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We take into account two further physical models which play an utmost importance in the framework of
analog gravity. We first consider Bose-Einstein condensates (BEC) and then surface gravity waves in water.
Our approach is based on the use of the master equation we introduced in a previous work. A more
complete analysis of the singular perturbation problem involved, with particular reference to the behavior in
the neighborhood of the (real) turning point and its connection with the Wentzel-Kramers-Brillouin
approximation, allows us to verify the thermal character of the particle production process. Furthermore,
we can provide a simple scheme apt to calculate explicitly the gray-body factors in the case of BEC and
surface waves. This corroborates the improved approach we proposed for studying the analog Hawking
effect in the usual limit of small dispersive effects.
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I. INTRODUCTION

In [1] a possible unifying formalism was proposed for
dealingwith the analogousHawking effect, based on a fourth
order equation of the Orr-Sommerfeld type extensively
studied in a series of papers by Nishimoto (see [2–5]).
We take into consideration a further very interesting

case, involving Bose-Einstein condensates (BEC) and also
surface waves, and provide both a sensible approximation
scheme to the associated problems and also an analytical
calculation of the gray-body factor. We refer the reader to
the following sections for an extensive list of references for
theoretical studies of both the models. The utmost rel-
evance of both the models is self-evident, due to the fact
that BEC and water have been the most generally recog-
nized benchmarks for experimental verification of the
actual existence of Hawking radiation [6–13]. We do not
discuss herein the problem represented by the subcritical
case, which is left for future investigations.
In the following, we first take into account the Hawking

effect in BEC.We adopt the healing length as the expansion
parameter to be taken into account in order to deal with the
problem of small dispersive effects. The well-known super-
luminal nature of the dispersion relation requires a different
analysis with respect to the subluminal cases discussed in
[1], with particular reference to the near horizon approxi-
mation. We obtain analytical solutions both in the far region

and in the one near the turning point (horizon).We propose a
different solution with respect to the ones existing in the
literature, and obtain a complete analytical formula for
inferring thermality and the gray-body factor.
In the second part of the paper we consider gravity waves

in water. As expansion parameter we consider the shallow-
ness parameter and, in this subluminal case, we again
perform, by following analogous theoretical paths as above,
the calculation of thermality and a scheme for the calcu-
lation of the gray-body factor. A further discussion follows.

II. BEC

There are several theoretical studies on analogous
Hawking effect in BEC, starting from the seminal paper
by Garay et al. [14]. We limit ourselves to some relevant
references concerning mainly semianalytical/analytical
approaches to the dispersive case [15–25].
We refer mainly to [16]. For completeness, we reproduce

some basic steps towards the equations we study in the
following subsections. The field Ψ̂ðt;xÞ of atoms of the
condensate satisfies the commutation relations

½Ψ̂ðt;xÞ; Ψ̂†ðt;x0Þ� ¼ δ3ðx − x0Þ; ð2:1Þ

and the Heisenberg equation of motion

½Ψ̂ðt;xÞ; Ĥ� ¼ iℏ∂tΨ̂ðt;xÞ; ð2:2Þ

where the Hamiltonian operator is*francesco.belgiorno@polimi.it
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Ĥ ¼
Z

d3x

�
ℏ2

2m
∇xΨ̂†∇xΨ̂þ VΨ̂†Ψ̂þ g

2
Ψ̂†Ψ̂†Ψ̂ Ψ̂

�
;

ð2:3Þ

where m is the mass of the atoms, V is the external
potential, and g is an effective coupling [16]. At very low
temperatures, a condensed state forms, represented by a
(c-number) state Ψ0, and one may introduce also a relative
(quantum) fluctuation in such a way that

Ψ̂ ¼ Ψ0ð1þ ϕ̂Þ; ð2:4Þ

and then, considering only a one-dimensional condensate
henceforth, from the linearized equation one obtains

iℏð∂t þ vðxÞ∂xÞϕ̂ ¼ Tϕ̂þmc2ðϕ̂þ ϕ̂†Þ; ð2:5Þ

where vðxÞ, cðxÞ are the local flow velocity and the speed
of sound, respectively, and for stationary condensates

T ≔ −ℏ2
1

2m
vðxÞ∂x

�
1

vðxÞ ∂x

�
: ð2:6Þ

Focusing only on stationary condensates, one gets

ϕ̂ωðt; xÞ ¼ âωe−iωtϕωðxÞ þ â†ωðe−iωtφωðxÞÞ�: ð2:7Þ

Then from (2.5) and the commutation relations for âω, â
†
ω

one obtains for the stationary modes ϕω, φω, which will be
indicated as ϕ, φ henceforth, satisfy

ðℏðωþ ivðxÞ∂xÞ−T−mc2ðxÞÞϕðxÞ¼mc2ðxÞφðxÞ; ð2:8Þ

ð−ℏðωþivðxÞ∂xÞ−T−mc2ðxÞÞφðxÞ¼mc2ðxÞϕðxÞ; ð2:9Þ

It is straightforward to show that one may obtain separated
equations for ϕ, φ, as in [16]:

�
ðℏðωþivðxÞ∂xÞþTÞ 1

c2ðxÞð−ℏðωþivðxÞ∂xÞþTÞþ2mT
�

×ϕðxÞ¼0; ð2:10Þ

and

�
ð−ℏðωþivðxÞ∂xÞþTÞ 1

c2ðxÞðℏðωþivðxÞ∂xÞþTÞþ2mT

�
×φðxÞ¼0: ð2:11Þ

Both the above equations are fourth order ones, and
henceforth we first take into account (2.10) for modes ϕ.
We notice that we can simplify a factor ℏ2 overall.
Furthermore, in order to eliminate the third order term,
we put

ϕðxÞ ¼ cðxÞ
ffiffiffiffiffiffiffiffiffi
vðxÞ

p
ζðxÞ: ð2:12Þ

Then we obtain the equation

½α4ðxÞ∂4
x þ α2ðxÞ∂2

x þ α1ðxÞ∂x þ α0ðxÞ�ζðxÞ ¼ 0; ð2:13Þ

where

α4ðxÞ ¼
ℏ2

4m2c2ðxÞ ; ð2:14aÞ

α2ðxÞ ¼ −1þ v2ðxÞ
c2ðxÞ þ…; ð2:14bÞ

α1ðxÞ ¼
2

c2ðxÞ ð−iωvðxÞ − cðxÞc0ðxÞ þ vðxÞv0ðxÞÞ þ…

ð2:14cÞ

α0ðxÞ ¼
1

c2ðxÞ
�
−ω2 − 2

v2ðxÞðc0ðxÞÞ2
c2ðxÞ − iωv0ðxÞ

þ vðxÞv0ðxÞc0ðxÞ
cðxÞ þ ðv0ðxÞÞ2

4
þ 3ðv0ðxÞÞ2c2ðxÞ

4v2ðxÞ

− c00ðxÞcðxÞ þ v2ðxÞc00ðxÞ
cðxÞ −

v00ðxÞc2ðxÞ
2vðxÞ

þ vðxÞv00ðxÞ
2

�
þ…: ð2:14dÞ

In the above formulas, we did not write explicitly all the
terms. The complete expression of the coefficients appears
in Appendix.
A natural expansion parameter suitable for a weakly

dispersive regime is the so-called healing length

ξ ≔
ℏffiffiffi

2
p

mcðxÞ ; ð2:15Þ

which depends on the local speed of sound. Let us define

ξ̄ ¼ sup
x
ξðxÞ ¼ ℏffiffiffi

2
p

m

1

infxcðxÞ
≕

ℏffiffiffi
2

p
m

1

c̄
; ð2:16Þ

where

c̄ ≔ inf
x
cðxÞ > ϵ > 0: ð2:17Þ

Of course we have 0 < ξðxÞ ≤ ξ̄, and ξ̄ → 0 has to be meant
as the limit of weak dispersive effects in which we are
interested.1 We obtain the following fourth order equation
of the Orr-Sommerfeld type [2]:

1It should be more correctly intended as the limit where the
healing length is much smaller than the wavelength of the
perturbation on the background condensate [15].
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½ξ̄2∂4
x − ðβ2ðx; ξ̄Þ∂2

x þ β1ðx; ξ̄Þ∂x þ β0ðx; ξ̄ÞÞ�ζðxÞ ¼ 0;

ð2:18Þ

where

β2ðx; ξ̄Þ ¼
2c2ðxÞ
c̄2

�
1 −

v2ðxÞ
c2ðxÞ

�

þ
�
−
i
ffiffiffi
2

p
c̄vðxÞc0ðxÞ
c3ðxÞ þ i

ffiffiffi
2

p
c̄v0ðxÞ

c2ðxÞ
�
ξ̄þOðξ̄2Þ;

ð2:19aÞ

β1ðx; ξ̄Þ ¼
4

c̄2
ðiωvðxÞ þ cðxÞc0ðxÞ − vðxÞv0ðxÞÞ þOðξ̄Þ;

ð2:19bÞ

β0ðx; ξ̄Þ ¼
2

c̄2

�
ω2 þ 2

v2ðxÞðc0ðxÞÞ2
c2ðxÞ þ iωv0ðxÞ

−
vðxÞv0ðxÞc0ðxÞ

cðxÞ −
ðv0ðxÞÞ2

4
−
3ðv0ðxÞÞ2c2ðxÞ

4v2ðxÞ

þ c00ðxÞcðxÞ − v2ðxÞc00ðxÞ
cðxÞ þ v00ðxÞc2ðxÞ

2vðxÞ

−
vðxÞv00ðxÞ

2

�
þOðξ̄Þ: ð2:19cÞ

A. The reduced equation

The reduced equation is

ðβ2ðx; 0Þ∂2
x þ β1ðx; 0Þ∂x þ β0ðx; 0ÞÞζðxÞ ¼ 0; ð2:20Þ

which displays a turning point (TP) such that

β2ðxTP; 0Þ ¼ 0 ⇔

�
1 −

v2ðxÞ
c2ðxÞ

�����
xTP

¼ 0: ð2:21Þ

As in [16], we can assume xTP ¼ 0 and get a black hole
horizon for

vðxÞ þ cðxÞ ¼ 0; ð2:22Þ

with v < 0, and also in the linear region

vðxÞ þ cðxÞ ∼ κx; ð2:23Þ

with κ ≔ v0ð0Þ þ c0ð0Þ > 0. As to (2.11), we point out that
in the limit as ξ̄ → 0, we obtain the same leading order
contributions for φ as for ϕ. This is true for the results
displayed in the following two subsections, so we shall not
repeat the calculation also for φ.

B. WKB approximation

We put

ζðxÞ ¼ exp

�
θðxÞ
ξ̄

�X∞
n¼0

ξ̄nynðxÞ: ð2:24Þ

To the lowest order, we obtain

θ04c̄2 − 2ðc2ðxÞ − v2ðxÞÞθ02 ¼ 0; ð2:25Þ

whose solutions are θ0 ¼ 0 (multiplicity two), and for
x < 0

θ0� ¼ �i

ffiffiffi
2

p

c̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðxÞ − c2ðxÞ

q
: ð2:26Þ

As expected, due to the superluminal nature of the dispersion
relation in BEC, two big wave number modes are found in
the black hole region x < 0, where v2ðxÞ > c2ðxÞ. We
mention, in passing, that for x > 0 the nonvanishing
solutions correspond to the decaying mode and the growing
mode respectively. As to the propagating solutions, we
associate with them the so-called transport equation:

ðv2ðxÞ − c2ðxÞ þ c̄2θ02ðxÞÞy00 þ
�
−iωvðxÞ − cðxÞc0ðxÞ þ vðxÞv0ðxÞ þ i

c̄ffiffiffi
2

p
�
v0ðxÞ − vðxÞ c

0ðxÞ
cðxÞ

�
θ0ðxÞ

− ðc2ðxÞ − v2ðxÞÞ θ
00ðxÞ

2θ0ðxÞ þ
3

2
c̄2θ00ðxÞθ0ðxÞ

�
y0ðxÞ ¼ 0: ð2:27Þ

We then find the solutions

y0�ðxÞ ¼ B�ðv2ðxÞ − c2ðxÞÞ−3=4
�
vðxÞ
cðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðxÞ
c2ðxÞ − 1

s �∓1

exp

�
−iω

Z
x
ds

vðsÞ
v2ðsÞ − c2ðsÞ

�
: ð2:28Þ
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In the near horizon region, it is easy to show that

jy0�ðxÞj ∝ x−3=4; ð2:29Þ

as usual and expected. The high momentum modes are then

ϕ�ðxÞ ¼ cðxÞ
ffiffiffiffiffiffiffiffiffi
vðxÞ

p
ζ�ðxÞ

¼ cðxÞ
ffiffiffiffiffiffiffiffiffi
vðxÞ

p
y0�ðxÞ exp

�
θ�ðxÞ
ξ̄

�
; ð2:30Þ

and jϕ�ðxÞj ∝ x−3=4 near x ¼ 0, as in (2.29). In particular,
we have

ζwkb� ðxÞ ∼ −ð2c0κÞ−3=4jxj−iω
2κ−

3
4 exp

�
∓ 2

3

i

ξ̄

ffiffiffiffiffiffiffiffiffi
4c0κ
c̄2

r
jxj3=2

�
;

ð2:31Þ

where c0 ≔ cð0Þ; this formula will be useful in the
following.
Two further solutions occur when θ0 ¼ 0 can be obtained

from the reduced equation. First, we notice that near the
turning point one obtains

�
∂2
x þ

1

x

�
1 − i

ω

κ

�
∂x þ ð…Þ 1

x

�
ζðxÞ ¼ 0; ð2:32Þ

where the coefficient ð…Þ does not contribute to the
so-called indicial equation, whose roots are

α1 ¼ 0; α2 ¼ i
ω

κ
: ð2:33Þ

In particular, we can define [2]

λ ≔ 1 − α2 ¼ 1 − i
ω

κ
: ð2:34Þ

We obtain near the regular singular point x ¼ 0 (our TP) the
following series expansions: for x > 0

ϕvðxÞ ¼ 1þ
X∞
n¼1

cnxn; ð2:35Þ

ϕuðxÞ ¼ xi
ω
κ

�
1þ

X∞
n¼1

dnxn
�
: ð2:36Þ

The series expansion (2.35) holds true on both sides of the
turning points, with different coefficients. So we can obtain
also analogous expansions for the solutionsϕdðxÞ andϕlðxÞ
occurring for x < 0. We omit the straightforward details. By
comparing the behavior of the above four solutions in the so-
called linear region where (2.23) holds, with the solutions
one can obtain in the near turning point approximation (to
be discussed in the following subsection), one finds the

connection formulas providing the amplitudes for pair
creation in which we are interested. See the following.
In particular, it is useful to provide also approximate

solutions of the reduced equation as x is large (in the
external region with respect to the black hole). It is easy to
show that for large x in the above sense we have vðxÞ,
cðxÞ ∼ const:, and then v0 ¼ 0, c0 ¼ 0. The asymptotic
values of vðxÞ, cðxÞ as x → ∞ are for simplicity indicated
with vr, cr respectively (analogously, one has v → vl,
c → cl for x → −∞). As a consequence e.g., under the
conditions of theorem 1.9.1 of [26], we get asymptotically
for x → ∞

ϕvðxÞ ∼ exp

�
−i

ω

cr − vr
x

�
; ð2:37Þ

ϕuðxÞ ∼ exp

�
i

ω

cr þ vr
x

�
: ð2:38Þ

Analogously, for x → −∞ one obtains

ϕdðxÞ ∼ exp
�
−i

ω

cl − vl
x
�
; ð2:39Þ

ϕlðxÞ ∼ exp
�
i

ω

cl þ vl
x
�
: ð2:40Þ

We note that ϕlðxÞ is a negative-norm mode.

C. Approximation near the turning point

Solutions near the TP have to satisfy the following
equation, as shown in [1]:

d4ζ
dz4

−
�
z
d2ζ
dz2

þ λ
dζ
dz

�
¼ 0; ð2:41Þ

where

λ ≔ 1 − i
ω

κ
; ð2:42Þ

and

z ¼
�
4c0
c̄2

κ

�
1=3

ϵ−2=3x; ð2:43Þ

where c0 ≔ cð0Þ. There is a first solution which is constant,
and put equal to one (cf. [2]). This solution represents the
near horizon approximation for the counter-propagating
mode v discussed in the previous subsection and, albeit
nearly trivial, it is fundamental for getting a complete basis
for solutions near the turning point. Further solutions of
Eq. (2.41) can be found by means of Laplace integrals
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ζjðzÞ ¼
1

2πi

Z
Cj

dttλ−2 exp

�
zt −

1

3
t3
�
; ð2:44Þ

with a suitable choice for the paths Cj in the complex t
plane. For the superluminal case at hand the aforemen-
tioned solutions of (2.44) are also known as generalized
Airy functions.
Paths extending to infinity in the complex t plane must

be restricted to allowed regions. We have the same regions
as for the Airy functions, with θ ≔ argðtÞ:

θ ∈
�
−
π

6
;
π

6

�
∪
�
π

2
;
5π

6

�
∪
�
7π

6
;
3π

2

�
: ð2:45Þ

The boundary conditions we introduce herein differ from
the ones of the seminal investigation for a superluminal
model contained in [27], and also from the ones in [28].
Some differences appear also with the analysis of [29,30]
for the Corley model, where the same diagram was
proposed, and where, furthermore Fourier transform was
used in place of Laplace transform.
Our choice is the following: in order to describe the

states in the external region x > 0, which correspond to the
decaying mode and to the cut mode related to the Hawking
particle, we choose to introduce the cut in the positive real
axis in the complex t plane.
One may consider as boundary condition the presence of

the Hawking mode (cut mode) and of the decaying mode
(albeit it does not participate to fluxes at infinity, it may
play a role for local observables [29]). The corresponding
paths are homotopic to the ones for the two states inside,
which correspond to the big wave number k� states in the
black hole region traveling towards the horizon. See also
Fig. 1. We then obtain “Corley’s diagram” for the creation
process of Hawking particles. In our interpretation, at the
level of the particle creation process, the fourth mode v is
not directly involved. Still, it plays a role in depleting the
Hawking particle flux only in a further process of scattering
on the geometry associated with the reduced equation, in
analogy to our discussion for the cases of the subluminal
Corley model and of the dielectric model taken into account
in [1]. This is in agreement with the analysis in [29,30]
for the Corley model. Compare, for example, [1], Fig. 2
therein.
It is important to note that ζjðzÞ can be rewritten as

follows: by putting t ¼ ffiffiffiffiffijzjp
u, we get

ζjðzÞ ¼
1

2πi
jzjλ−12 IjðzÞ; ð2:46Þ

where

IjðzÞ ¼
Z
C̄j

dugðuÞ expðjzj3=2h�ðuÞÞ; ð2:47Þ

and

gðuÞ ≔ uλ−2; ð2:48Þ

h�ðuÞ ≔ �u −
u3

3
: ð2:49Þ

For the decaying mode, which passes through the
saddle point at u ¼ 1 (in the external region hþ is involved)
we get

ζdecayingðzÞ ≃ e−iπe
πω
κ

1

2
ffiffiffi
π

p jzj−iω
2κ−

3
4e−

2
3
jzj3=2 : ð2:50Þ

As to the cut mode, we stress that the branch cut lies along a
steepest descent. Indeed, we have that the imaginary part of
u − u3=3 is bð1 − a2 þ b2=3Þ, where a, b are the real part
and the imaginary part of u respectively. As a consequence,
b ¼ 0 is a steepest descent line. This allows us to calculate
the cut contribution along the lines suggested in [31],
chapter 4, section 4.8, finding thus

ζcutðzÞ ≃ −
1

iπ
jzjiωkΓ

�
−i

ω

κ

�
sinh

�
πω

κ

�
: ð2:51Þ

For x < 0 we have the modes k� in correspondence of
the steepest descents passing through the saddle points
u� ¼ �i. Then we get (cf. also [27,29,30] for the Corley
model), with a coincidence that is related to the universal
character of our near-horizon equation, which holds true
also for the Corley model [1]

Cd

C_

C+

Ccut

FIG. 1. Paths for the superluminal case. Cd, Ccut are the
decaying mode and the Hawking mode respectively, and are
found in the external region x > 0. C� correspond to the
dispersive modes, and are found in the black hole region
x < 0. Cd, Ccut can be deformed into Cþ, C−.
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ζ−ðzÞ ≃
1

2
ffiffiffi
π

p e
1
4
πie−

πω
2κ jzj−iω

2κ−
3
4ei

2
3
jzj3=2 ; ð2:52Þ

ζþðzÞ ≃ −
1

2
ffiffiffi
π

p e
3
4
πie

πω
2κ jzj−iω

2κ−
3
4e−i

2
3
jzj3=2 : ð2:53Þ

The black hole boundary condition near the horizon forces
the coefficients of the modes � and u to be equal; by
appealing to the Cauchy theorem, and to the fact that all the
functions in the near-horizon approximation are well
defined for z ¼ 0, we have

ζþð0Þ þ ζ−ð0Þ þ ζuð0Þ ¼ ζdecayingð0Þ: ð2:54Þ

As discussed in [1], this condition amounts to the Corley’s
ansatz, i.e., the black hole boundary condition. The fourth
mode does not appear in the diagram, and its contribution is
zero at the level of the pair-creation process. See [1] for a
further discussion. See also below. Then, by comparing
with the Wentzel-Kramers-Brillouin (WKB) solutions in
the matching region, we find for the propagating part of
the field

ϕðx; tÞ ¼
�
e
3
4
πi e

πω
2κ

2
ffiffiffi
π

p 21=4
ffiffiffiffiffiffiffiffiffi
c0κc̄

p �
4c0κ
c̄2

�
−iω
6κ

ξ̄
iω
3κþ1

2ϕþðx; tÞ þ e
1
4
πi e

−πω
2κ

2
ffiffiffi
π

p 21=4
ffiffiffiffiffiffiffiffiffi
c0κc̄

p �
4c0κ
c̄2

�
−iω
6κ

ξ̄
iω
3κþ1

2ϕ−ðx; tÞ
�
θð−xÞ

þ
�
−
sinhðπωκ Þ

πi
Γ
�
−i

ω

κ

��
4c0κ
c̄2

�iω
3κ

ξ̄−
2iω
3κ ϕuðx; tÞ þ hϕvðx; tÞ

�
θðxÞ; ð2:55Þ

where ϕ�, ϕu, ϕv are the WKB solutions for the modes at
hand. As to the modes d, l, one may proceed as in the
Corley model discussed in [1]. We do not delve into the
details.

D. Calculations for the φ stationary modes

In place of (2.10) one must consider (2.11), and again the
parameter for asymptotic expansion is ξ̄. We do not repeat
all the steps, and we limit ourselves to point out some

features. In order to eliminate the third order term, one puts
again

φðxÞ ¼ cðxÞ
ffiffiffiffiffiffiffiffiffi
vðxÞ

p
ηðxÞ: ð2:56Þ

As to the WKB approximation, we note that equation for θ
remains the same as for ϕ, and that for the long wave
number modes one obtains again (2.26). For the transport
equation only a change occurs,

ðv2ðxÞ − c2ðxÞ þ c̄2θ02ðxÞÞy00 þ
�
−iωvðxÞ − cðxÞc0ðxÞ þ vðxÞv0ðxÞ − i

c̄ffiffiffi
2

p
�
v0ðxÞ − vðxÞ c

0ðxÞ
cðxÞ

�
θ0ðxÞ

− ðc2ðxÞ − v2ðxÞÞ θ
00ðxÞ

2θ0ðxÞ þ
3

2
c̄2θ00ðxÞθ0ðxÞ

�
y0ðxÞ ¼ 0: ð2:57Þ

We then find the solutions

y0�ðxÞ ¼ Bðv2ðxÞ − c2ðxÞÞ−3=4
 
vðxÞ
cðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðxÞ
c2ðxÞ − 1

s !�1

× exp

�
−iω

Z
x
ds

vðsÞ
v2ðsÞ − c2ðsÞ

�
: ð2:58Þ

This does not substantially modify the expansion in the
linear region. As to the reduced equation, one has again

�
∂2
x þ

1

x

�
1 − i

ω

κ

�
∂x þ

1

x
ð…Þ

�
ηðxÞ ¼ 0; ð2:59Þ

whose indicial equation is the same as in the previous
sections, and also the solutions remain the same in the
asymptotic region.

Solutions near the TP have to satisfy the same equation
as for the other mode (2.41), simply through the substi-
tution ζ ↦ η. As a consequence, also the near horizon
solutions remain the same, and also the matching formulas
in the linear region do not change.

E. Thermality

We recall that with the stationary modes ϕ, φ one can
associate conserved currents (see [17,32] for an application
to the analogous Hawking radiation):

J½ϕa;φa�
x ≔ −i

ℏ
2m

ðϕ�
a∂xϕa − ϕa∂xϕ

�
a þ φ�

a∂xφa − φa∂xφ
�
aÞ;

ð2:60Þ
where we have a ¼ �; u; v. In the following, we indicate
simply with Jx the above currents, and we mean to exploit
the following current flux conservation:
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jJux j ¼ jJþx j − jJ−x j þ jJvxj; ð2:61Þ

where the outgoing flux of Hawking particles (u modes,
directed towards ∞) originates from the ingoing flux of
modes (v and k� modes, directed towards the horizon
x ¼ 0), and the nature of the modes k− to be negative norm
modes has been taken into account.
The normalization to the modes is as in [16,21], by

requiring that in the eikonal approximation the dispersion
relation (which holds with constant coefficients in the
asymptotic regions)

ðω − vkÞ2 ¼ c2k2
�
1þ ξ2

2
k2
�
; ð2:62Þ

holds true. The WKB solutions, as jxj → ∞, behave as
plane waves which we indicate as ϕω, φω for simplicity
(omitting for the moment any further mode label). We take
into account that the two components ðϕω;φωÞ satisfy the
equations of motion (2.8) and (2.9), and then we get [21]

ϕω ¼ Dωe−iωtþikðωÞx

¼ Nω

�
ω − vkþ c

ξffiffiffi
2

p k2
�
e−iωtþikðωÞx; ð2:63Þ

φω ¼ Eωe−iωtþikðωÞx

¼ Nω

�
−
�
ω − vk − c

ξffiffiffi
2

p k2
��

e−iωtþikðωÞx; ð2:64Þ

where

Nω ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
ffiffiffi
2

p
πℏρcξk2jðω − vkÞðdkðωÞdω Þ−1j

q ; ð2:65Þ

with ρ ∝ 1=v. These normalization factors in the asymp-
totic region reduce to the ones of the homogeneous BEC, of
course.
For explicit calculations, we point out that for each mode

it holds

jJxj ∝ kðjDωj2 þ jEωj2Þ

∝ ðω − vkÞ2 þ
�
c

ξffiffiffi
2

p k2
�

2

: ð2:66Þ

As usual, for thermality jJ−x j
jJþx j ¼ e−βω holds, where β ¼ 2π

κ is
the inverse Hawking temperature.

F. Gray-body factor

As for the gray-body factor, in [1] it has also been shown
that, in principle, one might deduce the gray-body factor
from the direct calculation of

jβωj2 ≔
jJ−x j
jJux j

; ð2:67Þ

which represents the number of created particles, as is well
known. Even if this route is viable, the drawback is that
there is the risk of a poor approximation (as in the standard
Hawking effect calculations).
The gray-body factor can be obtained as follows:

Γ ¼ 1 − R; ð2:68Þ

where we also define the ratio

R ≔
jJvxj
jJux j

: ð2:69Þ

As discussed in [1], actually the mode v does not
participate directly to the Hawking pair-creation process.
Still, there can be a further contribution to R arising from
the backscattering on the geometry, leaving room for Γ < 1.
Then, R represents the reflection coefficient for the scatter-
ing of Hawking particles in the background geometry
associated with the reduced equation obtained for ξ̄ ¼ 0.
This is in agreement with what happens in the Corley
model [29]. Given a u mode entering from the part of the
linear region, where the WKB approximation is valid, the
reduced equation provides the contribution

Rreduced ≔
�jJvxj
jJux j
�

reduced
; ð2:70Þ

with the fluxes computed asymptotically, and with jJvxj
measured near the horizon, but still in a region where the
WKB approximation works well. See [1] for a complete
discussion. As the aforementioned geometry amounts to
the classical geometry for BEC analogous black holes, we
refer to the expressions already present in the literature and
calculated in the so-called hydrodynamic limit, see in
particular [24]. Of course, also in this case there exists a
maximal frequency ωmax such that, for ω > ωmax, only two
modes participate to the scattering process and the
Hawking effect is no more present [16], so that the
spectrum is truncated at ωmax for nonzero values of ξ̄.

III. SHALLOW WATER WAVES

Shallow water waves are the other fundamental bench-
mark of analog gravity as, just for the case of BEC,
experimental measurements of the analogous Hawking
effect were carried out [7,9,10]. Theoretical studies start
with [33] and have been deepened further on. Also the
phenomenon of undulation has been studied in detail [34], as
well as the problem of the subcritical case [35–38]. We
discuss herein only the transcritical case, which is the one
properly associated with the analogous Hawking effect
(although the subcritical casemay preserve some imprinting
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of the Hawking phenomenon [37]). Furthermore, we refer to
the model discussed in [37].
As in [37] (cf. also [34]), we limit ourselves to the

weakly dispersive case where

tanhðih∂xÞ ↦ ih∂x þ i
1

3
h3∂3

x: ð3:1Þ

h is the local height (depth) of water. The corresponding
(approximate) action is [37]

S ¼ 1

2

Z
d2x

�
ðð∂t þ vðxÞ∂xÞϕÞ2 − c2ðxÞð∂xϕÞ2

þ gh3ðxÞ
3

ð∂2
xϕÞ2

�
; ð3:2Þ

where vðxÞ is the local velocity of the fluid, cðxÞ is the local
speed of sound, hðxÞ is the local height, and g is the gravity
acceleration. This is the case most similar to the original
model studied in [27,29], and is characterized by a
subluminal dispersion, as is well known. The equation
of motion for stationary modes ϕðt; xÞ ¼ e−iωtψðxÞ is a
quartic equation of the following form:�
g
3
h3∂4

x þ 2gh2h0∂3
x þ ½ðc2 − v2Þ þ gð2hðh0Þ2 þ h2h00Þ�∂2

x

þ 2ðiωvþ cc0 − vv0Þ∂x þ ðω2 þ iv0ωÞ
�
ψ ¼ 0: ð3:3Þ

It is also to be noted that the model is associated with a
peculiar conserved current for stationary modes

Jx ¼ Im

�
iωvψ�ψ þ ðc2 − v2Þψ�∂xψ þ g

3
ψ�∂xðh3∂2

xψÞ

−
g
3
h3ð∂xψ

�Þð∂2
xψÞ
�
; ð3:4Þ

as in [37,39].

A. Rescaled variables

It is useful to proceed as in [40], by defining rescaled
adimensional variables z, τ in place of x, t as follows:

x ¼ λs; ð3:5Þ

t ¼ λffiffiffiffiffiffiffi
gh0

p τ; ð3:6Þ

where λ stays for the wavelength and h0 is to be considered
a reference height [we could assume, for example,
h0 ¼ infxhðxÞ > 0; see also below]. We can also introduce

vðxÞ ¼
ffiffiffiffiffiffiffi
gh0

p
v̄ðxÞ; ð3:7Þ

cðxÞ ¼
ffiffiffiffiffiffiffi
gh0

p
c̄ðxÞ; ð3:8Þ

ω ¼
ffiffiffiffiffiffiffi
gh0

p
λ

ω̄; ð3:9Þ

as well as the so-called long wavelength or shallowness
parameter [40]

δ ≔
h0
λ
: ð3:10Þ

As a consequence, from Eq. (3.3), we obtain

�
δ2
�
∂4
s þ 6

h0

h
∂3
s

�

þ
�
3
h30
h3

ðc̄2 − v̄2Þ þ δ2
�
6
ðh0Þ2
h2

þ 3
h00

h

��
∂2
s

þ 6
h30
h3

ðiv̄ ω̄þc̄c̄0 − v̄v̄0Þ∂s þ 3
h30
h3

ðω̄2 þ iv̄0ω̄Þ
�
ψ ¼ 0;

ð3:11Þ

where, with some liberal attitude, a prime indicates the
derivative with respect to the dimensionless variable s. The
third-order term can be removed by means of the following
Liouville-like transformation:

ψ ¼ h−3=2ζ; ð3:12Þ

which allows us to obtain

½δ2∂4
sþγ2ðs;δÞ∂2

sþγ1ðs;δÞ∂sþγ0ðs;δÞ�ζðsÞ¼0; ð3:13Þ

where

γ2ðs; δÞ ¼ 3
h30

h3ðsÞ ðc̄
2ðsÞ − v̄2ðsÞÞ þOðδ2Þ; ð3:14aÞ

γ1ðs; δÞ ¼ 6
h30

h3ðsÞ ðiv̄ðsÞω̄þ c̄ðsÞc̄0ðsÞ − v̄ðsÞv̄0ðsÞÞ

− 9
h30h

0ðsÞ
h4ðsÞ ðc̄2ðsÞ − v̄2ðsÞÞ þOðδ2Þ; ð3:14bÞ

γ0ðs; δÞ ¼ 3
h30

h3ðsÞ ðω̄
2 þ iv̄0ðsÞω̄Þ

þ 9
h30

h4ðsÞ
�
−iω̄ v̄ðsÞh0ðsÞ

− ðc̄ðsÞc̄0ðsÞ − v̄ðsÞv̄0ðsÞÞh0ðsÞ

−
1

2
ðc̄2ðsÞ − v̄2ðsÞÞ

�
h00ðsÞ þ 5

2

ðh0ðsÞÞ2
h2ðsÞ

��
þOðδ2Þ: ð3:14cÞ
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B. The reduced equation

The reduced equation is

ðγ2ðs; 0Þ∂2
s þ γ1ðs; 0Þ∂s þ γ0ðs; 0ÞÞζðsÞ ¼ 0; ð3:15Þ

which displays a turning point (TP) such that

γ2ðsTP; 0Þ ¼ 0 ⇔ ðv̄2ðsÞ − c̄2ðsÞÞjsTP ¼ 0: ð3:16Þ

As usual, by returning momentarily to dimensionfull vari-
ables, we can assume xTP ¼ 0 and get a black hole horizon
for vðxÞ þ cðxÞ ¼ 0, withv < 0, and also in the linear region
vðxÞ þ cðxÞ ∼ κx, with κ ¼ v0ð0Þ þ c0ð0Þ. Also in this case
near the TP one obtains

�
∂2
x þ

1

x

�
1 − i

ω

κ

�
∂x þ

1

x
ð…Þ

�
ζðxÞ ¼ 0; ð3:17Þ

where the coefficient ð…Þ does not contribute to the so-called
indicial equation, whose roots are again

α1 ¼ 0; α2 ¼ i
ω

κ
; ð3:18Þ

and, again

μ ≔ 1 − α2 ¼ 1 − i
ω

κ
: ð3:19Þ

C. WKB approximation

We put

ζðsÞ ¼ exp

�
θðsÞ
δ

�X∞
n¼0

δnynðsÞ: ð3:20Þ

To the lowest order, we obtain

θ04 þ 3

�
h0
h

�
3

ðc̄2 − v̄2Þθ02 ¼ 0; ð3:21Þ

whose solutions are θ0 ¼ 0 (multiplicity two), and

θ0� ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

�
h0
h

�
3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c̄2 − v̄2

p
: ð3:22Þ

We first take into account the latter solutions, and associate
with them the so-called transport equation

�
6

�
h0
h

�
3

ðc̄2 − v̄2Þ þ 4θ02
�
y00

þ
�
6θ0θ00 þ 3

�
h0
h

�
3
�
2iv̄ ω̄þ2ðc̄c̄0 − v̄v̄0Þ

þ
�
θ00

θ0
− 3

h0

h

�
ðc̄2 − v̄2Þ

��
y0 ¼ 0: ð3:23Þ

We then find the solutions

y0�ðsÞ¼Bðc̄2− v̄2Þ−3=4h9=4 exp
�
iω̄
Z

s v̄
c̄2− v̄2

�
: ð3:24Þ

As to the degenerate solutions with θ0 ¼ 0, as is known,
they must solve the reduced equation with δ ¼ 0 (3.15). We
obtain near the regular singular point s ¼ 0 (our TP) the
series expansions for s > 0

ψvðsÞ ¼ 1þ
X∞
n¼1

cnsn; ð3:25Þ

ψuðsÞ ¼ si
ω
κ

�
1þ

X∞
n¼1

dnsn
�
: ð3:26Þ

In particular, it is useful to provide also approximate
solutions of the reduced equation as s is large (in the
external region with respect to the black hole). It is easy to
show that for large s → ∞ in the above sense, we have
vðxÞ, cðxÞ ∼ const:, and then v0 ¼ 0, c0 ¼ 0. The asymp-
totic values of v̄ðxÞ, c̄ðxÞ as x → ∞ are for simplicity
indicated with v̄, c̄ respectively. As a consequence e.g.,
under the conditions of theorem 1.9.1 of [26], we get
asymptotically for s → ∞

ψvðsÞ ∼ exp

�
−i

ω̄

c̄ − v̄
s

�
; ð3:27Þ

ψuðsÞ ∼ exp

�
i

ω̄

c̄þ v̄
s

�
: ð3:28Þ

As in the previous model, we can also study solutions for
s < 0, and the only propagating ones asymptotically
behave as

ψdðsÞ ∼ exp

�
−i

ω̄

c̄l − v̄l
s

�
; ð3:29Þ

ψ lðsÞ ∼ exp

�
i

ω̄

c̄l þ v̄l
s

�
; ð3:30Þ

where v̄l, c̄l are the limits of v̄ðsÞ, c̄ðsÞ for x → −∞
respectively.
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D. Near-horizon approximation

Near the TP the following equation holds true (cf. [1]):

d4ζ
dz4

þ
�
z
d2ζ
dz2

þ μ
dζ
dz

�
¼ 0; ð3:31Þ

where μ is given in (3.19), and

z ¼ h0
hð0Þ ð6κ̄c̄0Þ

1=3δ−2=3s; ð3:32Þ

where κ̄ ≔ κ
ffiffiffiffiffiffiffi
gh0

p
=λ and c̄0 ≔ c̄ð0Þ. We may also choose

h0 ¼ hð0Þ, i.e., we can assume that h0 is the value of h at
the TP.
Apart for the constant solution, which is again put equal

to one (cf. [2]), further solutions of Eq. (3.31) can be found
by means of Laplace integrals as in [27,28]

ζjðzÞ ¼
1

2πi

Z
Cj

dttμ−2 exp

�
ztþ 1

3
t3
�
; ð3:33Þ

with a suitable choice for the paths Cj in the complex t
plane. In this case, a subluminal character of the nonlinear
part is present. Paths extending to infinity in the complex t
plane must be restricted to allowed regions, displayed in
[1,27] and, with θ ≔ argðtÞ, we obtain:

θ ∈
�
π

6
;
π

2

�
∪
�
5π

6
;
7π

6

�
∪
�
3π

2
;
11π

6

�
: ð3:34Þ

We start from (3.33) and follow the general method
explained in [1]. Paths can be chosen as in any subluminal
case, cf. Fig. 2 in [1]. It corresponds to the so-called black
hole boundary condition as discussed in [27]. See also
[29,30]. We limit ourselves to reproduce the results. We
have for x < 0 the decaying mode

wdecayingðzÞ ≃
1

2
ffiffiffi
π

p jzj−iω
2κ−

3
4e−

2
3
jzj3=2 : ð3:35Þ

As usual [27], it provides the aforementioned black hole
boundary condition. For x > 0 we have the modes k� in
correspondence of the steepest descents

wþðzÞ ≃
1

2
ffiffiffi
π

p e−
3
4
πie

πω
2κ jzj−iω

2κ−
3
4ei

2
3
jzj3=2 ; ð3:36Þ

w−ðzÞ ≃
1

2
ffiffiffi
π

p e
1
4
πie−

πω
2κ jzj−iω

2κ−
3
4e−i

2
3
jzj3=2 : ð3:37Þ

The cut contribution, on the negative real axis, represents
the Hawking mode and can be also in this case calculated
along the lines suggested in [31], chapter 4, section 4. 8:

wcutðzÞ ≃ −
1

iπ
jzjiωkΓ

�
−i

ω

κ

�
sinh

�
πω

κ

�
: ð3:38Þ

We are interested in connecting the expansions of the near
horizon approximation with the ones of the WKB approxi-
mation displayed in the previous section. We get

ψðs; τÞ ¼ cþψþðs; τÞ þ c−ψ−ðs; τÞ þ cuϕuðs; τÞ
þ cvϕvðs; τÞ; ð3:39Þ

where the fourth mode gives no direct contribution to the
pair-creation associated with the Hawking effect; cf. [1].
We also have

ψ jðs; τÞ ¼ exp ð−iω̄τ þ ik̄jðωÞτÞ; ð3:40Þ

with j ¼ �u, v and k̄jðωÞ is the corresponding rescaled
wave number. By comparing with the WKB solutions again
in the matching region

ψðs; τÞ ¼ e−
3
4
πiðhð0ÞÞ−9=43−1=4

ffiffiffiffiffiffiffiffiffiffi
2c̄0 κ̄

p e
πω
κ

2
ffiffiffi
π

p ð6c̄0 κ̄Þ−iω
6κδ

iω
3κþ1

2ψþðs; τÞ

þ e
1
4
πiðhð0ÞÞ−9=43−1=4

ffiffiffiffiffiffiffiffiffiffi
2c̄0 κ̄

p e−
πω
κ

2
ffiffiffi
π

p ð6c̄0 κ̄Þ−iω
6κδ

iω
3κþ1

2ψ−ðs; τÞ

−
sinhðπωκ Þ

πi
Γ
�
−
iω
κ

�
ð6c̄0 κ̄Þiω3κδ−2iω

3κ ψuðs; τÞ þ cvψvðs; τÞ: ð3:41Þ

For ψd, ψ l the matching is analogous. Only the scattering
on the geometry may contribute to cv. See below.

E. Thermality and gray-body factor

We note that the conserved current (3.4) can be rewritten
in terms of rescaled variables as follows:

Js ∝ Im

�
iω̄ v̄ψ�ψþðc̄2− v̄2Þψ�∂sψ

þ1

3
δ2
�
ψ�∂s

��
h
h0

�
3∂2

sψ

�
−
�
h
h0

�
3

ð∂sψ
�Þð∂2

sψÞ
��

:

ð3:42Þ
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We can easily prove that jJ−s j
jJþs j ¼ e−βω, where β ¼ 2π

κ . The

gray-body factor can be obtained also in this case,
analogously to the cases previously discussed, and the
considerations we made for the BEC case and the cases
discussed in [1] hold true also for the present case, so we do
not discuss them again.
Again, the scattering involving also the mode v, in the

present framework, is of a different nature with respect to
the one occurring for the production process of the
Hawking mode u, and is associated with the scattering
of Hawking modes on the background geometry provided
by the reduced equation with δ ¼ 0. We expect that also in
this case the result is model dependent, i.e., it should
depend strongly on the particular profiles one chooses for
the different background fields involved. Furthermore, the
metric involved in the model studied in [37] and taken into
account herein corresponds to the case ρðxÞ ¼ c2ðxÞ of
[34], and the corresponding metric (2D part) is

ds2 ¼ cðxÞðcðxÞ2dt2 − ðdx − vðxÞdtÞ2Þ; ð3:43Þ

so that the equation one obtains when dispersion is
neglected is just [34]

½ð∂t þ ∂xvÞð∂t þ v∂xÞ − ∂xc2∂x�ϕ ¼ 0 ð3:44Þ

which amounts to the reduced equation. We do not calculate
the backscattering contribution to the gray-body factor;
instead we limit ourselves to notice that for cðxÞ ¼ const:,
as in the case of the subluminal Corley model [1], onewould
obtain Γ ¼ 1 up to higher order corrections, and thenR ¼ 0.
A truncation of the spectrum is to bemeant forω > ωmax also
in this case, as is well known. ωmax has the same meaning as
e.g., in the BEC case.
We cannot claim that the present approach is the solution

to the problem at hand, as a more detailed analysis of the
experimental situations and of numerical simulations would
be needed. Furthermore, we stress that we have not tried to

take into account the so-called subcritical case [35–37],
which requires a further analysis to be dealt with.

IV. CONCLUSIONS

We have first taken into account the BEC case and, under
the assumption of small (but never vanishing) healing
length we have found a scheme allowing us to determine
in a fully analytical way both the thermality and the gray-
body factor of analogous Hawking radiation from BEC
analogous black holes. Our analysis confirms that the master
equation introduced in [1] is actually effective also in the
present case. We have also proposed an improvement in the
near horizon analysis of the superluminal case, which is
different from previous proposals like e.g., [27,28]. In the
second part of the paper, we have taken into account
the problem of surface gravity waves. Thermality is again
found in a simpleway, and a scheme for the calculation of the
gray-body factor is provided. Albeit the present framework
provides a very interesting analytical picture of the Hawking
effect in analog gravity, it is by no means exhaustive and
further analysis is required to delve into e.g., the very low
frequency regime in the case of surface waves.
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APPENDIX: COEFFICIENTS FOR THE
BEC EQUATIONS

1. Equations for ϕ

a. Coefficients of the simplified equation

The coefficients which appear in (2.13),

½α4ðxÞ∂4
x þ α2ðxÞ∂2

x þ α1ðxÞ∂x þ α0ðxÞ�ζðxÞ ¼ 0;

where ϕðxÞ ¼ cðxÞ ffiffiffiffiffiffiffiffiffi
vðxÞp

ζðxÞ, are

α4 ¼
ℏ2

4m2c2ðxÞ ;

α3 ¼ −
ℏ2c0ðxÞ
m2c3ðxÞ −

ℏ2v0ðxÞ
2m2c2ðxÞvðxÞ ;

α2 ¼
ℏ2c00ðxÞ
m2c3ðxÞ −

3ℏ2c0ðxÞ2
2m2c4ðxÞ −

iℏvðxÞc0ðxÞ
mc3ðxÞ þ ℏ2v00ðxÞ

4m2c2ðxÞvðxÞ −
3ℏ2v0ðxÞ2

8m2c2ðxÞv2ðxÞ þ
iℏv0ðxÞ
mc2ðxÞ þ

v2ðxÞ
c2ðxÞ − 1;

α1 ¼
ℏ2cð3ÞðxÞ
m2c3ðxÞ −

iℏvðxÞc00ðxÞ
mc3ðxÞ þ 3ℏ2c0ðxÞ3

m2cðxÞ5 −
iℏc0ðxÞv0ðxÞ
mc3ðxÞ þ iℏvðxÞc0ðxÞ2

mc4ðxÞ −
2ωℏc0ðxÞ
mc3ðxÞ −

2c0ðxÞ
cðxÞ −

4ℏ2c0ðxÞc00ðxÞ
m2c4ðxÞ

þ ℏ2vð3ÞðxÞ
4m2c2ðxÞvðxÞ þ

3ℏ2v0ðxÞ3
4m2c2ðxÞv3ðxÞ −

ℏ2v0ðxÞv00ðxÞ
m2c2ðxÞv2ðxÞ þ

iℏv00ðxÞ
mc2ðxÞ þ

2vðxÞv0ðxÞ
c2ðxÞ −

2iωvðxÞ
c2ðxÞ ;
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α0 ¼
ℏ2cð4ÞðxÞ
4m2c3ðxÞ −

ℏ2c00ðxÞ2
2m2c4ðxÞ þ

iℏc00ðxÞv0ðxÞ
2mc3ðxÞ −

ωℏc00ðxÞ
mc3ðxÞ þ v2ðxÞc00ðxÞ

c3ðxÞ −
c00ðxÞ
cðxÞ −

ℏ2vð3ÞðxÞc0ðxÞ
4m2c3ðxÞvðxÞ þ

ℏ2c0ðxÞ2v00ðxÞ
4m2c4ðxÞvðxÞ

−
3ℏ2c0ðxÞv0ðxÞ3
4m2c3ðxÞv3ðxÞ −

3ℏ2c0ðxÞ2v0ðxÞ2
8m2c4ðxÞv2ðxÞ þ

ℏ2c0ðxÞv0ðxÞv00ðxÞ
m2c3ðxÞv2ðxÞ þ iℏc0ðxÞv00ðxÞ

2mc3ðxÞ −
3iℏc0ðxÞv0ðxÞ2
4mc3ðxÞvðxÞ −

3iℏc0ðxÞ2v0ðxÞ
2mc4ðxÞ

þ 3iℏvðxÞc0ðxÞ3
mcðxÞ5 þ ωℏc0ðxÞ2

mc4ðxÞ þ vðxÞc0ðxÞv0ðxÞ
c3ðxÞ −

2v2ðxÞc0ðxÞ2
c4ðxÞ −

ℏ2cð3ÞðxÞc0ðxÞ
m2c4ðxÞ þ 3ℏ2c0ðxÞ2c00ðxÞ

2m2cðxÞ5

−
2iℏvðxÞc0ðxÞc00ðxÞ

mc4ðxÞ þ ℏ2vð4ÞðxÞ
8m2c2ðxÞvðxÞ −

7ℏ2v00ðxÞ2
16m2c2ðxÞv2ðxÞ −

63ℏ2v0ðxÞ4
64m2c2ðxÞv4ðxÞ −

5ℏ2vð3ÞðxÞv0ðxÞ
8m2c2ðxÞv2ðxÞ

þ 31ℏ2v0ðxÞ2v00ðxÞ
16m2c2ðxÞv3ðxÞ −

3iℏv0ðxÞ3
4mc2ðxÞv2ðxÞ þ

iℏv0ðxÞv00ðxÞ
mc2ðxÞvðxÞ þ vðxÞv00ðxÞ

2c2ðxÞ −
iωv0ðxÞ
c2ðxÞ þ v0ðxÞ2

4c2ðxÞ

−
ω2

c2ðxÞ −
v00ðxÞ
2vðxÞ þ

3v0ðxÞ2
4v2ðxÞ :

b. Coefficients expanded in powers of the healing length

The coefficients which appear in (2.18),

½ξ̄2∂4
x − ðβ2ðx; ξ̄Þ∂2

x þ β1ðx; ξ̄Þ∂x þ β0ðx; ξ̄ÞÞ�ζðxÞ ¼ 0;

are

β2 ¼
2c2ðxÞ
c̄2

�
v2ðxÞ
c2ðxÞ− 1þ

�
−
i
ffiffiffi
2

p
c̄vðxÞc0ðxÞ
c3ðxÞ þ i

ffiffiffi
2

p
c̄v0ðxÞ

c2ðxÞ
�
ξ̄þ

�
c̄2v00ðxÞ

2c2ðxÞvðxÞ−
3c̄2v0ðxÞ2

4c2ðxÞv2ðxÞ þ
2c̄2c00ðxÞ
c3ðxÞ −

3c̄2c0ðxÞ2
c4ðxÞ

�
ξ̄2
�
;

β1 ¼
2c2ðxÞ
c̄2

�
−
2iωvðxÞ
c2ðxÞ þ 2vðxÞv0ðxÞ

c2ðxÞ −
2c0ðxÞ
cðxÞ

þ
�
−
i
ffiffiffi
2

p
c̄vðxÞc00ðxÞ
c3ðxÞ −

i
ffiffiffi
2

p
c̄c0ðxÞv0ðxÞ
c3ðxÞ þ i

ffiffiffi
2

p
c̄vðxÞc0ðxÞ2
c4ðxÞ −

2
ffiffiffi
2

p
c̄ωc0ðxÞ
c3ðxÞ þþ i

ffiffiffi
2

p
c̄v00ðxÞ

c2ðxÞ
�
ξ̄

þ
�

c̄2vð3ÞðxÞ
2c2ðxÞvðxÞ þ

3c̄2v0ðxÞ3
2c2ðxÞv3ðxÞ−

2c̄2v0ðxÞv00ðxÞ
c2ðxÞv2ðxÞ þ 2c̄2cð3ÞðxÞ

c3ðxÞ −
8c̄2c0ðxÞc00ðxÞ

c4ðxÞ þ 6c̄2c0ðxÞ3
cðxÞ5

�
ξ̄2
�
;

β0 ¼
2c2ðxÞ
c̄2

�
vðxÞv00ðxÞ
2c2ðxÞ −

iωv0ðxÞ
c2ðxÞ þ v0ðxÞ2

4c2ðxÞ−
ω2

c2ðxÞ−
v00ðxÞ
2vðxÞ þ

3v0ðxÞ2
4v2ðxÞ þ

vðxÞc0ðxÞv0ðxÞ
c3ðxÞ −

2v2ðxÞc0ðxÞ2
c4ðxÞ

þ v2ðxÞc00ðxÞ
c3ðxÞ −

c00ðxÞ
cðxÞ þ

�
ic̄c00ðxÞv0ðxÞffiffiffi

2
p

c3ðxÞ −
ffiffiffi
2

p
c̄ωc00ðxÞ
c3ðxÞ þ ic̄c0ðxÞv00ðxÞffiffiffi

2
p

c3ðxÞ −
3ic̄c0ðxÞv0ðxÞ2
2
ffiffiffi
2

p
c3ðxÞvðxÞ−

3ic̄c0ðxÞ2v0ðxÞffiffiffi
2

p
c4ðxÞ

þ 3i
ffiffiffi
2

p
c̄vðxÞc0ðxÞ3
cðxÞ5 þ

ffiffiffi
2

p
c̄ωc0ðxÞ2
c4ðxÞ −

2i
ffiffiffi
2

p
c̄vðxÞc0ðxÞc00ðxÞ

c4ðxÞ −
3ic̄v0ðxÞ3

2
ffiffiffi
2

p
c2ðxÞv2ðxÞ þ

i
ffiffiffi
2

p
c̄v0ðxÞv00ðxÞ
c2ðxÞvðxÞ

�
ξ̄

þ
�

c̄2vð4ÞðxÞ
4c2ðxÞvðxÞ−

7c̄2v00ðxÞ2
8c2ðxÞv2ðxÞ−

63c̄2v0ðxÞ4
32c2ðxÞv4ðxÞ−

5c̄2vð3ÞðxÞv0ðxÞ
4c2ðxÞv2ðxÞ þ 31c̄2v0ðxÞ2v00ðxÞ

8c2ðxÞv3ðxÞ −
c̄2c00ðxÞ2
c4ðxÞ

þ c̄2cð4ÞðxÞ
2c3ðxÞ −

c̄2vð3ÞðxÞc0ðxÞ
2c3ðxÞvðxÞ þ c̄2c0ðxÞ2v00ðxÞ

2c4ðxÞvðxÞ −
3c̄2c0ðxÞv0ðxÞ3
2c3ðxÞv3ðxÞ −

3c̄2c0ðxÞ2v0ðxÞ2
4c4ðxÞv2ðxÞ þ 2c̄2c0ðxÞv0ðxÞv00ðxÞ

c3ðxÞv2ðxÞ

þ 3c̄2c0ðxÞ2c00ðxÞ
cðxÞ5 −

2c̄2cð3ÞðxÞc0ðxÞ
c4ðxÞ

�
ξ̄2
�
:
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2. Equations for φ

a. Coefficients of the simplified equation

The coefficients which appear in the equation

½γ4ðxÞ∂4
x þ γ2ðxÞ∂2

x þ γ1ðxÞ∂x þ γ0ðxÞ�ηðxÞ ¼ 0;

where φðxÞ ¼ cðxÞ ffiffiffiffiffiffiffiffiffi
vðxÞp

ηðxÞ, are

γ4 ¼
ℏ2

4m2c2ðxÞ ;

γ2 ¼
ℏ2c00ðxÞ
m2c3ðxÞ −

3ℏ2c0ðxÞ2
2m2c4ðxÞ þ

iℏvðxÞc0ðxÞ
mc3ðxÞ þ ℏ2v00ðxÞ

4m2c2ðxÞvðxÞ −
3ℏ2v0ðxÞ2

8m2c2ðxÞv2ðxÞ −
iℏv0ðxÞ
mc2ðxÞ þ

v2ðxÞ
c2ðxÞ − 1;

γ1 ¼
ℏ2cð3ÞðxÞ
m2c3ðxÞ þ iℏvðxÞc00ðxÞ

mc3ðxÞ þ 3ℏ2c0ðxÞ3
m2cðxÞ5 þ iℏc0ðxÞv0ðxÞ

mc3ðxÞ −
iℏvðxÞc0ðxÞ2

mc4ðxÞ þ 2ωℏc0ðxÞ
mc3ðxÞ −

2c0ðxÞ
cðxÞ

−
4ℏ2c0ðxÞc00ðxÞ

m2c4ðxÞ þ ℏ2vð3ÞðxÞ
4m2c2ðxÞvðxÞ þ

3ℏ2v0ðxÞ3
4m2c2ðxÞv3ðxÞ −

ℏ2v0ðxÞv00ðxÞ
m2c2ðxÞv2ðxÞ −

iℏv00ðxÞ
mc2ðxÞ þ

2vðxÞv0ðxÞ
c2ðxÞ −

2iωvðxÞ
c2ðxÞ ;

γ0 ¼
ℏ2cð4ÞðxÞ
4m2c3ðxÞ −

ℏ2c00ðxÞ2
2m2c4ðxÞ −

iℏc00ðxÞv0ðxÞ
2mc3ðxÞ þ ωℏc00ðxÞ

mc3ðxÞ þ v2ðxÞc00ðxÞ
c3ðxÞ −

c00ðxÞ
cðxÞ −

ℏ2vð3ÞðxÞc0ðxÞ
4m2c3ðxÞvðxÞ þ

ℏ2c0ðxÞ2v00ðxÞ
4m2c4ðxÞvðxÞ

−
3ℏ2c0ðxÞv0ðxÞ3
4m2c3ðxÞv3ðxÞ −

3ℏ2c0ðxÞ2v0ðxÞ2
8m2c4ðxÞv2ðxÞ þ

ℏ2c0ðxÞv0ðxÞv00ðxÞ
m2c3ðxÞv2ðxÞ −

iℏc0ðxÞv00ðxÞ
2mc3ðxÞ þ 3iℏc0ðxÞv0ðxÞ2

4mc3ðxÞvðxÞ þ 3iℏc0ðxÞ2v0ðxÞ
2mc4ðxÞ

−
3iℏvðxÞc0ðxÞ3

mcðxÞ5 −
ωℏc0ðxÞ2
mc4ðxÞ þ vðxÞc0ðxÞv0ðxÞ

c3ðxÞ −
2v2ðxÞc0ðxÞ2

c4ðxÞ −
ℏ2cð3ÞðxÞc0ðxÞ

m2c4ðxÞ þ 3ℏ2c0ðxÞ2c00ðxÞ
2m2cðxÞ5

þ 2iℏvðxÞc0ðxÞc00ðxÞ
mc4ðxÞ þ ℏ2vð4ÞðxÞ

8m2c2ðxÞvðxÞ −
7ℏ2v00ðxÞ2

16m2c2ðxÞv2ðxÞ −
63ℏ2v0ðxÞ4

64m2c2ðxÞv4ðxÞ −
5ℏ2vð3ÞðxÞv0ðxÞ
8m2c2ðxÞv2ðxÞ

þ 31ℏ2v0ðxÞ2v00ðxÞ
16m2c2ðxÞv3ðxÞ þ

3iℏv0ðxÞ3
4mc2ðxÞv2ðxÞ −

iℏv0ðxÞv00ðxÞ
mc2ðxÞvðxÞ þ vðxÞv00ðxÞ

2c2ðxÞ −
iωv0ðxÞ
c2ðxÞ þ v0ðxÞ2

4c2ðxÞ −
ω2

c2ðxÞ −
v00ðxÞ
2vðxÞ þ

3v0ðxÞ2
4v2ðxÞ :

b. Coefficients of the simplified equation with healing length

The coefficients which appear in the equation

½ξ̄2∂4
x − ðδ2ðx; ξ̄Þ∂2

x þ δ1ðx; ξ̄Þ∂x þ δ0ðx; ξ̄ÞÞ�ηðxÞ ¼ 0;

are

δ2 ¼
2c2ðxÞ
c̄2

�
v2ðxÞ
c2ðxÞ − 1þ

�
i
ffiffiffi
2

p
c̄vðxÞc0ðxÞ
c3ðxÞ −

i
ffiffiffi
2

p
c̄v0ðxÞ

c2ðxÞ
�
ξ̄þ

�
c̄2v00ðxÞ

2c2ðxÞvðxÞ −
3c̄2v0ðxÞ2

4c2ðxÞv2ðxÞ þ
2c̄2c00ðxÞ
c3ðxÞ −

3c̄2c0ðxÞ2
c4ðxÞ

�
ξ̄2
�
;

δ1 ¼
2c2ðxÞ
c̄2

�
−
2c0ðxÞ
cðxÞ þ 2vðxÞv0ðxÞ

c2ðxÞ −
2iωvðxÞ
c2ðxÞ

þ
�
i
ffiffiffi
2

p
c̄vðxÞc00ðxÞ
c3ðxÞ þ i

ffiffiffi
2

p
c̄c0ðxÞv0ðxÞ
c3ðxÞ −

i
ffiffiffi
2

p
c̄vðxÞc0ðxÞ2
c4ðxÞ þ 2

ffiffiffi
2

p
c̄ωc0ðxÞ
c3ðxÞ −

i
ffiffiffi
2

p
c̄v00ðxÞ

c2ðxÞ
�
ξ̄

þ
�

c̄2vð3ÞðxÞ
2c2ðxÞvðxÞ þ

3c̄2v0ðxÞ3
2c2ðxÞv3ðxÞ −

2c̄2v0ðxÞv00ðxÞ
c2ðxÞv2ðxÞ þ 2c̄2c̄ð3ÞðxÞ

c3ðxÞ −
8c̄2c0ðxÞc00ðxÞ

c4ðxÞ þ 6c̄2c0ðxÞ3
cðxÞ5

�
ξ̄2
�
;
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δ0 ¼
2c2ðxÞ
c̄2

�
v2ðxÞc00ðxÞ

c3ðxÞ −
c00ðxÞ
cðxÞ þ vðxÞc0ðxÞv0ðxÞ

c3ðxÞ −
2v2ðxÞc0ðxÞ2

c4ðxÞ þ vðxÞv00ðxÞ
2c2ðxÞ

−
iωv0ðxÞ
c2ðxÞ þ v0ðxÞ2

4c2ðxÞ −
ω2

c2ðxÞ −
v00ðxÞ
2vðxÞ þ

3v0ðxÞ2
4v2ðxÞ

þ
�
−
ic̄c00ðxÞv0ðxÞffiffiffi

2
p

c3ðxÞ þ
ffiffiffi
2

p
c̄ωc00ðxÞ
c3ðxÞ −

ic̄c0ðxÞv00ðxÞffiffiffi
2

p
c3ðxÞ þ 3ic̄c0ðxÞv0ðxÞ2

2
ffiffiffi
2

p
c3ðxÞvðxÞ þ

3ic̄c0ðxÞ2v0ðxÞffiffiffi
2

p
c4ðxÞ

−
3i

ffiffiffi
2

p
c̄vðxÞc0ðxÞ3
cðxÞ5 −

ffiffiffi
2

p
c̄ωc0ðxÞ2
c4ðxÞ þ 2i

ffiffiffi
2

p
c̄vðxÞc0ðxÞc00ðxÞ

c4ðxÞ þ 3ic̄v0ðxÞ3
2
ffiffiffi
2

p
c2ðxÞv2ðxÞ −

i
ffiffiffi
2

p
c̄v0ðxÞv00ðxÞ
c2ðxÞvðxÞ

�
ξ̄

þ
�

c̄2vð4ÞðxÞ
4c2ðxÞvðxÞ −

7c̄2v00ðxÞ2
8c2ðxÞv2ðxÞ −

63c̄2v0ðxÞ4
32c2ðxÞv4ðxÞ −

5c̄2vð3ÞðxÞv0ðxÞ
4c2ðxÞv2ðxÞ þ 31c̄2v0ðxÞ2v00ðxÞ

8c2ðxÞv3ðxÞ −
c̄2c00ðxÞ2
c4ðxÞ

þ c̄2c̄ð4ÞðxÞ
2c3ðxÞ −

c̄2vð3ÞðxÞc0ðxÞ
2c3ðxÞvðxÞ þ c̄2c0ðxÞ2v00ðxÞ

2c4ðxÞvðxÞ −
3c̄2c0ðxÞv0ðxÞ3
2c3ðxÞv3ðxÞ −

3c̄2c0ðxÞ2v0ðxÞ2
4c4ðxÞv2ðxÞ þ 2c̄2c0ðxÞv0ðxÞv00ðxÞ

c3ðxÞv2ðxÞ

þ 3c̄2c0ðxÞ2c00ðxÞ
cðxÞ5 −

2c̄2c̄ð3ÞðxÞc0ðxÞ
c4ðxÞ

�
ξ̄2
�
:
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