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We discover a new class of topological solitons. These solitons can exist in a space of infinite volume
like, e.g., Rn, but they cannot be placed in any finite volume because the resulting formal solutions have
infinite energy. Therefore, these objects are interpreted as totally incompressible solitons. As a first
particular example, we consider (1þ 1)-dimensional kinks in theories with a nonstandard kinetic term or,
equivalently, in models with the so-called runaway (or vacuumless) potentials. But incompressible solitons
also exist in higher dimensions. As specific examples, in (3þ 1) dimensions we study Skyrmions in the
dielectric extensions of both the minimal and BPS Skyrme models. In the latter case, the Skyrmionic matter
describes a completely incompressible topological perfect fluid.
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I. INTRODUCTION

Topological solitons are ubiquitous objects in modern
physics, both from a theoretical point of view and in a
variety of applications [1,2]. They are particle-like solu-
tions of nonlinear field theories characterized by a pertinent
topological index (charge) Q, whose conservation is not
related to the Noether theorem, but is a consequence of
some topological properties of the physical (base) spaceM
and the field space of the theory (target space Σ).
The stability of topological solitons is guaranteed by

the existence of the so-called topological energy bound,
which states that the energy E of any field configuration is
bounded from below by the topological degree. Typically,
the bound takes a linear form [1],

E ≥ CjQj; ð1Þ

although theories with nonlinear versions are also known
[3,4]. Here, C is a numerical constant that does not
depend on the volume of the base space. Hence, this
bound applies to infinite (e.g., M ¼ Rn) as well as finite-
volume base spaces. In some very special theories the
bound can be saturated, which gives rise to Bogomol’nyi-
Prasad-Sommerfield (BPS) solitons [5]. They satisfy lower-
order field equations (which obviously imply the usual

Euler-Lagrange equations) called BPS or self-dual (SD)
equations and are therefore mathematically much simpler,
often allowing for an analytical treatment. Physically, BPS
solutions explore the limit where static solitons do not
interact, which results in zero binding energies.
If a soliton is considered on a finite-volume manifold,

volðMÞ < ∞, then frequently another topological energy
bound can be derived,

E ≥ CvolðMÞfðjQjÞ: ð2Þ

In contrast to the BPS bound mentioned above, this second
bound is usually not linear in Q [6–8]. Furthermore,
CvolðMÞ is a function of the volume of the base space.
Thus, this new bound does depend on the volume. The two
bounds are, of course, independent. Hence, for some
values of the model parameters and/or topological charges,
one of them provides a tighter bound. Physically, the
volume-dependent bound encodes some information about
the resistance of the soliton against external pressure.
Indeed, it shows how the energy grows if a soliton is
forced to occupy a finite-volume space V ¼ volðMÞ. This
leads to a very important quantity characterizing a soliton,
which is its compressibility κ defined as

κ ¼ −
1

V

�∂V
∂p

�
Q;T

; ð3Þ

where V is the volume of the soliton, p is its pressure, and
T is the temperature.
If solitons are classified according to their size (occupied

volume), then currently there are two known types:
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(1) Usual solitons, which at zero pressure are infinitely
extended solutions approaching the vacuum at
jx⃗j → ∞. Obviously, they possess infinite volume V.

(2) Compactons, i.e., solitons which even at zero pres-
sure approach their vacuum values at a finite dis-
tance and, therefore, have a finite volume V; see,
e.g., Refs. [9–18].

When a nonzero pressure is applied, solitons of both types
reduce their volumes. Obviously, it requires additional
energy to keep the solitons in the reduced volume.
However, this energy is always finite although it may rise
quickly as V decreases (or, equivalently, as p increases).
Therefore, all known solitons have nonzero compressibility
and can be squeezed to smaller sizes with a finite amount of
energy.
It is the aim of the current paper to prove the existence of

a new class of topological solitons which, although they
exist in an infinite-volume space, e.g., in M ¼ Rn, cannot
be squeezed to a finite volume, which means that their
compressibility is zero. This possibility can be understood
from the independence of the two topological bounds.
Indeed, as we will show below, it may happen that for a
given solitonic model the constant C is finite while
CvolðMÞ ¼ ∞, which prevents the existence of finite-energy
solutions with nontrivial values of the topological charge in
a finite space. In a sense, this new class is exactly opposite
to compactons, which even without pressure are finite-
volume objects. Therefore, it provides the second extreme
limit for the possible qualitative behavior of topological
solitons.
For simplicity, we start with incompressible kinks in

(1þ 1) dimensions (Sec. II). The examples of incompress-
ible kinks will be found in scalar models with a nonstand-
ard kinetic term. Interestingly, by a field transformation,
these models can be recast into theories with a standard
kinetic term but with potentials belonging to the so-called
runaway (vacuumless) class (Sec. III). Then, we show that
incompressible topological solitons can exist in higher
dimensions as well. Concretely, we consider two examples
provided by the recently introduced dielectric generaliza-
tions of the minimal Skyrme model (Sec. IV) and BPS
Skyrme model (Sec. V). In particular, the latter case—
which describes an incompressible perfect-fluid solitonic
matter—allows us to fully clarify the reasons that forbid the
existence of finite-energy solutions when an external
pressure is applied. Although in all examples we deal with
BPS theories, this is by no means a necessary condition to
find an incompressible soliton. However, it simplifies
computations and permits an analytical treatment.

II. INCOMPRESSIBLE KINKS

A. Bogomol’nyi sector

We consider a real scalar field theory in (1þ 1) dimen-
sions with a nonstandard kinetic term, Σ ¼ M ¼ R.

Specifically, we promote the coupling constant in front
of the kinetic term to a field (target-space)-dependent
function gðϕÞ,

L ¼
Z

∞

−∞
dxðgðϕÞð∂μϕÞ2 − VðϕÞÞ: ð4Þ

We assume that the potential has two isolated vacua,
ϕþ > ϕ−, which are attained in a quadratic manner. It means
that for field values close to the vacuum values, ϕ ¼
ϕ� − ζ þOðζ2Þ, the potential is VðϕÞ ¼ 1

2
V 00ðϕ�Þζ2 þ

Oðζ3Þ. For our purposes, it is essential that the coupling
function g has poles exactly at the same points where the
zeros of the potentialV are located. Therefore, for simplicity,
we restrict our considerations to the case where gðϕÞ ¼
1=VðϕÞ [a generalization to gðϕÞ ¼ fðϕÞ=VðϕÞ, wherefðϕÞ
is a smooth function without zeros and poles, is straightfor-
ward] and arrive at the following theory:

L ¼
Z

∞

−∞
dx

�
1

VðϕÞ ð∂μϕÞ2 − VðϕÞ
�
: ð5Þ

We comment that themodels (4) arewidely considered in the
literature, although the particular properties of the class (5)
that we want to discuss have not been noticed yet.
The static energy can be bounded from below by the

standard Bogomol’nyi trick,

E ¼
Z

∞

−∞
dx

�
1

VðϕÞϕ
2
x þ VðϕÞ

�

¼
Z

∞

−∞
dx

�
1ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp ϕx �

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ

p �
2 ∓ 2

Z
∞

−∞
dxϕx

≥ 2

����
Z

∞

−∞
ϕxdx

���� ¼ 2ðϕþ − ϕ−ÞjQj; ð6Þ

where Q is a topological charge normalized to �1,

Q ¼ 1

ϕþ − ϕ−

Z
∞

−∞
ϕxdx ¼ ϕð∞Þ − ϕð−∞Þ

ϕþ − ϕ−
: ð7Þ

The bound is saturated if and only if the following
Bogomol’nyi (BPS) equation is obeyed:

1ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp ϕx �

ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ

p
¼ 0 ⇒ ϕx ¼ ∓VðϕÞ: ð8Þ

Obviously, the BPS equations give rise to kink and antikink
BPS solutions.
In general, the BPS sector is completely standard and is,

in fact, identical to the standard kink model with potential
V2. Interestingly, this is no longer the case for non-BPS
solutions.
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B. Constant-pressure solutions

Formally, the full static second-order Euler-Lagrange
(EL) equation can be integrated to the following one-
parameter equation, which is a constant-pressure generali-
zation of the BPS equation:

1

VðϕÞϕ
2
x − VðϕÞ ¼ P: ð9Þ

Here P is a constant which can be easily identified with the
T11 component of the energy-momentum tensor. Indeed, if
we differentiate it with respect to x we get

2

V
ϕxx −

Vϕ

V2
ϕ2
x − Vϕ ¼ 0; ð10Þ

which is exactly the static EL equation. The constant-
pressure equation, being a first-order ordinary differential
equation, allows to change the base-space “volume”
measure to the target-space measure (we choose the plus
sign),

dx ¼ dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ PV

p : ð11Þ

Therefore, the static energy functional can be rewritten as

E ¼
Z

∞

−∞
dx

�
1

VðϕÞϕ
2
x þ VðϕÞ

�

¼
Z

ϕþ

ϕ−

dϕ
2V þ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ PV

p ; ð12Þ

which is just a target-space integral. For P ¼ 0 we get
E ¼ 2

R ϕþ
ϕ−

dϕ, which gives a finite result coinciding with
our previous expression (6). On the other hand, for P > 0,
there is a divergence at the vacuum. In fact, let us consider
the limit when ϕ → ϕþ,

lim
ϕ→ϕþ

Z
ϕ
dϕ0 2V þ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðV þ PÞp ∼ lim
ϕ→ϕþ

Z
ϕ
dϕ0 Pffiffiffiffiffiffiffi

VP
p

¼
ffiffiffiffi
P

p
lim
ϕ→ϕþ

Z
ϕ
dϕ0 1ffiffiffiffi

V
p ; ð13Þ

where the last integral diverges if the approach to the
vacuum is quadratic (or stronger), which we previously
assumed for the potential. The conclusion is that in this case
the formal constant-pressure solution possesses infinite
energy.
Surprisingly, contrary to usual solitons and compactons,

the configurations with P > 0 still extend to infinity. To see
this, we integrate Eq. (11). Then,

V ¼
Z

dx ¼
Z

ϕþ

ϕ−

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðV þ PÞp ; ð14Þ

which diverges at the vacua for any positive pressure.
Hence, the volume of solitons of this new type remains
infinite despite the application of a nonzero pressure. This
means that a constant pressure is not sufficient to compress
the solitons to a finite domain. As we will show later, these
features are also shared by incompressible solitons in
higher dimensions.
To see the impact of pressure on the infinite-energy

solutions, we analyze the constant-pressure equation in
the limit close to the vacuum. We start with P ¼ 0 and
consider the asymptotic behavior at x → ∞, where
the field approaches the larger vacuum value ϕþ (the
approach to the smaller vacuum is analogous). Here, ϕ ¼
ϕþ − ζ þOðζ2Þ, where ζ obeys

ζ2x
ζ2

¼
�
V 00ðϕþÞ

2

�
2

ζ2: ð15Þ

As a consequence, the decay of the field is power-like,
ζ ∼ x−1, which is fast enough to guarantee the finiteness of
the energy. Now, for nonzero pressure P > 0, close to the
vacuum the behavior changes. Indeed, the asymptotic field
ζ obeys

ζ2x
ζ2

¼ V 00ðϕþÞ
2

P; ð16Þ

as the contribution from the potential term can be
neglected. Therefore, the constant-pressure solutions are

exponentially localized, ζ ∼ e−
ffiffiffiffiffiffiffiffiffiffiffi
PV00ðϕþÞ

2

p
x. Hence, the non-

zero pressure leads to a better localization of the kink but,
simultaneously, results in an asymptotically constant
kinetic term ϕ2

x=V ∼ ζ2x=ζ2 ∼ const, which is the origin
of the divergency of the energy integral.
On the other hand, the static BPS solution can be

perturbed by any local deformation provided that it
decreases in a power-like manner, i.e., ζ ∼ x−a, a > 0.
Then, the kinetic terms decreases as x−2 which is obviously
integrated to a finite number. This counterintuitive feature—
that a better localization of the field results in worse
convergence of the energy integral—is obviously a direct
result of the nontrivial kinetic term.
Some further intuition concerning a near-vacuum per-

turbation can be achieved if we regularize the kinetic term
by considering the following Lagrangian:

Lϵ ¼
Z

∞

−∞
dx

�
1

VðϕÞ þ ϵ
ð∂μϕÞ2 − VðϕÞ

�
; ð17Þ

where ϵ is a small parameter which should eventually be
taken to 0. For potentials with a quadratic near-vacuum
approach it gives a standard Lagrangian for a small
perturbation ζ,
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Lϵ½ζ� ¼
Z

∞

−∞
dx

�
1

ϵ
ð∂μζÞ2 −

1

2
V 00ðϕ�Þζ2

�
; ð18Þ

where terms up to ζ2 are kept. Thus, the mass of the small
linear perturbation is

mϵ ¼
ϵV 00ðϕ�Þ

4
ð19Þ

and goes to 0 as we approach the original theory, i.e.,
ϵ → 0. Note that the analogous regularization for compac-
tons provides an infinite mass of small (linear) perturba-
tions. Hence, our solitons are, in a sense, exactly opposite
to the compacton limit.

C. Nonexistence of finite-volume kinks

The fact that the finite-pressure solutions have infinite
energy and are infinitely extended does not necessary imply
that there are no finite-volume solutions for the kinks
considered here. However, it is not difficult to show that
any finite-volume topologically nontrivial solution of
Eq. (5) must have infinite energy. This is the place where
another, finite-volume topological bound enters.
To prove this, we use a version of the Hölder inequality,

�Z
M

ΩMjfjp
�

≥
1

ðvolðMÞÞp=q
�Z

M
ΩMjfj

�
p
; ð20Þ

where the positive numbers p, q are such that

1

p
þ 1

q
¼ 1 ð21Þ

and volðMÞ is the volume of the base space. Now, the static
energy can be bounded by another topological bound,

E ¼
Z

∞

−∞
dx

�
1

VðϕÞϕ
2
x þ VðϕÞ

�
≥
Z

∞

−∞

1

VðϕÞϕ
2
xdx

¼
Z

∞

−∞

�
1ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp ϕx

�
2

dx

≥
1

volðMÞ
�Z

∞

−∞

1ffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp ϕxdx

�
2

¼ 1

volðMÞ
�Z

ϕþ

ϕ−

dϕffiffiffiffiffiffiffiffiffiffiffi
VðϕÞp

�
2

¼ ∞; ð22Þ

where the last integral takes an infinite value due to the
logarithmic divergency.
Hence, the BPS (anti)kinks, although they exist on R,

cannot be squeezed to a finite volume. Thus, the kink and
antikink of the nonstandard kinetic term model presented
above are examples of incompressible solitons.

III. FORMULATION AS A RUNAWAY
POTENTIAL MODEL

A. Incompressible kinks in runaway
potential models

The coupling function gðϕÞ ¼ 1=VðϕÞ in the model
supporting incompressible kinks [Eq. (5)] can be viewed
as a nontrivial metric on a one-dimensional target space Σ.
Due to its one-dimensionality, such a metric can always
be made locally trivial by a suitable field redefinition
ϕ ¼ ϕðψÞ,

dϕffiffiffiffi
V

p ¼ dψ ; ð23Þ

which leads to a a scalar field theory with the canonical
kinetic term

L½ψ � ¼
Z

∞

−∞
dxð∂μψÞ2 − ṼðψÞ: ð24Þ

(This target-space transformation was used very recently in
the context of domain walls without a potential [19].) Of
course, the form of the potential ṼðψÞ≡ VðϕðψÞÞ changes.
The characteristic feature of the potential in the variable ψ ,
i.e., ṼðψÞ, is that its vacua ṼðψÞ → 0 are approached in the
limit ψ ¼ �∞. This is an obvious consequence of the
formula relating the fields. Indeed, as VðϕÞ has at least a
quadratic approach to the vacuum, ϕ → ϕ� leads to
ψ → ψ� ¼ �∞. Such potentials are called vacuumless
or runaway potentials and have been widely considered in
the literature [20–25]. The first name might be considered a
bit misleading as the potential still approaches two vacua,
although in the limit ψ → �∞. Therefore, we will use the
second name. These potentials still support BPS topologi-
cal solitons interpolating between the infinitely separated
vacua ψ� ¼ �∞. The pertinent Bogomol’nyi equation is

ψx ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
ṼðψÞ

q
; ð25Þ

with solutions (kink and antikink) saturating the topologi-
cal energy bound

E½ψ � ≥ 2

Z
ψþ

ψ−

ffiffiffiffiffiffiffiffiffiffiffi
ṼðψÞ

q
dψ ¼ 2

Z
∞

−∞

ffiffiffiffiffiffiffiffiffiffiffi
ṼðψÞ

q
dψ : ð26Þ

Observe that the target-space integral is over an infinite-
volume space Σ ¼ R and, therefore, its convergence
requires a sufficiently fast approach to the vacua.
However, due to the equivalence of the nonstandard kinetic
model (5) and the runaway theory (24), the integral takes a
finite value. In general, at the vicinity of the vacuum the
approach should be at least ṼðψÞ ≈ ψ−a, with a > 2, or
faster.
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Furthermore, all results concerning the existence of
incompressible kinks hold in the runaway potential model
(24). Therefore, such theories also support incompressible
solitons. Let us for example consider the constant-pressure
equation

ψ2
x ¼ Pþ ṼðψÞ: ð27Þ

For topologically nontrivial solutions it is necessary for the
field to approach the vacua ψ → �∞. At the vacua, the
potential vanishes, therefore close to the vacua Eq. (27)
leads to ψ2

x ¼ P. This leads to a linear divergency of the
field at spatial infinities, i.e., ψ ∼ x as x → �∞. But this
results in a divergency of the kinetic part of the total energy.
So, exactly as in the case of the nonstandard kinetic term,
constant-pressure solutions are formal solutions possessing
infinite energy.
To clearly understand this equivalent formulation we

consider a particular example, which is the ϕ4 potential,

Vϕ4 ¼ ð1 − ϕ2Þ2: ð28Þ

The incompressible kinks of the nonstandard kinetic term
model (5) are given in the implicit form

1

4

�
2ϕ

1 − ϕ2
− ln

���� 1þ ϕ

1 − ϕ

����
�

¼ �ðx − x0Þ; ð29Þ

where x0 is a free parameter, i.e., the location of the
(anti)kink. The pertinent change of the field is ϕ ¼ tanhψ .
This map relates ϕ ∈ ½−1; 1� with ψ ∈ R. The resulting
potential is

ṼðψÞ ¼ 1

cosh4 ψ
; ð30Þ

while the topological (anti)kinks in the variable ψ read

1

2

�
ψ þ 1

2
sinhð2ψÞ

�
¼ �ðx − x0Þ: ð31Þ

The runaway kinks are examples of solitons with very long
tails [26,27]. Indeed, the energy density decreases as 1=x2.
We remark that the original fields outside of this seg-

ment, i.e., jϕj > 1, can be parametrized as ϕ ¼ coth χ. This
again gives a model with the standard kinetic part, but now
the potential is

ṼðχÞ ¼ 1

sinh4 χ
: ð32Þ

This is also a runaway potential with two vacua at χ ¼ �∞.
However, there are no kinks interpolating between them.
The reason is that the potential has an infinite barrier at
χ ¼ 0. Nonetheless, the full dynamics of the original model

based on the ϕ field may require one to also take this branch
into account. Of course, the runaway model based
entirely on the ψ field (24) can be considered as a fully
self-consistent dynamical system. In this case, it would
correspond to the nonstandard kinetic term model with
ϕ ∈ ½−1; 1�.

B. Mode structure

Although a full analysis of the dynamical properties of
incompressible solitons goes beyond the scope of this
paper, we present the main features of the mode structure
which describes the behavior of small perturbations around
the incompressible kink. Taking into account the equiv-
alence of the models supporting incompressible solitons
defined above, we will use only one of them, namely, the
runaway potential model (24).
The common feature of all runaway models is that the

mass of small perturbations is zero, m2 ¼ 0. Indeed, in the
expansion of the potential at the vacua there is no term
proportional to ψ2. This agrees with our previous comment
on the regularized limit of the nonstandard kinetic term.
As a consequence, there is no mass gap in the spectrum of
the theory. The mass threshold which divides the discrete
and continuous spectra starts at ω2 ¼ m2 ¼ 0.
Now we deform the incompressible (anti)kink by a small

perturbation ηðx; tÞ. Inserting ψðx; tÞ ¼ ψkinkðxÞ þ ηðx; tÞ
[where ηðx; tÞ ¼ ηðxÞeiωt] into the Euler-Lagrange equa-
tion and leaving only linear terms in the perturbation, we
get the Schrödinger-like equation

−
d2

dx
ηðxÞ þ V linðxÞηðxÞ ¼ ω2η; ð33Þ

where the linearized potential is

V linðxÞ ¼
d2Ṽ
dψ2

����
ψ¼ψkinkðxÞ

: ð34Þ

Normalizable solutions with ω ∈ R are normal modes.
Here, the only normal mode is the zero mode related to the
translational invariance of the model. This mode generates
the translations of the free (anti)kink. No other normal
modes are possible, because the mass threshold is located at
ω2 ¼ m2 ¼ 0. It separates the discrete and continuous
spectra. So, there is no room for any other bound mode,
while unstable modes ω2 < 0 are forbidden by the satu-
ration of the energy bound (26).
The nonexistence of massive normal modes for incom-

pressible kinks can make their dynamics relatively simply.
The reason is that, e.g., complicated chaotic structures in
kink-antikink collisions are mainly related to the existence
of a massive bound mode. This is the case for the shape
mode in ϕ4 theory. Indeed, during the collision initial
kinetic energy can be temporarily stored in bound modes
and then released in the so-called resonant mechanism
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which is believed to lead to the fractal structure observed in
the final state [28]. However, it should be emphasized that
the existence of a massive normal mode is not mandatory
for the appearance of a resonant structure. Important
counterexamples are known (e.g., Ref. [29]).
In contrast to massive bound modes, incompressible

kinks may possess quasinormal modes (QNMs), which
are solutions of the linearized perturbation equation
with a complex frequency ω ¼ Ωþ iΓ, where both Ω and
Γ are real and Γ > 0. Physically, they describe decaying
perturbations.
We find that the runaway potential Ṽ ¼ 1= cosh4 ψ leads

to a volcano-shaped linearized potential V linðxÞ; see Fig. 1
(see also Ref. [22]). Volcano-shaped potentials tend to
support the formation of QNMs, because the potential
edges form a sort of barrier which may host oscillating
perturbations. Of course, as the barrier is finite the
perturbations will eventually decay. The corresponding
decay rate Γ gets smaller for a broader or higher barrier.
In our example, we find that there exist at least three
QNMs: two for antisymmetric boundary conditions with
frequencies ω1 ¼ 0.0077þ 0.024i and ω3 ¼ 0.43þ 1.27i,
and one for symmetric boundary conditions with
ω2 ¼ 0.023þ 0.012i. Note that at least ω1 and ω2 are
very low-lying, and their wave functions are spread out
quite far, so that their existence is probably not related to
the volcano shape. Further, although Γi ∼ Ωi in all three
cases, oscillatory behavior in the QNMs is always well
visible in our numerics.

IV. INCOMPRESSIBLE SKYRMIONS

Now we will show that the phenomenon of incompress-
ible solitons is not confined to one spatial dimension, but
can occur in higher-dimensional solitonic models as well.
Let us consider the so-called dielectric Skyrme model [30]
(see also Refs. [31,32]), which is a variant of the Skyrme
model [33,34] with the coupling constants e and f
promoted to field-dependent functions. Specifically, in
the minimal version it reads

Ld
24 ¼ Ld

2 þ Ld
4

¼
Z
M

f2

2
TrðRμRμÞdΩM

−
Z
M

1

16e2
Trð½Rμ; Rν�½Rμ; Rν�ÞdΩM: ð35Þ

Here the Skyrme field is a map U∶M → Σ, where M is a
three-dimensional manifold without boundary and with
volume element dΩM, such that the map U∶M → Σ is
sufficiently smooth and exists globally. Further, the target
space is just the unit three-dimensional sphere Σ≡ S3, and
Rμ ¼ ∂μUU−1 is the right-invariant current. These maps
are classified by a topological index called the baryon
charge Q ¼ B, defined as

B ¼
Z
M

dΩMB0 ¼ 1

24π4

Z
M

dΩMϵijkTrðRiRjRkÞ; ð36Þ

where B0 is the temporal component of the baryon
current Bμ ¼ 1

24π4
ϵμνρσTrðRνRρRσÞ.

If written in terms of the eigenvalues λ2 of the strain
tensor Di

j ¼ − 1
2
TrðRiRjÞ, the static energy takes the

following form [6]:

Ed
24¼

Z
M

�
f2ðλ21þλ22þλ23Þþ

1

e2
ðλ21λ22þλ22λ

2
3þλ23λ

2
1Þ
�
dΩM:

ð37Þ

This is bounded from below as

Ed
24 ≥ 6

����
Z
M

f
e
λ1λ2λ3dΩM

���� ¼ 12π2
�
f
e

	
jBj

¼ 6volðΣÞ
�
f
e

	
jBj; ð38Þ

where the brackets hF i around a target-space function F
mean the average value of F over the whole S3 target
space,

hF i ¼
Z

dΩΣ

2π2
F

¼ 1

2π2

Z
π

0

dξ
Z

π

0

dΘ
Z

2π

0

dΦsin2ξ sinΘF ðξ;Θ;ΦÞ:

ð39Þ

Here ðξ;Θ;ΦÞ are coordinates on Σ and dΩΣ ¼
sin2 ξ sinΘdξdΘdΦ is the volume element. Note that the
bound is valid for any sufficiently well-behaved base-space
manifold M. It is a generalization of the Skyrme-Faddeev
bound [35] to the case when the coupling constants are
target-space functions.

FIG. 1. Linearized potential in the small perturbation problem
for the runaway model with Ṽ ¼ 1= cosh4 ψ . Note the volcano
shape.
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The bound is saturated if and only if

λ21 ¼ λ22 ¼ λ23 ¼ e2ðTrUÞf2ðTrUÞ: ð40Þ

Contrary to the standard minimal Skyrme model, where the
couplings are just constants, this set of equations has a
nontrivial B ¼ 1 solution on M ¼ R3 if (here, r0 is a
constant with the units of length)

ef ¼ 1

2r0
TrðI −UÞ; ð41Þ

which we call the BPS constraint [30]. The pertinent
solution is a hedgehog (spherically symmetric) solution,

U ¼ eiξn⃗·τ⃗; n⃗ ¼ r⃗
r
; ξ ¼ 2 arctan

r0
r
; ð42Þ

where τ⃗ are the Pauli matrices, while ξ and n⃗ ¼
ðsinΘ cosΦ; sinΘ sinΦ; cosΘÞ are again coordinates on
Σ. Furthermore, for the hedgehogΘ ¼ θ andΦ ¼ ϕ, where
ðr; θ;ϕÞ are the usual spherical polar coordinates.
For a finite-volume manifold M, we can derive another

bound which, in some cases, provides a stronger bound on
the energy. We remark that finite-volume Skyrmions are
intimately related to Skyrmionic crystals [6,36–38] which,
as ground states of the Skyrme model for B → ∞, play a
very important role in the application of the Skyrme model
to nuclear matter. Here we will use two inequalities,
namely, the arithmetic mean–geometric mean inequality

Xn
i¼1

ai ≥ n

�Yn
i¼1

ai

�1
n

; ð43Þ

and the previously used Hölder inequality. Now, we again
use the static energy expressed in terms of the eigenvalues,

Ed
24¼

Z
M

�
f2ðλ21þλ22þλ23Þþ

1

e2
ðλ21λ22þλ22λ

2
3þλ23λ

2
1Þ
�
dΩM

≥
Z
M

1

e2
ðλ21λ22þλ22λ

2
3þλ23λ

2
1ÞdΩM

≥ 3

Z
M

1

e2
ðλ1λ2λ3Þ43dΩM¼ 3

Z
M

�
1

e3=2
λ1λ2λ3

�4
3

dΩM

≥ 3
1

ðvolðMÞÞ1=3
�Z

M

1

e3=2
λ1λ2λ3dΩM

�4
3

¼ 3
ðvolðΣÞÞ4=3
ðvolðMÞÞ1=3

��
1

e3=2

	�
4=3

jBj4=3: ð44Þ

Restricting to the unit topological charge sector, we find
that this bound is stronger than the former one if

volðMÞ ≤ 8
h 1
e3=2

i4
hfei3

volðΣÞ: ð45Þ

It is important that the numerical constants of these two
bounds are given by independent target-space averages.
This opens the possibility that, for a finite hfei, the other
average h 1

e3=2
i may diverge, which would prevent the

existence of the minimal dielectric Skyrmions on any
finite-volume domain.
To see that such a case is realized, we consider the

following choice of the coupling functions e, f obeying the
BPS constraint

e ¼ e0

�
1

2
Trð1 −UÞ

�
α

¼ e0ð1 − cos ξÞα;

f ¼ f0

�
1

2
Trð1 −UÞ

�
1−α

¼ f0ð1 − cos ξÞ1−α; ð46Þ

where α ∈ R, while e0 and f0 are dimensional constants
satisfying r0 ¼ 1=ðf0e0Þ. The finiteness of the energy
results from the finiteness of the hfei average and requires
that α < 5=4. For all such α the models support a BPS
B ¼ 1 hedgehog Skyrmion on the three-dimensional
Euclidean spaceM ¼ R3. On the other hand, the finiteness
of the average h 1

e3=2
i implies a different constraint on the

parameter α. Specifically,

�
1

e3=2

	
¼ 2

π

1

e3=20

Z
π

0

sin2ξ

ð2sin2ξ=2Þ3α2 dξ: ð47Þ

This integral converges if α < 1. For α ≥ 1 the integral
diverges and for a finite-volume manifoldM the rhs of the
bound is infinite. This means that there are no finite-energy
Skyrmions for such models (such a coupling function e) if
the manifold M has a finite volume.
The net result is that for α ∈ ½1; 5=4Þ the dielectric

Skyrme model supports a unit charge Skyrmion on
M ¼ R3 (which is in fact a BPS soliton saturating the
pertinent topological bound), while it does not allow for
finite-energy topologically nontrivial solutions on any finite-
volume manifold. This means that these infinitely extended
solitons cannot be enclosed in a finite volume. Formally, it
would require an infinite amount of energy to put this soliton
in a finite volume. Hence, such a Skyrmion represents a
completely incompressible three-dimensional matter.

V. INCOMPRESSIBLE PERFECT-FLUID
SOLITONS

A. Dielectric BPS Skyrme model

To better understand the physics and mathematics of
these incompressible solitons we will use another Skyrme-
type theory, i.e., the BPS Skyrme model [39], again in its
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dielectric version. Note that the BPS Skyrme model
contains the six-derivative term which provides the leading
behavior at higher pressure/density [40]. This may have a
nontrivial impact on properties of Skyrmionic matter in this
regime, resulting in a crystal-liquid phase transition in the
cores of neutron stars [41,42]. As wewill see, the properties
of incompressible Skyrmions in this model are quite
analogous to the properties of the incompressible kinks.
The dielectric BPS Skyrme model is defined by

Ld
60 ¼ Ld

6 þ Ld
0 ¼

Z
M

ðg2π4B2
μ þ UÞdΩM; ð48Þ

where U is a nonderivative term (a potential) and g is a
target-space-dependent coupling function. This model is a
BPS theory. Indeed, using the eigenvalues of the strain
tensor one can easily prove that the energy is bounded from
below as

Ed
60¼

Z
M

�
g2

4
λ21λ

2
2λ

2
3þU

�
dΩM ≥ volðΣÞhg

ffiffiffiffi
U

p
ijBj: ð49Þ

The bound is saturated if and only if the corresponding
Bogomol’nyi equation is obeyed,

g
2
λ1λ2λ3 �

ffiffiffiffi
U

p
¼ 0: ð50Þ

For a wide range of g, this equation admits topological
solutions in any topological sector. The necessary condition
is that the average hg ffiffiffiffi

U
p i takes a finite value. As a

consequence, the energy is a linear function of the
topological charge, which results in zero binding energies
for all admissible coupling functions g and potentials U.
In addition, for any coupling function this model repre-

sents a perfect fluid [43]. Indeed, the energy-momentum
tensor can be written in the perfect-fluid form

Tμν ¼ ðpþ ρÞuμuν − pημν; ð51Þ

where ημν is the Minkowski metric. In the static case, the
four-velocity is uμ ¼ ð1; 0; 0; 0Þ and the energy density and
pressure are, respectively,

ρ ¼ g2π4B2
μ þ U; p ¼ g2π4B2

μ − U: ð52Þ

The conservation of the energy-momentum tensor,
∂μTμν ¼ 0, implies that the pressure p must be a constant.
Furthermore, the static energy functional is invariant

under the volume-preserving diffeomorphisms of the base
space. This means that a BPS soliton with a given
topological charge can have an arbitrary shape provided
that its volume also remains locally unchanged. This again
corresponds with the symmetries of a perfect fluid with no
surface (tension) term.

Let us again consider a finite-volume base space M.
Then,

Ed
60¼

Z
M

�
g2

4
λ21λ

2
2λ

2
3þU

�
dΩM≥

Z
M

g2

4
λ21λ

2
2λ

2
3dΩM ð53Þ

≥
1

volðMÞ
�Z

M

g
2
λ1λ2λ3dΩM

�
2

¼ 1

8π2
volðΣÞ
volðMÞ ðhgiÞ

2B2: ð54Þ

As in the case of the dielectric extension of the minimal
Skyrme model Ld

24, the average appearing in the finite-
volume bound, hgi, is independent of the average in the
general bound, hg ffiffiffiffi

U
p i. Therefore, we can again find a

situation where hgi ¼ ∞, while hg ffiffiffiffi
U

p i takes a finite value.
As a consequence, a (BPS) soliton with any topological
charge exists onR3 but not in a finite base space, which gives
rise to completely incompressible topological solitons.
As a particular example, we consider the following

choice of the coupling function g and the potential:

g ¼ g0η−1; U ¼ μ2η2; ð55Þ

where g0 and μ are dimensional constants, while η is a new
target-space coordinate related to the usual ξ (which is
further related to TrU) as

η ¼ 1

2

�
ξ −

1

2
sin 2ξ

�
: ð56Þ

In the unit topological charge sector we can again assume
the hedgehog ansatz (for higher values of the topological
charge one has to use the axially symmetric ansatz). Then,
the Bogomol’nyi equation on R3 gives

1

2r2
gsin2ξξr ¼ −

ffiffiffiffi
U

p
⇒

g0
2r2

ηr
η
¼ −μη; ð57Þ

with the simple solution

η ¼ 1
2μ
3g0

r3 þ 2
π

ð58Þ

interpolating between ηðr¼0Þ¼π=2 [hence, ξðr ¼ 0Þ ¼ π]
and ηðr → ∞Þ ¼ 0 [hence, ξðr → ∞Þ ¼ 0]. However, for
this coupling function g the average hgi is logarithmically
divergent. Thus, this soliton cannot be put in a finite-
volume space.

B. BPS Skyrme model and pressure

As we have already shown, the dielectric version of
the BPS Skyrme model is a perfect-fluid theory. As a
consequence of this fact, the pressure p appears as
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a field-theoretical parameter in the first integral of the static
field equations. In fact, the full static second-order partial
differential equation is integrable to a constant-pressure
equation [43],

p ¼ g2π4B2
μ − U: ð59Þ

Note that for p ¼ 0 we recover the Bogomol’nyi equation.
Hence, the BPS solitons obey the zero-pressure equation.
Let us briefly summarize the results known for the usual

BPS Skyrme model where g is simply a constant. When the
pressure vanishes, the Bogomol’nyi equation gives rise to
topologically nontrivial solutions for any reasonable one-
vacuum potential U, where the vacuum is chosen to be
U ¼ I. We consider a large class of potentials that depend
on TrU, i.e., on ξ. The behavior of the potential close to the
vacuum, U ∼ ξa, where a > 0, determines the qualitative
type of the soliton. If a ∈ ð0; 6Þ, then the resulting solitons
are compactons, which differ from the vacuum ξ ¼ 0 only
in a finite region of space. For a ≥ 6, we obtain the usual
infinitely extended Skyrmions with exponential or power-
like tails. Obviously, the geometric volume V of compac-
tons is finite, while in the case of usual solitons it takes an
infinite value.
When a nonzero pressure is applied, the solitons are

squeezed and their geometric volume is reduced [43],

VðpÞ ¼ π2jBjg
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ p

p
	
: ð60Þ

For any positive pressure,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ p

p
>

ffiffiffiffi
U

p
, which implies

that VðpÞ < Vðp ¼ 0Þ. In addition, as U þ p > 0, the
volume is always finite if a nonzero pressure is applied,
VðpÞ < ∞. This follows from the fact that the average is an
integral over the three-dimensional unit sphere with a finite
volume. Note that only positive pressure is admissible.
Indeed, for p < 0 the constant-pressure equation does not
allow to approach the vacuum where U ¼ 0. Therefore, any
infinitely extended BPS soliton can be squeezed to a finite
volume by imposing a nonzero (finite) pressure.
When the soliton is compressed, its energy grows as [43]

E60ðpÞ ¼ π2gjBj
�
2U þ pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ p

p
	
: ð61Þ

One can also verify that the geometric volume is the proper
thermodynamical volume satisfying the standard thermo-
dynamical relation

p ¼ −
�∂E60

∂V
�

B
: ð62Þ

C. Dielectric BPS Skyrme model and pressure

Now we turn back to our example (55) and consider the
constant-pressure equation (59),

g20
4r4

η2r
η2

− μ2η2 ¼ p: ð63Þ

Again, p ≥ 0. The corresponding formal solutions read

η ¼
ffiffiffiffi
p

p

μ sinh
ffiffiffi
p

p
μ ð2μr3

3g0
þ z0Þ

; ð64Þ

where z0 obeys

ffiffiffiffi
p

p

μ sinh
ffiffiffi
p

p
μ z0

¼ π

2
: ð65Þ

This guarantees that the topologically nontrivial boundary
conditions ηðr ¼ 0Þ ¼ π=2 and ηðr → ∞Þ ¼ 0 are
satisfied.
Surprisingly, we see that for any finite pressure the

Skyrmions are still infinitely extended. Hence, the addition
of a nonzero pressure does not reduce the geometrical
volume of the soliton. It becomes better localized, but still
extends to spatial infinity. Specifically, the Bogomol’nyi
equation allows to relate the base-space integral to a target-
space integral using the fact that the base-space volume
form can be expressed as the pullback of a target-space
three-form via

dΩM ¼
�

gπ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ p

p dΩΣ

2π2

��
; ð66Þ

where now g is a target-space function. Then, the volume of
the soliton reads

VðpÞ ¼
Z

dΩM ¼ π2jBj
�

gffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ p

p
	
: ð67Þ

This explains the incompressible nature of these solitons
and why they cannot be put on a finite manifold.
In addition, the solutions (64) are in fact formal, infinite-

energy solutions. Indeed, the energy of the solitons can also
be computed as a target-space integral,

Ed
60ðpÞ ¼ π2jBj

�
g
2U þ pffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ p

p
	
: ð68Þ

Now it is clearly seen that at any nonzero pressure
the volume of the soliton and its energy are decided by the
behavior of the coupling function g. If hgi diverges, then the
volume and energy are infinite for any nonzero pressure.
At p ¼ 0, the divergency of hgi in the energy integral can
be softened or even canceled by the potential. This finally

INCOMPRESSIBLE TOPOLOGICAL SOLITONS PHYS. REV. D 102, 105007 (2020)

105007-9



guarantees the existence of the BPS (zero-pressure) solitons
on R3.

VI. SUMMARY AND APPLICATIONS

In the present work, we have identified a new class of
topological solitons, in addition to the usual infinitely
extended solitons and the compactons. They can exist on
a base space of infinite volume, here the Euclidean spaceRn,
where they are infinitely extended. However, in contrast to
the usual solitons and compactons, they cannot be enclosed
in a finite volume. Basically, finite-energy topologically
nontrivial solutions transform into infinite-energy configu-
rations if put on a finite-volume manifold. Therefore, they
may be interpreted as totally incompressible solitons.
A related property, found in the case of models which

correspond to perfect-fluid theories [kinks in (1þ 1)
dimensions and Skyrmions in the dielectric BPS Skyrme
model in (3þ 1) dimensions], is that these incompressible
solitons are resistant to any pressure. In fact, formal
topologically nontrivial solutions with a nonzero pressure
are found but they have infinite energy. This means that it
requires an infinite amount of energy to increase pressure in
such a solitonic matter. Furthermore, solutions with non-
zero pressure always extend to infinity, although they are
better localized than in the zero-pressure case.
These properties, i.e., the nonexistence of finite-volume

and finite-pressure solutions, make such solitons qualita-
tively very distinct from the typical infinitely extended
solitons and compactons, allowing us to define a new third
class of incompressible solitons. It should be emphasized
that the family of incompressible solitons is quite general.
These objects are not confined to one specific field theory.
On the contrary, they exist in various theoretical setups (in
various dimensions) describing different physical situations.
Interestingly, an example of such incompressible solitons

is provided by a family of standard scalar field theories in
(1þ 1) dimensions known as runaway (vacuumless) poten-
tials. This kind of models found some applications in the
context of the so-called quintessence models [44–46] and
spatial and/or time variation of fundamental coupling
constants [24,25]. It would be interesting to identify a
physical imprint of the incompressibility of the topological
defects in these physical models. In any case, our finding
may allow us to look at these models from a different point
of view, providing a new and deeper insight or a reinter-
pretation of previously known results.
A runaway potential has been also considered in a

version of the Abelian Higgs model [47]. One can expect
that the obtained vortices provide another example of
incompressible solitons.

Looking from a wider perspective, incompressible sol-
itons can be physically relevant, as fluids are virtually
incompressible in a first approximation. So, it could be
interesting to apply this class of solutions to understand the
impact of the compressibility on the dynamics of topo-
logical solitons, detecting phenomena which are strongly
affected by a transition from incompressible to compress-
ible matter. To simplify the situation, one should probably
start with incompressible kinks in runaway field theories. In
fact, a kink-antikink scattering in a family of models,
interpolating between a runaway potential V ¼ 1= cosh2 ϕ
and standard two vacuum potentials, has been investigated
[48]. Unfortunately, the paper focused mainly on the
standard two vacua potential, and very few results con-
cerning the runaway case have been reported. We will
address the problem of the interaction of incompressible
kinks in a forthcoming paper.
Further, it is interesting to observe that it is the

degeneracy pressure or exclusion principle pressure that
makes physical liquids and solids quite incompressible
under normal pressures. Hence, it is tempting to consider
the incompressible solitons as a certain limiting case of
systems under degeneracy pressure. The solitons may then
be related to individual fermions in this (incompressible)
limit, or they may describe the full fermion condensate.
This observation can be relevant, e.g., for the description of
atomic nuclei in terms of Skyrmions. Undoubtedly, more
research is needed.
Finally, incompressible solitons are also relevant for

gauge theories. Indeed, in the large-Nc limit the instanton
liquid becomes incompressible [49].
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