

wM(z) =y +( ) have |M| number of degenerate zero
modes described by

e = (G e e

€7
; J
% 2P IMIHOGrtD)

J
— <|ﬁ> 1/4ei7Z|M|(Z+§)Im1<Z+L) |:7:|
A? 0

with VjeZ‘M|:{0,1,2,...,|M|—1}, where A =
is the area of 72 and & denotes the Jacobi theta function
defined as

)-
(29)

|€1|2Im7

a
9 7)) = wi(a+1)*t 2Jri(a+l)(v+b). 30
u@ 7) = Y eritariiee (30)

lez

Similarly, when M is negative, y(z) has |M| degenerate
zero modes, whose wave functions are the same as the
above. Thus, we can realize a chiral theory.

Furthermore, the wave functions of the nth excited
modes [47], whose squared masses are m} =*%%n, can

be described by

i () = ﬁ(a*)%“ (2.2)

_ Ly M)'/4e;ﬂM<z+¢>‘m§;f>
vl \Wv2/) \A?

. Jj 2 . Jj
% Ze’”'Ml’(W\“) S 2IMI (40 ()
I€Z

an<¢M(m§ff)++l))

M|
(31)

where we use the creation and annihilation operators,

\/ 47r|M \/ 47r|M G (32)

which satisfy [a,a’] =1, and H,(x) is the Hermite
function. We note that the wave functlons in Egs. (29)
and (31) are normalized by

/ dzdzyl M (2) yi M (2) = (2Ime) 125,48, (33)
T?

From Egs. (33) and (15), we can obtain the following 4D
kinetic terms:

e [ S B

which means that the wave functions on the 4D space-time,
1//],1‘ ‘( have modular weight —k = —1/2. Thus, the
modular symmetry in the 4D low-energy effective field
theory is determined by behaviors of wave functions on
the magnetized 72. In the next section, we study the
modular symmetry on the magnetized 72. Before ending
this section, we also note that the wave functions in
Egs. (29) and (31) satisfy the following relation:

z}’)up{,l

b
—it + i7)'/?

(34)

Ji M|

Yn ( Z,T) = llllnM‘_j.lMl(Z,T). (35)

B. Modular symmetry in the magnetized 72 model

Here, we study how the fields on the magnetized 77 are
transformed under the modular transformation, Eq. (6).

The transformation of the Wilson line  is the same as the
coordinate z,i.e., ' 2 y: { = {/(c't+ d'). The fields F in
Eq. (17) and A in Eq. (19) are modular invariant. The
equations of motions for y(z) with any excited modes,
including zero modes, are also modular invariant. On the
other hand, while the boundary conditions for w"(z) in
Egs. (22) and (23) are consistent with the S transformation,
they are consistent with the 7' transformation only if M is
even. In general, the boundary conditions are consistent
with the modular transformation in Egs. (2) and (3) only if
M is even or both a’b’ and ¢’d’ are even, where o', b, ¢', d'
are elements of y €I'j, CI'. (See Ref. [15].) Here, we
focus on the models with M = even.

The wave functions of the nth excited modes in Eq. (31),
including the zero modes in Eq. (29), are transformed as

: : 1
Sty (z.7) -y (—i——)
T T

|M|-1
1/2 Z PLC S \/7 2”’\}‘4’(\1//“ l(Z,T)» (36)
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T: ™) o M (2 r 4 1) = eyt (2 1), (37)

under the modular transformation, Eq. (6). Note that the
creation operator is modular invariant and commutative
with the above coefficients. Thus, the wave functions
transform like modular forms of weight 1/2. It is consistent
with Eq. (34). Modular forms of weight 1/2 are relevant to
the double covering group of I' = SL(2,Z),T = SL(2, Z).
(See e.g., [44,48-51].) The double covering group =
SL(2,Z) is defined by

I={ly.elly el ee {£1}}. (38)

The multiplication of arbitrary two elements, [y, €],
[72.6,) €T, is defined by

1. €llra2. €2] = [r172. A(r1. 72)er1€2], (39)

where A(y;,7,) is called Kubota’s twisted 2-cocycle [50]
for T, defined as follows. We first introduce Kubota’s
function y: I' —» Z, defined by

., (¢#0)
= 40
w=-{5 ot (0
We also introduce the Hirbert symbol, defined by
-1, (a<0andb <0)
(@.0)n = { . (1)
1,  (otherwise).
Then, A(y,,7,) is defined by
x(rira) x(rir2)
Alyi.72) = < , : (42)
PR\ ) T x(n) w

Actually, it satisfies the following cocycle relation:

A(r1.72)A(r172.73) = A(r1.7273)A(r2.73). (43)

Here, we set

S=[5.1, T=[T.1. (44

They satisfy the following algebraic relations:

=[Lll=z  §$=@TP=[L-1=22

SB=08T)°=[1]=1=2" (45)
Note that inverses of S, 7, Z are written by

ST=[st1), T =[], Z=[-1-1]

(46)

Hereafter, we often denote an element of T, [y, €], as 7,
where 7 is, in general, independent of y.

Due to the above extension by € € {£1}, the definition
of the automorphy factor in Eq. (11) is also extended by
€ € {£1} as follows:

jk/2(77,r) = eka/z(y, 7) = ef(c't + d')¥/?,
a b
Y

where we take (—1)%?2 = ¢~*/2, From Egs. (12) and (39),
Eq. (47) satisfies the following relation:

keZ,

el (47)

Jip(7172:7) = (A(r1.72)) T2 (71 72(2)) T 2 (72. 7).
vi=1lri-els 72 =lr2.e2) €T, (48)

where the extension by e € {£1} does not affect the
modular transformation, i.e., 7(z,7) = y(z,7). It allows
us to study modular forms of weight k/2, where k is
integer. Considering the above extension, the wave func-
tions on the magnetized 7 transform as

|M|-1

i (#(z.0) =T12(7.7) Y o)™ (e). 7eET
k=0

(49)

p(8) i = e L &2,

.2
VM| (D)= €3k, (50)

under the modular transformation. Note that Z(z,7) =
(=z,7) and Z%(z,7) = (z,7) require J,/5(Z,7)p(Z) =
Simj-jx and Jyo(Z%,7)p(Z)? =6, ;. respectively. Actually,
we can check that the following relations,

/)<Z)jk = /’(g)?k = i5\M|—j,kv (51)

j]/2(22,7) = 71/2(3477) = 71/2((37)3»7) =-1,
P(2)5 = p(S)% = PP} = =6 (52)

71/2(2477) = j1/z(3877) = jl/Z((ST)6’T) =1,
P(Z)j = p(8)5 = p(S)p(D))% = 6 (53)

J1/2(Tn77) = l’ Vn € Z7 /)(T)f/‘(M‘ = Oj k> (54)

p(2)"p(T) =p(T)p(2)". n=123, (55
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are satisfied.’ Therefore, the wave functions on the mag-
netized T2 transform under the modular transformation like
modular forms of weight 1/2 for I'(2|M|),* which is the
normal subgroup of I, defined as

T2M|) = {[h.e] eT|h eT(

Je=1}. (57)

Then p is a unitary representation of the quotient group

~’2‘M| =T /I(2|M|). That is, the group generated by p is

homomorphic with Fz\ e
For example, when M = 2, the S and 7 transformations

are represented as

=1 ) em=(y ) o9

They generate the group G whose order is 96, and it is
isomorphic to

G2 ~ T/XIZ4. (59)
When M =4, the § and T transformations are re-
presented as
1 1 1 1
- e+l 1 i =1 —i
S) = ,
P=5 1y o 4
1 —-i -1 i
1 0 0 0
N 0 e7* 0 0
T) = 60
p(T) 0 0 -1 0 (60)
0 0 0 e/

They generate the group G*, whose order is 384, and it is
isomorphic to

G* ~ A(48)xZ;. (61)

In Appendix A, we study the extension for the general-
ized CP symmetry with the modular symmetry on the
magnetized T°.

So far, we have considered the Wilson line £, which
transforms as { — {/(c’t + d'). In that case, the modular
transformation is restrictive due to the consistency with the

The following relations are also satisfied:
p(S)p(T)™% = =64
pS)p(T)]}i = 84 (56)

4According to Ref. [48], S‘Z(Z,
I'(2|M]) since 2|M| € 4Z.

Z) — SL(2, Z) can be split on

boundary conditions for (7). Before ending this section,
we comment about another possibility. In particular, if a
Wilson line ¢ is also changed to ¢ + 1, which is the gauge
transformation, simultaneously with the 7 transformation,
the boundary conditions for y(z) are consistent with the
modular transformation even if M is odd, although the
equations of motions for y*(z) are modified. In this case,
the zero-mode wave function for j after the 7 trans-
formation can be expanded by the all excited-mode wave
functions for j before the 7' transformation as follows:

T:ygMl(z+ L) —>w’"M‘<z+c+ Lz+1)

= ( JemWe Slmr Z \/__ < E|M|>

xyhM(z 4+ ¢.7), (62)

where we use the following the generating function of the
Hermite function:

e 20 =3 "H, (02 (63)
n=0 n:

The detail calculation is shown in Appendix B. Similarly,
the nth excited-mode wave function for j after the T
transformation can be also expanded by the all excited-
mode wave functions for j before the T transformation.

In this section, we have discussed the modular symmetry
on magnetized T2. In the following sections, we study
the modular symmetry on various magnetized T2/Zy
orbifolds.

IV. MODULAR SYMMETRY IN MAGNETIZED
T?/Zy TWISTED ORBIFOLD MODELS

In this section, we study the modular symmetry of the
wave functions on the magnetized 7% /7 twisted orbifolds
[12,52-54]. Here and hereafter, we often omit the KK index
n, because each KK level satisfies the same relations in
what follows. For simplicity, we do not introduce non-
vanishing discrete Wilson lines, although we can discuss
models with nonvanishing Wilson lines similarly. The
T?/Zy twisted orbifold can be obtained by further iden-
tifying the points on 72 ~C/A which are rotated by
ok, = N, Y e 7y ={0,1,2,...,N — 1}. That is the
Z) twist, i.e., (a%)¥ = 1. Hence, a lattice point, except for
the origin, should move to another lattice point after any Z
twist. It allows only if N =2, 3, 4, 6. Moreover, the
modulus 7 = e,/e; should be fixed to be 7 = ay = e>#/V
for N =3, 4, 6, although any 7 is allowed for N = 2. It
means that only ST, S, ST~! transformations of the modular
transformations are consistent for N = 3, 4, 6, respectively,
while there remains the full modular symmetry for N = 2.
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The wave function on the magnetized T%/Z, twisted
orbifold, yf/TVyZ‘m( ), must satisfy the following boundary
condition:

1 "
W]Tl/z‘g (ayz) = aNWITl/ZIm (2). meZy. (64)

Hence, such wave functions can be written by linear
combinations of wave functions on the magnetized 77 as

N-1

W’Tlﬁle() Ny Z( )k TlM‘(aNZ) (65)

k=0

where N} is the normalization factor determined by

remaining Eq. (33). Furthermore, w?'M‘ (akz) satisfies

the same equation of motion as z/f' . In addition, if

yf’ ‘M‘(aNz) also satisfies the same boundary condition as
z,uJTlM‘( ), l/leM‘ (a;z) can be expanded by the same excited
mode of ijz (2).

First, we consider the magnetized 7%/Z, twisted orbi-

fold. In this case, since the wave function v, M l(azz,r)
satisfies the same boundary conditions, Egs. (22) and (23),
y M (a2, 7) can be expressed by y Ml (z,7),1.e., Eq. (35).
Therefore, the wave function on the magnetized 72/Z,

twisted orbifold basis, y: lyz‘m( ), can be written by linear

combinations of wave functions on the magnetized T2

basis, I/I;ZZ‘M‘ (2), as

|M|-1
W (27) = N S (855 + (=1)"6 0w (2,7),
k=0
(66)

where the normalization factor A% is determined by
N% =1,1/2, and 1/4/2 for j = 0,|M|/2, and the others,
respectively. Note that there are no Z,-odd modes,
yf;%é(z,r), for j=0,|M|/2. When M is even, the
numbers of Z,-even (m = 0) and -odd (m = 1) modes
e (|M|/2+1) and (|]M|/2—1), respectively.” On the
T?/Z, twisted orbifold basis, Eq. (50) is deformed by

in/4

).

pTz/Zg(S')jk =e cos(

N

- il
preyzy(T) j = €6 4., (67)

>When M is odd, the numbers of Z,-even and Z,-odd modes
are ((|M]|—=1)/2+1) and ((|M|—1)/2), respectively.

in/4

Pl l . .
pr2y8) = 4 —sin(aji M),

.2
pryz (T) o = €75, 1, (68)

where we need to multiply pr2, 79 (S) further by 1/4/2 when

j or k is 0 or |M|/2. The above deformations induce
deformation of the relation in Eq. (51) as

Pryzy (Z)jk =Prjzy (S‘)%k = (=1)"id; . (69)

while the other relations are the same as the T2 basis. Thus,
the representations on the T2/Z, twisted orbifold basis
satisfy the same algebraic relations as that on the 77 basis,
although the dimensions of the representations are differ-
ent. For example, when M = 4, the wave functions on the
T?/Z, twisted orbifold basis are expressed as

0.4
Y2z (z.7) lllg’f(z, 7)

14 | (14 34
Wiz (z.7) | = 7§(sz (z.7) +y5 (2. 7)) |, (70)
Vi) 0 (2.7) v (2.7)

Vi (2.7) = f(ll/Tz(Z 7) =i (7). (71)

The representations of the S and 7' transformations for
Z,-even modes are expressed as

eiﬂ/4 1 \/§ 1

Prl/zg(s) = V20 =2,
1 =2 1
1 0 0
PTZ/ZQ(T) =0 & 0 |, (72)
0o 0 -1

which are the generators of the group G§. The group G§ has
the order 384 and is isomorphic to

G4 ~ A(48)xZ, (73)

which is the same as the group on T2 in Eq. (61). The above
wave functions in Eq. (70) correspond to a triplet under
G} ~ A(48)xZg. The representations of the S and T
transformations for the Z,-odd mode, on the other hand,
are expressed as

63711'/4’

Pr2/7) (8) = PTZ/Z;(T> = e (74)

which are the generators of the group G{. The group G{ is
nothing but
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G‘ll' ~ ZS’ (75)

which is a subgroup of G§~ A(48)xZg. The above
representation in Eq. (71) is a representation of this Zg
symmetry and it also corresponds to a singlet under
G}~ A(48)xZg.

Thus, the T?/Z, twisted orbifold is consistent with the
modular symmetry. Furthermore, the wave functions on 72
are decomposed into smaller representations by Z, eigen-
values, even and odd, that is, the 72/Z, twisted orbifold
basis. For smaller |M]|, this basis of wave functions provide
us with irreducible representations of I“z‘ M = =T/T(2|M|).
For larger |M|, wave functions on the T2/Z, twisted
orbifold basis could be decomposed further. We will study
it in Sec. VL

Next, we comment about the other magnetized 72/Z
twisted orbifolds. In the case of T2 /Z4, since the wave

function 1;/’ M ‘(a’jz, ay) satisfies the same boundary con-
dition as wi™(z. ay), wi™'(a%z, ay) can be expanded by
W 1] (z,ay). Actually, it can be done by considering the S

transformation for v, M ‘(z,a4) [12]. Therefore, the wave
function on the magnetized 72/Z, twisted orbifold basis,

V/Tlfyz‘ (z), can be expanded by linear combinations of

|M|-1

l//JTz‘/Zm (z.a4) = N Z (( ikt (—1)m5|M|—j,k>

k=0
e—iﬂm/Z

)

iz ). (76)

On the T?/Z 4 twisted orbifold basis, the representation of S
transformation is diagonalized as

Pryzy (g)jk = ei”/4(em/2)m5j,k- (77)

That is the Zg symmetry.

In the case of T?/Z, for N = 3, 6, however, the wave
function wfl"M‘(af‘vz, ay) satisfies the same boundary con-
dition as w{;’M(z, ay) only if M is even. Thus, when M is
even, wf[lM‘(aj‘vz,aN) can be expanded by I/I;HM‘(Z,(XN).
Actually, it can be done by considering ST, ST~! trans-
formations for l//] M ‘(Z,(ZN); N =3, 6, respectively [12].
Therefore, the wave function on the magnetized T2/Zy;

= 3, 6 twisted orbifold base, w’Tl /Z‘m( ), can be expanded
by linear combinations of wave functions on the magnet-

wave functions on the magnetized T basis, l//j M ‘(Z), as ized T? basis, w;lM‘(z), as
|
m |ﬁ§l e2rim/3 2, 5 swim /3 i/ 12 i 2, kM
J: t —ir/1 mid —2rim in/12 —imos i s
llsz/Zm(z a;) = N3 ( ik~ (e e’ g +e el 127 e M))WTg (z,a3),  (78)
p VM|
IM|-1 —izm/3 " 2 2 ;
j e i itk gk — —i il 2midk
Ve (0 =N 3 ( o ()8 ) e (e 22T - i i 2 2o
|z J- |M]|—j.k \/W—|

G e R L ) ) 7

On the T?/Z; twisted orbifold base, the representation of
ST transformation is diagonalized as

preyzn(ST) o = e™3(e273)" 8, . (80)

That is the Zg symmetry. On the T?/Z, twisted orbifold
base, the representation of ST~! transformation is diagon-
alized as

PTZ/Z;‘(ST_I)jk = e"/0(e" ), . (81)

That is the Z;, symmetry. Thus, there remain Z,, sym-
metries in p(y) on the magnetized Z, twisted orbifolds

|
for N =3, 4, 6. Remaining p(y) represent a spinor
representation under Zy twist. Obviously, p(y) on the
T? and Z, bases also correspond to spinor representations
under the 2D (discrete) rotation.

V. MODULAR SYMMETRY IN MAGNETIZED
T?/Zy SHIFTED ORBIFOLD MODELS

In this section, we study the modular symmetry for the
wave functions on the magnetized 7°/Z,, shifted orbifolds
[55]. The T?/ Z ), shifted orbifold can be obtained by further
identifying the points on T2 ~ C/A which are shifted by
ke\"" =k(m+nz)/N."k.2m,*ne Zy={0,12,.. .N-1}.
Then, the wave functions on the 72/Z, shifted orbifold
have to also satisfy the following boundary condition:
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. mn

j.|\M j,\M

» <7m 70,
— p2mit/N, N ). jM|
= e2mil/ Wrs e (2),

1%/75

(82)

with Z € Zy, which is consistent with the boundary
condition for z — z 4+ m + nz, in addition to Egs. (22)
and (23). Furthermore, these boundary conditions constrain
the magnetic flux M to be M = Nt, t € Z. The above wave
function can be written by linear combinations of wave
functions on the magnetized T2 as

- St

k=0

M .| M m,n
w”/z‘f wiM (z 4 key™™),

(83)

where A%, is the normalization factor determined by
(33). Furthermore,
l/f/ ‘M‘(z + keg\,m‘”) ) satisfies the same equation of motion

as ll/] \M\
as | '(2), one can expand e‘ikX(Nm'")(Z”)I/fﬂM|(z + kel

(z). Then, the wave
function on the magnetized T?/Z, shifted orbifold,

' M|
TZ/Z/
.| M|

wave functions on the magnetized T2, w;Z

remaining Eq. since e~k (@)

(z) and also satisfies the same boundary condition

by the same excited mode of uf;lM‘

), can be expanded by linear combinations of

(2), as

N-1

WIT %‘f( 1) = N3, Z o=2ik(¢=mj)/N p=izk(N=K)mnlt|/N

sy M 7y, (84)

which can be obtained from Eqgs. (29) and (31) directly. The
normalization factor '}, is determined as N3, = 1/+/N for
n#0or Ny, =1/N for n=0.

We discuss the modular symmetry on the magnetized
T?/Z shifted orbifolds. There is the modular symmetry on
the T%/Z ), shifted orbifold only if the points on 7% ~ C/A
which are shifted by e,(\;" " = (m + nt)/N; Ym, Yn € Zy
are further identified. Hereafter, we call this 72 /Zy shifted
orbifold the full T?/Z, shifted orbifold. The full 72/Z,
shifted orbifold with magnetic flux M corresponds to T2 ~
C/A',N = A/N with magnetic flux M/N?. The boundary
conditions for the wave functions on the magnetized full
T?/Z, shifted orbifold are written by

(10)
]f/;l iy (Z)V,J\M\ . fz)(z)’ (85)

M| (LO)y _
WJ flfz( +eN >_ T’/Z

TZ/Z

= apen Oy @) (86)

M| (0.1)
WJ (¢1.67) (Z+6N ) TZ/Z

12/7}

The above boundary conditions are consistent with
Egs. (22), (23), and (82) for Ym, Yn € Zy, where we
denote Z in Eq. (82) as £, determined by #("") =
m¢| + n¢,(mod N). From the above boundary conditions,
we obtain s = M/N? € Z. The eigenfunctions for ¥e{"")
shifts which satisfy the above boundary conditions are
expressed as

r.ls] M|
lIsz/Zflfz ( WJTZ/Zfl £2) ( )
1 N- . .
_ e—zmkfz/NWJ+kN\s|~\M\ (z.7),

X

M = Ns, se”,

j:N}"‘i‘fl GZNM?

rGZM,fl,szZN, (87)

where we note that #; = j(mod N). Furthermore, when
we consider s = even, the boundary conditions, Egs. (85)
and (86), are consistent with the modular transformation.
On this full 7?/Z, shifted orbifold basis, Eq. (50) is
deformed as

Ve (7(2:7))

P2z VP)rr (v 1)

x WP (z), (88)

for 7 € T, where

Pr2yz1 (S)rr’,(fl.fz)(f’l,f’z)

) 1 ) ‘&
_ em/4Wezm(%m(Wlw)/m%ﬂl5N_f|f,2’ (89)

ATy
— pin(x+r) /s
= ¢ ”(N ) /‘ |5r,r/5f1 ’ﬂl 5f2_flvf/2'

(90)

P12z (T)rr’,(fl D))

The above deformations induce the deformation of the
relation in Eq. (51) as

Pr2 0 (L) e 01.0)(01.4)

= pﬂ/zﬁf' £2) <S) ' (41.0)(¢).05)

_ 2xits/N;
= e¥rit2/ 15\s|—r—1,/51v—f1,f;5N—f2f'2- (o1)
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We should modify several terms in the following particular
case. Since N — 7, = £,(mod N) is satisfied when £, =0
or N =2, §jy_,_1,» should be modified into 5/, _, when
£y =0 or §_,_s, » when N =2. Furthermore, when
r =0 in addition to #; = 0 or N =2, ¢***2/N does not
appear even if £, # 0. Note that Eq. (91) leads to the
following relation®:

|

- 1,
oyl ity gL (7). (92)

/1/2( Z’T)_e TZ/Z

The other relations except for Eq. (91) are the same as the
T? basis, where we note that the representation of TV
transformation is diagonalized. However, the Zj-shift
invariant modes on the full 72 /Zy shifted orbifold, i.e.,
(Z1,¢,) = (0,0), in particular, correspond to the modes on
the T2/N ~T? with magnetic flux s = M/N? € 2Z. In
other words, the Zy-shift invariant modes behave like

r.s| _ A/stgTls] mLyglsl=r=21.s|
lPTz/Z;m:flfz) - Nz (‘PTZ/Z(K‘{Z) + (_1) ZIP 2/Z (¢1.6) )

_Nst( 2f‘*‘fl Als| +(_1)f2+m‘//;z” r=¢1)+¢1 45| +<_1)

SEZZ, FEZ\ m,fl,f2622,

bii-g

where N3 is the normalization factor determined by remaining Eq. (33). Note that (1) =
(0:0,0), (1:0,0) are (|M]|/8 + 1), (

of the degenerate modes for (m;¢,,%,) =

Nst(

modular forms for T'(2|M|/N?), while the other modes
correspond to modular forms for T'(2|M|).

VI. MODULAR SYMMETRY IN MAGNETIZED
T?/Z, TWISTED AND SHIFTED
ORBIFOLD MODELS

In this section, we study the modular symmetry for the
wave functions on the magnetized 72/Z, twisted and
shifted orbifolds. The modular symmetry remains on the
T?/Z, twisted orbifold. In order for the T?/Z, twisted
orbifold to be consistent with the full 72/Z, shifted
orbifold, the following condition should be also satisfied:

N — KI,Z = sz (mod N), (93)

for ¥¢,, € Zy. Therefore, the only full 72/Z, shifted
orbifold is consistent with the 72 /Z, twisted orbifold.” The
wave functions on the magnetized T2/Z, twisted and
shifted orbifold are expressed as

2r+¢1+2s|.4]s|
W )

O 1)y

T2 Zm

WT(\SIH 21405 + (- l)mWZT(ZZ\SI—r—fl)Jrf]~4|S\)’

(94)

¢\ + £>(mod 2). The numbers
), respectively, while the numbers

of the degenerate modes for the other (m;#,,¢,) are |M|/8, where M € 8Z. On this T?/Z, twisted and shifted orbifold

basis, Egs. (89) and (90) as well as Eq. (50) are deformed as

pTZ/ZO/l 42) (S)rr |S

Pryz00 (D) 02010

— ein(@+1/lsl§

) 2
(e = e”’/“Tcos Q2r(t1/2+r)(¢)/2+ r’)/|s|)5fzf/]5flf/2, (95)

r,r’5f1.f’] 5},"2—f1f’27 (96)

- ) 2i
Pzl () er.e2)(e1,2) = €™/ =sin 2n(£1/2+ 1)1 /24 1) /15))6¢,.010¢, 21, (97)
~ . L 2
Pryziae (D) ey e = W ING, 16, 180y, 1 (98)

*The following calculation is useful to confirm Eq. (92):

o (Nr+¢,)+kN|s|.N?|s|
e Mku/Nl//Tz : (-z)=e Yo

— p2rit2/N e—an(N—k—l)(N—fz)/Nl//(T

—2aikty /Ny, N Is|= ((Nf+f|)+kN\A‘|)-N2\S\(Z)

1:’(M—r—l)+N—f| )+(N—k=1)N|s|).N?s (Z)

. il Nr' +¢")+k'N|s|).N?|s
— p2nita/N p=2rik fz/Nw(Tz 1)K Ns|).N?| ‘(Z).

"The other T2 /Z y twisted orbifolds with N = 3, 4, 6, on the other hand, are not consistent with any full T2 /Z y shifted orbifolds since

they require £ = ¢».
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They satisfy the same relations as the 7°/Z, twisted
orbifold basis. In particular, the Z,-shift invariant modes,
ie., (m;¢,¢,) = (m;0,0), correspond to the modes on
the (T?/N)/Z, ~T?*]Z, twisted orbifold with magnetic
flux s = M/4 € 2Z. For example, when M = 8 (s = 2),
the Z,-shift invariant wave functions on the 72/Z, twisted
and shifted orbifold basis are expressed as

0,2

‘PTZ/zg‘”O*") \/% (W(}’zg + ‘//;‘28 )
12 I Y 68\ |’ (99)
T2 / Zéo;oo) \/_5 (V/Tz + WTZ )

and the S and T transformations for Eq. (99) are the same as
Eq. (58). When M = 16 (s =4), the Z,-shift invariant
wave functions on the T?/Z, twisted and shifted orbifold
basis are expressed as

pos 0.16 8.16
72200 L0 )
1.4 2,16 6.16 10,16 14,16
lPTZ/Z(ZO:O-O) = % (U/Tz + Yo + Yo + 2% ) )
24 1, 416 12,16
‘PTi /Z(zo;o.o) V2 (WTZ + V2 )
(100)
1
14 2.16 6.16 10.16 14,16
Tz/zg&o.o) = B <’//T2 Y + Y —VYpe )7 (101)

and the representations of the § and 7 transformations
are the same as Eqs. (72) and (74). We express all wave
functions on the 72/Z, twisted and shifted orbifold base
for M =8, 16 and the representations of the S and T
transformations for them in Appendix C.

As aresult, when M = 0 (mod 8), both the Z, twist and
the full Z, shift are consistent with the modular symmetry.
The wave functions can be decomposed into smaller
representations by their eigenvalues. Thus, a combination
between the Z, twist and the full Z, shift provides us with a
reduction of reducible representations towards irreducible
representations F/ZIMI =T/T(2|M)|).

VII. CONCLUSION

We have studied the modular symmetry of wave func-
tions on the magnetized 72 ~ C/A. When the magnetic
flux M 1is even, the wave functions behave as modular
forms of weight 1/2 and represent the double covering
group of I' = SL(2, Z), = §Z,(2, 7). Each wave function
on T? with the magnetic flux M transforms under I"(2|M]|).
Then, |M| zero modes as well as massive modes are
representations of the quotient group f’z‘ | = r/r(2|M)).

If we change the Wilson line { — £ 4 1 simultaneously
with the T transformation of the modular transformations,
T? with any magnetic flux M is consistent with the modular
transformations. However, the zero-mode wave functions
after the T transformation are expanded by the all excited-
mode wave functions before the 7 transformation.

We have also studied the modular symmetry for the
wave functions on various magnetized T?/Z, orbifolds.
The T?/Z) twisted orbifold can be constructed for
N =2, 3,4, 6. However, the modulus 7 = e,/ ¢, is fixed
as 7 = /N for N = 3, 4, 6 while any  is allowed for
N = 2. It means that the only ST, S, S T-! transformations
of the modular transformations remain for N = 3, 4, 6,
respectively. They correspond to Z,y symmetries. On the
other hand, there remains the full modular symmetry for
N = 2. The representations of the modular transforma-
tions on the 72/ Z, twisted orbifold basis satisfy the same
algebraic relations as the representations on the T2 basis.
However, the representations on the 72 basis are decom-
posed into smaller representations on the 7?%/Z, twisted
orbifold basis.

In order for the 72/Z,, shifted orbifold to be consistent
with the modular transformations, all Zy-shifted points
should be identified, where we call it the full 72/ Z, shifted
orbifold. The full 72/ Z, shifted orbifold with the magnetic
flux M corresponds to T2 ~C/A/, A'= A/N with the
magnetic flux s = M/N? € 2Z. In particular, the Z y-shift
invariant modes correspond to the modes on T2/N ~T? .
Therefore, the Z y-shift invariant modes behave like modu-
lar forms for T'(2|M|/N?), while the other modes behave as
modular forms for T'(2|M]|).

Furthermore, the only full 72/Z, shifted orbifold is
consistent with the 72/Z, twisted orbifold. On that 7%/Z,
twisted and shifted orbifold, the Z,-shift invariant modes
correspond to the modes on the (7%/N)/Z, twisted
orbifold with the magnetic flux s = M /4 € 2Z.

The wave functions on 72 are decomposed into smaller
representations by the Z, twist and shift. They provide us
with a reduction of representations towards irreducible
representations. Also, the combination of the Z, twist and
shift provides us with a new approach to realize three
generations from the phenomenological viewpoints.® It is
interesting to study three-generation models by a combi-
nation of Z, twist and shift. We would study elsewhere.
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APPENDIX A: EXTENSION FOR GENERALIZED
CP SYMMETRY WITH THE MODULAR
SYMMETRY ON THE MAGNETIZED T?

Here, we study the extension for generalized CP
symmetry with the modular transformations on the mag-
netized T2 The CP transformation for the modulus 7 is
defined as CP: © — —7, where it remains Im(—7) > 0. It is
derived from

cp 1 0\/e
(o)) =0 2)(2)
e efP 0 -1 €]

1 0
cp= , (Al)
0 -1
uc? w
CP: 7=— CP — =— = -7, A2
4 el—>z o7 2, ., (A2
cr 5
.. _© cp _ & € -
CP:r=—= =S =—"=-7. A3
T el—»r o7 = 5, T (A3)

The CP matrix in Eq. (A1) satisfies the following relations:

CP’=1, (cpP)S(cp)'=s-', (cP)T(CP)'=T"".

(A4)
When we also consider the above CP transformation
in addition to the modular transformations, the modular
group I' = SL(2, Z) is extended to I'* = SL(2, Z)xZ§P~
GL(2,Z). Under the extended modular transformation by
y* = (%5%) er*, (z,7) transforms as

Z at+b *
(ﬁﬁ) (dety” = 1)

b4 a'z+b’ %
(ﬁﬂ) (dety” = —1),

*

v (z1) =

where the above in Eq. (AS) is just modular transfor-
mation and the below in Eq. (A5) contains odd numbers of
CP transformation. It leads to redefine the automorphy
factor as

) Uw+w&<ww=w
7T =
v (7 +d)t, (dety = 1),

a b
]/*:(C/ d/)er*,

where it satisfies Eq. (12). Note that y* does not mean the
complex conjugate of y but an element of ™.

(A6)

See [19,33] for the relation between the modular symmetry
and CP symmetry. See also Ref. [58], and references therein, for
CP in superstring theory.

In order to see how the wave functions on the magnetized
T? transform under the extended modular transformation
by y* € I'*, furthermore, we consider the double covering
group of [*~GL(2,Z),T* ~ GL(2, Z), similar to Eq. (38).
Note that only Eq. (42) is redefined as

x(riva)  x(rir3)
A(yy,75) = (detyy, dety; ( L — ol I
(ri.ra) = ( ! Jn x(ri) x(y3)dety;)
(A7)
(See Ref. [49].) In particular, we set
CP=cpP.1]. (A8)

Then, Eqgs. (AS8), (44), and (46) lead to the following
relations:

(CP)* =[I,-1] = 7%,
(CP)* =[L1] =1=2Z"
(€)' =[(cP).~1],
(CP)3(CP) ! =[s7. 1] =5,
(CPT(CP) ! = (17" 1] =T"", (A9)

in addition to Eq. (45). The automorphy factor is the same
as Eq. (47) and satisfies Eq. (48), where we should apply
Egs. (A6) and (A7).

Here, we study the CP transformation of the fields on the
magnetized T2. In addition to Eqgs. (A2) and (A3), it is also
needed that the magnetic flux M is flipped as

CP: M- —M. (A10)
In this case, any field in Sec. Il A after the CP trans-
formation corresponds to the complex conjugate of the
field. In particular, the wave functions of the nth excited

modes in Eq. (31), including the zero modes in Eq. (29),
transform as

CP: l//{,‘M(Z,T) - l//f{lm(—i, -7) = llffz"M‘ (z.7), (A1)

under the CP transformation. Considering Eqs. (49) and
(A1l), we can obtain the following form:

IM|-1

l//f;"M‘(EP(Z, 7)) = ]1/2(673,1) Z P(a/’hkv/ﬁw‘ (z.7).
k=0

(A12)

-71/2(6\?’ 7) :(—1)1/2 = e =, P(ai)),’k =06

(A13)
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We can also check the following relations:
Ip(CP) ) = (=)= =™ =i, p(CP)! = ~id. (A14)

From Egs. (A13), (A14), and (50), we can obtain the following relations:

J12(Z2,7) =11 5((CP)27) = =1, p(Z)* = p(CP)? = =5, (A15)
J12(Z%7) = 1 n((CPY 7)) = =1, p(2)* = p(CP)* = &4, (A16)
Jip((CP)S(CP) ™ 7) = 11057 2), [p(CP)p(S)p(CP) ] = p(5)7, (A17)

11 p(CPYT(CP) ™ 7) = T, p(T" ), P(CP)(T)p(CP)™ ;1 = p(T)7. (A18)

which are the representations of Eq. (A9). Then, p becomes the representation of F*z‘ M = =1*/T(2|M)).
APPENDIX B: MODULAR TRANSFORMATION WITH GAUGE TRANSFORMATION

Here, we derive Eq. (62),

T: l;/é"M‘(Z-FZ:,T) - wé’lMl(z+C+ Lz+1)

_ (%) V 4em\M\(z+§+l)%Zeiﬂllﬂl(fﬂ)(ﬁ“)ze2ﬂi\M\(Z+§)(ﬁ+l)
A

leZ

1/4 ’ m(z i . i
= (-1)% ml; M / em\M\(zm%Z x| M| (Bl ) o TMIT(i ) 27| (2+€) ()
'Az ez

2 © n 1/4
_ 2 jimgy —E 1 (. [=z|M| |M|
= (1) ees ZE(’ 8Imz) \ A2

n=0

o pinlM(zHg) Zein\M\T(Wf‘Jrl)zeZﬂi\M\(ZJrC)(ﬁJrl) < /72H|M|Imr<l— J +l>)

+
leZ |M|

— (=1 )e e ;f:,zf< \/”TM> wiMlz + ¢ 0). (B1)

where we use the following the generating function of the Hermite function:

e =3 "H,(x) (B2)

n=0

APPENDIX C: EXAMPLES OF THE T?/Z, TWISTED AND SHIFTED ORBIFOLD BASE

Here, we express examples of the wave functions on the 7% /Z, twisted and shifted orbifold basis and the representations
of the S and T transformations for them. In particular, we show them for M = 8 and 16.
When M = 8 (s = 2), the wave functions on the 77/Z, twisted and shifted orbifold basis are expressed as

0.2

TZ/Z(O;O'O) \/L— (l//TZ + l//TZ )
12 | 4 ; (C1)
lPTZ/Zooo) T(WTZ + WTz )
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0.2

¥ . 0.8 4.8
72/2) e —v)
0.2
Vi poo | = [ i +wid + v v |
0.2 1,18 38 58 7.8
TZ/Z(;’;"” 2 (l//TZ WTZ l//TZ + WTZ )
(C2)
0’22 (10.1) 1,28 68
°/z, N Wi =)
02 _ 18 38 58 18
1272010 | = %(l//Tz —yn Ty —wn) |- (C3)
1/ 18 3.8 5.8 78
T(;zz/zm;l.l) E(V/TZ Ty —YR - V/TZ)
2

The representations of the S and T transformations for
Eq. (C1) are expressed as

5 eizr/4 1 1
/)Tz/zgozo.o) (S) = \/E 1 -1 ’

~ 1 0
pTz/Z;o;ao) (T) = 0 i)

which are the same as Eq. (58). The representations of the S
and T transformations for Egs. (C2) and (C3) are expressed
as

(C4)

010
Prejgone(8) =™ 100,
0 0 1
1 0 0
pTz/Z(ZO:fl.KZ)(T): 0 0 ein/8 (CS)
0 e/ 0
and
010
Prasptienen(S) = ™4[ 100
0 0 1
i 0 0
Prejginen(T) =00 "8 (Co)
0 e/ 0
respectively.

When M = 16 (s = 4), the wave functions on the 7% /Z,
twisted and shifted orbifold basis are expressed as

Y . 1 ¢,.0,16 8.16
TZ/Z(ZO,O»O) W (U/Tz + l//T2 )
1.4
; _ | 1,216 6.16 10,16 14,16
lPTz/Z(OOO) =13 (U/Tz + Y + Yo + Yo ) s
24 1 4,16 12,16
lPTz /Z(Zo;o.o) V2 (WTZ + V2 )
(C7)
0.4
lPTZ/Z(OO 1)
1 (WO,lé _ W8,16)
g4 V2 T 2
727700 1/ 216 6,16 10,16 14,16
/2 2 (WTZ - WTZ - ll/TZ + ll/TZ )
0,4
" 1/ 116 7.16 9,16 15.16
72 /Z(zo 1.0) |2 (l//Tz + 7% + 78 + 7% )
1.4 | 1y 316 5,16 11,16 13,16y |’
lPTZ/Z(ZO:I.O) 2 (l//Tz + l//Tz + WTZ + WTZ )
1,116 _ 716 _ 9,16 15.16
lP(,l):j/Z(Ozl.l) 2 (V/Tz Y Yo + Y )
2
1/ 3.16 5.16 11.16 13,16
14 Wy —wp )
(0:1.1)
T%/Z,
(C8)
1
1.4 _ 2,16 6,16 10,16 14,16
\PTZ/Z(ZO;O.O) - 5 (WTZ - WTZ + WTZ - WTZ > ’ (C9)
0.4
lPTZ/Z(”"” 1,216 6,16 10.16 14,16
2 N s y y
1.4 E <WT2 + II/TZ - WTZ - WTZ )
21— (1:0.1) 1 4,16 12,16
r /22 ﬁ( 7 l//TZ )
0.4
k SRS 1,116 7.16 9.16 15,16
T /Zz o 2 (ll/TZ - l//TZ + l//TZ - WTZ )
14 | 1/ 316 5,16 11,16 13,16
TZ/Z(ZH-U) 2 (WTZ - WTZ + WTZ - l//T2 )
1/, 116 7,16 9,16 15.16
qj(;’j/z(lzhl) 2 (WTZ TYL WL WL )
2
1/ 3.16 5.16 11.16 13.16
1.4 2 (U/Tz + V9 — Vi —Yp )
(1:1.1)
T%/Z,

(C10)

The representations of the S and 7 transformations for
Egs. (C8) and (C10) are expressed as

A 1 V2 1
- em/4
pTZ/Z(ZO:O‘O) (S) = > \/§ 0 —\/E ,
1 -2 1
1 0 0
P /Z;o:o,o)(T) =10 e** 0 |, (C11)
0 0 -1
which are the same as Eq. (72), and
pTZ/Z(ZO:O‘O) (S) = 63”i/4, pTz/Zgo;o.o) (T) = ei”/4, (CIZ)
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which are the same as Eq. (74), respectively. The representations of the S and 7T transformations for Egs. (C8) and (C10) are

expressed as

0 0 1/V2  1/V2 0 0
0 0 1/V2 ~1/V2 0 0
Pre 70012 (3) = ein/+ 1/V2  1/V2 0 0 0 . |
1/V2 ~1/V2 0 0 0 0
0 0 0 0 cos(z/8)  sin(z/8)
0 0 0 0 sin(z/8) —cos(x/8)
1 0 0 0 0 0
0 ein/4 0 0 0 0
7 0 0 0 0 et
Prizen =g 0 0 0 en6; |’ (C13)
0 0 oin/16 0 0 0
0 0 0 e o 0
and
0 0 1/vV2  1/V2 0 0
0 0 1/V2 =1/V2 0 0
P piien (8) = e/ 1/V2 1/¥2 0 0 0 . |
2 1/V2 -1/Vv2 0 0 0 0
0 0 0 0 sin(z/8)  cos(z/8)
0 0 0 0 cos(z/8) —sin(x/8)
ein/t 0 0 0 .
0 -1 0 0 0 0
T 0 0 0 0 oin/16 0
@00 0 0 ens; |’ (C14)
0 0 ein/16 0 0 0
0 0 0 in/16; 0 0
respectively.
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