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The second law of thermodynamics is discussed and reformulated from a quantum information theoretic
perspective for open quantum systems using relative entropy. Specifically, the relative entropy of a quantum
state with respect to equilibrium states is considered and its monotonicity property with respect to an open
quantum system evolution is used to obtain second lawlike inequalities. We discuss this first for generic
quantum systems in contact with a thermal bath and subsequently turn to a formulation suitable for the
description of local dynamics in a relativistic quantum field theory. A local version of the second law
similar to the one used in relativistic fluid dynamics can be formulated with relative entropy or even relative
entanglement entropy in a space-time region bounded by two light cones. We also give an outlook toward
isolated quantum field theories and discuss the role of entanglement for relativistic fluid dynamics.
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I. INTRODUCTION

In recent years, entanglement entropy has developed into
a key concept in areas of quantum field theory (QFT) such
as black hole physics [1–5], holography [6–8], and high
energy physics [9–15] (for general aspects and methods,
see Refs. [16–18]). It could play a role to better understand
nonequilibrium dynamics of quantum fields and the emer-
gence of relativistic fluid dynamics. An interesting hypoth-
esis is that local dissipation in such fluids might be
understood as the generation of entanglement.
Let us start with the density operator ρ of a quantum

system that can be split into two parts, A and B. With the
reduced density operator ρA ¼ TrBfρg for the subsystem A,
the global von Neumann entropy and entanglement entropy
are defined to be, respectively [19,20],

SðρÞ ¼ −Trfρ ln ρg; SAðρÞ ¼ −TrfρA ln ρAg: ð1Þ

Entanglement entropy of a spatial region is ultraviolet
(UV) divergent in a relativistic QFT according to an area
law [16]. The leading divergence is proportional to ϵ−ðd−2Þ,
where d is the number of space-time dimensions and ϵ is a
small length with 1=ϵ acting as a UV momentum cutoff.
These divergences depend on the geometry of the region
but not on the state. This poses a fundamental problem in
understanding the role entanglement plays within dynami-
cal evolution in nonequilibrium QFT. In particular, one
cannot easily formulate a local variant of the second law of

thermodynamics, as it is phenomenologically used, e.g., in
relativistic fluid dynamics, based on the entanglement
entropy SA of a subregion.
A possible solution to this problem could be to work

instead with quantum relative entropy (the quantum version
of the Kullback-Leibler divergence [21,22]) which, given
two density operators ρ and σ, is defined as [23]

SðρkσÞ ¼ Trfρðln ρ − ln σÞg: ð2Þ

In many cases, the first argument ρ can be thought of as the
actual system of interest, whereas the second argument σ is
some model system to compare with. Then the relative
entropy quantifies the uncertainty deficit about ρ based on
the false guess σ. It gives a non-negative value, vanishes if
and only if the density operators are equal and is finite
given the support condition suppðρÞ ⊆ suppðσÞ. If this
condition is violated, the value can be set to þ∞
[20,24,25]. These properties qualify relative entropy to
be a so-called divergence, but it is not a distance measure
(metric) as it is not symmetric and does not satisfy the
triangle inequality.
Even for classical systems there are interesting and

valid reasons for the use of relative entropy in some areas
where entropy is currently being used. In contrast to
Shannon entropy, there is a well-defined continuous limit
for relative entropy and a change of coordinates does not
change its value as it does for differential entropy. For
a relativistic quantum field theory, the relative entropy of
two reduced density matrices for spatial subregions can
be defined rigorously in terms of modular theory [26].
A reformulation of the maximum entropy principle in the
context of statistical physics in thermal equilibrium based
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on relative entropy is given in Ref. [27]. Furthermore,
the use of relative entropy in QFT is discussed in
Refs. [5,18,26,28–31].
In the current work, relative entropy will be most useful

to us in investigating stochastic evolution for open quantum
systems. When investigating the second law for some
arbitrary quantum state ρ, we need to choose some model
σ to compare it to. A suitable choice for us will be thermal
equilibrium states. For example, when ρ describes an open
system in contact with a heat bath, it is convenient to
choose σ to be the density matrix of the canonical ensemble
with inverse temperature β ¼ 1=T. This is not only the
model with the highest entropy for the given physical
situation, but as a density matrix also has a broad support so
that the relative entropy SðρkσÞ is well defined. It is straight
forward to rewrite this relative entropy with respect to the
canonical state as

SðρkσÞ ¼ −SðρÞ þ SðσÞ þ β½EðρÞ − EðσÞ�; ð3Þ

where EðρÞ ¼ TrfρHg is the energy expectation value of
the state described by ρ.
The relative entropy of two reduced density matrices

ρA ¼ TrBfρg and σB ¼ TrBfσg is also known as relative
entanglement entropy, SAðρkσÞ ¼ SðρAkσAÞ. In contrast to
entanglement entropy, relative entanglement entropy does
not show UV divergences and is expected to be generically
finite. Intuitively speaking, the divergent terms, which are
independent of the specific state of the quantum field
theory, cancel out. For this reason, we believe that relative
entanglement entropy is well suited for investigating the
dynamics of entanglement and nonequilibrium evolution in
a quantum field theory.
Entanglement generation is assumed to be a driving

mechanism behind thermalization and second lawlike
behavior of macroscopic quantum systems [32]. In terms
of total entropy, the thermalization of an isolated system is
difficult to describe: the time evolution of an isolated
system is a unitary map according to the von Neumann
equation. Thus, the total entropy remains constant over
time since the von Neumann entropy of any state is
invariant under a unitary transformation,

SðUρU†Þ ¼ SðρÞ: ð4Þ

This implies that a perfectly isolated quantum system in
this sense actually does not thermalize. However, one may
investigate instead a subsystem of an isolated system and
this may evolve nonunitarily due to the exchange of
quantum information with its surroundings. The “surround-
ings” could here either by another sector of the theory, or it
could be a neighboring spatial region. Such a subsystem is
then referred to as an open quantum system.
Mathematically, the evolution of an open quantum system

is described by some completely positive trace-preserving

map (CPTP map) N (or quantum channel). In full general-
ity, a CPTP map describes communication of quantum
information between quantum states, encompassing any
map of a density matrix to some other. Specifically, the
Kraus theorem [33,34] allows one to decompose these
maps as

N ∶ ρ → N ðρÞ ¼
X
α

AαρA
†
α; ð5Þ

where Aα are Kraus operators fulfilling the conditionP
α A

†
αAα ¼ 1. CPTP maps account for many possible

quantum transformations, including, e.g., unitary time
evolution and partial tracing over a subsystem.
If a CPTP map is applied to a quantum state, its von

Neumann entropy may increase as well as decrease. An
example of an entropy decreasing process would be the loss
of heat of a system due to cooling.1 CPTP maps are thus
more general than the stochastic processes that imply the
second law of thermodynamics. There is nonetheless a
useful subclass of maps; a unital CPTP map N I , for which
N Ið1Þ ¼ 1 holds, never decreases entropy,

SðN IðρÞÞ ≥ SðρÞ: ð6Þ

CPTP maps are central to the monotonicity of relative
entropy, the quantum information theorem we will utilize
to formulate a second law. It states that no quantum
channel can increase distinguishability between states
[20,24,25,35],2

SðN ðρÞkN ðσÞÞ − SðρkσÞ ≤ 0: ð7Þ

Below we will employ this property to make statements
about (local) thermalization or second lawlike behavior by
investigating a state ρ approaching an equilibrium state σ
measured in terms of quantum relative entropy or relative
entanglement entropy. In the present work, we will use a
subclass of CPTP maps which keep the reference state σ as
a steady state invariant, N ðσÞ ¼ σ. This may be seen as an
alternate definition describing stochastic evolution. For
ordinary thermodynamics, second lawlike inequalities from
relative entropy are discussed in [38].
We will further develop a local formulation of a second

law in the context of a quantum field theory in open

2Recently, this inequality was proven for the more general case
of positive trace-preserving maps [36]. Furthermore, a strength-
ened version, which exhibits a remainder term from a rotated Petz
recovery map, was established in Ref. [37].

1A more explicit example can be seen in a generalized
measurement as follows. Consider a maximally mixed two-state
quantum system ρ under the action of the nonorthogonal
measurement operators M1 ¼ j0ih0j and M2 ¼ j0ih1j. Then
the state after measurement without recording the result,
ρM ¼ M1ρM

†
1 þM2ρM

†
2, has a smaller entropy SðρMÞ < SðρÞ

[20].
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exchange of quantum information with a bath fluid. This
is also motivated by the aim to understand the relation
between quantum field theory and relativistic fluid dynam-
ics. While phenomenologically relativistic fluid dyna-
mics seems to be a good approximation to quantum field
dynamics, e.g., for the quark-gluon plasma created in heavy
ion collisions [39–41], the detailed relation is yet to be
properly understood. Usually, in the context of fluid
dynamics, a local second law is postulated and stated in
terms of an entropy four-current density (e.g., see
Refs. [42–44]),

∇μsμðxÞ ≥ 0: ð8Þ

One problem here is that an entropy current sμðxÞ is
difficult to define outside of global thermal equilibrium
and if one aims to work with entanglement entropy one
faces the same problems of UV divergence we described
previously. As an alternative, we here propose a formu-
lation in terms of relative entropy of a true state ρ with
respect to some form of equilibrium reference state σ, with
a second law-type inequality that essentially follows from
the monotonicity property (see Sec. IV). This makes a step
toward understanding quantum field theory in the fluid
dynamic regime from a quantum information theoretic
perspective.
The paper is structured as follows: first in Sec. II we

recall some elements of relativistic fluid dynamics. In
Sec. III, we will outline the connection between the general
thermodynamic second law and relative entropy, and then
in Sec. IV, we will develop the local form of the second law
in the relativistic fluid dynamic regime for a causally
complete space-time region. Finally, we will draw some
conclusions in Sec. V.

A. Notation

In this paper, we adopt natural units, with ℏ ¼ c ¼ kB ¼
1 and work with the Minkowski space metric signature
ð−;þ;þ;þÞ. Hats on operators are dropped. Expectation
values are expressed with the relevant density operator as a
parameter so that OðρÞ ¼ hOiρ ¼ TrfρOg.

II. RELATIVISTIC FLUID DYNAMICS

Relativistic fluid dynamics can be seen as an effective
description of (quantum) field theoretic degrees of freedom
in out-of-equilibrium situations. It uses the concept of a
local thermal equilibrium and an expansion around this,
however. In the following, we shall recall the construction
with a perspective from quantum information theory.
Usually one starts from covariant conservation laws,

such as for energy and momentum [42–44]. This is a
consequence of diffeomorphism symmetry if the theory is
formulated in general coordinates with Riemannian metric
gμνðxÞ,

∇μTμνðxÞ ¼ 0: ð9Þ

In addition, the theory may exhibit a U(1) symmetry
leading to a covariantly conserved particle number current,

∇μNμðxÞ ¼ 0: ð10Þ

Furthermore, one also introduces an entropy current
sμðxÞ. In a phenomenological approach, it is postulated to
be governed by a local form of the second law

∇μsμðxÞ ≥ 0; ð11Þ

where equality is reached in thermal equilibrium. Unlike
the two former equations, the local second law does not
follow from symmetry considerations and needs a more
careful justification. Moreover, it is not clear whether a
local entropy current is well defined in out-of-equilibrium
situations or how precisely it can be defined from a
microscopic quantum field theory [45]. In the following,
we investigate for what states an entropy current can be
defined and also formulate an alternative to (11) using
relative entropy.
One should note that the above equations could be

supplemented by additional conservation laws or equations
for additional order parameters.
With the conservation relations (9) and (10) as well as

Eq. (11), one can discuss relativistic thermodynamics. In
thermal equilibrium, one can assume the entropy current to
be a function of the conserved energy-momentum tensor
and particle current sμðTλν; NσÞ, and write

∇μsμ ¼
∂sμ
∂Tλν ∇μTλν þ ∂sμ

∂Nσ ∇μNσ: ð12Þ

Because (11) should reduce to an equality in thermal
equilibrium as a consequence of the two covariant con-
servation laws (9) and (10), one should have

∂sμ
∂Tλν ¼ −βνδ

μ
λ ;

∂sμ
∂Nσ ¼ −αδμσ: ð13Þ

Here βν is a vector field and α is a scalar field, which
together serve as parametrization for the covariantly con-
served fields in thermal equilibrium. These two fields
correspond to the ratio of fluid velocity uν and temperature
T as well as chemical potential μ and temperature,
respectively,

βν ¼ uν

T
; α ¼ μ

T
: ð14Þ

Because ∇μsμ must not only vanish in equilibrium but
also be stationary, one finds for its differential

∇μdsμ ¼ −∇μβνdTμν − ∂μαdNμ ¼ 0; ð15Þ
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which leads to the condition that βν must be a Killing vector
field and α a constant,

∇μβν þ∇νβμ ¼ 0 ∂μα ¼ 0: ð16Þ

While βν and α are well defined in thermal equilibrium,
there is some freedom in their definition outside of
equilibrium. For example, the fluid velocity uμ could be
related to energy flow (the Landau frame definition) to the
particle number flow Nμ (the Eckart frame definition) or be
defined otherwise.
One of our main goals in the following will be to

understand better how the local form of the second law of
thermodynamics, Eq. (11), or a variant of it, can arise from
quantum field theory. We will argue that a formulation
based on relative entropy has advantages in this context.
As a preparation, we discuss now first a global formu-

lation of the second law based on relative entropy for a
generic (open) quantum system.

III. THERMODYNAMICS: A GENERAL SECOND
LAW FROM RELATIVE ENTROPY

In this section, we will consider a generic quantum
system coupled to an external bath with which it may
exchange quantum information. In addition, there may also
be an exchange of energy and/or particle number, but that
does not have to be the case. We want to discuss how one
can obtain a second law Clausius inequality from the
monotonicity of relative entropy, and thus show the
equivalence of the former with a relation written solely
in terms of relative entropy. Many elements of this have
already been investigated in Ref. [38], but we recall them
here in order to prepare for a subsequent extension to
quantum field theory.
The second law will be derived through a comparison

of an arbitrary state ρ with a suitable statistical ensemble
or model state σ given the physical situation (with or with-
out exchange of energy or particle number with the bath;
for an overview, see Fig. 1). The corresponding equilibrium
density operators σ follow from maximizing von Neumann
entropy SðσÞ under the appropriate constraints [46–50].

Alternatively, this can be done from minimizing an
expected relative entropy, as shown recently in Ref. [27].
The intensive thermodynamic quantities like temperature T
and chemical potential μ are chosen such that they agree
with those induced by the surroundings.
An open quantum system in a fixed volume V evolves

generically according to some CPTP map N . Furthermore,
we will take N to be within a subclass of CPTP maps that
admits the relevant equilibrium state σ as a steady state,
N ðσÞ ¼ σ. This is a general description of stochastic
quantum evolution and will allow us to utilize the monot-
onicity of relative entropy to obtain a second lawlike
inequality.

A. Microcanonical ensemble model

Consider first an open quantum system but without any
net exchange of energy or particle number with the
surroundings in some quantum state ρ. A natural reference
state is the microcanonical ensemble density operator σm.
For this, it is not enough if ρ has expectation values EðρÞ ¼
TrfρHg and NðρÞ ¼ TrfρNg that agree with EðσmÞ and
NðσmÞ, but E and N must be strictly fixed so that the
variances vanish. We denote these two conditions by
EðρÞ≡ EðσmÞ and NðρÞ≡ NðσmÞ.
Then σm is a maximally mixed state corresponding to a

uniform distribution, σm ¼ diagð1=D; 1=D;…Þ where D is
the dimension of the Hilbert space of accessible states. The
relative entropy of ρ with respect to σ is then

SðρkσmÞ ¼ −SðρÞ þ SðσmÞ ¼ −SðρÞ þ lnD: ð17Þ

Applying the CPTP map N and using the monotonicity
property (7) directly give (using N ðσÞ ¼ σ)

ΔSðρkσmÞ ¼ SðN ðρÞkσmÞ − SðρkσmÞ
¼ −SðN ðρÞÞ þ SðρÞ ¼ −ΔSðρÞ ≤ 0; ð18Þ

equivalent to the second law of thermodynamics in the
microcanonical ensemble. Note that the CPTP map N that
keeps σm as a steady state defines a unital map. Thus,
Eq. (18) is in fact equivalent to Eq. (6).
The formulation in terms of relative entropy can be

illustrated geometrically, as seen in Fig. 2. We consider a
three-state system and evaluate the states in the energy
eigenbasis, where we assume no degeneracy of states for
simplicity. The black contours indicate states of constant
relative entropy with respect to a microcanonical model
represented by the black dot in the middle. Clearly, Eq. (17)
implies that these contours also represent constant entropy
of the state ρ. The monotonicity now tells us that any initial
state ρi, which is a point on, e.g., the blue contour, can only
evolve along this contour or toward an inner contour (e.g.,
the red contour). It should be emphasized that the monot-
onicity may not necessarily tell us what exact state is taken
by the system after the evolution, but rather on which

microcanonical (b)(a) (c)canonical grand canonical

E
N
E

thermal bath thermal/particle bath

m

c gc

E,N T,N T,µ

FIG. 1. The three different statistical ensembles: (a) a system
closed to heat and particle exchange, (b) a system coupled to a
heat bath allowing for energy exchange, and (c) a system coupled
to a heat and particle bath permitting energy and particle
exchange.
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contour the state may lie. Moreover, we can distinguish
between reversible and irreversible processes, with a
reversible process being characterized by a constant
entropy during the evolution which translates to an evo-
lution along one contour. In contrast, an irreversible process
is then an evolution toward the center.

B. Canonical ensemble model

If the open quantum system ρmay exchange in addition to
quantum information also energy with a heat bath, then a
canonical thermal state is a suitable reference state, defined as

σc ¼
1

Z
e−βH; ð19Þ

where Z ¼ Trfe−βHg is the canonical partition function. The
temperatureT ¼ 1=β is that of the heat bath and the condition
EðρÞ≡ EðσcÞ is released, since energies are now allowed to
fluctuate. Otherwise, NðρÞ≡ NðσcÞ still holds. Using the
expression for the free energy FðσcÞ ¼ −ð1=βÞ lnZ ¼
EðσcÞ − TSðσcÞ allows one to write the relative entropy as

SðρkσcÞ ¼ −SðρÞ þ SðσcÞ þ β½EðρÞ − EðσcÞ�: ð20Þ

After applying the CPTP map, we find

ΔSðρkσcÞ ¼ SðN ðρÞkσcÞ − SðρkσcÞ
¼ −SðN ðρÞÞ þ SðρÞ þ β½EðN ðρÞÞ − EðρÞ�
¼ −ΔSðρÞ þ βΔEðρÞ ≤ 0: ð21Þ

This means that the actual state ρ may not diverge from the
invariant equilibrium stateσc under stochastic evolution in the
sense of relative entropy, which is equivalent to the Clausius
second law inequality. Stochastic evolution here is a quantum
channelN which admits σc as a steady state. After the system
has thermalized with the heat bath, its entropy and energy
expectation value coincidewith those of the canonical model.

C. Grand canonical ensemble model

One may also consider an open quantum system, where
in addition to quantum information also energy and
particles may be exchanged with the environment or heat
bath. The equilibrium state for this situation is described by
the grand canonical ensemble σgc,

σgc ¼
1

Z
e−βðH−μNÞ; ð22Þ

where μ ¼ α=β is the chemical potential and Z is the grand
canonical partition function. The condition NðρÞ≡ NðσgcÞ
is now also released. Using an expression for the
grand canonical potential, Ω ¼ −ð1=βÞ lnZ ¼ EðσgcÞ−
TSðσgcÞ − μNðσgcÞ, one finds for relative entropy

SðρkσgcÞ ¼ −SðρÞ þ SðσgcÞ þ β½EðρÞ − EðσgcÞ�
− α½NðρÞ − NðσgcÞ�: ð23Þ

If we calculate the difference in relative entropies after
applying the CPTP mapN , we get an additional term in the
Clausius relation due to particle exchange ΔN,

ΔSðρkσgcÞ ¼ SðN ðρÞkσgcÞ − SðρkσgcÞ
¼ −ΔSðρÞ þ βΔEðρÞ − αΔNðρÞ ≤ 0: ð24Þ

In summary, the present section shows that the monot-
onicity of relative entropy for an open quantum system
evolution implies a general form of the second law of
thermodynamics, given an appropriate choice of an invari-
ant thermal reference state. The advantage of this approach
is that it is general; we can apply it to a wide range of
thermodynamic situations and the density matrix ρ
describes an arbitrary nonequilibrium state. Unlike stan-
dard thermodynamics, one does need to assume here
quasistationary evolution from one equilibrium state to
another.
Moreover, the presented arguments can be generalized to

situations in which the model state σ is a nonquilibrium
steady state. In these cases, the condition N ðσÞ ¼ σ still
holds, such that a change in entropy is constrained from
below. The main difference is that the remainder term is not
of simple form and its meaning is not always clear. For
further discussion, see e.g., Refs. [51,52].

FIG. 2. Curves of constant relative entropy Sðpk 1
3
1Þ or entropy

SðpÞ in the energy eigenbasis for a true distribution ðp1; p2; p3Þ
relative to a model uniform distribution q1 ¼ q2 ¼ q3 ¼ 1=3
(black dot). The dashed lines indicate permutation symmetry of
the coordinates. Some initial state ρi may evolve along the blue
curve (reversible process), but can also evolve irreversibly to a
final state ρf on the red curve.
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IV. A LOCAL SECOND LAW FROM RELATIVE
ENTROPY

In this section, we shall be concerned with generalizing
the results of Sec. III to a relativistic quantum field theory.
This can be done in several ways. The first and most direct
application of the relations derived in Sec. III is for a global
description of the field theory. This could be an infinitely
large space, but also a finite spatial volumewith appropriate
boundary conditions (such as periodic boundary condi-
tions). More interesting for applications to understand
relativistic fluids are local descriptions, to which we turn
afterward. In particular, for a relativistic quantum field
theory, one may consider not only global time evolution,
but one may also define evolution operators that propagate
a state locally from one Cauchy surface to the next.

A. Global time evolution

Let us first consider the overall time evolution of a
quantum field theory. To generalize the results of Sec. III,
we need to assume a coupling to some bath with exchange
of quantum information and possibly also exchange of
energy and particle number. A global evolution with time
can be considered for all of space. Oftentimes, this is then
an infinite volume, but one may also make the spatial
volume finite by considering e.g., a generalized torus with
periodic boundary conditions. The time evolution of the
“open quantum field theory” is then given by a CPTP map
N , precisely as it has been discussed in the previous
section. Accordingly, one also obtains second law-type
relations formulated with relative entropy as in Eq. (18)
when only quantum information is being exchanged or in
Eq. (21) with energy exchange or in Eq. (24) with energy
and particle number exchange, respectively.

B. Local thermal equilibrium approximation

Before we generalize the results discussed in Sec. III to
local relations, let us digress for a moment and consider
more broadly the relation and interplay between local
thermal equilibrium, fluid dynamics, and locality in the
context of a relativistic quantum field theory.
Relativistic fluid dynamics uses the concepts of thermal

equilibrium not only in a global sense, i.e., for the entire set
of quantum fields at some instance in time, but also locally,
at a given point x in space and time and a neighborhood
around it. This brings new elements and features into the
discussion.
Let us first emphasize that local thermal equilibrium

is typically used as an approximate concept. It holds to
lowest order in an expansion in gradients of fluid velocity,
temperature, etc., such that it becomes exact and equal to
global thermal equilibrium when these gradients are absent.
The lowest order of this derivative approximation leads
to ideal fluid dynamics, with a corresponding form of the
energy-momentum tensor and conserved particle current.

On the other side, corrections to this ideal fluid limit are
often sizable and need to be taken into account.
Dissipative, relativistic fluid dynamics exists in different

forms. The dynamical variables may be the fields describ-
ing thermal equilibrium (fluid velocity, temperature, chemi-
cal potentials) [43] or there might be additional fields that
vanish in global equilibrium such as the shear stress πμν,
bulk viscous pressure πbulk, and diffusion current νμ in
Israel-Stewart theory [42]. Often the fields correspond to
the degrees of freedom of the conserved energy-momentum
tensor and conserved particle current, but in principle also
other fields could appear.3

An interesting new feature of a local approximation is
that it can neglect some nonlocal information of the
quantum state such as entanglement between different
spatial regions. It is conceivable that local observables in
some region are well described by several quantum field
theoretic states or density matrices, but that these differ
in their global properties. As a simple example, degrees
of freedom at two points or in two subsystems A and B
are in general described by a density matrix ρAB, while
local observables on either A or B are equally well
described by the product of reduced density matrices
ρA ⊗ ρB ¼ TrBfρg ⊗ TrAfρg, which neglects the entan-
glement between A and B. It might be possible to under-
stand a local equilibrium approximation, or more generally
a local fluid approximation, as an approximation of this
kind: it works well for local observables but neglects
nonlocal entanglement (and the associated correlations)
to some extent.
Let us now formulate the above idea more concretely. We

consider a quantum field theoretic state described by some
density matrix ρ on a Cauchy hypersurface Σ (e.g., the
d − 1 dimensional hypersurface of constant time t). We take
this state ρ to be out-of-global-equilibrium.4

Now, let us concentrate on some subregion A of Σ, say a
ball of radius R around some point x⃗A at time x0A. Local
observables in this region can be described by the reduced
density matrix

ρA ¼ TrĀfρg; ð25Þ

where the partial trace goes over the complement region Ā
such that Σ ¼ A ∪ Ā and Ā ∩ A ¼ ∅. We may now

3A common element of all such fluid approximation is that
they have much less degrees of freedom than a general out-of-
equilibrium quantum state, highlighting again the approximation
character of the description.

4The following somewhat informal discussion will use the
reduced density matrix for a spatial region in a quantum field
theory. We note that this may not be well defined from a
mathematical point of view. For example, as discussed in Sec. I,
the corresponding von Neumann (entanglement) entropy is
divergent. Ultimately, we want to use relative entropies which
can alternatively, and rigorously, be defined in terms of modular
theory [26].
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consider a global equilibrium state σ, specified by βμ and α,
as defined in Eq. (14). We may also similarly consider the
reduced density matrix of this state to the region A,

σA ¼ TrĀfσg: ð26Þ

One may now say that the (nonequilibrium) state ρ is in
local thermal equilibrium in the region A around x⃗A (with
local βμ and α) when the two reduced density matrices
agree, ρA ¼ σA. Note that these two statements may depend
somewhat on the size of the region A around xA, i.e., the
radius R. In practice, this size is taken to be small enough
from a macroscopic point of view such that its precise value
is not relevant, while from a microscopic point of view it
has to be large enough, e.g., compared with possible UV
regulator scales of the (effective) quantum field theory. The
concept of such an intermediate scale, which defines a fluid
cell, also appears in other formulations of fluid dynamics,
e.g., in the context of kinetic theory [43].
One may actually quantify how well a local thermal

equilibrium description (as introduced above) works in
terms of the relative entanglement entropy SðρAkσAÞ. In
particular, σ is locally a good model for the state ρ in the
region A when they become locally indistinguishable, i.e.,

SðρAkσAÞ → 0: ð27Þ

This is a purely information theoretic criterion for a state to
be locally of thermal equilibrium form (in the region A). Of
course, when ρ is globally out-of-equilibrium, one has
necessarily SðρAkσAÞ > 0 once the region A is large
enough. This shows again the necessity for an intermediate
scale (a fluid cell size) where a local equilibrium descrip-
tion can work.
It may also be possible that a local equilibrium descrip-

tion works everywhere on the hypersurface Σ in the sense
that one can assign to each point x local values βμðxÞ and
αðxÞ in the sense described above and such that (27) is
fulfilled for a convenient neighborhood of the point x. This
does not imply that ρ is itself a (global) equilibrium state,
and in fact it cannot be if βμðxÞ is not a Killing field and
αðxÞ is not constant, respectively. This situation corre-
sponds to an ideal fluid approximation being approximately
valid. In this case, one can also find a globally defined state
σ given by

σ ¼ 1

Z
exp

�
−
Z
ΣðτÞ

dΣμfβνðxÞTμνðxÞ þ αðxÞNμðxÞg
�
; ð28Þ

where

Z ¼ Tr

�
exp

�
−
Z
ΣðτÞ

dΣμfβνTμν þ αNμg
��

ð29Þ

is a generalized partition function, such that for any fluid
cell A, Eq. (27) is fulfilled. This does not imply that ρ ¼ σ

on a global level, however. It is even conceivable that ρ is a
pure state, while σ is obviously mixed. The states differ in
their global properties while agreeing locally.
So far, we have concentrated on situations where the

local description used only the thermodynamic parameters
βμ and α. Beyond this it may sometimes be necessary to use
a more complex local approximation, e.g., to represent
locally the entire energy momentum tensor, beyond its ideal
fluid components, faithfully. In a spirit similar to the above
discussion, one may say that a local fluid approximation
state σ is a good description when the corresponding
reduced density matrices ρA and σA agree such that
Eq. (27) is fulfilled. We will discuss a class of such states
σ, for which local equilibrium states as in Eq. (28) and
global equilibrium states are a subclass, in Sec. IV F.
An interesting and important question is how the local

approximate states evolve in time. For the true state ρ, and
an isolated situation, the time evolution is unitary. In
contrast, a class of states σ that approximates ρ locally
but differs from it globally, does not have to evolve in a
unitary way. It is conceivable that after unitary time
evolution of some local equilibrium state as in Eq. (28)
it is not part of these class of states any more [i.e., it cannot
itself be written as in Eq. (28)]. At the same time, it may be
possible to represent the full state ρ also after some time
evolution, again locally by states of the form (28). It is
intuitively clear that the states σ used for a local approxi-
mation have a sort of coarse-grained evolution. For this
time evolution, the quantum information does not have to
be conserved, because nonlocal entanglement is at least
partly dropped. As the trace is preserved and the density
matrix must remain positive, the coarse-grained evolution
should be a (C)PTP map.
In the present work, we do not attempt to develop such a

coarse-grained description of dynamical evolution in more
detail. Instead we consider a different but closely related
situation where quantum information can also get lost, but
now through the coupling to an external local “bath fluid.”
Formally, we deal then with an open quantum system for
which the time evolution is again not unitary. When the
bath fluid is not described explicitly, but is instead
effectively “integrated out,” the quantum fields we consider
evolve themselves by CPTP maps. In the following, we will
develop these descriptions in more detail, with different
scenarios for the bath fluid and its coupling to the quantum
fields under consideration.

C. Local evolution and double light cone

Besides global time evolution, one may in a relativistic
quantum field theory also consider more general evolution
operators that evolve the state from one Cauchy hypersur-
face to the next. These Cauchy surfaces must have normal
vectors that point into a timelike (or, as a limit, lightlike)
direction and they should be ordered such that the evolution
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does nowhere go backward in time. Otherwise, they can be
chosen quite freely.
For our purpose, this is intriguing, because we are

interested in a local form of the second law. The strategy
is therefore to consider a series of hypersurfaces that differ
only in a well-localized region in space, so that the
evolution is essentially local.
In the following, we will investigate how Eq. (11) can be

understood from a quantum field and quantum information
theoretic point of view. After integration, Eq. (11) states
that in a certain region of space-time Ω entropy can only
increase, but not decrease,

Z
Ω
ddx

ffiffiffi
g

p ∇μsμðxÞ ¼
I
∂Ω

dΣμsμðxÞ ≥ 0: ð30Þ

We use here the (hyper-)surface element

dΣμ ¼ dd−1y
ffiffiffi
h

p
nμ; ð31Þ

where nμ is a local unit vector normal to the surface and
h ¼ j det hμνj is the determinant of the induced metric on
the hypersurface. Alternatively, in terms of differential
forms, one may write

dΣμ ¼
1

ðd − 1Þ!
ffiffiffi
g

p
ϵμν1���νd−1dx

ν1 ∧ � � � ∧ dxνd−1 ; ð32Þ

where g ¼ − det gμν is the determinant of the metric.
Let us remark here on some subtleties in the orientation

of the normal vector in Eq. (31) in a space with metric
signature ð−;þ;þ;þÞ. For a part of the closed surface
where the normal vector is spacelike, the orientation is
unambiguously taken as pointing to the outside. For parts
where the normal vector is timelike, it must then be taken
such that the normal vector is orientated inward (see
Refs. [53] Sec. B.2, [54] Sec. 16, and also [55] for
mathematical details). For a closed surface that consists
of two Cauchy surfaces, this means that n0 < 0 on the
future lying Cauchy surface and n0 > 0 for the past. This
will have to be taken into account below. Specifically, when
we integrate over a Cauchy hypersurface as in Eq. (28), we
usually assume nμ to be future oriented such that n0 > 0,
similar to a fluid velocity.
As a direct consequence of the divergence theorem,

Eq. (11) implies (30) for any region Ω with boundary ∂Ω.
On the other side, Eq. (30) also implies Eq. (11) if we can
prove it for some spacelike region around the point x that
can be made arbitrarily small. In the following, we shall
choose a particular geometry for such a space-time region,
namely, the double light cone as illustrated in Fig. 3. This
geometry, that is bounded by two light cones, one origi-
nating at a point p in the past of x and one ending at a point
q in its future, has the advantage that the spatial boundary is
just the two-dimensional intersection of the cones. The past

light cone originating from p forms a (d − 1)-dimensional
lightlike part of the boundary that can also be understood as
an initial hyper surface, while the future light cone ending
at q can also be understood as a final hyper surface for the
evolution inside the double light cone region itself. As we
will see, this has great advantages for the quantum field
theoretic discussion; see also e.g., Ref. [56].
For a situation where the quantum fields are in isolation,

i.e., without any interaction with an external bath fluid, one
would have unitary time evolution in the entire system but
also locally within the double light cone. Instead, if the
system is not isolated, one can still define density matrices
for the different hyper surfaces and evolution operators
between them, even though they are not unitary any more.
This is the situation we want to address here.
More formally, the coupling to the bath fluid is supposed

to be via a convenient local interaction term, even though
we do not specify the latter explicitly.
Within the double light-cone region as well as outside

of it, we choose a one parameter family of (d − 1)-
dimensional spacelike hypersurfaces ΣðτÞ with timelike
unit normal nμðxÞ, defined as a foliation of space-time
where τ can be thought of as a generalized time coordinate.

FIG. 3. Double light cone region bounded by one light cone
starting at the point p and one ending at the point q. We consider
a series of Cauchy surfaces that evolve within the light cone
region but remain fixed in the region where the two cones
intersect, as well as in the outside region. Different such Cauchy
surfaces are labeled by the parameter τ. Then the restriction of a
surface ΣðτÞ to the double line cone is denoted AðτÞ, and the
complement region ĀðτÞ. The operator N evolving the density
matrix from one Cauchy surface to the next is unitary for an
isolated system but a more general CPTP map for quantum fields
coupled locally to some external bath fluid. Two consecutive
hypersurfaces enclose a space-time volume Ω, where the small
black arrows indicate the normal vectors nμðxÞ of ΣðτÞ.
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The manifold where the two light cones intersect corre-
spond to a set of fixed points, i.e., it is part of all ΣðτÞ. For
d ¼ 1þ 1 dimensions (as shown in Fig. 3), the intersection
of the two light cones has just two points while it is a two-
sphere for d ¼ 1þ 3 dimensions. Outside of the double
light cone region, the Cauchy surfaces do not change with τ
so that all evolution happens actually within this region.
The restriction of the spacelike hypersurfaces ΣðτÞ to the
double light cone region itself will be called AðτÞ ⊆ ΣðτÞ.
Similarly, we denote the corresponding complement region
on ΣðτÞ by Ā.
We define the actual states of our system on these

surfaces by the family of density operators ρðτÞ, and also
define reference states as σðτÞwhich wewill later specify to
be some form of equilibrium state in analogy to Sec. III.
One should note that the actual state of the system ρ is
arbitrary in the following and may be of nonequilibrium
form. For hypersurfaces that are chosen such that the
intersection of the two light cones corresponds to fixed
points, the dynamics inside are isolated from the outside in
the sense that there is no transfer of quantum information
through the boundaries during the evolution. The only
quantum information from outside being able to affect
physics within the double light cone is encoded on the past
boundary as initial conditions. This ensures that any
entropy production will be solely within this region and
will not be affected by the exterior.
As mentioned before, we will consider here an open

quantum system evolution, where the sector of the theory
we consider is coupled to some bath fluid. This bath fluid
can either be in a global equilibrium state, a situation we
will discuss next in subsection IV D, or it could be in a
more general local equilibrium state, which we constructed
in subsection IV B and which will be discussed in
subsection IV E. In subsection IV F, we will then consider
an even more general situation. In any case, the evolution of
the quantum field theoretic state in contact with the bath
fluid from a density operator ρðτ0Þ to some other state ρðτ1Þ
is described by a CPTP map,

N ∶ ρðτ0Þ → N ðρðτ0ÞÞ ¼ ρðτ1Þ; ð33Þ

where the particular mapN depends on the initial and final
hypersurfaces. The same map is being applied to the
reference state σ; however, the latter will typically be
chosen such that it is invariant or covariant under N .

D. Coupling to a bath fluid in global equilibrium

We now specify the bath fluid to be a fluid in global
thermal equilibrium governed by βν ¼ uν=T, the ratio of
fluid velocity, and temperature, and similarly α ¼ μ=T,
the ratio of chemical potential and temperature. We may
quantify the coupling between the fluid we are actually
interested in and the bath fluid by some interaction para-
meter λ. An example could be a field theory of electrons and

positrons coupled to a bath of electromagnetic radiation
through the usual coupling strength e. (In that case, the
chemical potential would vanish.) Another example would
be the field for up quarks coupled to a bath of down quarks,
strange quarks, gluons, etc. We expect dissipative effects
to be strong for large λ, whereas λ → 0 leads to unitary
time evolution for the sector of the theory we describe
explicitly.5

In the following, we will not describe the bath fluid
explicitly but keep its presence in mind. For the sector of
the theory, we describe explicitly, we compare two states or
density matrices, ρðτÞ and σðτÞ. While ρðτÞ is generically
out-of-equilibrium, we shall assume in the following that
σðτÞ is a reference state in global thermal equilibrium with
the bath fluid. We can then directly specify the density
operator of the latter on some hypersurface ΣðτÞ,

σ ¼ 1

Z
exp

�
−
Z
ΣðτÞ

dΣμfβνTμν þ αNμg
�
; ð34Þ

where

Z ¼ Tr

�
exp

�
−
Z
ΣðτÞ

dΣμfβνTμν þ αNμg
��

ð35Þ

is the thermal partition function. This definition together
with the conditions (16) corresponds to the covariant
generalization of a (time independent) equilibrium state.
It also provides a unique fluid frame with timelike fluid
velocity uμ in the direction of the Killing field βν, such that
in an equilibrium without rotation or acceleration one may
write

sμ ¼ suμ; Tμν ¼ εuμuν þ pΔμν;

and Nμ ¼ nuμ; ð36Þ

where s is defined as the entropy density, ε is the energy
density, and n is the particle density of the fluid. Note that
Tμν andNμ are expectation values here, as opposed to being
operators in Eq. (34).
We now wish to formulate a second law in local form. A

problem to overcome here is that the total von Neumann
entropy SðρÞ of an arbitrary state cannot easily be written as
an integral over some local entropy current. This is because
outside of equilibrium entropy is not necessarily extensive,
i.e., for a fluid proportional to the volume. However, the
entropy of the equilibrium state σ may be expressed in such
a way and one can write using Eq. (34),

5We note that in Ref. [57] a similar open quantum system setup
as well as monotonicity of relative entropy is considered in the
context of quarkonium formed in heavy ion collisions and
assumed to be weakly coupled to a locally equilibrated hot
quark-gluon plasma.
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SðσÞ ¼ −Trfσ ln σg

¼ lnðZÞ þ
Z

dΣμfβνTμνðσÞ þ αNμðσÞg

¼ −
Z

dΣμsμðσÞ: ð37Þ

(The minus sign in the last line arises because we take dΣμ

and sμ to be future oriented with positive time components
dΣ0 and s0, and work with metric signature ð−;þ;þ;þÞ.)
We have used here the expectation values

TμνðσÞ ¼ TrfσTμνg; NμðσÞ ¼ TrfσNμg; ð38Þ
which we take to be renormalized, such that they vanish in
vacuum where T ¼ μ ¼ 0. We are also using here that the
logarithm of the partition function (the Schwinger func-
tional for vanishing source) can be written as

W ¼ lnðZÞ ¼ −
Z

dΣμfpβμg; ð39Þ

where p is the pressure and we are again assuming a
renormalization such that p ¼ 0, and accordingly Z ¼ 1, in
vacuum where T ¼ μ ¼ 0. The thermal entropy current can
be written as

sμ ¼ −βνTμν − αNμ þ pβμ; ð40Þ
and using the relation ϵþ p ¼ sT þ μn one can see that for
an ideal fluid where Tμν ¼ ðϵþ pÞuμuν þ pgμν and
Nμ ¼ nuμ, Eq. (40) agrees indeed with the usual definition
sμ ¼ suμ.
The relative entropy between an arbitrary state ρ and the

global equilibrium state σ at some time parameter τ reads

SðρkσÞ¼TrfρðlnðρÞ− lnðσÞÞg

¼−SðρÞþ lnðZÞþTrfρ
Z

dΣμðβνTμνþαNμÞg

¼−SðρÞþ
Z

dΣμf−sμðσÞ

þβν½TμνðρÞ−TμνðσÞ�þα½NμðρÞ−NμðσÞ�g: ð41Þ

Note that the right-hand side of (41) contains the part −SðρÞ
that is defined in a nonlocal way and a local part written as
an integral over the Cauchy hypersurface. The integral is
here over all of Σ ¼ A ∪ Ā. However, the time evolution we
consider is such that it takes place only in A, while the part
of the Cauchy surface denoted Ā remains stationary.
In a next step, we may consider the difference of relative

entropies between two Cauchy surfaces,

ΔSðρkσÞ ¼ Sðρðτ1Þkσðτ1ÞÞ − Sðρðτ0Þkσðτ0ÞÞ: ð42Þ

We assume here that the time evolution is such that the
global thermal equilibrium state σ is stationary, i.e., it

remains to be of the form (34), even though σðτ1Þ and σðτ0Þ
are defined on different Cauchy surfaces. In contrast, the
state ρ is not stationary, so that ρðτ1Þ ¼ N ðρðτ0ÞÞ and ρðτ0Þ
are different states. As a consequence of the coupling to the
external bath fluid, the evolution operator N is in general
not unitary but a CPTP map.
From the monotonicity property of relative entropy

under CPTP maps, it follows that

ΔSðρkσÞ ≤ 0; ð43Þ

where the equality is for vanishing coupling to the bath
fluid, λ ¼ 0, corresponding to unitary time evolution.
Using (41), we can rewrite the difference of relative

entropies as

ΔSðρkσÞ ¼ −ΔSðρÞ −
I
Aðτ1Þ∪Aðτ0Þ

dΣμf−sμðσÞ

þ βν½TμνðρÞ − TμνðσÞ� þ α½NμðρÞ − NμðσÞ�g:
ð44Þ

The integral in (44) is now along a closed surface, and for
such surface integrals we adopt the convention explained
below Eq. (30) (this explains the additional minus sign in
front of the integral). We note in particular that in the
difference, ΔSðρkσÞ, contributions to the integral in (41)
from the region Ā outside of the double light cone have
dropped out.
We also use in (44) the difference of entropies

ΔSðρÞ ¼ Sðρðτ1ÞÞ − Sðρðτ0ÞÞ. While the entropy SðρÞ is
not generically local, any change in entropy is due to
interactions with the bath fluid. Assuming that these
processes are local in space and time allows to write

ΔSðρÞ ¼ Sðρðτ1ÞÞ − Sðρðτ0ÞÞ ¼
Z
Ω
ddx

ffiffiffi
g

p
sðρÞðxÞ; ð45Þ

where the integral goes over the space-time region Ω
between the two Cauchy surfaces. The local form in
(45) is also further supported by the fact that the
Cauchy surfaces Σ can evolve quite arbitrarily and may
only change within some region.
The remaining terms in (44) can be rewritten by using the

divergence theorem such that we obtain

ΔSðρkσÞ ¼
Z
Ω
ddx

ffiffiffi
g

p f−sðρÞ − βν∇μTμνðρÞ

− α∇μNμðρÞg ≤ 0: ð46Þ

We have used here that σ is a global thermal equilibrium
state such that its entropy current is conserved,
∇μsμðσÞ ¼ 0, and similarly also its energy momentum
tensor and particle number current. Moreover, βμ and α
obey (16).
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Because (46) must be obeyed for any choice of the
Cauchy surfaces Σ, we can conclude that the local relation

sðρÞ þ βν∇μTμνðρÞ þ α∇μNμðρÞ ≥ 0 ð47Þ

must hold, as well. This can be seen as a local version of the
second law of thermodynamics in the present situation.
Specifically, it is the local and differential version of
Eq. (24). In particular, we find that a local version of
the second law can be formulated in terms of relative
entropy.
Let us emphasize again that the change in relative

entropy in the present context is due to interactions with
the bath fluid. Similar to Eq. (45), one can for local
interactions also write the change in relative entropy
between two Cauchy surfaces in a local way,

ΔSðρkσÞ ¼
Z
Ω
ddx

ffiffiffi
g

p
sðρkσÞðxÞ ≤ 0: ð48Þ

Because this should hold for arbitrary Cauchy surfaces, we
find for the local “production of relative entropy”

sðρkσÞðxÞ ≤ 0: ð49Þ

Relative entropy can in some space-time volume only
decrease, so that the states become less distinguishable,
and not increase.
While we have now found a local formulation of the

second law based on relative entropy, it would actually be
interesting to go one step further and formulate this with
relative entanglement entropy instead. The analog of (42) is
then

ΔSðρAkσAÞ¼SðρAðτ1ÞkσAðτ1ÞÞ−SðρAðτ0ÞkσAðτ0ÞÞ: ð50Þ

We use here the reduced density matrices for the double
light cone region

ρA ¼ TrĀfρg; σA ¼ TrĀfσg: ð51Þ

The partial traces are over the complement region Ā outside
of the double light cone where the Cauchy surfaces remain
stationary.
The reduced density matrices evolve according to

modified evolution operators N A such that ρAðτ1Þ ¼
N AðρAðτ0ÞÞ ¼ N AðTrĀfρðτ0ÞgÞ ¼ TrĀfN ðρðτ0ÞÞg ¼
TrĀfρðτ1Þg. Because the double light cone region has fixed
spatial boundaries, a nonvanishing difference in Eq. (50)
can only be a result of interactions with the bath fluid.
It follows from monotonicity of relative entropy that
ΔSðρAkσAÞ ≤ 0, with equality for vanishing interaction
λ ¼ 0. If these interactions with the bath fluid are again
local, it should be possible to write in analogy to (48)

ΔSðρAkσAÞ ¼
Z
Ω
ddx

ffiffiffi
g

p
sðρAkσAÞ ≤ 0: ð52Þ

Moreover, even though we will not formally prove this, it is
highly plausible that the local changes in relative entropy
and relative entanglement entropies agree,

sðρAkσAÞ ¼ sðρkσÞ; ð53Þ

and as a consequence also

ΔSðρAkσAÞ ¼ ΔSðρkσÞ: ð54Þ

This is quite an interesting possibility, because it allows to
formulate the local version of the second law of thermo-
dynamics not only in terms of relative entropy, but also in
terms of relative entanglement entropy.

E. Coupling to a bath fluid in local equilibrium

We now aim to generalize somewhat the physics setting
and allow for the bath fluid to deviate from global thermal
equilibrium but assume it to be in local thermal equilibrium,
instead. First of all, from the discussion in the previous
subsection, one expects that for the evolution within the
double light cone region, only the local state therein is
actually relevant. If the reduced density matrix σA is actually
the same as for a globally thermal state, the analysis of
Sec. IVD goes through without essential modifications.
Here we generalize this discussion to a situation where

also within the double light cone region itself the bath fluid
is not in equilibrium, but in a more general state. More
specifically, we assume now that the bath fluid is such that
an evolution map N is induced for the quantum fields we
study that leaves a local equilibrium state σ invariant. The
latter is written as in Eq. (34), but now βμðxÞ is not assumed
to be a Killing vector field and αðxÞ is not taken to be
constant. Instead, we assume that βμðxÞ and αðxÞ are just
some given fields, or functions of space and time. We
assume that the map N that propagates the state from one
hypersurface to the next is such that σ remains to be of the
particular form in Eq. (34).6

Interestingly, for a so-defined local equilibrium state, the
first two lines of Eq. (37) remain valid, i.e., one can write
the von Neumann entropy of such a state in terms of the
partition function and the expectation values of energy-
momentum tensor and particle current. Also, if the loga-
rithm of the partition function, the Schwinger functional, is
local or extensive,

6As a side remark, we note that a similar class of states appears
also in the Zubarev approach where a nonequilibrium state is
constructed by maximizing entropy on a given (and fixed)
Cauchy surface given certain constraints involving expectation
values of energy and momentum [58,59].
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W ¼ lnðZÞ ¼ −
Z

dΣμwμðσÞ; ð55Þ

one can introduce through Eq. (37) and the identification

sμðσÞ ¼ −βνTμνðσÞ − αNμðσÞ þ wμðσÞ; ð56Þ

an entropy current, as in the third line of Eq. (37).
Arguments for the applicability of Eq. (55) and the
resulting entropy current (56) were recently given in
Ref. [60]. Because the class of states introduced by this
prescription is not in equilibrium when (16) is not fulfilled,
Eq. (56) is to be understood here as the definition of a
nonequilibrium entropy current. The relation ΔSðσÞ ≥ 0
can be written locally as ∇μsμðσÞ ≥ 0.
As a check, for wμ ¼ pβμ, Eq. (56) gives indeed the

right entropy current within first order relativistic fluid
dynamics in the Landau frame [43]. More generally, it
would be good to check from the quantum field theory side
whether the class of local equilibrium states in Eq. (34) is a
good approximation for certain out-of-global equilibrium
situations.
In a next step, one can consider the relative entropy of

some generic state ρ relative to the so-defined local
equilibrium state σ. It is then not difficult to see that this
relative entropy SðρkσÞ can still be written as in Eq. (41), of
course with the difference that βν is not Killing and α is not
constant any more.
In a subsequent step, one may consider a difference of

relative entropies on two Cauchy hypersurfaces as in
Eq. (42). By monotonicity of relative entropy, this differ-
ence is non-negative, as expressed in Eq. (43). Via Eqs. (44)
and (45), one is again led to a relation that generalizes
Eq. (46), namely,

ΔSðρkσÞ

¼
Z
Ω
ddx

ffiffiffi
g

p f−sðρÞ þ∇μsμðσÞ

− βν∇μ½TμνðρÞ − TμνðσÞ� − α∇μ½NμðρÞ − NμðσÞ�
− ð∇μβνÞ½TμνðρÞ − TμνðσÞ� − ð∂μαÞ½NμðρÞ − NμðσÞ�g
≤ 0: ð57Þ

One may use the definition of the entropy current (56)
which allows us to simplify Eq. (57) to

ΔSðρkσÞ ¼
Z
Ω
ddx

ffiffiffi
g

p f−sðρÞ þ∇μwμðσÞ

− βν∇μTμνðρÞ − α∇μNμðρÞ
− ð∇μβνÞTμνðρÞ − ð∂μαÞNμðρÞg ≤ 0: ð58Þ

In a situation where the bath fluid exchanges, no energy,
momentum, or particle number with the fields of interest,
the second lines in (57) as well as (58) drop out, and we are
left with

sðρkσÞ ¼ −sðρÞ þ∇μsμðσÞ

−
1

2
ð∇μβν þ∇νβμÞ½TμνðρÞ − TμνðσÞ�

− ð∂μαÞ½NμðρÞ − NμðσÞ�
¼ −sðρÞ þ∇μwμðσÞ
− ð∇μβνÞTμνðρÞ − ð∂μαÞNμðρÞg ≤ 0: ð59Þ

Here we wrote the change in relative entropy in a local way
as was done already in Eq. (48).

F. General exponential density matrices

It is interesting to study a class of density matrices which
one may call general exponential density matrices. This
class generalizes global and local thermal equilibrium
density matrices further and is of the form

σ ¼ 1

Z
exp

�Z
dΣμf−hμαβTαβ − lμαNαg

�
; ð60Þ

with the (nonequilibrium) partition function

Z ¼ Tr

�
exp

�Z
dΣμf−hμαβTαβ − lμαNαg

��
: ð61Þ

The energy-momentum tensor TαβðxÞ and particle number
currentNαðxÞ should here be considered as operators, while
the coefficients hμαβðxÞ and lμαðxÞ are parameter fields.
Note that for a given hypersurface Σ, with local normal

vector nμðxÞ, only some components of the parameter
fields, namely, the contractions nμðxÞhμαβðxÞ and nμðxÞlμαðxÞ
actually enter Eq. (60). In contrast, the components
orthogonal to the surface normal vector field nμðxÞ could
be changed without changing the density matrix σ. In this
sense, there are precisely as many independent components
of the parameter fields as there are components of the
energy-momentum tensor and particle number current. One
can understand the parameter fields as Lagrange multiplier
fields that can realize unrestricted local expectation values
hTμνðxÞi and hNμðxÞi. In particular, these expectation
values are not bounded to be of the thermal equilibrium
or ideal fluid form.
A nice feature of Eq. (60) is that one can again express

the von Neumann entropy SðσÞ in terms of expectation
values and the partition function,

SðσÞ ¼ −Trfσ ln σg

¼ lnðZÞ þ
Z

dΣμfhμαβTαβðσÞ þ lμαNαðσÞg: ð62Þ

If now the logarithm of the partition function (the
Schwinger functional) is itself local and can be written
as in Eq. (55) (this must be tested), one may define for the
class of density matrices in (60) the local entropy current
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sμðσÞ ¼ −hμαβTαβðσÞ − lμαNαðσÞ þ wμðσÞ; ð63Þ

such that

SðσÞ ¼ −
Z

dΣμsμðσÞ: ð64Þ

The relation ΔSðσÞ ≥ 0 implies again the local relation
∇μsμðσÞ ≥ 0 for the class of states (60), provided their form
is preserved by the corresponding CPTP time evolu-
tion map.
Another advantage of the exponential form (60) is that

one can determine the relative entropy of some state ρ
relative to such a state σ,

SðρkσÞ ¼ Trfρðlnρ− lnσÞg

¼ −SðρÞ þ lnðZσÞ þ
Z

dΣμfhμαβTαβðρÞ þ lμαNαðρÞg

¼ −SðρÞ þ SðσÞ þ
Z

dΣμfhμαβ½TαβðρÞ− TαβðσÞ�

þ lμα½NαðρÞ−NαðσÞ�g

¼ −SðρÞ þ
Z

dΣμf−sμðσÞ þ hμαβ½TαβðρÞ− TαβðσÞ�

þ lμα½NαðρÞ−NαðσÞ�g: ð65Þ

In the last equation, we have used the definition of the
entropy current sμðσÞ associated with the density matrix σ
in Eq. (63).
Let us stress that (60) for some given form of the

parameter fields hμαβðxÞ and lμαðxÞ is in general not the
result of a unitary time evolution. Instead, the evolution
operators from one hypersurface to another is a CPTP map
N . In this sense, the class of density matrices in (60) should
be seen as describing open quantum systems. Applying the
same evolution map to ρ leads as before to an inequality as
in Eq. (43). This can again be made local, in generalization
of but analogous to Eq. (59).

V. CONCLUSIONS AND OUTLOOK

We have investigated here how the second law of
thermodynamics can be formulated with quantum relative
entropy. For open quantum systems, which can exchange
quantum information with an environment or heat bath, the
time evolution is not unitary but given by a more general
CPTP map. For classes of CPTP maps that leave equilib-
rium states invariant, the second law is a consequence of the
monotonicity property of relative entropy. We have recalled
this construction for generic quantum states in Sec. III.
Our main focus here was, however, to investigate local

versions of the second law from this perspective, as they are
being used e.g., in relativistic fluid dynamics. In a relativ-
istic quantum field theory, it is useful to consider besides

global time evolution also evolution maps between more
general Cauchy (hyper) surfaces, and this is particularly
convenient to investigate local dynamics. We have specifi-
cally concentrated on situations where the Cauchy surfaces
change only in a localized space-time region bounded by
two light cones. For quantum field theories coupled to an
external bath fluid, we have formulated local versions of the
second law in terms of relative entropy. We have also
discussed how the same relation could be formulated with
relative entanglement entropy. The construction works with
an external bath fluid in global equilibrium such that a
reference state that is itself in equilibrium is left invariant,
but it can also be extended to more general situations where
this reference state is a local generalization of the equilib-
rium state or an even more general density matrix of
exponential form in the energy-momentum tensor and
conserved particle current operators.
In future work, it would be important and interesting to

check the scenarios we have laid out here for concrete and
realistic quantum field theories. This implies also that
appropriate (functional) methods need to be developed.
We have concentrated here on open quantum systems

where the second law is in fact easier to understand than for
closed quantum systems. For the latter, the evolution with
time or between Cauchy surfaces is actually unitary, so that
the global von Neumann entropy for the entire system is
conserved. Also the relative entropy between two density
matrices is then conserved.
Interestingly, a local version of the second law and local

thermalization may nevertheless arise, as long as one
considers only local observables. As we have discussed
in Sec. IV B, it is possible (and in fact likely) that the
quantum information spreads with time over space in the
sense that further quantum entanglement between different
spatial regions is generated. Even for a state that is far from
global equilibrium, the reduced density matrix for some
region may be equivalent to the reduced density matrix of a
global thermal equilibrium state, e.g., such that their
relative entanglement entropy vanishes. Thermalization
could occur locally but not globally. For a finite and
isolated quantum system, a similar scenario would be in
conflict with the possibility of quantum recurrences, but for
a relativistic quantum field theory in an infinite space it is
likely that these cannot occur.
In such a scenario, relativistic fluid dynamics would arise

as an approximation to the full quantum field dynamics that
describes local observables, but neglects some amount of
nonlocal entanglement. It may be possible to approximate
the originally unitary time evolution with a suitable coarse-
grained variant constructed along these lines and this would
then be a (C)PTP map similar to the one that arises for open
quantum systems. In the future, it would be interesting to
investigate this scenario in more detail for concrete quan-
tum field theories, both theoretically and—within model
systems—experimentally.
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