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Effective field theory for acoustic and pseudoacoustic phonons in solids
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We present a relativistic effective field theory for the interaction between acoustic and gapped phonons
in the limit of a small gap. We show that, while the former are the Goldstone modes associated with the
spontaneous breaking of spacetime symmetries, the latter are pseudo-Goldstones associated with some
(small) explicit breaking. We hence dub them “pseudoacoustic” phonons. In this first investigation, we
build our effective theory for the cases of one and two spatial dimensions, two atomic species, and
assuming large distance isotropy. As an illustrative example, we show how the theory can be applied to
compute the total lifetime of both acoustic and pseudoacoustic phonons. This construction can find
applications that range from the physics of bilayer graphene to sub-GeV dark matter detectors.
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I. INTRODUCTION

Many properties of solids are dictated by the dynamics of
their simplest collective excitations: the phonons. These are
localized vibrational modes that, when characterized by
wavelengths much larger than the atomic spacing, can be
described in terms of quasiparticles. In a solid with a single
atom per unit cell the phonons’ dispersion relation is
gapless; i.e., when its wave vector vanishes, so does its
frequency. In this case one talks about “acoustic”” phonons.
However, for more complicated (and common) solids,
some phonons can be gapped, with a frequency that tends
to a finite positive value at zero wave vector. When the gap
is comparable to or larger than the maximum frequency of
the acoustic phonons, these modes are typically called
“optical” phonons.

It is well known that acoustic phonons are Goldstone
bosons associated with the spontaneous breaking of spatial
translations induced by a solid background [1]. Taking this
idea as a starting point, we see that recent years have
witnessed the development of relativistic effective field
theories (EFTs), based on symmetry breaking and its
consequences, applied to the study of collective excitations
in different media (see [2—4] and references therein). An
EFT description of the phonons, organized in a low-energy/
long wavelength expansion, has the advantage of being
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universal; i.e., it does not rely on the often complicated
microscopic physics, up to a finite number of effective
coefficients. The latter must be obtained from experiment
or determined in other ways, as, for example, density
functional theory (DFT) calculations—see, e.g., [5-9].
Such an EFT approach has already proven to be useful
to a number of phenomenologically relevant problems,
covering a wide range of fields, from the physics of “He to
cosmology (see, e.g., [10-20]).

In this paper we develop a new relativistic EFT for the
description of the interactions of acoustic and gapped
phonons in a solid, in the regime where the gap is small
compared to the typical frequency characterizing the
microscopic system. For reasons that will be clear soon,
we dub these collective excitations “pseudoacoustic” pho-
nons. See Fig. 1 for a schematic representation of the
phonon spectrum. To the best of our knowledge, no
bottom-up effective description of pseudoacoustic phonons
has been presented thus far.!

This construction can be applied to any number of spatial
dimensions and any number of atomic species within the
solid. However, as we will show, we expect a small gap for
the pseudoacoustic phonons to arise when the different
species are weakly coupled to each other. Such an instance
is realized, for example, in few-layer materials such as
graphene [6,31-37], hexagonal boron nitride [38,39], or a
combination of the two [40]. Indeed, we expect

'See [21,22] for a proposal on how to describe optical phonons
in a quantum field theory language. For the inclusion of explicit
breaking of translations in hydrodynamic transport as well as
nonrenormalizable field theories see, e.g., [23-30].
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FIG. 1. Schematic representation of the energy of different
phonon modes as a function of momentum. The shaded region
indicates where our EFT is valid.

pseudoacoustic phonons to arise in approximately two-
dimensional materials every time the layers are weakly
coupled to each other. In three dimensions, this situation
might be harder to envision. Nevertheless, we notice that
the spectrum of both graphite and three-dimensional
hexagonal boron nitride exhibits phonon branches that
closely resemble pseudoacoustic modes [40—44].

In this first study, we focus on solids that are both
homogeneous and isotropic at large distances. While the
first property is always true, the second one is a simplifying
assumption. The extension of our EFT to the case of solids
which preserve only discrete rotations at large distances is
straightforward, but tedious.

In constructing the EFT for acoustic and pseudoacoustic
phonons we impose relativistic Lorentz invariance.
Although this might not be common in solid-state physics,
there are reasons why this approach is worth exploring.
First, it is technically easier to impose the Lorentz sym-
metry than the nonrelativistic Galilei one, by simply
contracting covariant indices. Moreover, given that the
Lorentz group is more fundamental, one is always free to
require invariance under it, and hence allow the EFT to
include relativistic effects on the phonon dynamics. The
nonrelativistic limit can always be taken afterward, by
reintroducing the speed of light with simple dimensional
analysis and formally sending it to infinity (see, e.g., [17]).
That being said, if the system of interest is nonrelativistic,
there is no conceptual obstruction in imposing invariance
under Galilei boosts right away.

Finally, the formulation of an EFT in relativistic lan-
guage also provides a useful connection to high energy
physics, for example, enabling observables to be computed
using techniques more familiar to this community.

One promising application of this is in the use of EFTs
for describing the interactions of sub-GeV dark matter with
a detector. A number of recent proposals utilize dark matter
scattering off phonons in various materials as a detection

mechanism; see, e.g., [18-20,45-58]. For low-mass dark
matter with a large de Broglie wavelength, an effective
description of the coupling between dark matter and
collective modes in the detector is necessary, since the
microscopic features are not resolved. The EFT approach
we follow can be extended to capture the most general dark
matter—detector interaction, which is necessary for studying
generic rates and differential rates of dark matter scattering.
Furthermore, curious cancellation mechanisms have been
observed in low-mass dark matter scattering rates in liquid
helium that are transparent in the EFT [20,48]. Similar
cancellations have been observed in traditional calculations
of dark matter scattering off gapped and acoustic phonons
in crystals [51,58]. The EFT we introduce could provide
new insight into these mechanisms. It could also be utilized
to calculate rates of dark matter scattering off previously
unconsidered pseudoacoustic phonons, which lie in an
interesting region between acoustic and optical phonons
(the former having a larger scattering rate, the latter being
gapped and thus having more favorable kinematics to
match those of dark matter [50]); this could in turn provide
the impetus to consider materials that have pseudoacoustic
phonons as dark matter detectors.

The EFT of pseudoacoustic phonons could also find
application in “solid” theories of inflation; see [3].

II. EFT FOR ACOUSTIC AND
PSEUDOACOUSTIC PHONONS

We now describe the EFT for pseudoacoustic and
acoustic phonons, focusing on the simple cases of one
and two spatial dimensions, as well as two atomic species.

A. 1D case

Consider for a moment a monoatomic solid [3,4,17]. Its
volume elements can be labeled with a single scalar field,
¢(x)—the comoving coordinate—which at equilibrium can
be taken to be proportional to the physical spatial coor-
dinate, (¢(x)) = ax, where a is a constant determining the
degree of compression/dilation of the solid [59]. From an
EFT viewpoint this vacuum expectation value breaks
boosts and spatial translations. Since all solids are homo-
geneous at large distances, one also postulates an internal
U(1) shift symmetry, ¢ — ¢ + ¢, which is broken together
with part of the Poincaré group down to time translations
and a diagonal U(1), i.e., ISO(1,1) x U(1) - R, x U(1).
It is this last unbroken U(1) that one uses to define large
distance homogeneity.

The fluctuation of the comoving coordinate around its
equilibrium configuration, ¢(x) = ax + z(x), is the
Goldstone boson associated with the broken symmetries,
corresponding to the phonon of the solid. As the breaking is
spontaneous, the phonon dynamics must be described via a
Lagrangian that is invariant under the full initial group.
In the long wavelength limit (i.e., at lowest order in a
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derivative expansion), the only quantity that is invariant
under both Poincaré transformations and the internal
shift symmetry is X = 0,¢0"¢, and the most general
Lagrangian is F(X), with F an a priori generic function.
Upon inspecting the stress-energy tensor of the theory,
one finds that F' is simply minus the energy density [3]. For
a strongly coupled system its analytical expression is hard
(or even impossible) to compute, and one must obtain it
from experimental or numerical data.

Expanding the action in small fluctuations one obtains
all possible interactions for the acoustic phonon which,
being a Goldstone boson, is gapless—for details see,
e.g., [3].

Let us now consider a second atomic species in our solid.
One can introduce two comoving coordinates, ¢4 z(x),
one for each species, featuring two independent shift
symmetries. At equilibrium both of them are proportional
to space, (¢(x)) = ax and (¢p(x)) = px, and the sym-
metry breaking pattern is then ISO(1,1) x Uy(1) x
Ug(1) = R, x U(1). Despite the number of broken gen-
erators, the system features only two Goldstones, as
dictated by the inverse Higgs constraints [60—62]. In the
following we set a = = 1 for simplicity.”

Analogously to the monoatomic case, at lowest deriva-
tive order one can build three quantities that are invariant
under Poincaré transformations and the two internal
U(l)’s, ie.,

Xl = aﬂ¢Aaﬂ¢A’
X3 = 0,040/ .

X2 = 8ﬂ¢Baﬂ¢Bv
(1)

The most general action will depend on all these invariants,
describing two interacting acoustic phonons, both gapless.

This is, however, not the end of the story. It is now
possible to build one more quantity, A = (¢4 — Pp)?,
which explicitly breaks the initial Uy (1) x Ug(1) but
preserves their final diagonal combination.” This operator
generates a gap for one of the two degrees of freedom,
which then becomes a pseudo-Goldstone boson—hence the
name pseudoacoustic phonon.4 If such a gap is smaller than
the UV cutoff, the pseudoacoustic phonon can still be

At equilibrium the parameters a and f are fixed and specified
by either minimization of the solid’s free energy or by boundary
conditions (external pressure, compression, etc.). It is then always
possible to set @« = =1 by a redefinition of the comoving
coordinates. Although varying the solid background amounts to
changing « and /3, we can keep track of it via the dependence of
the Lagrangian on the invariants in Eq. (1).

We define A so that the theory is invariant under ¢,  —
~bps while being analytic around 7,4 g = 0.

Note that, despite the presence of a gap (albeit small), these
phonons are usually still called “acoustic” in the literature; see,
e.g., [35-37]. We stress, however, the conceptual difference
between the two: while standard acoustic phonons are Goldstone
bosons, pseudoacoustic phonons are not.

treated perturbatively within the EFT, very much like pions
in QCD [63]. This means that, while the A and B solids can
be separately arbitrarily strongly coupled at the micro-
scopic level, we expect this regime to be achieved when
they are weakly coupled to each other. A priori, the most
general Lagrangian that incorporates a small explicit
breaking (and hence a small gap) is

F(Xi,A) = f(X;) + of(X;. A), (2)
with §f < f. However, for the most common systems we
expect that if the two solids are weakly coupled to each
other all interactions between the phonons of the two
sectors will be weak, i.e.,

Fuea(Xis A) = f4(X1) + f5(X2) +6f(Xi,4), (3)
where f, p are (minus) the energy densities of the two
solids in the limit where they are exactly decoupled.

Expanding the action S = [d°xF(X;, A) in small fluc-
tuations, up to cubic order one gets

$> /dzx[_g(a/)’)ﬁairﬂ +g/(aﬂ)axﬂaax7[/i

+ ga (ﬂA - ”3)2 + y(a/}y)ax”uax”[)’ax”y

— y/(aﬂ)yﬁ(lh/}axﬂ'}, + yZ (”A — ﬂB)zaxﬂu],

(4)
where a,f,y =A, B and (---) represents symmetric
indices. The effective couplings, g and y, in terms of the
derivatives of F' can be found in Appendix A. In general,
the coefficients of the quadratic terms depend on deriva-
tives up to the second, those of the cubic ones up to the
third, and so on. The spectrum of the theory is obtained
by looking at the eigenmodes of the quadratic part of the
action. For small momenta one gets the following dis-
persion relations for acoustic and pseudoacoustic phonons:

(5)

o 2
where the gap is given by §% = %4957 20us o The expres-
9ar9BB—Y9ap

sions for ¢, and y are also reported in Appendix A. The gap
of the pseudoacoustic phonon indeed goes to zero with
vanishing g,, with this being the only parameter encoding
the dependence on explicit breaking at quadratic order.
To make contact with physical systems, let us show how
the most general theory (4) can describe two examples of a
linear diatomic chain. We focus on the spectrum only.
(a) Two noninteracting monoatomic chains.—A system
of this kind is described, as already mentioned, by a
Lagrangian as in Eq. (3) in the 6f — O limit. This
implies that g, = ¢, = ga = 0, and one obtains two
gapless modes with two generically different sound
speeds, ¢ = ¢4/gas and ¢} = gp/gpp. Note that
since the ¢ — 0 and 6 — 0 limits do not commute, one

2 _ 2,2 2 __ 2 2
Wy = €597, Wy =6+ 749",
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cannot get the above sound speeds as a limit of the
dispersion relations (5).

(b) Two identical chains with weak coupling between
them.—As the two separate chains are identical, the
system is obtained from action (3) imposing f4 = f3p
and symmetry under X; <> X,, which implies that
gf& = ggg and g&% = 0. In this case the small gap
survives but one obtains y ~ c2.

Let us close this section by briefly discussing how the
effective couplings of the theory can be determined from
the static properties of the solid, e.g., by experiment or
numerical simulations. It is clear that the structure of action
(4) could also have been found by simply writing down all
possible interactions compatible with the unbroken sym-
metries. Nevertheless, to express the couplings in terms of
derivatives of the Lagrangian with respect to the invariants
allows one to determine them in terms of the nonlinear
stress-strain curve of the solid [16]. Imagine for example,
statically stretching or compressing only one of the solids,
say solid A, while keeping the other at its equilibrium
configuration. This corresponds to exciting a time-
independent mode 7, (x) while keeping 7z =0, i.e., a
deformation of solid A. At linear order in the deformation
74, this induces a variation in X;, X3, while X, remains
unchanged. Exciting a mode 7z3(x) has the same effect but
with X; < X,. If instead we statically deform the two
solids in opposite directions, 74 (x) = —zg(x), this will
generate a variation in X, X, but not in Xj3.

Recalling that the Lagrangian, F(X;, A), is minus the
energy density of the solid, one deduces that the effective
couplings can be obtained by studying the nonlinear
response of the energy density under the mechanical
deformations described above, as can be done, say, using
DFT techniques [5-9]. For example, by measuring the
linear change in the free energy following the deformations
described above, one can determine the first derivatives of
the Lagrangian with respect to the X; invariants. To obtain
higher derivatives of the Lagrangian with respect to X;, as

|

well as the dependence on A, one can study the nonlinear
response.

B. 2D case

Building on the previous section, we now describe the
case of a two-dimensional diatomic solid. This presents no
conceptual novelty, but it does involve some technical
aspects worth addressing.

In two spatial dimensions the comoving coordinates are
described by two scalar fields for each species of solid,
@L(x) with I =1, 2 and a = A, B, so that at equilibrium
(¢L(x)) = x!. This again breaks boosts and spatial trans-
lations, but also spatial rotations. If, besides homogeneity,
one restricts oneself to solids that are isotropic at large
distances, then it is necessary to impose an internal /SO(2)
symmetry [3]. Under this, the comoving coordinates trans-
form as ¢! — O ¢) + ¢!, where ¢!, is a constant vector
and O% a constant SO(2) matrix. This internal group is
again spontaneously broken, but a diagonal combination
of it with the spacetime Euclidean group is preserved,
ISO(2,1) X ISO4(2) x ISO5(2) —» R, x ISO(2).

The phonon field is again introduced as ¢ (x) = x/ +
wh(x). If we define Bl =0,¢,0"¢; and =V = (¢} -
&%) (¢4 — ¢%), there are eight operators, X;, built out of
them and invariant under the full group, and three oper-
ators, A;, invariant only under the diagonal subgroup, i.e.,
characterizing the explicit breaking of the symmetry. The
explicit expressions of the invariants will not be important
in the following. More details are reported in Appendix B.
The phonon action, S = [d®xF(X;,A;), can again be
determined by the nonlinear response of the system to
shear and stress, as discussed in the previous section.

We can now expand the action up to cubic order in small
fluctuations. Moreover, we perform a field redefinition,
7y = OupSpx,» Where S is a matrix that brings the kinetic
term to its canonical form, and O an orthogonal matrix that
diagonalizes the mass term. The result is

1, 1 1 l
/d3 [ Ko = 5KV 2aV - X/}_EK{,/;V)({IV)Q/} > Miapia X5+ Mopy K 25V Xy

2
®3)

+iaﬂy)((x)[év)(7+/la/}y)v X(IV X,I}V Xy+j'

VNN -, + A VY -,

+ A VN Ak 4 2 VN i+ 2 g 2V -y + AN (6)

with M? = diag(0,5%). As in the 1D case, the gap & and
the couplings A®) and A®) vanish with vanishing A,
dependence. The expressions for the effective coefficients
in terms of the derivatives of the energy density are
cumbersome but are obtained straightforwardly, as in the
1D case, with simple linear algebra starting from the
original Lagrangian.

To read off the spectrum, it is convenient to split the fields
into longitudinal and transverse components, y, = £, + ¢,
such that Vi#) = V/¢i and V-t, = 0. Looking at the
quadratic action, it is simple to show that the dispersion
relations are

> 2.2 > 2.2
D ac = LY DT = €T (7a)
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w]%.ps = 52 + quzv C0'2[‘,ps = 62 + Yqu’ (7b)

with cizz K+ kY, 2=kY, y=kl)+ K, and
T = ng;-

Interestingly, the longitudinal and transverse pseudoa-
coustic modes share the same gap. This is a consequence
of the isotropic approximation, which forces the mass

term to be proportional to the identity, (M?), = M7,6".
Nonetheless, this is also what happens, for example, in
bilayer graphene [36], which features a hexagonal sym-
metry. Indeed, in two spatial dimensions, when the discrete
rotation symmetry is larger than cubic, the quadratic action

is identical to that of a fully isotropic material.’

III. PHONON DECAY IN 2D

We now employ our EFT to analytically compute the
decay rates of both acoustic and pseudoacoustic phonons in
the large wavelength limit, which are directly related to the
thermal conductivity of the material [65]. In particular, we
can quantize the y, fields and use them to evaluate
the relativistic matrix elements starting from action (6).
The phase space is the standard relativistic one [66]. The
canonical quantization of the theory, as well as the
corresponding Feynman rules, are reported in Appendix C.

Let us start with the decay of an acoustic phonon, which,
for a 2D material, requires some care. If the dispersion
relations (7a) were exactly linear, the decay of a longi-
tudinal (transverse) acoustic phonon into two longitudinal

|

i) 2)

Y L0 9) | Kk
B _ﬂﬁugA + /1,(4/28 - %’154 Z %/11(9/3,4)7} 5

(transverse) acoustic phonons would produce exactly
collinear decay products. In two spatial dimensions, the
phase space for this configuration is singular since it
diverges as ~1/0, with @ the angle between the decay
products. Now, while the matrix element for the T,
ac — T,ac + T, ac decay vanishes for § = 0, the one for
the L,ac — L, ac 4+ L, ac decay does not, making the total
rate formally divergent. This is cured by recalling that the
dispersion relation is not exactly linear, but it features a
nontrivial curvature: @p ,.(q) = c q(1 +eq* + ...), with
le|g*> < 1 at small momenta. From the EFT viewpoint,
such a (small) curvature is due to operators with a higher
number of derivatives, which we did not include in the
lowest order action (6). Note that the sign of ¢ is not fixed
a priori, as it depends on the microscopic physics of the
system under consideration. For ¢ > 0, energy and momen-
tum conservation forces the angle between the two out-

going phonons to be 6~ \/&(q— q,), where ¢ is the
momentum of the decaying phonon and ¢; that of one of
the final products. Therefore, at small momenta the L,
ac + L, ac channel dominates the decay rate. For € < 0,
instead, the channel with identical initial and final state
particles are kinematically forbidden, and the rate does not
present any 1/6 divergence. This last case does not present
any novelty with respect to what has been studied pre-
viously [4], and we will not discuss it here.

For positive €, one can use action (6) to compute the
spin-averaged total decay rate® for an acoustic phonon of
initial momentum gq:

9

=

&

1 8
ro_ /3 [ 17:3 ’1,(4AA + (ﬂfxsz + Ai\AA)cI% + (’12/2
ac — 2_6

Two comments about the previous expression are in
order. First, note that when the gap grows, the third term in
parenthesis can be neglected, and the rate becomes what
one would obtain from the EFT for a single acoustic
phonon [3], which is in agreement with the idea that the
pseudoacoustic one can be integrated out at large gap.
Second, because of the considerations made above, when
€ > 0 the decay width of acoustic phonons in two spatial
dimensions is less suppressed at small momenta than what
one would expect from naive scaling, which, instead,
would suggest a g* behavior. This is a consequence of
the well-known extra infrared divergences arising in low-
dimensional systems.

In two dimensions, the only two- and four-index tensors
invariant under discrete rotations larger than cubic are
precisely the tensor structures appearing in the quadratic part
of Eq. (6) [64].

32nct

|

Note also that our analysis applies to an ideal two-
dimensional system with no embedding space since it
involves only in-plane phonons. Out-of-plane modes [67]
have been shown to have peculiar properties in the
absence of external strain, and to contribute sensibly to
the decay rate of an acoustic phonon, modifying the
behavior at small momenta from ¢> to ¢° [68,69]. Their
dispersion relation in the absence of strain is, in fact,
gapless but quadratic, and they consequently contribute to
a large part of the available phase space. Nonetheless, it
has also been shown that, applying an arbitrarily small
strain, the dispersion relation quickly approaches linearity,
and a scaling of the decay rate like the one in Eq. (8) is
observed [69].

®Given the derivative couplings, at small momenta the two-
body decay dominates the total width.
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We can now compute the spin-averaged decay rate for
the pseudoacoustic phonon. To simplify the expression we
consider a 2D solid in which the two species, A and B, are
identical, physically relevant to a description of bilayer
graphene. In this case the Lagrangian is of the kind (3), i.e.,
Fueak = fa + fp +6f with f, = fp, and, consequently,
all couplings are symmetric under A <> B and K% =0.
The decay rate for a pseudoacoustic phonon at rest is found
to be

8 9) \2
o (29542;A - gﬁxz;A)
" 16cper(eL +cr)

5+ 0(6f%). ©)

Note the interesting fact that, to this order in small
explicit breaking, the decay rate is independent on the
gap itself.’

IV. CONCLUSIONS

In this work we presented a relativistic effective field
theory for the description of the low-energy degrees of
freedom of a solid made of two species, weakly coupled
to each other. In this regime the system features two
distinct types of excitations: acoustic and pseudoacoustic
phonons. The first are the Goldstone bosons associated
with the spontaneous breaking of spacetime symmetries
and are consequently gapless. The second are instead
pseudo-Goldstone bosons and are characterized by a
small gap arising from a perturbative explicit breaking
operator.

An EFT formulation of the problem has the important
advantage of putting on firm ground several properties
of these collective excitations by connecting them to
those universal features of the system that depend only
on low-energy/large distance physics. It also allows
analytical control over the observables, which can be
computed for a large class of solids, only via symmetry
arguments, and also taking advantage of high energy
physics tools.

There are several open questions of both conceptual and
phenomenological relevance. One of them is to understand
the nature of out-of-plane modes from a low-energy
perspective. These modes, as already commented, contrib-
ute an important fraction of the total decay rate of acoustic
phonons [69] and, in turn, to the thermal conductivity of
two-dimensional materials [65]. For a first analysis in this
direction see [70]. Similarly, it would be interesting to
understand what the contribution of pseudoacoustic pho-
nons to the thermal conductivity is. Indeed, while optical
phonons are typically neglected because of their large gap,

"Interestingly, this is different from what happens in holo-
graphic realizations of explicit breaking of translations [26],
where the decay width of the quasiparticle is proportional to the
gap itself.

pseudoacoustic phonons have a perturbative gap and could
thus contribute a sizable fraction. It would also be interest-
ing to understand if our action (6) captures any of the
features of true optical phonons, despite their large gap.
Finally, we mention one further potential application of
our theory to bilayer graphene. The present construction
can be generalized to preserve only a discrete subgroup
of rotations, and to include fermionic degrees of freedom
for a description of the electron-phonon coupling. These
generalizations could provide an EFT that gives a
description of (and potentially reveal new insights on)
the origin of magic angle superconductivity in bilayer
graphene (see, e.g., [71-74]). We leave these questions
for future work.
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APPENDIX A: EFFECTIVE COUPLINGS FOR
THE 1D SOLID

Here we report the explicit expressions for the couplings
and parameters of the EFT for the 1D case, written in terms
of the derivatives of the Lagrangian evaluated on the
background configuration, (¢) = x. The subscripts indicate
derivatives with respect to a given invariant. The effective
couplings appearing in action (4) are

1
gAA:FXIv gBB:sz’ gABZEFXy

1
gi\A = FX[ +2FX1X1 +5

2 X3X;3 + 2FX|X3’

1
g%B = FXz + 2FX2X2 +7FX3X3 + 2FX2X3’

2
/ 1 1
JaB = EFX3 +§FX3X3 + 2FX1X2 + FX1X3 - FX2X3’
s = Fa (Al)

for the quadratic ones, and
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4
2 Fxxx, +2Fx x,x,

Yaaa = 2FX|X| + FX|X3 + 3

1
* Fxixx, + g Fxxxs,

2 1
Yaap = ng,xz + Fxx, + §Fx3x3 =+ §Fx1x1x2

2 4 2
T3 Fxxx T3 Fxox T3 Fxxx
1 1
+ 3 Fx,x,x, + 5 Fx.x,x,
Yagg = Yaap With X; < X;,
VBB = Yasaa With X < X,

yz/AAA = 2FX|X| + FX|X3’

y.ilAB = 2FX|X2 + FX|X3’

1
Vaga = Fx,x, + 2szx,7
with X, < X;,
with Xl <> Xz,

with X; < X,

Yass = Yapa

YaBA = Yaan

VBB = Yaaa
Vi = 2Fx,a + Fx,a,

with X; < X,

Yp = Ya (A2)

for the cubic ones.
The parameters appearing in the dispersion relation for

the acoustic and optical phonons in one spatial dimension,
Eq. (5), are instead

2= Yaa + 9 + 2945
" 9aa+ 98+ 2948
1

J/ =
(9an + 988 + 29a8)(9aa988 — Jig)
X [QAAdBB + gBBgAA - 2gAAgBBQAB
+ 9ap(Gaa + Iop — 2945)

+ 294494895 — 9as) + 2988948(Iaa — Jan)]-

(A3)

APPENDIX B: 2D INVARIANTS

Here we collect all the independent operators that are
invariant under the symmetry group relevant for two
dimensional solids with two atomic species. After first
imposing Poincaré and shift invariance one obtains the
following matrices:

B, = 00400,
Bl = 0,400},

Biy = 0,30" b
V= () — 95) () — Pp)-
(BI)

The B, matrices transform linearly under the initial
S04(2) x SOp(2) group—i.e., Byg— Oy Bay- O, Where
O, is an orthogonal matrix belonging to SO,(2). The
matrix X, instead, transforms linearly only under
the final unbroken SO(2) and is invariant only under the
unbroken U(1).

The matrices in Eq. (B1) have a total of 12 components.
However, we can always perform an unbroken SO(2)
rotation to bring the number down to 11, which is the
number of independent invariants under spatial and internal
translations. The following eight are invariant under the full
SO4(2) x SO(2) group and hence are compatible with its
spontaneous breaking:

X; = [Baal, X, = [Bgs], X3 = [BapBlp).
Xy = [B,%A]v X5 = [sz;B], Xe = [(BABBAB) ]’
X7 = [BABB£BBAA]’ Xg = [BgBBABBBB]' (B2)

Here we represent the trace with [- - -]. The remaining three
operators are invariant only under the unbroken group and
hence explicitly break the initial symmetry:

Ay = [BasBgsl, Ay = [x],
Ay = w — [Z] (B3)

The expression for A3 has been chosen so that it does not
contribute to the quadratic action.

APPENDIX C: CANONICAL QUANTIZATION
AND FEYNMAN RULES FOR THE 2D SOLID

First, we provide the details of the canonical quantization
for the fields y, appearing in action (6). Following the
standard canonical quantization procedure, we expand
them in creation and annihilation operators and require
that they satisfy the equations of motion. Since the
quadratic action is in general nondiagonal, y, and yp
obey a set of coupled linear differential equations, and
therefore both of them contain creation/annihilation
operators for the acoustic and pseudoacoustic phonons.
We thus write

AC’V a eitirx + H.c.
/ 27) 22% @ (9)dq :

where A is the phonon’s polarization (longitudinal/
transverse) and f its “flavor” (acoustic/pseudoacoustic),

and af}f is the annihilation operator, normalized so that

g (")) = 205,(27)6 (q - ¢')5 6/

: (C1)

ver, 1 1zation v , whi 1-
Moreover. efl s a polarization vector, which for lon

tudinal and trasverse phonons is given respectively by
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= €/g/, such that they satisfy the com-

: Ai AJ
pleteness relation,  _, €5'€g

ey’ =¢ and €
= 6. To determine the over-
lap functions, c¥ (g), we first require the fields to satisfy
the equal-time commutation relations, [¢%(z,x), 74(t,y)] =
i6) (x —y)6, leading to

SIckf = SIeH -
f

We then impose the linear equations of motion and obtain,
up to order O(g?),

(C2)

1 2
Kbt K

Clae — cTae _ . Chae — _ =
2)

Cz.ac _ % qz, C]g’ps _ |

AT =ICEEL G = sen(Klly + K i),

C;’ps = sgnk'). (C3)

We next present the Feynman rules. From the canonical
expression for the y, field we can deduce the propagator,
G;{ﬁ( x) = (Q|Tyi(x );(f,,( )|Q2), where |Q) is the interacting
solid vacuum and T enforces the time-ordered product.
With standard quantum field theory techniques we deduce
the following rules:

PNV N ea\’ngf (q) (external leg)
y jeM e T
{i,a} {5, 8} 1ETE
ANNANNNNL = CM(q cy q -4 9
Z o’ (@) ﬁ()wz—wff(q)+zs

{i.haf)

= — Mgy, @as (01)w,0 (02)0° g

= 2w (@1)w, (g2)07 g5

(k. p.v, h}

4 ..
)\Ea),é”y)qlq2q3 )‘Ea)g)yth - @20 ¢}
5 0
- )\((xg'yqlq2q3 )\fwﬂ,‘h - 207" g4

; |
— Nl + Ay, 07 b

+ )\agﬁ)véjkq?, + permutations,

where we recall that the indices 7, j, k run over spatial
components, 4, o, p run over longitudinal/transverse polar-
izations, a, f, y run over the solid labels A and B, and
finally f, g, h run over the acoustic/pseudoacoustic flavors.
Moreover, by “permutations” we mean the possible com-
binations of the collective indices {q;,i,4,a, f},
{42, J,0,B,9} and {qs3,k,p,y,h}. It is possible to check
that the propagator is indeed the inverse of the kinetic
matrix of action (6).
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