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We consider a set of physical degrees of freedom coupled to a finite-dimensional Hilbert space, which
may be taken as modeling a fuzzy space or as the lowest Landau level of a Landau-Hall problem. These
may be viewed as matter fields on a fuzzy space. Sequentially generalizing to arbitrary backgrounds, we
argue that the effective action is given by the Chern-Simons form associated with the Dirac index density
(with gauge and gravitational fields), with an Abelian gauge field shifted by the Poincaré-Cartan form for
matter dynamics. The result is an action for matter fields where the Lagrangian is integrated with a density
which is a specific polynomial in the curvatures.
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I. INTRODUCTION

The energy levels of a charged particle in a magnetic
field, the so-called Landau levels, have long been a useful
structure to analyze many questions of physical interest.
The quantum Hall effect is perhaps the most direct example
of the use of these Landau levels [1]. In this context, a
number of variants, including different topologies and
different geometries (as characterized by metrics and spin
connection) [2,3], as well as higher dimensions [4–7] have
also been explored. The Landau levels have also provided a
useful analytical tool for discussing effective actions, pair
production by both Abelian and nonabelian gauge fields,
etc., [8]. Another important reason for research interest in
this area has to do with noncommutative geometry [9]. The
set of degenerate states of a fixed Landau level can be used
as a model for a noncommutative manifold, with operators
on these degenerate states providing observables for the
noncommutative space. The existence of symbols and star
products corresponding to such operators renders the
continuum or commutative space approximation to such
noncommutative spaces easily tractable. It is worth empha-
sizing that noncommutative geometry has been a recurrent
paradigm for many approaches to quantum gravity, both
intrinsically as an idea in its own right [9] and as special
cases in string theory [10]. Needless to say, there has been
an enormous amount of recent research along these lines.
Offset against this large body of literature, it is interest-

ing that there are still many open questions of physical

relevance. If we consider the lowest Landau level (LLL) as
a model for a noncommutative space, we can construct
fields living on such spaces. What are the characteristics of
such a field theory? This is the key question we analyze
here. The construction of noncommutative field theories
has a long history in its own right. Most of this work has
been at the level of promoting products of fields and their
spatial (or spacetime) derivatives to star products, but using
standard Lagrangians [11]. We are considering the con-
struction of the action starting from operators on the Hilbert
space (i.e., LLL) modeling the noncommutative space. The
resulting action will be different in many features, espe-
cially in its relation to the background geometry. We have
argued elsewhere that the LLL analysis can be used for
understanding gravity on noncommutative spaces [12].
The present work may be viewed as extending such ideas
to include matter couplings to gravity. Phrased another way,
we ask the question whether there are particular peculiar-
ities for matter-gravity coupling which we can extract from
analyzing fields acting on the LLL.
Since we are modeling the noncommutative space by the

LLL, there is a possibility of some confusion about the
roles of the fields we are discussing. It is useful to clarify
this at the outset. We will consider degrees of freedom
which eventually lead to a set of fields we shall refer to as
“matter fields”, designated by ϕ. But there will be a set of
fermion fields defining the LLL itself, i.e., the noncom-
mutative geometry. These latter ones, which we designate
by ψ, ψ†, are what we shall refer to as the “spatial fields”.
The question of interest for us is how the dynamics for the
ϕ-fields is affected by the background geometry for ψ, ψ†.
This is not simply a matter of writing a coupled action for
both sets of fields and analyzing it, as we would normally
do for interacting field theories, because, for us, the ϕ-fields
do not exist outside of the LLL. This is the distinctive
feature of our analysis.
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While the noncommutative geometry-gravity angle is the
natural setting of the problem, it may also be viewed as a
much more standard physical problem, of interest within
the quantum Hall setting. If a set of fields ϕ are coupled to
charged fermions (described by ψ, ψ†) and if these
fermions are confined to the LLL, what is the theory of
the fields ϕ within the LLL? How does this field theory
respond to changes in the background fields, metric, and
spin connection? Clearly, this is a natural next step to the
many analyses which have been done for the pure electron
system with arbitrary background gauge fields and met-
rics [2,3].
The organization of the paper and overall flow of logic

may be summarized as follows. We start with the dynamics
of a physical system whose observables are matrices acting
on the states of the LLL (or the Hilbert space modeling the
spatial geometry). Not surprisingly, this leads to a
Hamiltonian or Lagrangian with star products for the fields
and their derivatives. We will consider the required math-
ematical framework for the two-dimensional case in Sec. II
and the more general higher dimensional cases in Sec. III.
Complex Kähler geometry will play a crucial role in
defining the star products. The path integral for the
dynamics of the physical system under consideration,
which we designate the matter fields, we will argue, is
defined by a Chern-Simons action (related to the Dolbeault
index density) with a shift of the (Abelian) gauge potential
by the Poincaré-Cartan form. So far, the results will still be
tied to the complex geometry of the background. Next, in
Sec. IV, we want to generalize this to more general gauge
and gravitational backgrounds. Toward this, we argue that
there is a scaling of coordinates under which, if we restrict
to low energy physics, one can ignore higher terms in the
star products, thus giving an approximation not tied to the
complex geometry. The resulting version can then be
embedded in a more general geometry and the effective
action constructed in terms of the Chern-Simons form
associated with the Dirac index density. Again, the pre-
scription for matter fields is to shift the Abelian gauge field
in the Chern-Simons form for the Dirac index by the
Poincaré-Cartan form for matter fields. Explicit formulas
for the effective action in 2þ 1 and 4þ 1 dimensions are
given. Finally, we give an action for a set of fermion fields,
to be viewed as the fields which eventually define the
spatial manifold, which leads to the prescription for the
matter couplings we have obtained. The paper concludes
with a short summary/discussion.
Explicit derivations of the effective action with pertur-

bations to the background geometry and gauge fields for
the LLL, in the absence of what we have referred to as
matter fields, were given in [2,3,6] in 2þ 1 dimensions and
in [6,7] for higher dimensions. Also, a different way of
constructing an effective action for the Landau-Hall prob-
lem for all odd spacetime dimensions, using the Dolbeault
index theorem, was given in [13]. The present work may be

considered as an extension of these works to include matter
couplings, and also to accommodate more general, not
necessarily complex, geometries. An interesting feature of
the emergent matter-gravity coupling is that the action is
given by integrating the matter Lagrangian with a density
which is a specific polynomial involving powers of the
curvature. It is interesting to note that such couplings for
matter and gravity have been the subject of recent research
motivated by issues with dark matter [14].

II. MATTER FIELDS AND GRAVITY AND THE
LLL IN TWO SPATIAL DIMENSIONS

We start by considering a physical system characterized
by a set of operators which are the relevant dynamical
variables. Among the operators, we assume there is a
mutually commuting set which we denote by fqλg, where λ
is an index labeling the distinct operators. Since we are
aiming for a field theory eventually, we take the eigenvalues
of the q’s to form a continuous set. The states of the
physical system can be taken as the vectors jqi in a Hilbert
spaceH. Any nontrivial dynamics should allow for altering
the state of the system, so there must be operators which do
not commute with the q’s. We can take them to be a set of
conjugate variables fpλg. Taking the Hamiltonian to be a
function of these variables fqλ; pλg, time evolution of the
system by an infinitesimal amount ϵ is described by the
transformation kernel

hq0je−iHϵjqi ¼
Z

½dp� exp ½ipλðq0λ − qλÞ −Hðp; qÞϵ�: ð1Þ

It is also possible to carry out the integration over the p’s
and write this in terms of the action.
The key point for us is that we want to interpret this as a

field theory in the language of noncommutative geometry.
The variables fqλg should describe a field operator on some
manifold M in a suitable large N limit. For this, consider
an N-dimensional Hilbert spaceHN . This is not the Hilbert
spaceH of the physical system we are considering, but the
sequence of HN ’s will model the noncommutative version
of M. Observables on HN correspond to N × N matrices.
Thus, we want to identify qλ as the mode amplitudes for a
matrix q̂, with matrix elements q̂ij, expanded as

q̂ij ¼
X
λ

qλðTλÞij; i; j ¼ 1; 2;…; N; ð2Þ

where fTλg form a basis for N × N matrices. We can take
this to be an orthonormal basis obeying TrðTλTλ0 Þ ¼ δλλ0 . In
the large N limit, the algebra of the N × N matrices should
become the algebra of functions on M, with Tλ corre-
sponding to a complete set of mode functions. There are
two ways to pass from fqλg; fpλg to functions onM. IfM
is a compact Kähler manifold, which is mostly the case we
will be considering, we can take a suitable multiple of the
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Kähler form as a symplectic structure and carry out
quantization to construct HN . In this case, there will be
a set of orthonormal “wave functions” ui which are
holomorphic. Strictly speaking, these are sections of a
suitable power of the canonical line bundle on M. The set
fuig can also be viewed as coherent states on M obtained
via standard coherent state quantization. Given this struc-
ture, there is a function ϕ on M such that the matrix
elements q̂ij in (2) can be obtained as

q̂ij ¼
Z

dμu�iϕuj: ð3Þ

Here dμ denotes the volume element forM. The function ϕ
is the contravariant symbol for q̂ij and the prescription (3)
is the Berezin-Toeplitz quantization of ϕ.
We will be sequentially generalizing the results from the

Kähler manifold to more general backgrounds, so a few
comments on dμ may be appropriate here. On a general
complex manifold with local complex coordinates za, z̄ā, the
metric is of the formds2 ¼ gaādzadz̄ā anddμ ¼ det g½dzdz̄�.
(If we use real coordinates, this is identical to the more
familiar dμ ¼ ffiffiffiffiffiffiffiffiffi

det g
p

dnx.) For a Kähler space, we have the
additional condition gaā ¼ ∂a∂ āK for a Kähler potential K.
For Kähler manifolds which are of the coset type, say of the
form G=H for a Lie group G and subgroup H (which we
consider later), one can still construct dμ as explained here,
but it is also possible to use the Haar measure in formulas
such as (3), since the integrandwill be invariant underH. The
volume of H factors out and can be absorbed into a
normalization factor.
Returning to the main line of reasoning, if Â, B̂ are

N × N matrices, then the function which gives the operator
or matrix product ðÂ B̂Þij via (3) is the star product of
the functions A and B corresponding to the individual
matrices; i.e.,

ðÂ B̂Þij ¼
Z

dμu�i ðA � BÞuj: ð4Þ

The trace of a matrix Â can be written as

TrðÂÞ ¼
X
i

Âii ¼
Z

dμ

�X
i

u�i ui

�
A ¼

Z
dμρA: ð5Þ

We see that ρ ¼ P
i u

�
i ui defines a density to be used in the

integration.
Using these formulas, we can convert terms inH (and the

action) into integrals over the star products of various
contravariant symbols. Thus,

X
λ

pλpλ ¼
X
λ;λ0

TrðpλTλÞðpλ0Tλ0 Þ ¼TrðΠ̂Π̂Þ¼
Z

dμρΠ�Π;

ð6Þ

where Π̂ij ¼
P

λ pλðTλÞij. As an example, consider choos-
ing a Hamiltonian of the form

H ¼ 1

2
Tr½Π̂ Π̂þβ1½Tα; q̂�½Tα; q̂� þm2

0q̂ q̂� þ g0Trðq̂4Þ; ð7Þ

where β1, m0, and g0 are arbitrary constants. The last two
may be identified as the bare mass and bare coupling
constant. The commutator ½Tα; q̂� stands for the matrix
version of the derivative, Tα being a specific set of matrices.
Since we have not specified exactly how the commutators
translate to derivatives and since we may have to do some
scaling of spatial coordinates, we must allow for an
arbitrary coefficient β1 for the ½Tα; q̂�2 term. Expression
(7) leads to the field theory Hamiltonian

HðΠ;ϕÞ ¼
Z

dμρ

�
1

2
ðΠ � Πþ α1ð∇αϕÞ � ð∇αϕÞ

þm2
0ϕ � ϕÞ þ g0ϕ � ϕ � ϕ � ϕ

�
: ð8Þ

Here α1 is the version of β1 once we make the translation of
the commutator ½Tα; q̂� to a derivative of the field. If star
products are approximated by ordinary products, which
may be reasonable as N → ∞, then we get a familiar form
of the Hamiltonian density integrated with dμρ as the
volume element.
Returning to the transformation kernel in (1), we first use

the product of a sequence of such kernels and integrate over
the q’s to obtain the Hamiltonian path integral in the usual
way,

Z ¼ N
Z

½DpDq� exp
�
i
Z

dt½pλ _qλ −Hðp; qÞ�
�

¼
Z

½DpDq� exp
�
−
Z

Aðp; qÞ
�

A ¼ −i½pλ _qλ −Hðp; qÞ�dt: ð9Þ

Here A is the Poincaré-Cartan form for the system under
consideration and N is a normalization factor. (We define
A to be anti-Hermitian to agree with the convention used
later for the gauge fields.) Written in terms of symbols, this
expression for the path integral reads

Z ¼ N
Z

½DΠDϕ� exp
�
−
Z

dμρA
�
; ð10Þ

where we now have the symbol for A, also written as A, in
the exponent. Rewriting this in terms of the individual
symbols for p and q would require the star products. Thus,
we can also write
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Z ¼ N
Z

½DΠDϕ� exp
�
i
Z

dtdμρ½Π � _ϕ −HðΠ;ϕÞ�
�
:

ð11Þ

The second way of passing from matrices to functions
is via the covariant symbol. Here we start from the
matrix elements of an operator Âij and form a function
(A) defined by

ðAÞ ¼
X
ij

DiÂijD�
j ; Di ¼

uiffiffiffiffi
N

p : ð12Þ

Notice that the covariant symbol in the above equation
defines a function onM given thematrix elements Âij, while
the contravariant symbol is a function onM which leads to
the matrix elements via (3). In this sense, they are converses
of each other, but the symbols are not identical in general. By
appropriately using the completeness properties of the D’s,
one can again pass from a Hamiltonian as in (7) to the form
(8), with Π;ϕ replaced by the covariant symbols (Π), ðϕÞ,
and the star product should also be the one pertaining to the
covariant symbols. While this method has been used in a
number of applications (e.g., see [6,7]), for what follows, we
shall mostly use the contravariant symbols, although wewill
give a more explicit formula for the covariant symbol for
M ¼ S2 later.
The passage from a matrix expression to functions (with

star products) as in (8) has been well known for many years.
But our aim here is to go beyond that and consider the
situation where there are perturbations to the background
gauge fields and the spin connection onM, these being the
data needed for constructing HN and ui.
Second, HN and ui are obtained as the LLL and the

corresponding set of wave functions for a Landau-Hall
problem on M. So, we can apply the analysis to various
fields coupled to the electrons which fill the LLL. (We are
taking the fields to refer to observables restricted to the LLL
only. Fields which have an existence outside of the Hall
system will have additional terms in the Hamiltonian and
the action.)
There is another reason why the LLL setting is useful.

Given the N-dimensional vector space HN and matrices as
linear transformations of HN , we need the ui to define
symbols and star products. This choice is not unique.
Hence, the large N limit we obtain can be different for
different choices. For example, the continuum limit may
correspond to the symplectic structure nΩK (where ΩK is
the Kähler form) or a perturbation of it in the form nΩK þ
dðδαÞ since both will lead to the same number of states, at
least for large n. This is equivalent to different choices of
the background gauge fields. Is there an optimal choice?
This would require a criterion selecting a particular back-
ground (of gauge fields and geometry) and so it would be
the key principle for gravity on noncommutative spaces [12].

The placement of the problem in the LLL context gives a
simple calculational scheme to analyze such questions.

III. MATTER FIELDS AND GRAVITY AND THE
LLL IN HIGHER DIMENSIONS

We start with the framework for the Landau levels and
the setup of the ν ¼ 1 state. For this, we consider fields ψ ,
ψ† which represent the electron or the charged fermions.
They are subject to a Uð1Þ background gauge field, i.e., the
magnetic field, and we will consider the fully filled LLL for
these, i.e., the ν ¼ 1 Hall state. From the point of view of
noncommutative geometry, the LLL will define the Hilbert
space HN which serves as the model for the noncommu-
tative version of M. Thus, the fields ψ , ψ† define the
noncommutative spatial geometry. For this reason, and to
avoid confusion with the fields ϕ introduced previously, we
will refer to ψ , ψ† as the spatial fields. The set of fields ϕ
will be referred to as matter fields.
Toward setting up the Landau levels and the ν ¼ 1 state,

initiallywewill consider the spatial manifold to be S2, so that
spacetime is S2 ×R [4,15]. The background magnetic field
which leads to the Landau levels is thus a uniform magnetic
field on S2, corresponding to a magnetic monopole at the
center ifwe consider theS2 as embedded in three dimensions.
The Hamiltonian for the ψ ;ψ† fields has the form

H ¼
Z

dμðgÞψ†
�
RþR−

2mr2

�
ψ : ð13Þ

Wewill viewS2 asSUð2Þ=Uð1Þ, so thatwe can use anSUð2Þ
group element g to coordinatize the spatial manifold, modulo
the Uð1Þ identification. On this group element, viewed as a
2 × 2 matrix, one can define left and right translation
operators via

Lag ¼ tag; Rag ¼ gta; ð14Þ

where ta are a basis for the generators of SUð2Þ in the 2 × 2

matrix representation. Theymaybe taken as ta ¼ 1
2
σa, where

σa are the Pauli matrices. The operators R� ¼ R1 � iR2

appearing in the Hamiltonian (13) are thus translation
operators on S2. Also dμðgÞ denotes the Haar measure on
SUð2Þ with the normalization

R
dμ ¼ 1. The volume on S2

differs from the SUð2Þ volume by theUð1Þ factor. Since we
will be considering integrands which are invariant under the
Uð1Þ action, integration over this extra Uð1Þ is immaterial
andwewill use the full SUð2Þ volume. r is a scale parameter,
which may be viewed as the radius of S2.
The translation operatorsR� can be identified as covariant

derivatives, so that having a nonzero background magnetic
fieldB is equivalent to the requirement that the fermion fields
obey ½Rþ; R−�ψ ¼ 2R3ψ ¼ −nψ ¼ −2Br2ψ. Here n is an
integer in accordance with the Dirac quantization condition.
The eigenmodes of RþR− take the form
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UðqÞ
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qþ nþ 1

p
D

ðn
2
þqÞ

A;−n
2
ðgÞ; ð15Þ

where DðjÞ
A;BðgÞ are the representatives of g in the spin-j

representation with A, B labeling states within the repre-
sentation. They take values 1; 2;…; ð2jþ 1Þ. Further, q is a
semipositive integer, with q ¼ 0 corresponding to the lowest
Landau level. The fermion field ψ has the mode expansion

ψ ¼
X
i

aiui þ
X
q≠0

aðqÞA UðqÞ
A ; ð16Þ

where we have separated out the LLL, with

ui ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
D

ðn
2
Þ

i;−n
2
. In terms of the creation and annihilation

operators ai, a
†
i , which obey the standard fermion algebra,

the completely filled LLL state is given by

jwi ¼ a†1a
†
2 � � � a†N j0i; ð17Þ

with N ¼ nþ 1.
There are N single particle states corresponding to the

LLL. These are characterized by the wave functions ui in
(16). They form the basis for a one-particle Hilbert space
HN , which models fuzzy S2. They can also be constructed
directly without embedding them in the larger framework
of Landau levels. In terms of the group element g, the
Kähler forms are given by

αK ¼ iTrðt3g−1dgÞ; ΩK ¼ dαK ¼ −iTrðt3g−1dgg−1dgÞ:
ð18Þ

These define the canonical line bundle for S2 ∼ CP1. The
nth power of the canonical line bundle has the curvature
Ω ¼ nΩK and ui are sections of this line bundle. They are
holomorphic since they obey

R−ui ¼
ffiffiffiffi
N

p
R−D

ðn
2
Þ

i;−n
2
¼ 0: ð19Þ

These are the coherent states obtained by straightforward
quantization of ðS2; nΩKÞ with the holomorphic polarization.
Observables restricted to the LLL are N × N matrices,

which, as mentioned in Sec. II, can be expanded in terms of
the basis fTλg. Since we are considering S2, such a basis is
provided by the matrix analogs of the spherical harmonics.
These are given by

fTλg ¼
�

1ffiffiffiffi
N

p ;
Taffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3jðjþ 1Þð2jþ 1Þp ; � � �
�
; ð20Þ

with j ¼ n
2
. Thus, we have a series of tensor operators Tλ

with SUð2Þ angular momentum l ¼ 0; 1;…n. The series
naturally terminates at l ¼ n for N × N matrices. We have
chosen the normalization condition TrðTλTλ0 Þ ¼ δλλ0 .

The symbols corresponding to these matrices become
the usual spherical harmonics as n → ∞. In this
way, the space of functions on the LLL lead to the
commutative algebra of functions on S2 as n → ∞, in
accordance with the expected structure for fuzzy S2.
For this example of the fuzzy version of S2, we can

specify the covariant symbol for Â more explicitly as

ðÂÞ ¼
X
ik

D
ðn
2
Þ

i;−n
2
ðgÞAikD

ðn
2
Þ�

k;−n
2
ðgÞ: ð21Þ

This is clearly a function on S2. Notice that the normalized

wave functions are ui ¼
ffiffiffiffi
N

p
D

ðn
2
Þ

i;−n
2
ðgÞ, in agreement

with (12).
We also have an explicit formula for dμρ. Notice that the

integral of dμρ is N, the number of states, or the dimension
of the LLL. Since they are the kernel of the antiholomor-
phic derivative as in (19), they are given by the integral of
the Dolbeault index density. The appropriate formula for
two dimensions is

IDolb ¼ i

�
F
2π

þ R
4π

�
: ð22Þ

The Uð1Þ background gauge field we have chosen is

F ¼ −inΩK; ð23Þ

where the normalization is specified as
R
ΩK=ð2πÞ ¼ 1.

The curvature of S2 is given by R ¼ −i2ΩK and it is easily
verified that IDolb integrates to N ¼ nþ 1. We may thus
expect that, even at the level of the density, before
integration, dμρ can be identified as the two-form IDolb,

dμ ρ ¼ IDolb ¼ i

�
F
2π

þ R
4π

�
: ð24Þ

This is confirmed by several independent arguments. The
simplest way is to note that

P
i u

�
i ui is the number density

of the fermions in the fully filled LLL. This is essentially
the charge density and so it is related to an effective action
for the background fields as

δSeff ¼
Z

dμðgÞ ρ ðiδA0Þ; ð25Þ

where A0 is the time component of the background gauge
potential. (We take this to be anti-Hermitian to agree with
the convention for the other fields.) It is well known that
the effective action is of the form −

R
AðF þ RÞ=ð4πÞ, as

calculated by a number of authors, even allowing for
variations from the fixed background values of
F ¼ −inΩK , R ¼ −i2ΩK [3,4]. The result (24) is then
straightforward. It is also easy to understand this intuitively,
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at least for theUð1Þ background. A change of the field by δA
is equivalent to the change of symplectic structure as
Ω → Ωþ dðiδAÞ. The volume element of phase space is
then iF ¼ Ωþ dðiδAÞ, and hence it is the appropriate
density for the number of states in the semiclassical approxi-
mation. To recapitulate, the advantage of writing dμρ in
terms of the index density is that it applies even with
perturbations to the gauge field or the geometry, so long
as we remain within the same topological class.
We can now combine this with the path integral from (10).

The exponent in the path integral is the symbol for the
Poincaré-Cartan formA of (9). Consider the effective action
in terms of the gauge field A and the spin connection ω,

SeffðA;ωÞ ¼ −
1

4π

Z
ðAdAþ ARÞ; ð26Þ

with R ¼ dω. The path integral is then given by

Z ¼ N
Z

½DΠDϕ� exp ðiSeffðAþA;ωÞÞ: ð27Þ

Strictly speaking, we should use SeffðAþA;ωÞ−
SeffðA;ωÞ, but the extra factor eiSeffðA;ωÞ is a constant as
far as the integration over the matter fields is concerned and
can be absorbed in the normalization factor for now. In fact,
there is good reason to keep SeffðA;ωÞ in (27), it will be
relevant for the dynamics of gravity itself.
Turning to higher dimensions, consider as an example,

CP2 ×R. The fuzzy version of CP2 can be modeled by a
Hilbert space HN which can be identified as the LLL of a
Landau-Hall problem on CP2 ∼ ðSUð3Þ=Uð2Þ. One can
choose a constant Uð2Þ background for the gauge field,
proportional to the curvatures of CP2. The wave functions
are coherent states or the holomorphic sections of a suitable

line or vector bundle of the form
ffiffiffiffi
N

p
DðrÞ

k;wðgÞ ¼ffiffiffiffi
N

p hr; kjgjr; wi which is the matrix representative of an
SUð3Þ element g in the representation labeled as r. The
state jr; wi has to be chosen to ensure that the commutators
of right translation operators on CP2 reproduce the chosen
background field strengths. The Dolbeault index density
takes the form

IDolb ¼
1

2

�
iF
2π

þ iR0

2π

�
2

−
1

12

��
iR0

2π

�
2

þ 1

2
Tr

�
iR̄
2π

iR̄
2π

��
;

ð28Þ

where R0 ¼ dω0 and R̄ ¼ −itaRa are the Uð1Þ and SUð2Þ
curvatures, ta ¼ 1

2
σa. The path integral for matter fields

takes the same form as (27), namely, as the integral of
expðiSeffðAþA;ωÞÞ, with Seff given by [13]

SeffðA;ωÞ ¼
i3

ð2πÞ2
Z �

1

3!
ðAþ ω0Þ½dðAþ ω0Þ�2

−
1

12
ðAþ ω0Þ

�
ðdω0Þ2 þ 1

2
TrðR̄ ∧ R̄Þ

��
:

ð29Þ

The Poincaré-Cartan form should also be defined with the
star products appropriate to fuzzy CP2.
What has emerged from the arguments presented in this

section is a simple prescription on how to couple the matter
fields to the spatial fields or the gravitational background at
the level of the effective action, namely, as in (27). The
Uð1Þ gauge field in SeffðA;ωÞ is shifted by the Poincaré-
Cartan form A (for matter dynamics) as A → AþA and
the functional integration is done over Π, ϕ. This is the key
result of the analysis. For the rest of this paper, we will
explore possible generalizations.

IV. GENERALIZING THE BACKGROUND
GEOMETRY

First, we want to consider (27) in the context of three-
dimensional gravity, starting at the level of the effective
action. It has been known for a long time that the
gravitational action in (2þ 1) dimensions can be written
as the integral of the difference of two Chern-Simons terms.
Since this requires the consideration of more general
backgrounds, we first consider a simplification of the
matter field dynamics. From what has been discussed
before, the integral of the Poincaré-Cartan form for a scalar
field has the structure

−
Z

dμρ½dtΠ � _ϕ−dtH� ¼ 1

4π

Z
ð2FþRÞ½dtΠ � _ϕ−dtH�;

ð30Þ
where H is as given in (8). So far, we have used
dimensionless coordinates, normalizing the volume of S2

to 1. We restore the normal assignment of dimensions by
the scaling

dx →
dx
al

; ð31Þ

where l has the dimensions of length and a is a constant, to
be fixed shortly. On a background such as S2 ∼ CP1 with
F ¼ −inΩK , and the Kähler form is normalized such thatR
ΩK=ð2πÞ ¼ 1, we get

dμρ ¼ n i
dzdz̄

ð1þ z̄zÞ2 þ R-term →
n

a2l2
i

d2x
ð1þ x2=ða2l2ÞÞ2 :

ð32Þ
We choose a2 ¼ n now and also define r ¼ al as the radius
of the sphere. Then,
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−
Z

dμρ½dtΠ� _ϕ−dtH�→
Z

dt
d2x

ð1þx2=r2Þ2
�
Π� _ϕ

l2
−
H
l2

�
:

ð33Þ

We now introduce a further scaling of the fields by writing
Π ¼ lΠ̃, ϕ ¼ lϕ̃. The first term on the right-hand side of

(33) becomes
R
dVΠ̃ _̃ϕ, where dV denotes the volume

element. The integral of the Hamiltonian becomes

Z
dtH →

Z
dV

�
1

2
ðΠ̃ � Π̃þ α1a2l2ð∇yϕ̃Þ � ð∇yϕ̃Þ

þm2
0ϕ̃ � ϕ̃Þ þ λ0l2ϕ̃ � ϕ̃ � ϕ̃ � ϕ̃

�
: ð34Þ

We can now choose α1a2l2 ¼ 1 to set the spatial gradient
term to the usual form. (This is equivalent to choosing a speed
of light.) Further, we have to identify the m0 and λ0l2 as the
new bare mass and bare coupling constant. The Hamiltonian
then takes the standard form, but with star products.
Let us now consider the higher terms in the star product

involving gradients of the fields. The first corrections are of
the form

RþfR−h
n

∼ l2
Rþf̃R−h̃

n
; ð35Þ

where f, h could be Π or ϕ. The derivatives, as written, are
dimensionless. After the scaling of coordinates as in (31),
this takes the form

l2
Rþf̃R−h̃

n
∼ ð∇yf̃Þð∇yh̃Þ

a2l4

n
∼
ð∇yf̃Þð∇yh̃Þ

M4
; ð36Þ

where M ¼ l−1. Notice that, so far, the scale of M is not
fixed by anything. So there is some freedom in choosing
this. Since the number of states is n (at large n) and the
volume of the spatial universe is a2l2 ¼ nl2, we see that l or
M−1 determines the size of one elemental state for the
spatial manifold.1 The corrections from the star products
are therefore negligible in a regime of energies low
compared to M when the magnitudes of ∇Π=M2 and
∇ϕ=M2 are small. In this limit, we can replace the
Poincaré-Cartan form by

A ¼ −i½Π _ϕ − dtH�dt; ð37Þ

where star products are neglected in the expression forH as
well. This is a significant simplification which is helpful for

generalization for the following reason. The star product is
specific to a particular background. Although it can be
generalized to some extent, it is tied to having holomor-
phicity for the wave functions used to construct the
operators from the contravariant symbols.2 This is an
obstruction to the framing of the present problem within
the context of general gravitational backgrounds. However,
for the simplified version in (37), it can be done if we are
interested in low energy dynamics for the matter fields
where the star products are not important.
On a general gravitational background (which does not

necessarily have a complex structure), we cannot use the
Dolbeault index density, rather we shall consider the Dirac
index density. Our aim is to show that the Chern-Simons
form associated with the Dirac index density will reduce to
the effective actions (26) and (29) when a particular choice
of background is made. Therefore, the Chern-Simons forms
serve as the effective action to be used in (27) for a general
gauge and gravitational background.
Toward showing this result, for the 2þ 1-dimensional

case, we start with the Dirac index density in four
dimensions which is given by

IDirac ¼ −
dimV
24

p1 −
1

2
Tr

�
F
2π

F
2π

�

¼
�
dimV
48

Tr

�
R
2π

R
2π

�
−
1

2
Tr

�
F
2π

F
2π

��
: ð38Þ

In the second line of this equation, the curvatures are
written in terms of the vector representation of SOð4Þ so
that TrðRRÞ ¼ RabRba, a; b ¼ 1; 2; 3; 4; p1 in the first line
is the Pontrjagin class given by p1 ¼ RabRab=ð8π2Þ. Also,
dimV is the dimension of the vector bundle or the
dimension of F’s viewed as matrices. For an Abelian
background field, which is our case, dimV ¼ 1. The
Chern-Simons term corresponding to (38) is given by3

Seff ¼
Z �

1

96π
Tr

�
ωdωþ 2

3
ω3

�
−

1

4π
AdA

�
: ð39Þ

We want to argue that (39) is the effective action (or at
least part of it) for our problem on a general gauge and
gravitational background. Toward this, we will now show
that this does lead to (27) if we take the spacetime manifold
to be S2 × R. In this case, the spin connection has only the
nonzero component ωij ¼ iϵijω, defined by the zero
torsion condition dei þ ωijej ¼ 0, where ei ¼ ðe1; e2Þ
are the frame fields for S2. (e3 ¼ dt will be the third frame
field, for R.) The action (39) now reduces to1If we interpret this within a gravity theory, the Planck scale is

a natural choice for this. But M could be somewhat smaller or
larger, although in any realistic sense,M cannot be too low, since
it determines the limit of resolution for points of the spatial
manifold itself.

2It is possible to define a star product for any Poisson manifold
[16]. But it is not clear how to use it in the present context.

3Our normalization is dðC:S:Þ ¼ 2π × ðIndex densityÞ.
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Seff ¼
Z �

1

48π
ωdω −

1

4π
AdA

�
: ð40Þ

To compare this with the effective action for S2 ×R as in
(26), (27), two changes are needed. Here we are discussing
spinors, while (26), (27) apply to scalars where we could
use the Dolbeault index density. Spinors transform non-
trivially as ψ → eiσ3φ=2ψ under local spatial rotations while
scalars do not respond to rotations. So, the factor eiσ3φ=2

must be canceled out to get a proper comparison with the
Dolbeault index density. This can be done by the shift A →
Aþ 1

2
ω in (40). (In other words, we can view the case of

scalars as this particular choice of background fields for the
spinors.) And second, we must make the replacement A →
aþA to include the matter coupling. With these changes,
the action becomes

Seff

�
AþAþ 1

2
ω;ω

�

¼ −
1

4π

Z �
AdAþ ARþ 1

6
ωdω

�
−
Z

A
�
F
2π

þ R
4π

�
:

ð41Þ

The first set of terms agrees with the action obtained in
[13], and the second set of terms agrees with the present
discussion in (25)–(27). Thus, we have shown that the
general action (39) reduces to (41) so that our earlier results
for S2 ×R can be viewed as a special choice of background
fields. Returning to the general case, we see that the action
for describing the path integral for matter fields takes the
form of (27) with

Seff ¼
Z �

1

96π
Tr

�
ωdωþ 2

3
ω3

�
−

1

4π
ðAþAÞdðAþAÞ

�

¼
Z �

1

96π
Tr

�
ωdωþ 2

3
ω3

�
−

1

4π
AdA

�
−

1

2π

Z
AdA:

ð42Þ

Turning to the 4þ 1-dimensional case, the Dirac index
density in six dimensions is given by

IDirac ¼ dimV
iF
2π

�
1

3!

�
iF
2π

�
2

−
1

24
p1

�

þ 1

2

�
iF
2π

�
Tr

�
iF̄
2π

iF̄
2π

�
: ð43Þ

Here F is the Uð1Þ field strength, F̄ is the SUð2Þ back-
ground field, and dimV is the dimension of the represen-
tation used for F̄. As before, p1 is the Pontrjagin class. The
Chern-Simons form or effective action corresponding to
(43) is given by

SeffðA;ωÞ ¼ i3 dimV
Z �

1

3!ð2πÞ2 AFF þ 1

24
Ap1

�

þ i3

8π2
ATrðF̄ F̄Þ: ð44Þ

Again, our first task will be to show that this will lead to
the effective action (29) when we make a special choice of
background fields. We consider the case of zero non-
Abelian background, i.e., F̄ ¼ 0, dimV ¼ 1. In reducing
(44) to spatial states defined by the Landau-Hall problem
for scalars on a background geometry of the formCP2 ×R,
there are two requirements on the Uð1Þ field. First of all,
since CP2 does not admit a spin structure, the use of the
Dirac index density is problematic. One can use a spinc

structure, which means that we should make a shift of the
Uð1Þ as A → Aþ 1

2
ω0. (This is equivalent to choosing a

Uð1Þ charge of the form nþ 1
2
where n is an integer.) This

shift reduces the problem to spinors on CP2 (with a spinc

structure). (For a discussion of the Dirac index for CP2,
relevant for our analysis, see [17].)
To get to scalars, so that we can compare with the

Dolbeault index, we need a further shift by 1
2
ω0 to

compensate for the transformation of spinors under rota-
tions. Thus, in total, we should use A → Aþ ω0. Further, in
terms of the Uð1Þ and SUð2Þ curvatures, p1 reduces to

p1

24
¼ 1

ð2πÞ2
�
−

1

12
dω0dω0 −

1

24
TrðR̄ R̄Þ

�
: ð45Þ

With A → Aþ ω0 and this formula for p1, the effective
action (44) becomes

Seff ¼
i3

ð2πÞ2
Z �

1

3!
ðAþ ω0ÞðdAþ dω0Þ2

−
1

12
ðAþ ω0Þ

�
dω0dω0 þ 1

2
TrðR̄ R̄Þ

��
: ð46Þ

This agrees with the effective action obtained in [13] using
the Dolbeault index theorem and quoted in (29). The charge
density which is the variation of Seff with respect to A0

gives the correct dμρ for this case, and so the prescription
(27) for fuzzy CP2 is recovered for the particular choice of
background.
Having shown that (44) does indeed reproduce the

results for CP2 ×R (for the appropriate choice of the
geometric quantities), we can take it as the form of
the action for general, not necessarily complex Kähler,
backgrounds. The shift by the Poincaré-Cartan form
produces the matter part of the action
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Smatter ¼
1

32π2

Z
ðiAÞ

�
dimV

�
FμνFαβ þ

1

24
Rab
μνRab

αβ

�

þ TrðtatbÞF̄a
μνF̄b

αβÞ
�
dxμ � � � dxβ; ð47Þ

where we used the real field components defined by

F ¼ ð−iÞ 1
2
Fμνdxμdxν; F̄ ¼ ð−itaÞ

1

2
Fa
μνdxμdxν: ð48Þ

The key emerging feature is that the Lagrangian for matter
fields is multiplied by a specific polynomial involving
powers of the curvature. The term involving the Uð1Þ field,
namely, FμνFαβ is the dominant one at large n, but there are
curvature-dependent subdominant terms. It is curious to
note that such couplings of matter fields to gravity have
been extensively investigated recently, partly motivated by
their potential to explain observations related to dark
matter. For recent reviews on the subject of curvature-
matter couplings, see [14].
Finally, we can ask how to formulate the coupling of

matter fields directly at the level of the fermion fields
defining the spatial geometry. The relevant action is the
Dirac action with nontrivial gauge and gravitational fields.
The gauge group should have a Uð1Þ component. For
example, in 4þ 1 dimensions, we consider the action

S ¼
Z

ψ̄ðiγ ·DÞψ : ð49Þ

If a specific representation of the Dirac matrices is needed,
we will use

γ0 ¼
�
1 0

0 −1

�
; γi ¼

�
0 σi

−σi 0

�
; γ4 ¼

�
0 i

i 0

�
:

ð50Þ

In (49), we are using a four-component spinor ψ which
would correspond to one chiral component of an eight-
spinor in six dimensions. This means that there will be a
parity anomaly for this theory. The Hamiltonian corre-
sponding to (49) is

H ¼
Z

ψ†½−iγ0γμDμ�ψ ; μ ¼ 1; 2; 3; 4: ð51Þ

The nonzero positive and negative eigenvalues of the four-
dimensional Dirac operator −iγ0γμDμ are paired, with the
corresponding eigenfunctions ψn and γ0ψn. The zero
modes are not paired and their number is what is given
by the Dirac index in four dimensions. In defining the
vacuum state and calculating the charge, the key question is
whether the zero modes are to be considered as part of the
Dirac sea, hence filled, or as part of the unoccupied positive

energy states. The charge conjugation transformation for
the spinor ψ is defined by

ψ ¼ Cϕ�; C−1γaC ¼ γa�; C ¼ γ2γ4; ð52Þ

where ϕ is the charge conjugate of ψ . The C-odd definition
of the charge can be evaluated on the vacuum as

Qj0∓i ¼
1

2

Z
½ψ†ψ − ϕ†ϕ�j0∓i ¼∓ 1

2
Nj0∓i; ð53Þ

where the upper sign corresponds to the zero modes being
unoccupied, the lower to the case when they are occupied,
and N is the number of zero modes given by the Dirac
index. This result shows that the effective action for (49)
should have a Chern-Simons term with a level number of
∓ 1

2
. This leads to an inconsistency. (This is the well-known

parity anomaly, spelt out for 4þ 1 dimensions here.) A
consistent theory requires using the Dirac action (49) with a
Chern-Simons term with level number � 1

2
added. Taking

the first sign in (53), the resulting vacuum will have zero
charge and will lead to an effective action equal to the
Chern-Simons term in (29) for the fully occupied ν ¼ 1
state, i.e., for the state where all the zero modes are
occupied. Thus, our results for the coupling of matter
fields to the fermions characterizing the spatial manifold
are summarized by the action

S ¼
Z

ψ̄ðiγ ·D −mÞψ þ 1

2
SCSðAþA;ωÞ

γ ·D ¼ γae−1μa

�
∂μ þ Aμ þAμ þ

1

8i
ωbc
μ ½γb; γc�

�
: ð54Þ

The massm is a small positive number whose role is to shift
the energies upward. The zero modes of the Hamiltonian
(51) will thus have small positive energies, leaving them
unoccupied and making the choice of the vacuum state as
j0−i in (53). (This is the only reason for m; it can be taken
to be infinitesimally small.) And SCS in (54) is the Chern-
Simons action of (44) with the shift A → AþA,

SCSðAþA;ωÞ ¼
�
i3 dimV

Z �
1

3!ð2πÞ2 AFF þ 1

24
Ap1

�

þ i3

8π2
ATrðF̄ F̄Þ

�
A→AþA

: ð55Þ

The effective action, for the state with the zero modes fully
occupied, obtained from (54) will be SCS as in (55).
The formulation of the problem as in (54) is the main

result of this paper, in its most general form.

V. DISCUSSION

Our analysis started with a finite-, say N, dimensional
Hilbert space of states which could be identified as the
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lowest Landau level of a Landau-Hall problem or as the
Hilbert space modeling a fuzzy space. Observables on such
a space are N × N matrices. We considered the path
integral for the dynamics of such observables, specifically
something which approaches a continuum field theory as
N → ∞. The action which defines such a path integral is
given by a Chern-Simons formwhich includes aUð1Þ gauge
field A which is shifted as A → AþA by the (star product
version of the) Poincaré-Cartan formA for the matter fields.
We then extended this to more general backgrounds arguing
that the Dirac index density can be used to construct the
relevant Chern-Simons form. As far as matter fields are
concerned, the end result is an action of the form

R
ρLwhere

L is the Lagrangian and ρ is a density which is a polynomial
in the gauge fields and the curvature as determined by the
index density. It was argued in [13] that the effective action
for background gauge fields and gravity for the Landau-Hall
system is given by a Chern-Simons form associated with the
Dolbeault index density. The present work incorporates
matter couplings in such a framework and further extends
it to more general geometries.

As mentioned after (27), SeffðAþA;ωÞ has a term
SeffðA;ωÞ which is not related to matter couplings. We
retained it in (27) expecting that such terms can be absorbed
into the gravitational part of the action. Regarding such
purely gravitational terms, we note that one can define a
class of gravity theories on odd-dimensional spacetimes
with an action which is the difference of two Chern-Simons
forms. We have argued elsewhere for the natural emergence
of such a structure with an interpretation in the framework
of thermofield dynamics [12]. The inclusion of matter
couplings as discussed here within such a structure would
be an interesting next step, which we propose to pursue in a
later publication.
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