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Via Valleggio 11, IT-22100 Como, Italy
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We consider further the problem of the analog Hawking radiation. We propose a fourth order ordinary
differential equation, which allows us to discuss the problem of Hawking radiation in analog gravity in a
unified way, encompassing fluids and dielectric media. In a suitable approximation, involving weak
dispersive effects, Wentzel-Kramers-Brillouin solutions are obtained far from the horizon (turning point),
and furthermore an equation governing the behavior near the horizon is derived, and a complete set of
analytical solutions is obtained also near the horizon. The subluminal case of the original fluid model
introduced by Corley and Jacobson and the case of dielectric media are discussed. We show that in this
approximation scheme there is a mode which is not directly involved in the pair-creation process.
Thermality is verified and a framework for calculating the gray-body factor is provided.
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I. INTRODUCTION

The analog Hawking effect has been largely discussed in
literature, and we are interested in focusing our attention on
the analytical side of calculations in the presence of
dispersion. As is well known, the problem is very difficult
and requires techniques borrowed from asymptotic analy-
sis, see e.g., the following (nonexhaustive) list of papers
[1–21]. Even if the mathematics to be adopted is quite
similar, still different systems seem to require different
tools to be discussed, and what is done for fluids is not just
the same as for dielectric media. Even if a strictly unified
framework a priori is not mandatory, still it is interesting to
point out that such a framework exists and allows one to
draw common conclusions for the various physical sit-
uations at hand, and to realize an universality for the
analogous Hawking effect (see e.g., [6]).
In this paper, we propose a fourth order ordinary differ-

ential equation as a master equation allowing one to deal
with the analogous Hawking effect in condensed matter
systems in a systematic way, in the approximation of weak
dispersive effects. This is per se interesting, because (i) a
single master equation is shown to be enough for describing
different physical situations. In this paper we deal with the
subluminal version of the fluid model introduced by Corley
and Jacobson [2,22], and also with the case of dielectric
media. In the companion paper [23] we discuss also the case

of the analogous Hawking effect in Bose-Einstein conden-
sates (BEC) (superluminal case), and in water.
As a second element of interest, (ii) a single approxima-

tion is done, allowing one to reduce the problem into a form
which is analogous to the one described in a series of works
[24–28]. To be more specific, we adopt the limit of weak
dispersive effects in all models (for the previous literature,
concerning analytical calculations, see e.g., [8,14].)
Furthermore, (iii) a new kind of near-horizon expansion
(expansion near the turning point) is adopted, allowing one
to get a completeness of states also in that physical region; in
particular we can take into account explicitly the −s modes
(also called v modes; see Sec. IV B) which are neglected in
other near-horizon expansions. Moreover, the near-horizon
equation one obtains is universal, i.e., it has the same form
for all the models we take into account, and this is at the root
of the universality of the Hawking effect in analog gravity.
Next, (iv) the nature of the horizon (turning point) is

clearly emerging, and the role of both v=c in the fluid
models, and of the horizon equation n ¼ c=v (phase
horizon) in the dielectric case are enhanced. Connection
formulas allow one to calculate the fundamental ratio
jJþx j2=jJ−x j2, where J�x stays for the (conserved) current
associated with the dispersive modes of wave numbers k�
(k− is associatedwith negative norm) (see Secs. IV B, IV C).
As is well known, this ratio qualifies thermality of the
Hawking analog radiation. Last, but not least, (v) one may
also provide a general rule for the computation of the gray-
body factor, which is in agreement with the analysis carried
out in [8,14] as far as theCorleymodel is concerned, and that
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is extended to the dielectric model to be discussed herein.
As general assumptions, in agreement with the aforemen-
tioned previous literature, we consider the situation where
dispersive effects are mild and the relevant background
fields like vðxÞ, cðxÞ in the fluid models and nðxÞ in the
dielectric models are asymptotically constant and bounded.
In a remarkable correspondencewith the standard black hole
case, the gray-body factor is simply due to “scattering on a
barrier,” provided by the geometry of the Hawking modes
created in the region of the horizon, and is not directly
associated with the presence of the horizon itself. The fourth
wave number mode, a short wave number mode distinct
from the Hawking mode, is then actually decoupled at the
horizon.

II. THE MASTER EQUATION:
A ORR–SOMMERFELD TYPE FOURTH

ORDER EQUATION

We show that three significant cases of wave equations in
dispersive analog gravity can be reconduced to the equation

ϵ2
d4Φ
dx4

�
�
p3ðx; ϵÞ

d2Φ
dx2

þ p2ðx; ϵÞ
dΦ
dx

þ p1ðx; ϵÞΦ
�
¼ 0;

ð2:1Þ

where the upper sign occurs in the case of subluminal
dispersion and the lower one in the case of superluminal
dispersion. The latter case is considered in Nishimoto’s
works (see e.g., [25] and references therein). Furthermore,

piðx; ϵÞ ¼
X∞
n¼0

pinðxÞϵn ð2:2Þ

is assumed. As ϵ → 0 one finds the so-called reduced
equation

p30ðxÞ
d2Φ
dx2

þ p20ðxÞ
dΦ
dx

þ p10ðxÞΦ ¼ 0: ð2:3Þ

Solutions of

p30ðxÞ ¼ 0 ð2:4Þ

define the turning points (TPs) of the equation, and in the
analysis of the reduced equation the behavior of solutions
in the neighborhood of the TPs is of utmost relevance for
the scattering problem we mean to delve into. In the
following, we limit ourselves to the case of a single TP,
to be identified with x ¼ 0 without loss of generality. In
[25] it is assumed that the reduced equation displays a
Fuchsian singularity at the TP (nothing actually prevents
the general equation in itself to admit a regular behavior).
One may then expect two kinds of solutions:

Φð1Þ ¼ 1þ
X∞
n¼1

dnxn; ð2:5Þ

Φð2Þ ¼ x1−λ
�
1þ

X∞
n¼1

enxn
�
; ð2:6Þ

where λ is related to a root of the so-called indicial equation
associated with the reduced equation in the neighbourhood
of the TP. This kind of solution appears to be useful in the
Wentzel-Kramers-Brillouin (WKB) approximation, which
in our scheme, differently from the hypotheses in [24,25],
can be extended to hold also in the asymptotic region of
unboundedly large values of x. It is worth mentioning that
the first solution above is regular at the turning point. This
is relevant also in the following sections.
The great advantage of referring to the above equation is

that sophisticated analytical calculations carried out mostly
by [25] are just available, where a considerable effort has to
be exploited in order to keep under control the asymptotic
formulas and the associated connection formulas.

III. A SUMMARY OF THE APPROXIMATION
METHOD NEAR THE TURNING POINT

We sketch for the sake of completeness the essentials of
the approximation method near the TP as described in [25],
of which we maintain the same notation. The starting point
consists in rewriting Eq. (2.1) as the first order system

ϵ
dY
dx

¼ Pðx; ϵÞY; ð3:1Þ

where

Y ¼

0
BBB@

y

y0

y00

ϵyð3Þ

1
CCCA; ð3:2Þ

and

Pðx; ϵÞ ¼

0
BBB@

0 ϵ 0 0

0 0 ϵ 0

0 0 0 1

∓ p1ðx; ϵÞ ∓ p2ðx; ϵÞ ∓ p3ðx; ϵÞ 0

1
CCCA;

ð3:3Þ

where, again, the upper sign is relative to the subluminal
case. The “stretching and shearing transformations”

x − a ¼ ϵ2=3s; ð3:4Þ

Y ¼ ΩðϵÞW; ð3:5Þ
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ΩðϵÞ ≔ diagfϵ4=3; ϵ2=3; 1; ϵ1=3g; ð3:6Þ

where a is the turning point, allow one to obtain

dW
ds

¼ Aðs; ϵÞW; ð3:7Þ

where

Aðs; ϵÞ ¼

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

∓ p1ðxðsÞ; ϵÞϵ2=3 ∓ p2ðxðsÞ; ϵÞ ∓ p3ðxðsÞ; ϵÞϵ−2=3 0

1
CCCA; ð3:8Þ

and xðsÞ ¼ aþ ϵ2=3s. The functions piðx; ϵÞ (i ¼ 1, 2, 3)
can be expanded in power series of ϵ with coefficients
which are polynomials of x − a in the neighborhood of the
TP, and in turn the matrix A can be expanded in power
series of ϵ1=3 with polynomial coefficients of s. Solutions
are constructed in the form

Wðs; ϵÞ ¼
X∞
i¼0

WiðsÞϵi=3; ð3:9Þ

at the lowest order, W0ðsÞ must satisfy

dW0

ds
¼ A0ðsÞW0; ð3:10Þ

where

A0ðsÞ ¼

0
BBB@

0 1 0 0

0 0 1 0

0 0 0 1

0 ∓ p20ðaÞ ∓ p0
30ðaÞs 0

1
CCCA: ð3:11Þ

Equation (3.10) is equivalent to the fourth order differential
equation

d4w
dz4

�
�
z
d2w
dz2

þ λ
dw
dz

�
¼ 0; ð3:12Þ

where

z ¼ ðp0
30ðaÞÞ1=3s ¼ ðp0

30ðaÞÞ1=3ϵ−2=3ðx − aÞ; ð3:13Þ

and

λ ¼ p20ðaÞ
p0
30ðaÞ

: ð3:14Þ

A further corroboration of Eq. (3.12) is contained in
Appendix A. Solutions to Eq. (3.12) are found by means
of Laplace integrals

wjðzÞ ¼
1

2πi

Z
Cj

dttλ−2 exp

�
zt� 1

3
t3
�
; ð3:15Þ

with a suitable choice for the paths Cj in the complex t
plane. See e.g., [25,27] for the superluminal case, where
solutions of (3.15) are also known as generalized Airy
functions. See Fig. 1 on the left side for paths Cj adopted in
[25,27], with j ¼ 1;…; 6.
It is interesting to deduce the solutions above directly, in

order to point out the subtleties in solving (3.12). We first
deduce solutions (3.15), by means of the Laplace-transform
formalism: by putting

wjðzÞ ¼
1

2πi

Z
Cj

dtϕðtÞ expðztÞ; ð3:16Þ

we find

1

2πi

Z
Cj

dtðt4 þ zt2 þ λtÞϕðtÞ expðztÞ ¼ 0; ð3:17Þ

and, as usual, thanks to an integration by parts

1

2πi

Z
Cj

dtzt2ϕðtÞ expðztÞ

¼ 1

2πi
t2ϕðtÞ expðztÞjCj

−
1

2πi

Z
Cj

dt

�
d
dt

ðt2ϕðtÞÞ
�
expðztÞ; ð3:18Þ

where t2ϕðtÞ expðztÞjCj
is the variation of t2ϕðtÞ along Cj.

One obtains solutions by putting
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d
dt

ðt2ϕðtÞÞ ¼ �
�
t2 þ λ

t

�
t2ϕðtÞ; ð3:19Þ

which provides us (3.15), and imposing also

tλ exp

�
zt� 1

3
t3
�����

Cj

¼ 0: ð3:20Þ

The fourth solution, i.e., the constant solution, which is
present in a trivial way as a solution of the original
Eq. (3.12), seems to be quite “hidden” in the Laplace-
transform formalism. Naively, it would seem that one could
find it by a suitable choice of the path C along which the
complex integration is performed. For example, one might
easily find the zero solution as a integral along any closed
path nonintersecting the cut. Still, this reasoning is too
naive. What is a bit difficult to realize is that the equation
obtained by Laplace transform admits also a distributional
solution: indeed, it can be rewritten as

t2
dϕðtÞ
dt

þ ð2t ∓ ðt4 þ λtÞÞϕðtÞ ¼ 0: ð3:21Þ

As a consequence, it is easy to show that

ϕðtÞ ¼ δðtÞ ð3:22Þ

is a distributional solution, where δðtÞ is the Dirac delta. By
direct substitution, we get a first term which is t2δ0ðtÞ,
which is zero (cf. [29], Sec. 9.11, Eq. (4) ). At the same
time, in a distributional sense, we get also
ð2t ∓ ðt4 þ λtÞÞδðtÞ ¼ 0. Then, the constant solution arises
in this framework as

wCðzÞ ¼
Z
C
dtδðtÞ expðztÞ ¼ 1: ð3:23Þ

Note that we are allowed to put (cf. [8])

z ¼ signðzÞjzj; ð3:24Þ
as we are interested in real values of z (and x).
Paths extending to infinity in the complex t plane must

be restricted to allowed regions. In the superluminal case
(− sign in front of the cubic term in the exponential), we
have the same regions as for the Airy functions, with
θ ≔ argðtÞ:

θ ∈
�
−
π

6
;
π

6

�
∪
�
π

2
;
5π

6

�
∪
�
7π

6
;
3π

2

�
: ð3:25Þ

In the subluminal case (þ sign in front of the cubic term in
the exponential), we find the complementary regions:

θ ∈
�
π

6
;
π

2

�
∪
�
5π

6
;
7π

6

�
∪
�
3π

2
;
11π

6

�
: ð3:26Þ

It is interesting to point out that one may select a basis of
solutions. For example, for the superluminal case, we list
the approximations of the solutions in the asymptotic
region (large z) as determined in [25]:

w1ðzÞ ¼ −
eλπi

2
ffiffiffi
π

p z
λ
2
−5
4e−

2
3
z
3
2ð1þOðz−3

2ÞÞ; j argðzÞj < π;

ð3:27aÞ

w2ðzÞ ¼
e−λπi

2
ffiffiffi
π

p z
λ
2
−5
4e−

2
3
z
3
2ð1þOðz−3

2ÞÞ; π

3
< argðzÞ< 7π

3
;

ð3:27bÞ

C1

C2

C3

C5

C4

C6

C2

C3

C4

C1

C5

C6

superluminal paths subluminal paths

*

*

*

*

*

*

FIG. 1. Paths for the superluminal case (left side, see [25,27]), labeled with Cj, j ¼ 1;…; 6, and also for the subluminal case (obtained
by a rotation of −π=3). An asterisk has been introduced for the paths in the latter case.
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w3ðzÞ¼
i

2
ffiffiffi
π

p z
λ
2
−5
4e

2
3
z
3
2ð1þOðz−3

2ÞÞ; −
π

3
< argðzÞ< 5π

3
;

ð3:27cÞ

w4ðzÞ ¼
eλπi − e−λπi

2πi
Γðλ − 1Þz1−λð1þOðz−3ÞÞ;

− π < argðzÞ < π

3
; ð3:27dÞ

w5ðzÞ ¼
eλπi − e−λπi

2πi
Γðλ − 1Þz1−λð1þOðz−3ÞÞ;

π

3
< argðzÞ < 5π

3
; ð3:27eÞ

w6ðzÞ ¼
eλπi − e−λπi

2πi
Γðλ − 1Þz1−λð1þOðz−3ÞÞ;

−
π

3
< argðzÞ < π: ð3:27fÞ

A basis of solutions is obtained by considering one of the
following sets:

Wð1Þ
0 ≔ f1; w6ðzÞ; w3ðzÞ; w1ðzÞg; ð3:28aÞ

Wð2Þ
0 ≔ f1; w5ðzÞ; w2ðzÞ; w3ðzÞg; ð3:28bÞ

Wð3Þ
0 ≔ f1; w4ðzÞ; w1ðzÞ; w2ðzÞg; ð3:28cÞ

for

argðzÞ ∈
�
−
π

3
; π

�
; ð3:29aÞ

argðzÞ ∈
�
π

3
;
5π

3

�
; ð3:29bÞ

argðzÞ ∈
�
−π;

π

3

�
; ð3:29cÞ

respectively [27].
It is also easy to show that, both in the superluminal and

in the subluminal case, by choosing suitably also the
subluminal solutions, one finds

w1ðzÞ ¼ ψλ−1w3ðψzÞ ¼ ψ2ðλ−1Þw2ðψ2zÞ; ð3:30aÞ

w4ðzÞ ¼ ψλ−1w6ðψzÞ ¼ ψ2ðλ−1Þw5ðψ2zÞ; ð3:30bÞ

where

ψ ≔ ei
2
3
π: ð3:31Þ

One may also notice that, by considering

w̄j̄ðzÞ ≔ ðe−iπ3Þλ−1wjðe−iπ3zÞ; ð3:32Þ

for j ¼ 1;…; 6, one may formally find basis sets also for
the subluminal case. See Fig. 1, right side.
In the following sections, we shall exploit the afore-

mentioned mathematical formalism in order to study two
models for the analogous Hawking effect in condensed
matter system. We shall consider two subluminal cases,
represented by the Corley subluminal model and the
Hopfield model for dielectric media. In the companion
paper [23], we shall deal with the superluminal case
represented by Bose–Einstein condensates, and also the
further subluminal case represented by surface waves.

IV. CORLEY MODEL: SUBLUMINAL CASE

We refer mainly to Corley in the subluminal case, which
is considered in [2,8,14]. It represents the simplest model
one can consider in this field, and, differently from e.g.,
BEC and water waves, to be discussed in the companion
paper [23], it does not allow a variable speed of sound
velocity cðxÞ. Furthermore, it cannot be related to the
dielectric model which is discussed in the following
section. As such, it is of limited physical interest, still
we discuss it in our framework as a useful benchmark for
our master equation and for our approximations. We shall
not discuss the superluminal case for brevity. From the
action

S ¼ 1

2

Z
d2x

�
ðð∂t þ v∂xÞϕÞ2 þ ϕ

1

k20
∂4
xϕ

�
ð4:1Þ

displayed in [2,22] one obtains by separation of variables
the fourth order ordinary differential equation

1

k20
∂4
xφþ

�
1 −

v2ðxÞ
c2

�
∂2
xφþ 2

vðxÞ
c2

ðiω − v0ðxÞÞ∂xφ

− i
ω

c2
ðiω − v0ðxÞÞφ ¼ 0; ð4:2Þ

where vðxÞ is the velocity field and v0ðxÞ stands for its first
derivative with respect to x, and we have restored the
(constant) sound velocity c. In order to reproduce the
features of the master equation above, one must consider
the following choice of the scale parameter: we assume as a
significant physical scale, as in [2,22], the scale k0
associated with the nonlinearity. By defining the dimen-
sionless parameter1

ϵ ≔
ω

ck0
; ð4:3Þ

1It might be questioned such a choice of expansion parameter,
as other choices could appear as more natural, e.g., one could
consider κ [cf. (4.9)] in place of ω. Still, it can be verified that in
the error estimates like e.g., in (4.20) nothing substantial changes.
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and the dimensionless coordinate ξ ¼ xω=c, (4.2) becomes
(with a small abuse of notation)

ϵ2∂4
ξφþ

�
1 −

v2ðξÞ
c2

�
∂2
ξφþ 2

vðξÞ
c

�
i −

v0ðξÞ
c

�
∂ξφ

þ
�
1þ i

v0ðξÞ
c

�
φ ¼ 0: ð4:4Þ

Assuming that k0 ≫ ω=c, we get 0 < ϵ2 ≪ 1. Moreover,
we have

p3ðξ; ϵÞ ¼ 1 −
v2ðξÞ
c2

¼ p30ðξÞ; ð4:5aÞ

p2ðξ; ϵÞ ¼ 2
vðξÞ
c

�
i −

v0ðξÞ
c

�
¼ p20ðξÞ; ð4:5bÞ

p1ðξ; ϵÞ ¼ 1þ i
v0ðξÞ
c

¼ p10ðξÞ: ð4:5cÞ

There is no higher order contribution to the coefficients
for this specific model (which is actually exceptional from
this point of view). This is not true in the case of the other
models we take into consideration herein and in the
companion paper. We remark that the expansion parameter
(4.3) defining our limit of weak dispersion is the same as
in [8,14].

A. The reduced equation

We notice that, in the limit ϵ → 0, one obtains the
reduced equation, which we express in the original coor-
dinates

�
1 −

v2ðxÞ
c2

�
∂2
xφþ 2

vðxÞ
c2

ðiω − v0ðxÞÞ∂xφ

− i
ω

c2
ðiω − v0ðxÞÞφ ¼ 0; ð4:6Þ

and, accordingly to [2], we assume vðxÞ ≤ 0, so that the TP
coincides with the solution of

vðxÞ þ c ¼ 0: ð4:7Þ

In the neighborhood of the TP we have

vðxÞ ≃ −cþ κx; ð4:8Þ

where

κ ≔ v0ðx ¼ 0Þ: ð4:9Þ

The region where this approximation holds is called linear
region henceforth. Notice that this is purposefully the same
denomination as e.g., in [8].

The indicial equation for Eq. (4.6) provides a vanishing
root α1 ¼ 0 and a nonvanishing one α2 ¼ i ω

cκ, so that, being
λ ¼ 1 − α2, one gets

λ ¼ 1 − i
ω

κ
; ð4:10Þ

which is not an integer number for any ω > 0.

B. WKB approximation

By now, we assume x > 0, i.e., jvj < c, which means
that the external region is taken into account. We put

φðξÞ ¼ exp

�
θðξÞ
ϵ

�X∞
i¼0

ϵiyiðξÞ; ð4:11Þ

and refer e.g., to the presentation given in [30]. To the
lowest order, we obtain

θ04 þ
�
1 −

v2

c2

�
θ02 ¼ 0; ð4:12Þ

whose solutions are θ0 ¼ 0 (multiplicity two), and

θ0� ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2

c2

s
: ð4:13Þ

Notice that, for x < 0, being jvj > c, we obtain an
exponentially increasing solution (called growing mode
in [8]), and a decaying solution. We first take into account
the latter solutions, and associate to them the so-called
transport equation

θ02ð6θ00y0þ4θ0y00þθ02y1Þþ
�
1−

v2

c2

�
ðθ00y0þ2θ0y00þθ02y1Þ

þ2
v
c

�
i−

v0

c

�
θ0y0¼0; ð4:14Þ

and the next-to-leading-order equation

θ02ð6θ00y1þ4θ0y01þθ02y2Þþ
�
1−

v2

c2

�
ðθ00y1þ2θ0y01þθ02y2Þ

þ2
v
c

�
i−

v0

c

�
θ0y1þ5θ02y000þ

�
12θ0θ00þ2

v
c

�
i−

v0

c

��
y00

þ
�
3θ002þ4θ0θ00þ1þi

v0

c

�
y0¼0: ð4:15Þ

Going back to the original coordinates, we find the
solutions
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φ�ðxÞ ¼ C

�
1

1 − v2ðxÞ
c2

�
3=4

exp

�
� i
ϵ

ω

c

Z
x
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2ðsÞ
c2

s �
exp

�
i
ω

c

Z
x
ds

vðsÞ
c

1

1 − v2ðsÞ
c2

�

×

�
1þ ϵC1 �

ϵ

2

c
ω

Z
x
ds

1

ið1 − v2ðsÞ
c2 Þ32

�
1

1 − v2ðsÞ
c2

ψ1ðsÞ þ ψ2ðsÞ
�
þOðϵ2Þ

�
; ð4:16Þ

where

ψ1ðsÞ ¼ ði2ωþ 3v0ðsÞÞ v
2ðsÞ
c4

�
15

4
v0ðsÞ þ 3

4
iω

�

þ v2ðsÞv02ðsÞ
c4

; ð4:17Þ

ψ2ðsÞ ¼
ω2

c2
− 4i

ωv0ðsÞ
c2

−
7

2

v02ðsÞ þ vðsÞv00ðsÞ
c2

: ð4:18Þ

Omitting the terms of order ϵ, the solutions correspond to
the high wave number k� solutions appearing in [2,8]. C is
a normalization constant which, as in [2], we can put equal
to one. C1 is a second integration constant that also can be
considered of order one. The OðϵÞ terms allow us to
determine the conditions under which our approximations
remain good. Since the integral diverges when x → 0, this
approximation fails at the TP. Still, it is assumed to hold in
the linear region. When x → ∞, the integral part of the
order ϵ terms goes like

∼ ∓ i
1

2

1

ð1 − v2r
c2Þ

3
2

�
1 −

3

2

v2r
c2

1

1 − v2r
c2

�
ω2

c2
x
k0

; ð4:19Þ

where −c < vr < 0 is the value assumed by v far from the
TP. We observe that the validity of the approximation
requires

x ≪ k0
c2

ω2

�
1 −

v2r
c2

�5
2 ¼ 1

ϵ

c
ω

�
1 −

v2r
c2

�5
2

: ð4:20Þ

Since, as in [2], we are interested in very low frequencies,
ω ∼ 0; this is not a strong restriction at all, at least if the
asymptotic velocity is not too close to −c.
It is also interesting to write the leading terms of φ�ðxÞ in

the linear region:

φ�ðxÞ ≃
�
2κ

c
x

�
−3=4

x−
iω
2κ exp

�
� i
ϵ

2

3

ffiffiffiffiffi
2κ

c

r
x
3
2

�
: ð4:21Þ

Two further solutions occur when θ0 ¼ 0 can be obtained
from the reduced equation. The corresponding momenta
are indicated, for a better comparison with [2], as k�s (in
literature one finds also the following correspondence:
kþs ↦ ku, k−s ↦ kv). In order to maintain the same order

of approximation in our WKB expansion, one would need
exact solutions, in order to avoid the introduction of a
further expansion parameter. Nevertheless, we can appeal
to the general features of the equation itself. Indeed, we
obtain near the regular singular point x ¼ 0 (our TP) the
following series expansions:

φ−sðxÞ ¼ 1þ
X∞
n¼1

cnxn; ð4:22Þ

φþsðxÞ ¼ xi
ω
κ

�
1þ

X∞
n¼1

dnxn
�
: ð4:23Þ

By comparing, as in [2,8], the behavior of the above four
solutions in the linear region where (4.8) holds, with the
solutions near the TP (to be discussed in the following
subsection), one finds both thermality and the gray-body
factor.
It is useful to provide approximate solutions of the

reduced equation even for large x (in the external region
with respect to the black hole). It is easy to show that for
large x in the above sense we have vðxÞ∼ const, and then
v0 ¼ 0. As a consequence, e.g., under the conditions of
theorem 1.9.1 of [31], we get as x → ∞

φ−sðxÞ ∼ exp

�
−iω

1

c − vr
x

�
; ð4:24Þ

φþsðxÞ ∼ exp

�
iω

1

cþ vr
x

�
; ð4:25Þ

and this completes our asymptotic basis of solutions together
with φ−ðxÞ and φþðxÞ. As useful interpolating formulas
(WKB-like, but they cannot be rigorously obtained by using
the ϵ expansion as in the above framework) we could also use

φint
−sðxÞ ∼ exp

�
−iω

Z
x
dy

1

c − vðyÞ
�
; ð4:26Þ

φintþsðxÞ ∼ exp

�
iω

Z
x
dy

1

cþ vðyÞ
�
; ð4:27Þ

which still display the correct behavior both in the linear
region and in the asymptotic one.
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For x < 0, the reduced equation provides us two further
solutions

φdðxÞ ¼ 1þ
X∞
n¼1

enxn; ð4:28Þ

φlðxÞ ¼ xi
ω
κ

�
1þ

X∞
n¼1

fnxn
�
; ð4:29Þ

with the asymptotic behavior

φdðxÞ ∼ exp

�
−iω

1

c − vl
x

�
; ð4:30Þ

φlðxÞ ∼ exp

�
iω

1

cþ vl
x

�
; ð4:31Þ

with limx→−∞ vðxÞ≕ vl < −c < 0. These solutions corre-
spond to left-moving modes in the superluminal region, and
they are the only propagating modes in that region. We
notice that the mode φlðxÞ is a negative-norm mode. We
remark that the modes we obtain are the same as in [2,8],
albeit obtained through a different approach to the WKB
approximation. This confirms also at this level the perfor-
mance of our general framework.

C. Approximation near the turning point

We first point out that, for the present case, we have2

z ¼
�
2κ

c

�
1=3

ϵ−2=3x; ð4:32Þ

and we choose to construct directly the relevant physical
states by exploiting the method of the steepest descents
[32–34]. The analysis proceeds as in the original paper by
Corley [2], with the relevant difference that a different
parameter of the asymptotic expansion is proposed (e.g., in
[2] the nonlinearity scale k0, which plays a fundamental
role in our analysis, is put equal to one); furthermore, the
near horizon equation allows one to take into account
the −s mode, albeit in the form of a constant solution,
which still matches the WKB behavior in the matching
region. A different but rigorous tool for evaluating the
branch cut contribution (see below) is exploited. In pre-
vious literature, starting from [2], the so-called boundary
condition for the subluminal case required a decaying mode
beyond the horizon (x < 0), described by a path in the
complex plane that can be deformed into the ones in the
external region. The mathematical root of this condition
will be discussed below.
From a physical point of view, this condition fixes the

relative amplitudes of the involved modes near the turning

point. Strictly speaking, it is not a boundary condition in
itself, but it indicates how the modes involved in the
process at hand actually participate to the process itself.
Figure 2 amounts to the diagram introduced by Corley [2],
in which the homotopic deformation of the decaying mode
for x < 0 gives the modes with momenta kþ, k−, kþs
appearing in the external region (x > 0). They represent the
high momentum incoming modes k�, one of which having
negative norm (k−), and the outgoing Hawking mode kþs.
Since these modes must implement such a diagram near the
TP, they participate with the same relative amplitude to the
scattering process. The fourth mode, i.e., the short momen-
tum regular mode, k−s, corresponds to a solution in the
Laplace space (or, equivalently, in the Fourier space) that is
of different nature. Therefore, it cannot be included in the
diagram as a mode resulting from the homotopic deforma-
tion of the decaying mode. With respect to the analysis
carried out in [8,14], which is instead based on a Fourier
transform analysis, the diagrams involved in the Hawking
effect are the same as in Fig. 2. In order to match the WKB
solutions, we are interested in an asymptotic expansion for
large z (notice that this can be obtained also by leaving x
suitably small in order to allow the linear approximation to
hold true).
The k� contribution can be evaluated by means of the

saddle point approximation, as well as the aforementioned
decaying mode. We need the following formal expression:

wjðzÞ ¼
1

2πi

Z
Cj

dttλ−2 exp

�
ztþ 1

3
t3
�
; ð4:33Þ

which, by putting t ¼ ffiffiffiffiffijzjp
u, can be rewritten as

C_

C+

Ccut

Cd

FIG. 2. Paths used in the subluminal case in Corley’s work [2].
C� correspond to the dispersive modes, Ccut to the Hawking
mode, and Cd to the decaying mode. The last mode is the one in
the inner region x < 0. As remarked by Corley [2], Cd can be
deformed in the paths Cþ, C−, Ccut.

2We use (3.13) working with the coordinate x in place of ξ.
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wjðzÞ ¼
1

2πi
jzjλ−12 IjðzÞ; ð4:34Þ

where

IjðzÞ ¼
Z
C̄j

dugðuÞ expðjzj3=2h�ðuÞÞ; ð4:35Þ

and

gðuÞ ≔ uλ−2; ð4:36Þ

h�ðuÞ ≔ �uþ u3

3
; ð4:37Þ

here � ¼ signðxÞ and Cj are the paths defined in [2].
Compare also with [8]. We have for x < 0 the decaying
mode passing through the saddle point u ¼ 1

wdecayingðzÞ ≃
1

2
ffiffiffi
π

p jzj−iω
2κ−

3
4e−

2
3
jzj3=2 : ð4:38Þ

The other saddle point u ¼ −1 corresponds to the growing
mode (which diverges at infinity), whose coefficient in the
scattering matrix is zero (cf. e.g., [8,21]).3

For x > 0 we have the modes k� in correspondence with
the steepest descents passing through the saddle points
u� ¼ �i, and we get

wþðzÞ ≃
1

2
ffiffiffi
π

p e−
3
4
πie

πω
2κ jzj−iω

2κ−
3
4ei

2
3
jzj3=2 ; ð4:39Þ

w−ðzÞ ≃
1

2
ffiffiffi
π

p e
1
4
πie−

πω
2κ jzj−iω

2κ−
3
4e−i

2
3
jzj3=2 : ð4:40Þ

It is nice to notice that, thanks to relation (4.32), the
amplitude of the decaying mode and of the k� modes above
are proportional to

ffiffiffi
ϵ

p
and then vanish as ϵ → 0, as

expected. We can also provide a bound on the error
occurring in neglecting higher order contributions to the
saddle point approximation. Following e.g., [32] we find

x3=2 ≫
1

k0

ffiffiffiffiffi
c
2κ

r
1

8

�
1681

36
þ 4

ω4

κ4
þ 110

3

ω2

κ2

�
1=2

: ð4:41Þ

As to the ratio ω=κ, it is known that the Hawking effect is
mostly peaked for ω ≃ κ. As is well known, there is also a
maximal value of ω beyond which no Hawking effect
occurs. See the following subsection for more details.
As to the cut contribution, it represents the Hawking

mode, as is well known. It is remarkable that the branch cut

lies along the steepest descent. Indeed, we have that for
the subluminal case the imaginary part of uþ u3=3 is
bð1þ a2 − b2=3Þ, where u ¼ aþ ib. As a consequence,
b ¼ 0 is a steepest descent line. This allows us to compute
the cut contribution along the lines suggested in [34],
chapter 4, section 4. 8, finding thus

wcutðzÞ ≃ −
1

iπ
jzjiωkΓ

�
−i

ω

κ

�
sinh

�
πω

κ

�
; ð4:42Þ

which coincides (apart for the factor 2πi we introduced)
with the approximation given in [2], but on more rigorous
grounds. This result is compatible with the analogous one
obtained in [8], with the difference that the Fourier trans-
form formalism is adopted and a dominated convergence
must be used therein.
For x < 0, it is easy to realize that the constant solution

still appears. And one may also simply consider the
contribution (4.42) by choosing a suitable analytical
continuation for x < 0. It turns out that, by choosing the
branch where −1 ¼ e−iπ , the further solution one obtains,

wcut−lðzÞ∶ ≃ −
1

iπ
eπ

ω
κzi

ω
kΓ
�
−i

ω

κ

�
sinh

�
πω

κ

�
; ð4:43Þ

is such that it corresponds to the Hawking partner, living on
a different branch (cf. also [2]); furthermore, one is enabled
to obtain the so-called mode which straddles the horizon
[36]. See the following subsection.

D. Matching: Complete solutions

A careful comparison with the WKB expansion dis-
played in the previous section provides us the connection
formulas (cf. the so-called central connections in [25]). It
has to be remarked that, as a consequence of the Corley’s
black hole boundary condition, in the external region near
the turning point we have

ϕðx;tÞ¼ϕ1ðx;tÞþϕ2ðx;tÞþϕ3ðx;tÞþhϕ4ðx;tÞ; ð4:44Þ

with ϕ1 ↦ wþ, ϕ2 ↦ w−, ϕ3 ↦ wcut, ϕ4 ↦ 1 and where h
remains undetermined by adopting the diagram of Fig. 2.
Therefore, the modes corresponding to w�; wcut enter with
the same amplitude in the scattering matrix. Instead, for the
fourth constant mode, room is left for a different amplitude,
as indicated by the factor h in front of it. Eventually, h
might even be set equal to zero; see also the discussion
below Eq. (4.46). From a mathematical point of view, the
solutions w�; wcut; wdecay, for z ¼ 0, where they are regular,
as a consequence of Cauchy’s theorem, satisfy

wþð0Þ þ w−ð0Þ þ wcutð0Þ ¼ wdecayð0Þ: ð4:45Þ

For what concerns strictly the problem of fixing the relative
amplitudes of the respective modes, this amounts to the

3The growing mode could still give some contributions in other
context, see e.g., [35]. We thank the anonymous referee for
pointing this out.
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above boundary condition stated by considering modes on
different sides of the real turning point. Condition (4.45)
works as well as the original condition by Corley.
A complete description of the matching is described in

Appendix B. By comparing with the WKB solutions again
in the matching region we find

ϕðx; tÞ ¼ e−
3
4
πi e

πω
2κ

2
ffiffiffi
π

p
�
2κ

c

�
−iω
6κþ1

2

ϵ
iω
3κþ1

2φþðx; tÞ

þ e
1
4
πi e

−πω
2κ

2
ffiffiffi
π

p
�
2κ

c

�
−iω
6κþ1

2

ϵ
iω
3κþ1

2φ−ðx; tÞ

−
sinhðπωκ Þ

πi
Γ
�
−
iω
κ

��
2κ

c

�iω
3κ

ϵ−
2iω
3κ φþsðx; tÞ

þ hφ−sðx; tÞ: ð4:46Þ

h is still undetermined. The fact that the fourth mode
φ−sðx; tÞ is not involved in the Corley’s black hole boundary
condition, suggests the following interpretation: it does not
participate in the process of Hawking particle production
very near the TP, but it still might participate at a subsequent
stage when scattering on the geometry depletes the flux of
Hawking particles by “barrier reflection.” This is what
consistently appears to hold true for the model at hand, as
also a direct calculation of the emitted flux confirms.
In literature, there exist two models where the fourth

mode appears in the Corley diagram, see [16,18], where the
fourth mode solution near the horizon has the same
functional dependence of the other three solutions, and
h ¼ 1 occurs. Homotopic deformation from the decaying
mode involves also the fourth mode, and its direct con-
tribution to the gray-body factor appears [16]. On the
grounds of the comparison with these models, being
the fourth mode not present in the Corley’s diagram, the
absence of the mode leaves h undetermined; we can also
infer that there is no contribution to h for what strictly
concerns the pair-creation process at least at the leading
order. We shall discuss the problem further in the following.
As to the modes d, l in the black hole region, their

matching is analogous to the one described above. The
mode d, as discussed above, may be considered, together
with its counterpart −s on the external side of the horizon, a
single mode representing the particle entering the hole, and,
as such, it passes without any relevant effect. Of course, it
can also participate in the whole scattering process for
Hawking particles as the backward mode originated from
scattering on the geometry of Hawking particles. The other
mode l can be again straightforwardly matched with its
WKB part, and together with the þs mode one may define
the so-called straddle mode:

ϕstraddleðx; tÞ ≔ ϕþsðx; tÞθðxÞ þ ϕlðx; tÞθð−xÞ; ð4:47Þ

where θðxÞ is the Heaviside function. This mode, starting
from the matching regions on both sides of the turning

point, is composed by the Hawking mode on the external
side, and of the Hawking partner on the black hole side. It
contains a Planckian distribution of Hawking modes in the
external region [36]. With respect to the standard case, there
is of course a near-horizon regular part of the modewhich is
missing in the standard black hole case. See also the
discussion in [14].
It may be noticed that, due to the transformation defined

in (3.5), each solution in the near horizon approximation
should be multiplied by an overall factor ϵ4=3. We can
reabsorb this factor in the normalization. We shall adopt
this convention henceforth in all the models we take into
consideration.

E. Thermality

As usual, for thermality one may verify that

jJ−x j
jJþx j

¼ e−βω; ð4:48Þ

where

β ≔
2π

κ
ð4:49Þ

is the inverse Hawking temperature. We stress that, in this
sense, thermality is unaffected by the still undetermined
value of h. The current conservation provides

jJþs
x j ¼ jJþx j − jJ−x j þ jJ−sx j; ð4:50Þ

which amounts to the usual relation between theBogoliubov
coefficients involved in the process. If we separate each
contribution by jJþs

x j we obtain the square modulus of the
amplitudes in (B16).
We note that there is also the contribution of the regular

mode −s, which is missing in the near-horizon diagram 2.
The subtle point is that a priori, the flux at infinity of the
Hawking mode þs can be depleted because of scattering
(reflection) on a potential barrier emerging as an effect of
the geometry. It has nothing to do with the horizon itself, as
in the well-known astrophysical case: in four dimensions,
e.g., a scalar particle on the Schwarzschild background is
affected by the presence of a centrifugal barrier in the
external region of the black hole (apart for l ¼ 0 modes),
which can reflect back to the horizon the Hawking quanta.
Of course, in the 2D Schwarzschild case this phenomenon
is absent (no centrifugal contribution). This discussion is
in agreement with the one carried out in [8,14], where
only scattering effects are present in the depletion of the
Hawking flux.

F. Gray-body factor

In order to get also the gray-body factor one must
evaluate the ratio
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R ≔
jJ−sx j
jJþs

x j ; ð4:51Þ

which indicates the fraction of particles reflected back, and
then obtain the gray-body factor as

Γ ¼ 1 − R ¼ 1 −
jJ−sx j
jJþs

x j : ð4:52Þ

In line of principle, one might deduce the gray-body factor
from the direct calculation of

jβωj2 ≔
jJ−x j
jJþs

x j ¼ jC̄−j2; ð4:53Þ

which represents the number of created particles, as known
[for the second equality cf. (B17)]. In the case of the present
model, one would obtain a perfectly Planckian spectrum
with Γ ¼ 1, which implies h ¼ 0. Still, even if this route is
viable, there is the risk of a poor approximation (as in the
standard Hawking effect calculations). We notice that
fluxes in (4.52) are both calculated at x ¼ ∞, which is
the only asymptotic region available to both the modes at
hand. Our strategy in the present framework for the
calculation of the gray-body factor consists in taking
account of the scattering contribution to the geometry
simply by studying the reduced equation for the�s modes,
reducing it in the form of a Schrödinger equation. This
might be obtained by means of a suitable variable trans-
formation on the geometry associated with the reduced
equation, which is the geometry of the analog black hole,
allowing one to switch to Schwarzschild-like coordinates
where the metric is diagonal and only a second order term
in spatial derivatives appears. Indeed, the reduced equation,
which is valid in the WKB approximation, couples the
short wave number modes �s to each other. Given a þs
mode entering from the part of the linear region, where the
WKB approximation is valid, we are enabled to calculate

R≕Rreduced ≔
�jJ−sx j
jJþs

x j
�

reduced
; ð4:54Þ

with the fluxes computed asymptotically, using e.g.,4

tortoiselike coordinate ρ [see (4.59) below], and with
jJ−sx j measured at ρ ¼ −∞ (i.e., near the horizon, but still
in a region where the WKB works well). That value would
give a mechanism of interplay between the two short wave
number modes, which should be taken properly into
account. Compare again the discussion in [8,14]. Notice
that, in general, the reduced equation has a quite involved
form, and it is not easy to solve exactly, except for
particular cases. As in the astrophysical case, it allows

also further approximations with respect to the weak
dispersion scheme we propose herein. Indeed, even a limit
of low frequency can be adopted, as in the astrophysical
case, without making it difficult to ascertain if thermality is
present, as thermality is anyway granted by the calculations
above. There is also a further possible interpretation, indeed
one may also choose to measure the flux of particles
entering the horizon by measuring the flux of modes d at
x ¼ −∞, as the flux of entering particles generated by the
backscattering and measured by the static observer must
coincide with the one of modes d arriving at x ¼ −∞, so
that R ¼ jJdx j=jJþs

x j.
To be more explicit, (4.6) is of course equivalent to the

Klein-Gordon equation

□ϕðx; tÞ ¼ 0; ð4:55Þ

on the curved background metric

ds2 ¼ c2dt2 − ðvðxÞdt − dxÞ2; ð4:56Þ

when static solutions ϕðx; tÞ ¼ e−iωtφðxÞ are considered. A
standard coordinate transformation

dt ¼ dτ −
g01ðxÞ
g00ðxÞ

dx ð4:57Þ

carries the metric in the diagonal Schwarzschild-like form

ds2 ¼
�
1 −

vðxÞ2
c2

�
c2dτ2 −

1

1 − vðxÞ2
c2

dx2; ð4:58Þ

so that, by choosing the tortoiselike coordinate

ρ ≔
Z

dx

1 − vðxÞ2
c2

; ð4:59Þ

one obtains the following Schrödinger-like equation

1

1 − vðxðρÞÞ2
c2

�
d2φðρÞ
dρ2

þ ω2φðρÞ
�

¼ 0; ð4:60Þ

which amounts to a free equation in the external region.
Therefore, there is no barrier, i.e., no reflection, and the
gray-body factor is trivially

Γ ¼ 1: ð4:61Þ

As a consequence, h ¼ 0 and then, in this framework the
model at hand is purely thermal, at least at the leading order
in ϵ.
As is well known from former studies on the dispersive

models, there exists a maximal frequency ωmax such that,
for ω > ωmax, only two modes participate in the scattering

4Notice that this is not mandatory; cf. e.g., [37] for the BEC
case.
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process and the Hawking effect is no more present [22]. It is
also known that ωmax is proportional to the dispersive scale
k0 both in the subluminal and in the superluminal cases
[38,39], and then it goes to infinity in the limit as k0 → ∞
(i.e., as ϵ → 0). One has to expect that the spectrum is
truncated at ωmax for nonzero values of ϵ.

V. THE DIELECTRIC CASE

This case is more tricky, since one has to deal with
a system of differential equations instead of a single
equation. Indeed, in the so-called ϕ–ψ model [40],
one has

Lφψ ¼ 1

2
ð∂μϕÞð∂μϕÞ þ 1

2χω2
0

½ðvα∂αψÞ2 − ω2
0ψ

2�

þ g
c
ðvα∂αψÞϕ; ð5:1Þ

where ϕ;ψ play the role of electromagnetic field and
polarization field respectively, χ plays the role of the
dielectric susceptibility, vμ is the usual four-velocity vector
of the dielectric, ω0 is the proper frequency of the medium,
and g is the coupling constant between the fields. We get
the system

□ϕ −
g
c
ðvμ∂μψÞ ¼ 0; ð5:2Þ

�
1

χω2
0

ðvμ∂μÞ2 þ
1

χ

�
ψ þ g

c
ðvμ∂μϕÞ ¼ 0: ð5:3Þ

For simplicity, we put g ¼ 1 in what follows (as this
parameter, introduced in [15], is no more necessary herein).
We proceed as in [18], by considering that the spatial
dependence appears in χ and in ω0 in such a way that
χω2

0 ¼ const. See also [40], chapter 10. In this case, we
identify

ϵ2 ≔
1

χω2
0

ð5:4Þ

as the small parameter occurring in the problem.

A. A separated equation for ψ

We apply the operator □ on the left of equation (5.3)
(cf. [16]), and by taking into account the stationary case,
where ϕ ¼ φðxÞeiωt, ψ ¼ fðxÞeiωt are in the kernel of the
operator ½□; vμ∂μ�, one obtains the following fourth order
ordinary differential equation:

− ϵ2∂4
xf − 2iϵ2

ω

v
∂3
xf þ 1

χγ2v2

�
−
�
1 − χγ2

v2

c2

�
þ ϵ2χω2

�
∂2
xf þ 2

�
i
ω

v
1

c2
ð1 − ϵ2ω2Þ − 1

γ2v2

�
∂x

1

χ

��
∂xf

þ
�
ϵ2

ω4

v2c2
−

1

γ2v2

�
∂2
x
1

χ

�
−

ω2

χγ2v2c2
−

ω2

c2v2

�
f ¼ 0: ð5:5Þ

In order to obtain a form reproducing the original master equation (2.1), we need a further step: we define fðxÞ ¼ hðxÞζðxÞ,
with

hðxÞ ¼ A exp

�
−i

ω

2v
x

�
; ð5:6Þ

where A is a constant. hðxÞ is chosen such that the third order term vanishes, and the procedure is analogous to the Liouville
transformation which eliminates the first order term in a second order linear ordinary differential equation. This leads
to the following quartic equation, which is just of the type “Orr–Sommerfeld” in the sense described in the previous
sections,

− ϵ2∂4
xζ þ

�
−

1

χγ2v2

�
1 − χγ2

v2

c2

�
þ ϵ2

1

γ2v2

�
1 −

3

2
γ2
�
ω2

�
∂2
xζ

þ
�
i
ω

v
1

χγ2v2

�
1þ χγ2

v2

c2

�
− 2

1

γ2v2

�
∂x

1

χ

�
− iϵ2

ω3

vc2

�
∂xζ

þ
�

1

γ2v2

�
i
ω

v

�
∂x

1

χ

�
−
�
∂2
x
1

χ

��
þ 1

γ2v2

�
1

4χ

ω2

v2

�
1 − χγ2

v2

c2

�
−

ω2

χc2

�

þ ϵ2
�
ω4

v4

�
−

1

16
þ 1v2

4c2

���
ζ ¼ 0: ð5:7Þ

The TPs occur for
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1 − χðxÞγ2 v
2

c2
¼ 0; ð5:8Þ

and we consider only the black hole solution.
The reduced equation is

1

χγ2v2

�
1−χγ2

v2

c2

�
∂2
xζ

−
1

γ2v2

�
i
ω

v
1

χ

�
1þχγ2

v2

c2

�
−2

�
∂x

1

χ

��
∂xζþ½�� ��ζ¼ 0;

ð5:9Þ

where the limit ϵ → 0 is taken and ½� � �� is a contribution
readable just from (5.7), and which does not participate to
the indicial equation, whose roots are

α1 ¼ 0; α2 ¼ −1 − i
ωc

γ2v2n0
: ð5:10Þ

n is the refractive index, which is defined such that

n2 ¼ 1þ χ; ð5:11Þ

then we find

λ ¼ 2þ i
ωc

γ2v2n0
: ð5:12Þ

Thanks to such knowledge, one is able to find out the
behavior of ψ in all regions of interest, and in particular in
the matching region.

1. WKB approximation

As in Sec. IV B, we put

ζðxÞ ¼ exp

�
θðxÞ
ϵ

�X∞
i¼0

ϵiyiðxÞ; ð5:13Þ

and obtain

θ04 þ 1

χγ2v2

�
1 − χγ2

v2

c2

�
θ02 ¼ 0; ð5:14Þ

whose solutions are θ0 ¼ 0 (multiplicity two), and for x > 0

θ0� ¼ �i
1ffiffiffi
χ

p
γv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χγ2

v2

c2

s
: ð5:15Þ

The latter solutions are associated with the transport
equation

y00þ
1

ð1−χγ2 v
2

c2Þ

�
−
1

4

χ0

χ
þi

ω

2v

�
1þχγ2

v2

c2

��
y0¼0; ð5:16Þ

and the next-to-leading-order equation

y01þ
1

1−a

�
−
1

4

χ0

χ
þ i

ω

2v
ð1þaÞ

�
y1

¼∓i
ffiffiffi
χ

p
vγ

ð1−aÞ32
�
9

4

χ00

χ
−

1

1−a
37

16

χ02

χ2
þ i

ω

v
χ0

χ

4þ 7a
1−a

þω2

v2
a

1−a
þω2

c2
−
ω2

c2

�
3

2
γ2− 1

�
χ

a
ð1−aÞ

�
y0; ð5:17Þ

where we have defined

aðxÞ ≔ χðxÞγ2 v
2

c2
: ð5:18Þ

Solutions are of the form

y0ðxÞ ¼ BχðxÞ1=4ð1 − aðsÞÞ−1=4e−iω2v
R

x ds1þaðsÞ
1−aðsÞ; ð5:19Þ

y1ðxÞ ¼ y0ðxÞ
�
D ∓ i

Z
x
ds

ffiffiffi
χ

p
vγ

ð1 − aðsÞÞ32
�
9

4

χ00ðsÞ
χðsÞ

−
1

1 − aðsÞ
37

16

χ02ðsÞ
χ2ðsÞ þ i

ω

v
χ0ðsÞ
χðsÞ

4þ 7aðsÞ
1 − aðsÞ

þ ω2

v2
aðsÞ

1 − aðsÞ þ
ω2

c2

−
ω2

c2

�
3

2
γ2 − 1

�
χðsÞ
aðsÞ ð1 − aðsÞÞ

�	
; ð5:20Þ

where B and D are constants. Then we obtain the high
momentum modes

ζ�ðxÞ ¼ e
�i

ϵ
1
γv

R
x ds 1ffiffiffiffiffi

χðsÞ
p

ffiffiffiffiffiffiffiffiffiffi
1−aðsÞ

p
ðy0ðxÞ þ ϵy1ðxÞ þOðϵ2ÞÞ:

ð5:21Þ

If we require ϵy1 < y0 in the region where χ is essentially
constant, we get the restriction

x <
ω0v
ω2

ð1 − aasÞ52; ð5:22Þ

where aas is the asymptotic value of aðxÞ. Since typically
1 − aas ∼ 10−2, by v=ω ¼ λ=ð2πÞ we can also write

x <
ω0

ω

λ

2π
10−5: ð5:23Þ

This implies that the approximation is valid for frequencies
such that ω ≪ ω0.
Near the TP one obtains

jf�ðxÞj ∝ x−1=4; ð5:24Þ
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as found in [18] for the electromagnetic case and in the ϕ–ψ
model, see [40], chapter 10. For x < 0, the solutions with
θ0 ≠ 0 are exponentially decaying (decaying mode) and
growing (growing mode) respectively.
Two further solutions occur from the reduced equation,

when θ0 ¼ 0. We find near the regular singular point
x ¼ 0 (our TP) the following series expansions for
x > 0:

ζ−sðxÞ ¼ 1þ
X∞
n¼1

cnxn; ð5:25Þ

ζþsðxÞ ¼ x
−1−i ωc

γ2v2n0
�
1þ

X∞
n¼1

dnxn
�
: ð5:26Þ

Still, we get the same behavior near the TP as calculated in
[18] for the electromagnetic case and in [40], chapter 10,
for the simpler ϕ–ψ model

jf−sðxÞj ∝ const; ð5:27Þ

jfþsðxÞj ∝ x−1: ð5:28Þ

As in the Corley model discussed in the previous section,
we can also obtain for x < 0 two further modes d, l which
asymptotically propagate towards x ¼ −∞. We do not
provide details, as they are straightforward.

2. Approximation near the turning point

Solutions near the TP have the following behavior in the
matching region, and we recall that λ ¼ 2þ i ωc

γ2v2n0 ≔
2 − i ωcκ , where

κ ≔ γ2v2jn0j ð5:29Þ

amounts to the surface gravity of the dielectric black hole
(see e.g., [41]). Because

z ¼
�
2κ

vc3

�
1=3

ϵ−2=3x; ð5:30Þ

we can exploit the solutions we found in the previous
section, as formally we have the same equation and then the
same solutions [with different explicit values of p0

30ð0Þ and
of ϵ]. As a consequence, we obtain for x < 0 the decaying
mode in an analogous way as for (4.38), and it provides us
the black hole boundary condition for the present model
(which is subluminal, too). For x > 0 we have the modes

k� in correspondence of the steepest descents passing
through the saddle points u� ¼ �i, i.e.,

wþðzÞ ≃
1

2
ffiffiffi
π

p e−
3
4
πie

πωc
2κ jzj−iωc

2κ −
3
4ei

2
3
jzj3=2 ; ð5:31Þ

w−ðzÞ ≃
1

2
ffiffiffi
π

p e
1
4
πie−

πωc
2κ jzj−iωc

2κ −
3
4e−i

2
3
jzj3=2 : ð5:32Þ

As to the cut contribution, we find

jwcutðzÞj≃
���� 1iπ Γ

�
1 − i

ωc
κ

�
sinh

�
πωc
κ

�����: ð5:33Þ

It is easy to show that a matching is possible in the linear
region, and thermality can be easily verified. Still, as the
polarization field is substantially an “ancillary field” in the
model, the really propagating field being the electromag-
netic one, we prefer to calculate the matching and thermal-
ity of the spectrum by following a different route.

B. A separated equation for ϕ

One might get an equation for ϕ as in [16], with the
drawback of a tricky complication for dealing the limit as
ω → 0. Hence we prefer to proceed in a different way, and
obtain a fourth order equation for ϕ from the original
system of differential equations (5.2) and (5.3).
Our trick is again to separate the variables in the

comoving frame, with ϕ ¼ φðxÞeiωt, ψ ¼ fðxÞeiωt. A
quartic equation is obtained as follows: we apply the
operator ðiωþ v∂xÞ to both the members of (5.2)

ðiωþ v∂xÞ
�
−
ω2

c2
− ∂2

x

�
φ ¼ 1

c
γðiωþ v∂xÞ2f; ð5:34Þ

from (5.3) one can isolate the term f=χ on the left side, and
by finding ðiωþ v∂xÞ2f from (5.34) one obtains

f ¼ −
1

c
χγðiωþ v∂xÞφ− χϵ2γcðiωþ v∂xÞ

�
−
ω2

c2
− ∂2

x

�
φ:

ð5:35Þ

Then one can exploit Eq. (5.2) on the separated variables

�
−
ω2

c2
− ∂2

x

�
φ ¼ 1

c
γðiωþ v∂xÞf; ð5:36Þ

together with the above expression for f, and get the fourth
order equation
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− ϵ2γ2v2χ∂4
xφ − ϵ2γ2ð2iωχvþ v2ð∂xχÞÞ∂3

xφ −
�
1 − χγ2

v2

c2
þ ϵ2

�
i
ω

v
γ2v2ð∂xχÞ − χω2

��
∂2
xφ

þ
�
1

c2
χγ2v2

�
2i
ω

v
þ 1

χ
ð∂xχÞ

�
− ϵ2γ2

�
2i
ω3

c2
χvþ v2ð∂xχÞ

ω2

c2

��
∂xφ

þ
�
−
ω2

c2
−

1

c2
χγ2ω2 þ iv

1

c2
γ2ωð∂xχÞ þ ϵ2γ2χ

ω4

c2
− ϵ2iγ2v

ω3

v2
ð∂xχÞ

�
φ ¼ 0: ð5:37Þ

In order to eliminate the third order term, we put
φ ¼ hðxÞηðxÞ, and in this case the function hðxÞ must
satisfy the differential equation

4h0 þ
�
2i
ω

v
þ 1

χ
ð∂xχÞ

�
h ¼ 0; ð5:38Þ

whose solution is

h ¼ Aχ−1=4e−i
ω
2vx: ð5:39Þ

Then one obtains the fourth order differential equation for η
in the desired form:

−ϵ2γ2v2χ∂4
xη−

�
1−χγ2

v2

c2
þOðϵ2Þ

�
∂2
xη

þ
�
i
ω

v

�
1þχγ2

v2

c2

�
þ1

2
γ2
v2

c2
ð∂xχÞþ

1

2χ
ð∂xχÞþOðϵ2Þ

�
η0

þ ð� � �þOðϵ2ÞÞη¼ 0; ð5:40Þ

where we have not written explicitly the Oðϵ2Þ terms and
the last contribution because they are not useful herein. In
particular, the last contribution does not affect the indicial
equation for the reduced equation

−
�
1 − χγ2

v2

c2

�
∂2
xη

þ
�
i
ω

v

�
1þ χγ2

v2

c2

�
þ 1

2
γ2

v2

c2
ð∂xχÞ þ

1

2χ
ð∂xχÞ

�
η0

þ ð� � �Þη ¼ 0: ð5:41Þ

We find

α1 ¼ 0; α2 ¼ −i
ωc

γ2v2n0
; ð5:42Þ

from which

λ ¼ 1þ i
ωc

γ2v2n0
: ð5:43Þ

1. WKB approximation

In this case we put

ηðxÞ ¼ exp

�
θðxÞ
ϵ

�X∞
i¼0

ϵiyiðxÞ; ð5:44Þ

and obtain again

θ04 þ 1

χγ2v2

�
1 − χγ2

v2

c2

�
θ02 ¼ 0: ð5:45Þ

By now, we consider just the case x > 0, as the case x < 0
is analogous to the one of the Corley model. Coming back
to (5.45), its solutions are θ0 ¼ 0 (multiplicity two), and

θ0� ¼ �i
1ffiffiffi
χ

p
γv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χγ2

v2

c2

s
: ð5:46Þ

The latter solutions are associated with the transport
equation

y00 þ
1

ð1 − χγ2 v2

c2Þ

�
−
3

4

χ0

χ
þ i

ω

2v

�
1þ χγ2

v2

c2

�

−
1

4

�
1 − χγ2

v2

c2

�
χ0

χ

�
y0 ¼ 0: ð5:47Þ

Solutions are of the form

y0ðxÞ ¼ Aχð1 − aÞ−3
4e−i

ω
2v

R
x ds1þaðsÞ

1−aðsÞ; ð5:48Þ

and the high momentum modes are

η�ðxÞ ¼ e
�i

ϵ
1
γv

R
x ds 1ffiffiffiffiffi

χðsÞ
p

ffiffiffiffiffiffiffiffiffiffi
1−aðsÞ

p
y0ðxÞ: ð5:49Þ

Near the TP one obtains

jη�ðxÞj ∝ x−3=4: ð5:50Þ

Two further solutions occur when θ0 ¼ 0 are obtained from
the reduced equation. We find near the regular singular
point x ¼ 0 (our TP) the series expansions
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η−sðxÞ ¼ 1þ
X∞
n¼1

cnxn; ð5:51Þ

ηþsðxÞ ¼ x
−i ωc

γ2v2n0
�
1þ

X∞
n¼1

dnxn
�
: ð5:52Þ

Near the TP we get

jη−sðxÞj ∝ const; ð5:53Þ

jηþsðxÞj ∝ const; ð5:54Þ

and all the aforementioned asymptotics have the same
behavior as calculated in [18] for the electromagnetic case
and for the simpler ϕ–ψ model in [40], chapter 10.

2. Approximation near the turning point

We recall that λ ¼ 1þ i ωc
γ2v2n0 ≔ 1 − i ωcκ ; because

z ¼ ð 2κvc3Þ1=3ϵ−2=3x, we find in the external region x > 0

wþðzÞ ≃
1

2
ffiffiffi
π

p e−
3
4
πie

πωc
2κ jzj−iωc

2κ −
3
4ei

2
3
jzj3=2 ; ð5:55Þ

w−ðzÞ ≃
1

2
ffiffiffi
π

p e
1
4
πie−

πωc
2κ jzj−iωc

2κ −
3
4e−i

2
3
jzj3=2 : ð5:56Þ

As to the cut contribution, we find

wcutðzÞ ≃ −
1

iπ
Γ
�
−i

ωc
κ

�
sinh

�
πωc
κ

�
jzjiωcκ : ð5:57Þ

Also in this case, we obtain for x < 0 the decaying mode in
an analogous way as for (4.38). It is worthwhile noting that,
due to the universal form of Eq. (3.12) governing the near-
horizon approximation, the approximate expressions for
the aforementioned modes near horizon are of the same
type as for the simpler Corley model [2,8,14], as the latter is
a subcase of the general framework we are discussing.
Near the turning point we obtain from the black hole

boundary condition and in the external region

ϕðx;tÞ¼ϕ1ðx;tÞþϕ2ðx;tÞþϕ3ðx;tÞþhϕ4ðx;tÞ; ð5:58Þ

where ϕ1 ↦ wþ, ϕ2 ↦ w−, ϕ3 ↦ wcut, and ϕ4 ↦ 1. As
far as the factor h is concerned, analogous considerations as
in the case of the previous section hold true. By comparing
with the WKB solutions again in the matching region, we
find

ϕðx; tÞ ¼ 1

2
ffiffiffi
π

p e
ωc
2κπe−i

3
4
π v

2γ2

c2

ffiffiffiffiffi
2κ

v

r
ϵi

ωc
3κþ1

2

�
2κ

vc3

�
−iωc

6κ

φþðx; tÞ

þ 1

2
ffiffiffi
π

p e−
ωc
2κπei

1
4
π v

2γ2

c2

ffiffiffiffiffi
2κ

v

r
ϵi

ωc
3κþ1

2

�
2κ

vc3

�
−iωc

6κ

φ−ðx; tÞ

−
sinhðωcκ Þ

πi
Γ
�
−i

ωc
κ

��
2κ

vc3

�
iωcκ
ϵ−i

2ωc
3κ φþsðx; tÞ

þ hφ−sðx; tÞ: ð5:59Þ

A trivial matching involves also the fourth mode φ−sðx; tÞ,
which is regular everywhere.

C. Thermality

We can identify the aforementioned solutions as corre-
sponding to the backward state B ↦ ϕ−sðx; tÞ, the positive
high-momentum state P ↦ ϕþðx; tÞ, the negative norm
high-momentum state N ↦ ϕ−ðx; tÞ and the Hawking state
H ↦ ϕþsðx; tÞ, respectively. We obtain

jNj2
jPj2 ≔

jJ−x j
jJþx j

¼ e−
2πc
κ ω; ð5:60Þ

which corresponds to the standard signal of the thermal
character of the black hole horizon. The current density has
the following structure [15]:

Jμ ≔
i
2

�
ϕ�∂μϕ − ð∂μϕ�Þϕþ 1

χω2
0

vμψ�vα∂αψ

−
1

χω2
0

vμψvα∂αψ
� þ 1

c
vμðψ�ϕ − ψϕ�Þ

�
: ð5:61Þ

One considers the fields in the asymptotic (homogeneous)
region in the comoving frame, where they are normalized
as in [42]. Furthermore, the term quadratic in ψ in the
present expansion at the leading order is suppressed, as is
Oðϵ2Þ. One obtains

jJxj ¼
����
�
−kx −

1

c2
χγv

kαvα

1 − ðkαvαÞ2
ω2
0

þOðϵ2Þ
�����

×

����
�
−kx −

1

c2
χγvðkαvαÞ

�
φ�φ

����: ð5:62Þ

In particular, in the asymptotic region x → ∞ we have

kþs
x ¼ ω

v

n − v
c

c
v − n

; ð5:63Þ

k−sx ¼ −
ω

v

nþ v
c

c
v þ n

: ð5:64Þ
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D. The gray-body factor

Of course, one may study the problem of determining h
directly by considering the reduced equation and its
solutions. This might be a nontrivial route, as the equation
is quite involved. Alternatively, in order to calculate the
gray-body factor at least in an approximate way, we could
first identify the metric associated with the model at hand.
From Eqs. (5.2), (5.3), in the approximation where the term
∝ ϵ2 is neglected and in the eikonal approximation, we get
the metric also deduced in [41]

ds2 ¼ c2γ2
1

n2

�
1þ nv

c

��
1 −

nv
c

�
dt2

þ 2γ2
v
n2

ð1 − n2Þdtdx − γ2
�
1þ v

nc

��
1 −

v
nc

�
dx2;

ð5:65Þ

where we are in the comoving frame of the pulse generating
a propagating dielectric perturbation and the refractive
index depends on x: n ¼ nðxÞ. Differently from the
Corley model, the metric is not exact but approximated,
and holds only in the eikonal approximation. The above
metric is conformally related to the one deduced in [16].
There exists a coordinate transformation carrying the metric
into a static form; even if they are singular, we carry out the
relative transformation because it allows a direct compu-
tation of the gray-body coefficient. The following coor-
dinate change

dt ¼ dτ − αðxÞdx; ð5:66Þ

where

αðxÞ ¼ g01ðxÞ
g00ðxÞ

ð5:67Þ

carries the metric to the static form [41]

ds2 ¼ c2

n2ðxÞ gττðxÞdτ
2 −

1

gττðxÞ
dx2; ð5:68Þ

where

gττðxÞ ≔ γ2
�
1þ nðxÞ v

c

��
1 − nðxÞ v

c

�
: ð5:69Þ

We do not delve into the explicit calculation, as is the same
displayed in [41], which confirms in the present two-
dimensional model that Γ ¼ 1, and then, in this approxi-
mation, h ¼ 0 once more, and that there is a divergence as
ω → 0 in the number of created particles, as numerically
tested in [43] and then also found in [16] in a different
approximation scheme (see also [13]). This approximation
might be too crude, and Γ < 1 could also be allowed by a

better approximation. Still, again, the leading contribution
to h as arising from the pair creation process is vanishing.
Also in this case, a maximal frequency ωmax exists [43]

(see also [15]) beyond which no Hawking effect is
expected, and then a truncation of the spectrum for ω >
ωmax is to be taken into account. One may wonder which
differences occur with respect to the calculation in [16].
Therein, the fourth backward mode participates to the
Corley’s diagram near the TP, as it appears as a further cut
integral in the Fourier space. It is remarkable that this
diagram was calculated in the approximation where the
square of the resonance frequency is a linear function in x,
which is of course different from the case at hand. But this
is not the only source of differences, as it is the approxi-
mation we perform herein in itself which is able to leave
just a cut integral (in the Laplace dual space), with the other
short wave number mode (the backward one) absent from
the diagram. Analogous considerations can be made in a
comparison with the calculations developed for the
Hopfield model discussed in [18], where the gray-body
factor was not available.

VI. CONCLUSIONS

We have explored a further way to approach analytical
calculations for the Hawking effect in analog gravity. A
fourth order equation, which is of the Orr–Sommerfeld
type, has been shown to play the role of master equation in
analog gravity, with reference to the analogous Hawking
effect. The approximation adopted is the one of weak
dispersive effects, where the suitable coupling of the fourth
order term is associated with the parameter ϵ entering the
equation. This kind of approximation is not new in
literature, see e.g., [8,14], but it is applied in the framework
provided by Nishimoto’s analysis [25] for equations of Orr-
Sommerfeld. This allows us to achieve a suitable approxi-
mation near the turning point (horizon), and we are enabled
to provide a complete study of thermality for both the
subluminal fluid model of [2,22] and for the dielectric one.
Indeed, we can provide a scheme for the calculation of an
analytic expression of the gray-body factor, which is in
agreement with the analysis carried out in [8,14], as far as
the Corley’s model is concerned, but is more general and
allows one to encompass important physical models which
cannot be included by the Corley’s model itself: dielectrics,
BEC, and water waves with varying speed of sound
velocity cðxÞ. Indeed, the same calculational scheme can
be adopted successfully also in the case of BEC and of
surface waves in the companion paper [23].
Then a more complete study of the Hawking emission in

condensed matter systems is achieved when dispersion is
weak, which provides the most direct correspondence with
the standard Hawking effect, with an enhanced role of the
reduced equation (i.e., the equation one obtains in absence
of dispersion).

ANALOG HAWKING EFFECT: A MASTER EQUATION PHYS. REV. D 102, 105003 (2020)

105003-17



It is remarkable that the geometrical setting of the analo-
gous Hawking effect in this scheme arises in the WKB
approximation which holds near but not too near the horizon.
The model of course leaves open the possibility to explore
more sophisticated situations where dispersive effects are
strong, which would provide regimes for Hawking-like
radiation which are more far from the standard case.
The perspective is open also for a more sophisticated

analog black hole spectroscopy, allowing a more precise
comparison between experimental measurements and theo-
retical computations.
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APPENDIX A: A FURTHER JUSTIFICATION OF
THE NEAR HORIZON APPROXIMATION

We provide a further justification of the near horizon
approximation, which allows us also to show that the Orr-
Sommerfeld form of the equation is not mandatory, in the
sense that one can allow also for third order terms in the
derivative, with the only restriction that they are at least of
the same order of the fourth order one in the suitable
coupling and that they do not vanish at the TP.
We start by a slight generalization of (2.1)

δ2
d4Φ
dx4

�
�
δ2p4ðx; δÞ

d3Φ
dx3

þ p3ðx; δÞ
d2Φ
dx2

þ p2ðx; δÞ
dΦ
dx

þ p1ðx; δÞΦ
�
¼ 0; ðA1Þ

where we have changed the power of the expansion
parameter with respect to [44,45], in order to allow a
direct comparison with the framework discussed in the
paper. The new term in the third order derivative has been
added. We first introduce for simplicity of notation

fðxÞ ≔ p30ðxÞ
p0
30ð0Þ

; ðA2Þ

where we have shifted the turning point [where p30ðxÞ ¼ 0]
at x ¼ 0.
Then we define a Langer-like variable, adapting the

definition assumed in [44,45]:

ηðxÞ ≔
�
3

2

Z
x

0

dy
ffiffiffiffiffiffiffiffiffi
fðyÞ

p �
2=3

: ðA3Þ

For definiteness, we consider the subluminal case (the
superluminal one is obtained in a straightforward way). We
shall indicate with ΦðiÞ, i ¼ 1, 2, 3, 4 the derivatives with

respect to the new variable, and by Φ0, Φ00, Φ000, Φ⁗ the
derivatives with respect to x. We notice that

η0ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
fðxÞ
ηðxÞ

s
; ðA4Þ

which is regular as x → 0. Furthermore, due to (A2), also
η0 → 1 as x → 0 holds true.
As to (A1), considering only the leading order terms, we

obtain

δ2Φð4Þ þ δ2
�
6

η00

ðη0Þ2 þ p40

1

η0
þOðδÞ

�
Φð3Þ

þ ðp0
30ð0ÞηþOðδÞÞΦð2Þ

þ
�
p20

1

ðη0Þ3 þ p30

η00

ðη0Þ4 þOðδÞ
�
Φð1Þ

þ
�
p10

1

ðη0Þ4 þOðδÞ
�
Φ ¼ 0: ðA5Þ

We now define

ϵR ≔
δ

ðp0
30ð0ÞÞ1=2

; ðA6Þ

in order to mimic the behavior occurring in [44,45]. An
equation holding in the near horizon approximation is
obtained by means of the following definition (with some
abuse of notation)

Φðζ; ϵRÞ ≔ Φ
�

η

ðϵRÞ2=3
; ϵR

�
; ðA7Þ

and also the new variable

ζ ≔
η

ðϵRÞ2=3
¼ ðp0

30ð0ÞÞ1=3δ−2=3η: ðA8Þ

Furthermore, one has to take into account that

p30 ¼ ðη0Þ2p0
30ð0Þη: ðA9Þ

Then one finds the following equation:

ðp0
30ð0ÞÞ4=3Φð4Þþδ2=3

�
6

η00

ðη0Þ2þp40

1

η0
þOðδÞ

�
ðp0

30ð0ÞÞΦð3Þ

þððp0
30ð0ÞÞ4=3ζþOðδ1=3ÞÞΦð2Þ

þ
�
ðp20

�
p0
30ð0ÞÞ1=3Φð4Þ 1

ðη0Þ3
�
þOðδ2=3Þ

�
Φð1Þ

þOðδ2=3ÞΦ¼0: ðA10Þ

At the leading order and assuming that p2 (and then also
p20) is analytic in a neighborhood of the TP we obtain
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Φð4Þ þ ζΦð2Þ þ p20ð0Þ
p0
30ð0Þ

Φð1Þ ¼ 0; ðA11Þ

which by taking into account that

λ ≔
p20ð0Þ
p0
30ð0Þ

; ðA12Þ

coincides with the equation obtained by means of the
method borrowed from [25]. The relation between ϵ in the
previous sections and ϵR is simply

ϵ ¼ ϵR

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p0
30ð0Þ

q
¼ δ; ðA13Þ

and also ζ ¼ z holds.

APPENDIX B: MATCHING CONDITIONS

Let us now further discuss the matching conditions
underlying the scattering process at hand. We take into
consideration states living on the right side of the turning
point, directly involved in the Hawking effect. We have to
match in a single solution the WKB part and the near
horizon part of the modes introduced above, in such a way
to obtain basis functions which are defined in the whole
domain. For the WKB part, we have to consider the basis

fφWKBþ ðxÞ;φWKB
− ðxÞ;φWKBþs ðxÞ;φWKB

−s ðxÞg; ðB1Þ

whereas for the near horizon (NH) region we get the further
basis

fφNHþ ðxÞ;φNH
− ðxÞ;φNHþs ðxÞ;φNH

−s ðxÞg: ðB2Þ

Let us denote φWKB
i ðxÞ and φNH

i ðxÞ the parts to be joined
for the i mode, with i ¼ �;�s. The general WKB solution
has the form

φWKBðxÞ ¼
X
i

Ciφ
WKB
i ðxÞ; ðB3Þ

where Ci are constant (i.e., independent from x), and the
general NH solution is

φNHðxÞ ¼
X
i

Diφ
NH
i ðxÞ; ðB4Þ

where also Di are constant. In the matching region, where
the two approximations coexist, we have

φWKB
i ðxÞ ∼ aihiðxÞ; ðB5Þ

and also

φNH
i ðxÞ ∼ bihiðxÞ; ðB6Þ

with the same functional dependence hiðxÞ. Then, match-
ing in the linear region requires

Ci ¼
bi
ai
Di: ðB7Þ

Notice that, compared to the standard matching of the
WKB solutions with Airy functions for the Schrödinger
equation in quantum mechanics, in place of fixing the
constant for the near turning point solutions as functions of
the ones in the WKB-allowed regions, in agreement with
Corley’s ideas, we proceed in the complementary direction,
as an indication that part of the amplitudes arises from what
happens at the turning point.
Moreover, for x → ∞ the propagating modes participat-

ing to the Hawking process behave as plane waves:

φWKB
i ðxÞ ∼ āieikiðωÞx; ðB8Þ

so that

φWKBðxÞ ¼
X
i

CiāieikiðωÞx; ðB9Þ

and we may define

ci ≔
bi
ai
Diāi; ðB10Þ

in order to compare with the amplitudes defined in [2]. In
order to get scattering amplitudes, let us write

Ci ¼ C̄iNi; ðB11Þ

where Ni are the normalizations of the modes in the
asymptotic region, which are consistent with the quantiza-
tion of the field in the ω representation [39]. In particular,
we have

Ni ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πjvgðkiðωÞÞðω − vkiðωÞj
p ; ðB12Þ

where vgðkiðωÞÞ is the group velocity of the ith mode. C̄j

represent the actual amplitudes:

C̄i ¼
bi

Niai
Diāi: ðB13Þ

Because of the black hole boundary condition, we have

Dþ ¼ D− ¼ Dþs ≔ D; ðB14Þ

whereas the fourth mode has a different amplitude, that we
put equal to
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D−s≕ hD: ðB15Þ

Therefore, by comparison with the asymptotic behavior of
the field, one obtains

C̄þ ¼ bþāþ
Nþaþ

Nþsaþs

bþsāþs
; ðB16Þ

C̄− ¼ b−ā−
N−a−

Nþsaþs

bþsāþs
; ðB17Þ

C̄þs ¼ 1; ðB18Þ

C̄−s ¼ h
b−sā−s
N−sa−s

Nþsaþs

bþsāþs
: ðB19Þ

See also the comment below Eq. (4.50). As regards the
complete solution, we have a basis

fφþðxÞ;φ−ðxÞ;φþsðxÞ;φ−sðxÞg; ðB20Þ

which reduces to the aforementioned bases in the different
regions: of course

φiðxÞ ∼ φWKB
i ðxÞ ðB21Þ

asymptotically, and also

φiðxÞ ∼ φNH
i ðxÞ ðB22Þ

near the turning point. In the matching region it holds

φiðxÞ ∼ C̄iNiaihiðxÞ ¼ DibihiðxÞ: ðB23Þ

For the process at hand, the general solution

φðxÞ ¼
X
i

AiφiðxÞ ðB24Þ

must be such that, asymptotically, one gets again

Ai ¼ C̄i ¼
bi

Niai
Diāi: ðB25Þ

It is worthwhile mentioning that, in more rigorous math-
ematical terms, we have been discussing the topic of central
connections in terms of the language adopted in [25].
Therein, one considers a fundamental matrix ΦNH of
solutions near the TP, a fundamental matrix ΦWKB of
solutions in the WKB region, and then matches through a
matrix Λ according to

ΦWKB ¼ ΦNHΛ; ðB26Þ

whereΛ is asymptotically diagonal [25]. It is easily verified
that this condition is equivalent to the one we discussed
above.
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