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Continuing our work on the nature and existence of fluctuation-dissipation relations (FDR) in linear and
nonlinear open quantum systems [J.-T. Hsiang, B. L. Hu, and S.-Y. Lin, Phys. Rev. D 100, 025019 (2019);
J.-T. Hsiang, B. L. Hu, S.-Y. Lin, and K. Yamamoto, Phys. Lett. B 795, 694 (2019); J.-T. Hsiang and
B. L. Hu, Physics (Utrecht) 1, 430 (2019); J.-T. Hsiang and B. L. Hu, Phys. Rev. D 101, 125003 (2020)],
here we consider such relations when a linear system is in a nonequilibrium steady state (NESS). With the
model of two-oscillators (considered as a short harmonic chain with the two ends) each connected to a
thermal bath of different temperatures we find that when the chain is fully relaxed due to interaction with
the baths, the relation that connects the noise kernel and the imaginary part of the dissipation kernel of the
chain in one bath does not assume the conventional form for the FDR in equilibrium cases. There exists an
additional term we call the “bias current” that depends on the difference of the bath’s initial temperatures
and the interoscillator coupling strength. We further show that this term is related to the steady heat flow
between the two baths when the system is in an NESS. The ability to know the real-time development of the
interheat exchange (between the baths and the end-oscillators) and the intraheat transfer (within the chain)
and their dependence on the parameters in the system offers possibilities for quantifiable control, and in the
design of quantum heat engines, or thermal devices.
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I. INTRODUCTION

In an open quantum system [1] description of particle-
field interactions, the quantum system, represented by a
particle or (the internal degrees of freedom) of an atom/
detector, under the influence of its quantum field environ-
ment, follows a dissipative stochastic dynamics, where the
noise in the environment can be identified and the dis-
sipative dynamics of the open system derived. Of impor-
tance is that the backreaction of the environment on the
system is treated in a self-consistent manner. Taking this
nonequilibrium statistical/stochastic mechanical perspec-
tive [2] has many advantages. For example, it naturally
shows the range of applicability of an effective field theory
(EFT): how effective a theory is measured by the magnitude
of the noise in the environment compared to the system (the
usual division is taking the low energy sector as the system
and the high energy sector as the environment) at the
threshold when the backreaction becomes significant—the
weaker the noise, the more effective the EFT is in offering a
good description of the open system [3]. And, because the
interplay between the system and its field environment is

dynamically tracked throughout its real time evolution (the
imaginary-time formulation customarily used in a finite
temperature field theory [4,5] has no place here as it is
restricted to equilibrium conditions with a well defined
concept of temperature), with backreaction fully accounted,
in the description of the system-environment dynamics. (In
fact, any coarse-graining measure introduced to the envi-
ronment need be spelled out explicitly, and one can see how
different measures give rise to different results [6]). The
fluctuation-dissipation relations (FDR) [7] are at the heart
of open quantum systems precisely because they are the
exhibitions and guardians of this self-consistency.
For this reason fluctuation-dissipation relations, though

rooted in statistical mechanics [4,8,9], has wide-ranging
implications and applications. For example, Sciama [10]
treated black holes with Hawking radiation [11] as a
quantum dissipative system, and, with Candelas, proposed
to view its interaction with a quantum field in the light of an
FDR [12] (see also [13]). Hu, Verdaguer and their co-
authors [14–16] showed how the backreaction of particle
creation on the geometrodynamics of the early universe can
be phrased in terms of an FDR.
This paper reports on the nature of an FDR for quantum

systems in nonequilibrium steady state (NESS) and dem-
onstrates its existence from the real-time nonequilibrium
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dynamics of a model system, that of two coupled oscillators
(considered as a short harmonic chain with the two ends)
each connected to a thermal bath of different temperatures.
Quantum energy transport in this setup has been inves-
tigated by us earlier [17,18] using an open system con-
ceptual framework and the influence functional formalism
[19,20]. For classical many-body systems the existence and
uniqueness of the NESS is a fundamental subject and a
main theme of research by mathematical physicists in
statistical mechanics for decades. For Gaussian systems
(such as a chain of harmonic oscillators with two heat baths
at the two ends of the chain) [21] and anharmonic
oscillators under general conditions [22] there are definitive
answers in the form of proven theorems. Answering this
question for quantum many-body systems is not so
straightforward.

A. N atoms/detectors in a common field environment

Before describing our work on the NESS where a
system interacts with two environments it is useful to
review the key issues of the FDR in the configuration of one
or N oscillators in a common field environment. When the
(near-)equilibrium condition is lifted, the fully nonequili-
brium dynamics is very rich. Our approach involves
calculating the evolution of the system in real time, tracking
its approach to equilibrium, then from the rate of energy
transfer from different sources between the system and its
field environment, show the existence of a steady state at
late times and identify an FDR at work. This method has
been applied to four different cases before, (1) a static atom/
detector in a quantum field bath [23] where the role of
quantum radiation and quantum dissipation are shown in
the power balance embodied in the FDR. (2) For N static
atoms/detectors in a quantum field bath [24], the existence
of an FDR which assists in evaluating the system’s internal
energy, heat capacity and ascertaining the validity of the
third law approaching absolute zero. (3) N uniformly
accelerated atoms in a quantum field [25,26], showing
the existence of a set of correlation-propagation relations
(CPR) on the same footing as the FDR. (4) An anharmonic
oscillator in one quantum field heat bath [27] showing the
existence of a nonperturbative FDR for nonlinear open
quantum systems that can approach a stable equilibrium.
Two sets of issues surrounding the FDR derived here in

a nonequilibrium (NEq) dynamics setting will be discussed
in the last section regarding (a) the differences from the
more commonly discussed FDRs based on linear res-
ponse theory (LRT) [23], and (b) the differences of our
fluctuation-dissipation relation with the well-known fluc-
tuation theorems [28–31], in particular, fluctuation theo-
rems in the system under an NESS [32–36].

B. Main results of this work: FDR in NESS

In an earlier paper [17] we have explored quantum
transport in the same setup but short of showing the FDR

explicitly. We do it here, with new understandings in the
interplay of the inter- and intracomponents of energy
transport in open quantum systems in an NESS. From
the nonequilibrium dynamics of all the constituents in the
system including those interacting with the two baths, we
find that when the chain is fully relaxed, the relation that
connects the noise kernel and the imaginary part of the
dissipation kernel of the chain in one bath does not assume
the conventional form of the FDR for the system in a single
bath after equilibration. There exists an additional term, a
“bias current,” that depends on the difference of the bath’s
initial temperatures and the interoscillator coupling
strength. We further show that this bias current is related
to the steady heat flow between the baths in the non-
equilibrium steady state. Thus the ability to know the real
time development of the interheat exchange (between
the baths and the end-oscillators) and the intraheat
transfer (within the chain) and their dependence on the
parameters in the system offers possibilities for quantifiable
control and in the design of quantum heat engines or
thermal devices.
This paper is organized as follows: Sec. II uses a simple

example of one oscillator coupled with a thermal field bath
to illustrate how an FDR arises through relaxation from a
nonequilibrium evolution. Section III considers two
coupled oscillators representing a harmonic chain, each
interacting with its own bath at two different initial
temperatures. While results from the previous section
can describe the activities of the two end oscillators, the
situation changes when the two baths of different temper-
atures are connected through a chain. When the dynamics
of the harmonic chain is fully relaxed, we find a relation
that connects the noise kernel and the imaginary part of the
dissipation kernel. The difference from the FDR for one
oscillator with one bath is the focus of our attention in
deriving an FDR for a system in an NESS and under-
standing its physical meaning. In Sec. IV, we give a
summary comparison between FDRs derived in the NEq
dynamics context and the more commonly known linear
response theory (LRT) context, we mention the difference
between FDRs and the fluctuation theorems, and conclude
with some general remarks on the FDR in the NESS.

II. EQUILIBRATION AND FDRAT THE THERMAL
BATH JUNCTIONS

We divide our analysis into two parts: (i) dynamics of
the end oscillator in terms of heat exchange with its private
bath at their bath-oscillator junction, when it is effectively
disjoint from the rest of the chain [24]. (ii) dynamics of the
end oscillator when it is connected to the chain and there is
nonvanishing thermal flow from the high-temperature bath
to the low-temperature bath [17]. We shall discuss (i) in this
section and (ii) in the next section.
To see what happens at the bath-oscillator junction and to

gain some insight into the contents and the meanings of the
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fluctuation-dissipation relation (FDR) we find it advanta-
geous to take a quantum open systems viewpoint and derive
the nonequilibrium dynamics of the system. What follows
is a short description of this endeavor, with physical
explanations of what enters into this relation. A more
general treatment is given in [24].
Consider a system of just one harmonic oscillator

interacting with a thermal quantum field bath. Let χ̂ denote
the displacement operator of this oscillator which could be
used to represent the internal degrees of freedom (idf) of an
atom (a harmonic atom) or a detector (an Unruh-DeWitt
“detector”—a common terminology used in the quantum
field in curved spacetime and relativistic quantum infor-
mation communities.) We shall use these two terms atom
and detector interchangeably while reserving “oscillator”
for the idf. The equations of motion of χ̂ðtÞ and the bath
field operator ϕ̂ðt;xÞ are given respectively by

̈χ̂ðtÞ þ ω2
Bχ̂ðtÞ ¼

e
m
ϕ̂ðt; zÞ; ð2:1Þ

∂2
t ϕ̂ðt;xÞ − ∇2ϕ̂ðt;xÞ ¼ eχ̂ðtÞδð3Þðx − zÞ; ð2:2Þ

where the oscillator with mass m and bare natural fre-
quency ωB is located at a fixed position z. The coupling
strength e between the oscillator and the bath field is not
restricted to a small value. The Cartesian coordinate of the
Minkowski spacetime is generically denoted by xμ ¼ ðt;xÞ.
The formal solution to (2.2),

ϕ̂ðt;xÞ ¼ ϕ̂hðt;xÞ þ e
Z

d4x0GðϕÞ
R;0ðx; x0Þχ̂ðt0Þδð3Þðx − zÞ;

ð2:3Þ

when substituted into (2.1), gives a reduced description of
the oscillator, in the form of a quantum Langevin equation

̈̂χðtÞþω2
Bχ̂ðtÞ¼

e
m
ϕ̂hðt;zÞþ

e2

m

Z
d4x0GðϕÞ

R;0ðt;z; t0;zÞχ̂ðt0Þ;

ð2:4Þ

where x ¼ ðt;xÞ, x0 ¼ ðt0;x0Þ andGðϕÞ
R;0ðx; x0Þ is the retarded

Green’s function of the free field, defined by

GðϕÞ
R;0ðx; x0Þ ¼ iθðt − t0Þ½ϕ̂hðxÞ; ϕ̂hðx0Þ�; ð2:5Þ

which by construction is independent of the field state and
is a c-number due to the commutation relations of the
creation and annihilation operators that expand the field
operator. Equation (2.3) then tells that a radiation field is
emitted from the atom at the position z at an earlier time t0
as a consequence of the interaction with the atom, and is
superposed onto the original free field, described by the
homogeneous solution ϕ̂hðt;xÞ of (2.2).

The first term on the right hand side of (2.4) is the
stochastic forcing term associated with the quantum fluc-
tuations of the free field. This ubiquitous “noise force”
imparts a stochastic component into the oscillator’s motion.
The second term involves the coincident limit of the
Green’s function of the massless field and thus needs
regularization; the cutoff-dependent part will regularize the
bare frequency to its physical value and the remaining finite
part describes the reaction to the radiation field which gives
rise to a frictional “self-force.” Thus the reduced equation
of motion (2.4) becomes

̈χ̂ðtÞ þ 2γ _̂χðtÞ þ ω2
Rχ̂ðtÞ ¼

e
m
ϕ̂hðt; zÞ ð2:6Þ

where ωR represents the physical frequency and γ ¼
e2=8πm is the damping constant. The second term on
the left-hand side describes the self-force. The noise force
and the self-force compete with and balance off each other:
on the one hand, the noise force imparts energy of the field
into the oscillator while the self-force drains the oscillator’s
energy back to the field environment. They will account for
the energy exchange between the oscillator and its envi-
ronment. In electromagnetism it is the atom’s idf respond-
ing to the quantum fluctuations of the free field in the form
of emitted radiation and its reaction force; in thermody-
namics, it is the harmonic oscillator in the form of heat
transfer and back-action. It has been shown [24] that when
the dynamics of the idf of the detector is fully relaxed from
nonequilibrium evolution, there is a balance associated
with these two forces, ξ denoting the noise from the
fluctuations of the quantum field and γ denoting the
damping of the reactive self-force. That is, there is no
net energy flow in either direction, or, the total power in the
system-environment exchange vanishes.

lim
t≫γ−1

PHðtÞ ¼ lim
t≫γ−1

½PξðtÞ þ PγðtÞ� ¼ 0; ð2:7Þ

when the evolution time t is greater than the relaxation time
γ−1. In (2.7), we have defined the powers delivered by the
noise force and the damping force respectively by

PξðtÞ ¼
1

2
hfeϕ̂hðt;xÞ; _̂χðtÞgi;

PγðtÞ ¼ −
1

2
hf2mγ _̂χðtÞ; _̂χðtÞgi; ð2:8Þ

which is the power expression in Newtonian mechanics
arranged in a symmetric operator ordering. The expectation
values in (2.8) are taken with respect to the initial state of
the scalar field, since we are concerned only with late-time
dynamics. The contribution related to the initial configu-
ration of the oscillator is discarded in this context because it
will become exponentially small at times greater than the
relaxation time scale γ−1.
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What does this equilibration condition at late times say
about the relations between the Green’s functions in the
field and the system? In terms of the retarded Green’s
functions GðχÞ

R , the Hadamard functions GðχÞ
H of the inter-

acting oscillator, described by (2.6), and the counterparts

GðϕÞ
R;0, G

ðϕÞ
H;β of the free quantum field in its initial thermal

state, the net energy flow PHðtÞ can be expressed as [24,27]

PHðtÞ ¼ e2
Z

t

0

ds

�
d
dt

GðχÞ
R ðt; sÞGðϕÞ

H;βðs; tÞ

− ΓðϕÞ
R;0ðt − sÞ d2

dsdt
GðχÞ

H ðs; tÞ
�
; ð2:9Þ

where

GðϕÞ
R;0ðt; z; s; zÞ≡ GðϕÞ

R;0ðt − sÞ ¼ d
ds

ΓðϕÞ
R;0ðt − sÞ: ð2:10Þ

In the limit t → ∞, it can be shown that [24,27]

lim
t→∞

PHðtÞ ¼
Z

∞

−∞

dκ
2π

κ

�
coth

βκ

2
Im G̃ðχÞ

R ðκÞ − G̃ðχÞ
H ðκÞ

�

× Im G̃ðϕÞ
R;0ðκÞ: ð2:11Þ

We have used the FDR of the free scalar field associated
with its initial thermal state at temperature β−1

G̃ðϕÞ
H;βðκÞ ¼ coth

βκ

2
Im G̃ðϕÞ

R;0ðκÞ: ð2:12Þ

in deriving (2.11), and defined the Fourier transformation
of a function fðtÞ by

f̃ðκÞ ¼
Z

∞

−∞
dtfðtÞeþiκt: ð2:13Þ

The balance of the energy flow (2.7) at late times then
implies an FDR for the interacting harmonic oscillator

G̃ðχÞ
H ðκÞ ¼ coth

βκ

2
Im G̃ðχÞ

R ðκÞ: ð2:14Þ

The derivation clearly indicates the connection between
equilibration, energy balance, and the FDR. Note that in the
above discussion, the state of the oscillator in general can be
quite different from the initial state, and the final equilibrium
state. Here lies one of many important differences between
our NEq dynamics approach and the linear response theory.
In addition, Eqs. (2.6) and (2.7) imply [24]

d
dt

�
m
2
h _̂χ2ðtÞi þmωR

2
hχ̂2ðtÞi

�
¼ PHðtÞ → 0 ð2:15Þ

for t ≫ γ−1. This result is stronger thanwhat (2.6) tells at late
times. The latter, that is, energy conservation, only gives

d
dt

�
m
2
h _̂χ2ðtÞi þmωR

2
hχ̂2ðtÞi

�
¼ PHðtÞ: ð2:16Þ

Furthermore, from (2.15) we see that after relaxation, the
oscillator will act like a free harmonic oscillator with the
renormalized frequency ωR, following a reversible dynam-
ics, and obeying the FDR (2.14). However, note that the
reduced density matrix of this relaxed oscillator does not
take on theGibbs form. That is, it is not a thermal state unless
the oscillator-field coupling is vanishingly small. This latter
condition is a tacit yet pivotal assumption in the under-
pinnings of equilibrium statistical thermodynamics, man-
ifested here as a precondition for the establishment of the
canonical ensemble.

III. BIAS CURRENT AND FDR IN
SYSTEM UNDER NESS

Now we take what we have learned between one
oscillator and its bath as happening at both ends of a
harmonic chain, our system, and focus on the dynamics of
the chain of quantum coupled oscillators interacting with
two baths at the two ends. If this system can reach a steady
state we shall be able to determine whether an FDR exists
and the role it plays in the NESS. We consider the case of
two coupled oscillators for simplicity, without sacrifice of
the physics we seek after—extension to an N-oscillator
chain is straightforward [17]. Each oscillator has its own
private bath, modeled by a massless scalar field bilinearly
coupled to it with arbitrary strength. Initially both baths are
uncorrelated and prepared in their individual thermal states
at different initial temperatures. The coupling between
these two oscillators will bring together the influence of
each oscillator’s private bath. It is the linkage between what
we learned earlier and what we are to explore presently.
As a transition to our discussion on the existence of the

general FDR in an NESS, let us take a look at two special
cases: (1) Zero inter-oscillator coupling. This severs the two
oscillators and what each oscillator does with its own bath
is ab initio independent of the other. Conclusions from the
previous section will apply to both: the two end oscillators
will enjoy an FDR of different initial bath temperatures.
(2) When both private baths have the same temperature.
With zero temperature gradient there will be no thermal
energy flux through the chain between the two baths. Thus,
at least from the viewpoint of the averaged energy flow,
each oscillator acts independently and does not affect one
another. Each has its own FDR with the same temperature
parameter. This still holds even though each oscillator may
have a different coupling strength with its private bath,
because for bilinear oscillator-bath coupling the coupling
strength does not enter in the FDR. (Note the vanishing of
such a thermal flow on average does not necessarily imply
there is no fluctuations of energy flow in this case.) What
makes this possible is because the whole system is in
equilibrium. Note, as we remarked earlier, only in the
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vanishing oscillator-bath coupling limit will this equilib-
rium distribution be of a Gibbsian form (See, e.g., [37]).
Under this condition the oscillators are effectively set “free”
and thus behave as if they are independent of each other.
Let us now consider the situation when the two initial

bath temperatures are different, and the interoscillator
coupling is nonvanishing. The moment we make the two
temperatures different heat will begin to flow from the high
temperature bath through the chain unto the low temper-
ature bath [17]. In so doing the equilibrium condition is
nullified, and the FDR (at least in the form discussed in the
previous section) for each of the end oscillators with its
own bath, which is predicated upon the existence of an
equilibrium condition, no longer exists. This writes off the
activities at the two ends and our attention need be shifted
to the heat flow in the chain between the two ends. Thus we
can reason that if there exists an FDR for the system it must
be connected to the behavior of this heat flow, which we
call the “bias current.”We shall show that indeed this is the
case: if an NESS exists at late times for the system, the FDR
is embedded in this bias current. The existence of an NESS
for this system at late times was shown in [17]. Here we
show the existence of an FDR for this system in an NESS.
The equations of motion for the two oscillators in this

context are

̈χ̂1ðtÞ þ ω2
1Bχ̂1ðtÞ −

e21
m

Z
t

0

dsGðϕ1Þ
R;0 ðt − sÞχ̂1ðsÞ þ σχ̂2ðtÞ

¼ e1
m
ϕ̂1hðtÞ; ð3:1Þ

̈χ̂2ðtÞ þ ω2
2Bχ̂2ðtÞ −

e22
m

Z
t

0

dsGðϕ2Þ
R;0 ðt − sÞχ̂2ðsÞ þ σχ̂1ðtÞ

¼ e2
m
ϕ̂2hðtÞ; ð3:2Þ

where σ is the strength of the interoscillator coupling. The
operator χ̂i represents the displacement of the ith oscillator,
whose bare oscillating frequency is ωiB, and ei is the
coupling strength with its private bath field ϕ̂i. We assume
that both oscillators have the same mass m. The interpre-
tation of these equations of motion is similar to that
associated with (2.4).
It is convenient to write them into a compact matrix form

ẌðtÞ þΩ2
B ·XðtÞ − 1

m

Z
t

0

dsC ·GðϕÞ
R;0ðt − sÞ ·C ·XðsÞ

¼ 1

m
C ·ΦhðtÞ; ð3:3Þ

with

XðtÞ ¼
�
χ̂1ðtÞ
χ̂2ðtÞ

�
; ΦðtÞ ¼

�
ϕ̂1ðtÞ
ϕ̂2ðtÞ

�
;

C ¼
�
e1 0

0 e2

�
; Ω2

B ¼
�
ω2
1B σ

σ ω2
2B

�
;

GðϕÞ
R ðt − sÞ ¼

 
Gðϕ1Þ

R;0 ðt − sÞ 0

0 Gðϕ2Þ
R;0 ðt − sÞ

!
;

where the field operators are evaluated at the fixed positions
of the oscillators, so the spatial coordinates are suppressed.
In general, given an arbitrary initial configurations of the
oscillators, they will undergo nonequilibrium evolution
after the couplings with their private baths are switched
on. It has been shown [17] that such an evolution will
asymptotically settle down to a steady state at late times.
This is different from other approaches, which prestipulat-
ing existence of an steady state. So here we will focus on
the late-time dynamics of (3.3).
The existence of the late-time steady state allows us

to use the Fourier transformation to rewrite the integro-
differential equations into the algebraic equations [17].
Thus the Fourier transformation of (3.3) gives�
−κ2IþΩ2

B −
1

m
C · G̃ðϕÞ

R;0ðκÞ ·C
�
· X̃ðκÞ ¼ 1

m
C · Φ̃hðκÞ;

ð3:4Þ

and Eq. (3.4) then gives X̃ðκÞ ¼ G̃ðχÞ
R ðκÞ · C · Φ̃hðκÞ, in

which the retarded Green’s function matrix G̃ðχÞ
R ðκÞ of the

interacting oscillator in the frequency space is given by

G̃ðχÞ
R ðκÞ ¼ 1

m

�
−κ2IþΩ2

B −
1

m
C · G̃ðϕÞ

R;0ðκÞ ·C
�
−1
: ð3:5Þ

The complete solution to the reduced equation of motion
(3.3) is then

XðtÞ ¼ XhðtÞ þ
Z

t

0

dκ
2π

G̃ðχÞ
R ðκÞ · C · Φ̃hðκÞe−iκt; ð3:6Þ

whereXhðtÞ is the corresponding homogeneous solution to
(3.3), depending on the initial conditions, but its form is
irrelevant in the following discussion because it will
decay with time exponentially fast. Equation (3.6) will
allow us to construct the various two-point Green’s func-
tions of the interacting oscillators. For example, the
Schwinger two-point functions associated with the oscil-
lators can be found by

GðχÞ
> ðt; t0Þ ¼ ihXðtÞXTðt0Þi: ð3:7Þ

In general, following similar arguments presented in the
previous section, the oscillator chain connected to the two
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thermal baths will undergo nonequilibrium evolution with
time. Hence the associated two-point functions will not be
stationary in time. In other words, they will not be functions
of the difference of two time arguments,

GðχÞ
> ðt; t0Þ ≠ GðχÞ

> ðt − t0Þ: ð3:8Þ

Nonetheless, it has been shown in [17,24] that when both t
and t0 are far larger than the relaxation time, the inverse of
the damping constants, the nonstationary components of
the two-point functions of the oscillators are exponentially
suppressed. That is, when the oscillator chain evolves to the
steady state, the Schwinger function associated with the
oscillator chain in (3.7) will reduce to a stationary form

GðχÞ
> ðt; t0Þ ¼GðχÞ

> ðt− t0Þ

¼
Z

∞

−∞

dκ
2π

G̃ðχÞ
R ðκÞ ·C · G̃ðϕÞ

>;0ðκÞ

·C · G̃ðχÞT
R ð−κÞe−iκðt−t0Þ; ð3:9Þ

at late times, so that its Fourier transform is given by

G̃ðχÞ
> ðκÞ ¼ G̃ðχÞ

R ðκÞ ·C · G̃ðϕÞ
>;0ðκÞ · C · G̃ðχÞT

R ð−κÞ; ð3:10Þ

where G̃ðϕÞ
>;0ðκÞ is the Fourier transform of the Schwinger

function of the free quantum field Φ̂h. Note that both

G̃ðχÞ
R ðκÞ and G̃ðχÞ

> ðκÞ of the interacting oscillators are
symmetric matrices.
Now we attempt to construct an FDR for the NESS

configuration. Observing from (3.5), we find

G̃ðχÞ
R ðκÞ−G̃ðχÞ

R ð−κÞ
¼ G̃ðχÞ

R ðκÞ ·C · ½G̃ðϕÞ
R;0ðκÞ−G̃ðϕÞ

R;0ð−κÞ� ·C ·G̃ðχÞ
R ð−κÞ; ð3:11Þ

by the operator identity

A−1 − B−1 ¼ −A−1ðA − BÞB−1; ð3:12Þ

for any two invertible operators A, B. Thus we obtain

ImG̃ðχÞ
R ðκÞ¼G̃ðχÞ

R ðκÞ ·C ·ImG̃ðϕÞ
R;0ðκÞ ·C ·G̃ðχÞ

R ð−κÞ: ð3:13Þ

The noise kernel can be identified by

G̃ðχÞ
H ðκÞ ¼ −

i
2
½G̃ðχÞ

> ðκÞ þ G̃ðχÞT
> ð−κÞ�

¼ G̃ðχÞ
R ðκÞ ·C · G̃ðϕÞ

H;0ðκÞ · C · G̃ðχÞ†
R ðκÞ; ð3:14Þ

at late times, because the Hadamard function GðχÞ
H ðt; t0Þ can

be related to the Schwinger function GðχÞ
> ðt; t0Þ by

GðχÞ
H ðt; t0Þ ¼ −

i
2
½GðχÞ

> ðt; t0Þ þGðχÞT
> ðt0; tÞ�

¼ −
i
2

Z
∞

−∞

dκ
2π

½G̃ðχÞ
R ðκÞ ·C · G̃ðϕÞ

>;0ðκÞ · C · G̃ðχÞ†
R ðκÞ

þ G̃ðχÞ
R ðκÞ ·C · G̃ðϕÞ†

>;0 ðκÞ ·C · G̃ðχÞ†
R ðκÞ�e−iκðt−t0Þ:

ð3:15Þ

The second equality holds only at late times. Note that
in the current setup, the Green’s function matrix of the
free field is diagonal, such that GðϕÞðt; t0Þ ¼ GðϕÞTðt; t0Þ
and G̃ðϕÞðκÞ ¼ G̃ðϕÞTðκÞ.
Comparing (3.14) with (3.13), and an FDR for the

oscillator seems to appear. However, we notice that for
the free bath fields initially in their individual thermal states

at different temperatures, the noise kernel G̃ðϕÞ
H;0 and the

imaginary part of the dissipation kernel G̃ðϕÞ
R;0 obey a matrix

FDR rather than a simple relation like (2.12),

G̃ðϕÞ
H;0ðκÞ ¼ F̃ðκÞ · Im G̃ðϕÞ

R;0ðκÞ ¼ f̃ðκÞ · Im G̃ðϕÞ
R;0ðκÞ · f̃ðκÞ;

ð3:16Þ

with

F̃ðκÞ ¼ f̃2ðκÞ ¼
�
coth β1κ

2
0

0 coth β2κ
2

�
; ð3:17Þ

and β−1i the initial inverse temperature of the private bath of
oscillator i. That is, the kernel functions in the FDR (3.16)
of the free field in the NESS configuration are not related
by a scalar factor. Instead, they are connected by a diagonal
matrix F̃ðκÞ. This will be the obstacle of writing an FDR for
the oscillators into the conventional form in the NESS
setting.
Let us write (3.14) in a form as close as possible to the

conventional FDR like (3.16). From (3.15), we have

G̃ðχÞ
H ðκÞ ¼ G̃ðχÞ

R ðκÞ ·C · F̃ðκÞ · Im G̃ðϕÞ
R;0ðκÞ · C · G̃ðχÞ†

R ðκÞ
¼ F̃ðκÞ · Im G̃ðχÞ

R ðκÞ þ ½G̃ðχÞ
R ðκÞ;

F̃ðκÞ� · G̃ðχÞ−1
R ðκÞ · Im G̃ðχÞ

R ðκÞ; ð3:18Þ

where we note that the matrix C is diagonal and

½G̃ðχÞ
R ðκÞ; F̃ðκÞ� ¼ −

�
coth

β1κ

2
− coth

β2κ

2

�
½G̃ðχÞ

R ðκÞ�12J;

ð3:19Þ

with
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J ¼
�

0 þ1

−1 0

�
; J† ¼ J−1 ¼ −J; ð3:20Þ

and

G̃ðχÞ−1
R ðκÞ ¼ 1

det G̃ðχÞ
R ðκÞ

J−1 · G̃ðχÞ
R ðκÞ · J; ð3:21Þ

det G̃ðχÞ
R ðκÞ ¼ G̃ðχÞ

R ðκÞ · J−1 · G̃ðχÞ
R ðκÞ · J ð3:22Þ

Thus in (3.18), the relation connecting the noise kernel and
the dissipation kernel does not satisfy the traditional form
of the FDR or as (3.16). There is an additional term related
to the temperature difference between the two thermal
baths, which seems to account for the heat flow between the
baths. In addition, we observe that this term is proportional
to the 1-2 component of the retarded Green’s function

matrix G̃ðχÞ
R ðκÞ of the oscillators, that is, linking oscillator 1

and 2. The presence of the matrix J, from hindsight, reflects
the asymmetry between oscillator 1 and oscillator 2. That
is, if the initial temperature difference between the two
private baths is fixed, then the heat current flows from bath
1 to oscillator 1 will be in the opposite direction to the heat
current from bath 2 to oscillator 2. Finally, we observe that

the commutator ½G̃ðχÞ
R ðκÞ; F̃ðκÞ� in (3.19) will vanish when

either both private baths have the same initial temperature,

or the retarded Green’s function matrix G̃ðχÞ
R ðκÞ is diagonal.

Both correspond to the trivial cases that there is no thermal
energy flow between the two baths whence (3.18) reduces
to the conventional FDRs in a matrix form, as discussed in
the beginning of this section.
What is the physical meaning of this additional term in

(3.18) and what is its connection with the heat current
through the oscillator chain in the NESS? We will examine
the energy flows between bath 1 and oscillator 1.
The power, defined in the same fashion as in

(2.8), delivered by the quantum thermal fluctuations of
private bath 1, is given by the 1–1 component of the power
matrix [17]

PξðtÞ ¼ RehC ·ΦhðtÞ · _XTðtÞi

¼ Re
Z

t

0

dsC · hΦhðtÞ ·ΦT
hðsÞi ·C ·

d
dt

GðχÞT
R ðt − sÞ

¼
Z

t

0

dsC ·GðϕÞ
H;0ðt; sÞ · C ·

d
dt

GðχÞT
R ðt − sÞ: ð3:23Þ

In the late-time limit t → ∞, we obtain [17]

Pξð∞Þ ¼
Z

∞

−∞

dκ
2π

iκC · G̃ðϕÞ
H;0ðκÞ ·C · G̃ðχÞ†

R ðκÞ: ð3:24Þ

The corresponding power delivered by the nonlocal term in
the equation of motion (3.3) is

PγðtÞ ¼ Re
Z

t

0

dsC ·GðϕÞ
R;0ðt − sÞ ·C · hXðsÞ · _XTðtÞi

¼
Z

t

0

dsC ·GðϕÞ
R;0ðt − sÞ ·C ·

d
dt

GðχÞ
H ðt; sÞ: ð3:25Þ

In the late time limit, we find

Pγð∞Þ ¼
Z

∞

−∞

dκ
2π

iκC · G̃ðϕÞ
R;0ðκÞ ·C · G̃ðχÞ

H ðκÞ: ð3:26Þ

Note that the component in the nonlocal term that account
for the frequency renormalization of the oscillators will not
contribute to Pγ.
The sum of Pξð∞Þ and Pγð∞Þ, in particular its diagonal

elements, will account for the steady flow of thermal energy
between each end-oscillator and its private bath when the
dynamics of the oscillator chain reaches an NESS. It is
given by the matrix expression

Pξð∞ÞþPγð∞Þ

¼
Z

∞

−∞

dκ
2π

iκ½C · G̃ðϕÞ
H;0ðκÞ ·C · G̃ðχÞ†

R ðκÞ

þC · G̃ðϕÞ
R;0ðκÞ ·C · G̃ðχÞ

H ðκÞ�

¼
Z

∞

−∞

dκ
2π

κC · ImG̃ðϕÞ
R;0ðκÞ ·C · ½F̃ðκÞ · ImG̃ðχÞ

R ðκÞ− G̃ðχÞ
H ðκÞ�:

ð3:27Þ

From (3.18), we conclude that since the conventional
equilibrium FDR between bath 1 and oscillator 1 is not
satisfied, the net rate of energy exchange between them will
not vanish at late times if the initial temperatures of the two
private baths are different. In other words, if there is no
initial temperature difference, then there is no thermal
current through the oscillator chain no matter how we
choose the parameters like ei, ωi and σ. More importantly,
we see the thermal current in the NESS is indeed related to
the surplus term in (3.18). To be more precise, the
expressions inside the square brackets in (3.27) give the
additional term on the right-hand side of (3.18) that
prevents one from writing (3.18) into a conventional form
of the FDR for an interacting oscillator. We note that it is
the difference in the initial temperatures of two uncorre-
lated private baths that matters. The dependence of the
system’s functions on the initial temperature of the bath
field it interacts with is a feature of nonequilibrium
dynamics. Since the interaction between the oscillator
and its bath is not necessarily weak, each private bath will
in general evolve out of its initial thermal state and settle
down to a final state. Although this final state barely
deviates from its initial thermal state due to the large
contrast between the sizes of the phase spaces of the bath
field and the oscillator chain, conceptually, it will be
nonthermal. This deviation will become more significant
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when the phase space size of the bath gets close to that of
the oscillator chain.
Finally, compared with (2.15), it has been shown [17]

that the time rate of the change of the internal energy of the
end oscillator is given by

d
dt

�
m
2
h _̂χ21ðtÞi þ

mωR

2
hχ̂21ðtÞi

�
¼ PξðtÞ þ PγðtÞ þ P21ðtÞ;

ð3:28Þ

where P21ðtÞ ¼ − mσ
2
hfχ̂2ðtÞ; _̂χðtÞgi is the average power

delivered by oscillator 2 to oscillator 1 via the inter-
oscillator coupling σ. When the oscillator chain reaches
the steady state, the net thermal current passing through
oscillator 1 vanishes, that is,

Pξð∞Þ þ Pγð∞Þ þ P21ð∞Þ ¼ 0

⇔ −P21ð∞Þ ¼ Pξð∞Þ þ Pγð∞Þ: ð3:29Þ

In particular, the latter tells that there is steady energy
current flowing from oscillator 2 to oscillator 1, and in turn
to bath 1, if the initial temperature of bath 2 is higher than
that of bath 1. It then implies that the time rate of change in
the internal energy of the end oscillator will vanish when its
dynamics is relaxed to the steady state.

d
dt

�
m
2
h _̂χ21ð∞Þi þmωR

2
hχ̂21ð∞Þi

�
¼ 0: ð3:30Þ

It is also interesting to note that in the steady state,

P21ð∞Þ ¼ −P12ð∞Þ; ð3:31Þ

which means that the thermal current from oscillator 2 to
oscillator 1 will have the same magnitude as the thermal
current from oscillator 1 to 2, but is opposite in direction.
Furthermore it allows us to extend the time rate expression
of the internal energy to incorporate both oscillators and
their mutual interaction, such that

d
dt

��X2
i¼1

m
2
h _̂χ2i ð∞ÞiþmωR

2
hχ̂2i ð∞Þi

�

þmσhχ̂1ð∞Þχ̂2ð∞Þi
�
¼ 0; ð3:32Þ

in the steady state. For more details, please refer
to Ref. [17].

IV. DISCUSSIONS

To appreciate the NEq dynamics approach to the FDR
used here it is perhaps helpful to highlight the key
differences from the commonly known FDR derived in
the linear response context. We can think in terms of the

simpler case of a quantum system in a single thermal bath
for this purpose.

A. Differences between LRT and NEq formulations

Linear response theory (LRT) considers the situation
when (i) the system of interest is prepared in a thermal state
and remains in thermal equilibrium with the thermal bath;
(ii) the system is subjected to a weak external disturbance
and then its responses are registered. Because of the weak
coupling with the bath and small deviations from the
equilibrium state, the FDR in LRT is formulated in a
perturbative sense. Recent works on quantum response
theory approaches to the NESS include [38–40] and
references therein.
By comparison, in the nonequilibrium (NEq) formu-

lation, (a) the system can start in any state. Once the initial
state of the system and the properties of the bath are given,
their interaction alone determines the entire evolution
history described by the reduced dynamics of the system
coarse-grained over the environmental influences. (b) In the
NEq context, the system and its environment can be
strongly coupled while dynamically evolving, but the
existence of an equilibrium state is not a priori known
or given [17,24]. One needs to first determine if the system
comes to equilibration with its environment, a precondition
for an FDR to exist for that equilibrium state.
Therefore the FDR in a NEq context is an emergent

phenomenon depending on many factors which enter into
the nonequilibrium dynamics of the open system. As such it
is more complex as it involves dynamical relaxation of the
system into equilibrium, and the existence of an FDR has a
dynamical significance since it ensures the balance of the
energy flow between the reduced system and the environ-
ment. A more detailed comparison between the LRT and
the NEq approaches—their assumptions and their conse-
quences—can be found in Sec. 3 of [23].

B. FDR as a categorical relation. FDR in NESS

The fluctuation-dissipation relation may be considered
as a categorical relation for any open system which can
settle into a stable equilibrium state, in the sense that it is
impervious to the details of the system such as the coupling
constants. Upon interacting with a thermal bath, a (linear)
open system will undergo nonequilibrium evolution from
an arbitrary initial state because its initial state may not be
part of the global thermal state. If the system equilibrates,
we can identify an FDR for the system in this final
equilibrium state, in which the energy exchange between
the system and the bath comes into balance. This relaxation
process does not depend strongly on the system’s initial
state, it can be arbitrary, even far from the final equilibrium
state. And the system-bath interaction is not restricted to be
weak. The FDR in this context is beyond the realm of linear
response theory although it has the same familiar form [23].
The difference is, the proportionality factor that equates the
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noise kernel and the imaginary part of the dissipation kernel
of the system depends on the initial temperature of the bath,
not on the temperature of the system in the final equilibrium
state because the latter cannot be universally introduced for
a finite system-bath coupling [25,41].
When the system is placed between two thermal baths

of different initial temperatures, it also undergoes non-
equilibrium evolution [17]. There will be a steady heat
flow through the system from one thermal bath to the
other. We ask the questions (a) whether the system will
relax to a steady state, and (b) if it does, is there an
FDR for this system in an NESS? The answers from our
present study for this linear model are both affirmative.
Comparison to a system interacting with one bath is
instructive: For the system with two baths in an NESS, the
relation between the noise and dissipation kernels no
longer takes a simple form as in the equilibrium case. An
additional term emerges depending on the difference of
the initial temperatures of the bath. Its physical meaning
can be identified in the expression for the thermal energy
flow between the baths in the steady state. Since it is the
sole expression in the thermal current that depends on the
temperature difference and the coupling strengths of
the constituents of the system, it will determine the
magnitude of the thermal flow in the nonequilibrium
steady state. Knowing the details of what control this heat
flow, as our present model study shows, can guide us in
the design, and enable us to gain quantitative control, of
thermal devices operating in an NESS.

To close, it is perhaps also helpful to mention the
differences between the FDR studied here and the well-
known fluctuation theorems.

C. Difference from NEq fluctuation theorem contexts

A major advancement in NEq sciences occurred in the
1990s stemming from the formulation of the fluctuation
theorems, first in the Evans-Searle (ES) [28] and Gallavotti-
Cohen (GC) [29] veins, and then in the Jarzynski-Crooks
(JC) [30,31] work relations. The set up in the former, of the
ES-GC veins, is also for an NESS, but the emphasis is in
large deviations in the stochastic dynamics and mostly for
classical systems. Whereas in the JC theorems, the NESS is
not required and work input from external agents enters in
the relations. In our set up we only consider energy flow or
heat transfer, leaving out work completely—in fact, quan-
tum work may not be a well-defined concept (see, e.g.,
[42]), pending further investigations. The physics in all
three situations is very rich which injects new vitality in the
development of NEq sciences.
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