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As a modified gravity theory that introduces new gravitational degrees of freedom, the generalized
SU(2) Proca theory (GSU2P for short) is the non-Abelian version of the well-known generalized Proca
theory where the action is invariant under global transformations of the SU(2) group. This theory was
formulated for the first time in Phys. Rev. D 94, 084041 (2016), having implemented the required
primary constraint-enforcing relation to make the Lagrangian degenerate and remove one degree of
freedom from the vector field in accordance with the irreducible representations of the Poincaré group. It
was later shown in Phys. Rev. D 101, 045008 (2020) and 101, 045009 (2020) that a secondary constraint-
enforcing relation, which trivializes for the generalized Proca theory but not for the SU(2) version, was
needed to close the constraint algebra. It is the purpose of this paper to implement this secondary constraint-
enforcing relation in GSU2P and to make the construction of the theory more transparent. Since several
terms in the Lagrangian were dismissed in Phys. Rev. D 94, 084041 (2016) via their equivalence to other
terms through total derivatives, not all of the latter satisfying the secondary constraint-enforcing relation,
the work was not so simple as directly applying this relation to the resultant Lagrangian pieces of the old
theory. Thus, we were motivated to reconstruct the theory from scratch. In the process, we found the
beyond GSU2P.

DOI: 10.1103/PhysRevD.102.104066

I. INTRODUCTION

Whether a classical description of the gravitational
interaction is fundamental or effective remains a mystery.
What is certain is that, no matter whether the fundamental
theory of gravity is classical or quantum, and despite its
enormous experimental success [1–13], Einstein’s theory

of gravity is an effective theory [14–16]. The inevitable
presence of singularities in general relativity (GR) [17,18],
even assuming the validity of the cosmic censorship
conjecture [19–21], points to a breakdown of the theory.
Should the breakdown take place in the infrared, the new
theory that encompasses GR might give us some insight
about the true nature of the current accelerated expansion
of the Universe. The breakdown might take place in the
ultraviolet, helping solve the renormalizability problems of
GR and illuminating the way to a quantum description of
gravity. Of course, the breakdown might take place in both
the infrared and the ultraviolet. Another option is at an
intermediate scale, in the strong gravity regime, which is
particularly interesting because the very young multi-
messenger astronomy is giving us, and will continue
doing it, valuable information about the behavior of
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gravity at the scales associated to compact objects such as
black holes and neutron stars.1 We might, therefore, be on
the verge of a scientific crisis and a new revolution in
physics, in the sense of Kuhn [23].
Over the years, several approaches have been proposed

to classically extend Einstein’s theory of gravity (see
Ref. [24] for a review). Perhaps the simplest one, at least
in its conception, is giving mass to the gravitational carrier
[25]; nevertheless, starting from the Fierz-Pauli action [26]
and arriving to the de Rham-Gabadadze-Tolley (dRGT)
ghost-free massive gravity [27], the introduction of a
massive graviton has shown to be a difficult challenge.
Another possibility is adding space dimensions while
preserving the second-order differential structure of the
field equations and keeping untouched the gravitational
degrees of freedom; this is the proposal derived from the
Lovelock program [28,29], as the only curvature invariant
that satisfies these requirements in four spacetime dimen-
sions is the Einstein-Hilbert term. A third alternative is
invoking new gravitational degrees of freedom, the simplest
of them being a scalar field; the first proposal in this regard
was the well-known Brans-Dicke theory [30], but this has
turned out to be just a particular case of a whole family of
Lagrangians that comprise the, nowadays very famous,
Horndeski theory [31–38]. The purpose of preserving the
second-order differential structure of the field equations is
to remove the Ostrogradski ghost [39–42] that makes the
ground state unstable in the presence of interactions.
Notwithstanding, this is not the only way to remove the
Ostrogradski ghost, although it is the most transparent; the
degeneracy of the kinetic matrix associated to the degrees
of freedom of the theory can be invoked so that primary
constraints among the phase space variables are generated
[43]—in this way, the unwanted degrees of freedom can be
removed [44] even when the differential structure of the
field equations is higher order. This idea was put in action
with the introduction of the beyond Horndeski theory
[45,46] and later generalized to what is now known as
the degenerate higher-order scalar-tensor theory (DHOST)
[47–49], where a plethora of Lagrangians rose up to the
surface. The application of this idea to the Lovelock
program has, nonetheless, not been fruitful [50], which
is, paradoxically, very suggestive. A fourth alternative is
considering other geometric formulations of gravity, i.e.,
considering not only the curvature but also the torsion and
the nonmetricity as the protagonist geometric objects in the
description of the gravitational interaction [24,51–53]. This
has a long history starting from the Einstein-Cartan theory
[54,55], which involves curvature and torsion but leaving
aside the nonmetricity, to the coincident gravity proposal

[56], where the nonmetricity is the sole protagonist. Of
course, there are more possibilities, some of them with
remanent harmless ghosts, they being, therefore, effective
theories.
The introduction of new gravitational degrees of freedom

has not been kept only in the realm of a scalar field.
Multiple scalar fields have been considered in what are
called the multi-Galileon theories [57–60]. More tensor
fields can be considered as well, as in the bimetric theory
[61] which introduces an extra spin-two metric. The intro-
duction of vector fields [62–66] and p-forms [67–69] has
also been investigated. Even the mixture of a scalar and a
vector field, together with gravity, has been explored [70].
Each one of these proposals has its own motivations, which
we will not describe here except for those related to the
introduction of vector fields.
The most frequent question when we speak about vector

fields in gravity and/or cosmology is, why introduce them?
We think the right question is, why not? At the end of the
day, and being pragmatical, we have observed many more
vector fields in nature than fundamental scalar fields. We
have to be careful with the problems they can generate:
ghosts, anisotropies in cosmology, etc., but this does not
preclude their study. In fact, the role of vector fields in
gravitation, astrophysics, and cosmology has attracted a lot
of interest in recent years (see Refs. [24,71–73] for some
reviews), culminating in the construction and study of what
is called the generalized Proca theory [62–66]. This is the
Proca theory [74,75], in curved spacetime, devoid of
internal gauge symmetries and can be seen as the vector-
field version of the Horndeski theory.2 By construction, it is
plainly degenerate in order to avoid the propagation of a
fourth degree of freedom which clearly disagrees with the
structure of the irreducible representations of the Poincaré
group. Its decoupling limit, in contrast, reduces to the
Horndeski theory.
The generalized Proca theory has been well studied in

astrophysics and cosmology [62,78–87]. In the latter,
however, special attention has been paid because of the
anisotropies that a vector field produces, inherent to its
nature, both in the expansion of the Universe and in the
cosmological perturbations. Such anisotropies can easily
go beyond the observational constraints, so it is necessary
to take some measures such as the rapid oscillations of the
vector field [88], the dilution of the vector field by a
companion scalar field [89], the suppression of the spatial
components of the vector field against its temporal com-
ponent (what is called the temporal gauge setup) [79], or
the implementation of a cosmic triad of vector fields3 that
restores the isotropy [90–94]. The latter proposal has been

1At these scales, however, there might be some contributions
from the ultraviolet-complete theory. This means that the regime
of validity of the modified gravity theory must also be ensured
before applying constraints that belong to other scales or
frequencies [22].

2For the U(1) gauge-invariant version of the generalized Proca
theory in flat spacetime see Ref. [76] and in curved spacetime see
Ref. [77].

3The cosmic triad is a set of three vector fields mutually
orthogonal and of the same norm.
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investigated in different contexts and finds a natural home
in the presence of an internal SU(2) symmetry [95–99].
Indeed, the temporal gauge setup and the cosmic triad are
two of the four possible setups that are compatible with a
spatial spherical symmetry and that are realized under an
internal SU(2) symmetry [100–102]. This was the main
motivation behind the formulation of what was baptized as
the generalized SU(2) Proca theory (GSU2P for short)
[103] (see also Ref. [104]). The possible setups mentioned
above spontaneously break the internal (global) SU(2)
symmetry along with the Lorentz rotational symmetry
and Lorentz boosts, leaving, however, a diagonal spatial
rotation subgroup unbroken. The isotropic expansion of the
Universe can then be naturally modeled with any of the four
setups or linear combinations of them without resorting to
fast oscillations or other (scalar) fields. The price to pay,
however, which is the spontaneous breaking of the Lorentz
invariance, is, anyway, extraordinarily reasonable, since
this seems to be nature’s strategy to produce all the patterns
we see in condensed matter systems (fluids, superfluids,
solids, and supersolids; see Ref. [105]). Indeed, according
to the pattern classification in Ref. [105], what would be the
condensed matter analogs of the temporal gauge setup and
the cosmic triad in the GSU2P are the, yet unobserved,
type-I and type-II framids, respectively. The application of
the GSU2P to dark energy and inflation has been explored
in Refs. [106,107] and its stability properties in Ref. [108].
The GSU2P was built in Ref. [103] (see also Ref. [104])

having in mind the primary constraints required to remove
the fourth degree of freedom.4 To that end, a primary
constraint-enforcing relation related to the primary Hessian
of the system was employed. This was done in flat
spacetime following the standard procedure of later cova-
riantizing not before having removed redundant terms in
the obtained action via total derivatives. Later on, two
caveats were recognized. First, the constraint algebra was
not closed only with the primary constraints, at least for
theories involving more than one vector field5 [109,110]; a
secondary constraint was identified that closed the con-
straint algebra and that, therefore, pointed out to the
existence of ghosts in the GSU2P. Second, the redundant
terms in flat spacetime turned out to be not necessarily
redundant in curved spacetime, which would lead, for sure,
to new terms not uncovered in Ref. [103]; indeed, such a
remark led two of us to rediscover the beyond Proca terms
in Ref. [111], they being the vector analogous of the
beyond Horndeski terms, already obtained in Ref. [112].
Reformulating the GSU2P in order to implement the
secondary constraint-enforcing relation seemed at first
sight very easy, because it was a matter of applying this

relation to the “old” GSU2P and seeing what the result
would be. However, this turned out to be impractical, since
many terms had disappeared when employing the total
derivatives. Moreover, the total derivatives employed sat-
isfied the primary constraint-enforcing relation but not
necessarily the secondary one, so repairing the old theory
quickly became quite a big deal and, therefore, unworthy.
The purpose of this paper is to build from scratch the
GSU2P, paying attention to the two caveats already
mentioned and following a style of construction based
on the decomposition of a first-order derivative ∂μAa

ν of the
vector field Aa

μ into its symmetric,

Saμν ≡ ∂μAa
ν þ ∂νAa

μ; ð1Þ

and antisymmetric part,

Aa
μν ≡ ∂μAa

ν − ∂νAa
μ: ð2Þ

Employing this decomposition will simplify things and
allow us to deal with a lower number of Lagrangian
building blocks as compared with Ref. [103]. In the
process, we will find the beyond GSU2P.
The layout of the paper is the following. In Sec. II, we

will enumerate the requirements for the construction of the
GSU2P. In Sec. III, we will show how an arbitrary function
of Aa

μν and Aa
μ satisfies both the primary and secondary

constraint-enforcing relations, leaving only the work of
finding the right terms in the action involving at least one
Saμν. In Sec. IV, we build the Lagrangian involving one
derivative and two vector fields. Similar procedures are
followed in Secs. V–VIII, where we obtain the Lagrangians
involving one derivative and four vector fields, two
derivatives only, two derivatives and two vector fields,
and three derivatives only, respectively. In all these cases,
the number of spacetime indices in the Lagrangian building
blocks before contractions with the primitive invariants
of the Poincaré group is less than or equal to six. We
prefer to keep the construction of the theory up to this level
since, as shown in Ref. [103], the number of Lagrangian
building blocks we have to consider scales very fast
when more spacetime indices are considered. Finally, in
Secs. IX and X, we compare the “new” or “reconstructed”
GSU2P with the old GSU2P and with the generalized Proca
theory, respectively. Section XI is devoted to the conclu-
sions. Throughout the text, Greek indices are spacetime
indices and run from 0 to 3, while Latin indices are internal
SU(2) group indices and run from 1 to 3. The sign
convention is the (þþþ) according to Misner, Thorne,
and Wheeler [113].

II. REQUIREMENTS FOR THE
CONSTRUCTION OF THE THEORY

The GSU2P must be built having in mind the following
criteria:

4Concretely, the temporal component of the vector field.
5The constraint algebra of the generalized Proca theory, the

latter being a theory that involves just one vector field, turned out
to be trivially closed.
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(1) The action must be, locally, Lorentz invariant
(although the symmetry may be nonlinearly
realized).

(2) The vector field must transform as the adjoint
representation of the global transformations belong-
ing to the SU(2) group [114–116]. Accordingly, the
action must be invariant under these transformations.

(3) The primary constraint-enforcing relation H0ν
ab ¼ 0,

where

Hμν
ab ≡ ∂2L

∂ _Aa
μ∂ _Ab

ν

; ð3Þ

is the “primary” Hessian and a dot means a time
derivative, must be satisfied in flat spacetime in
order to make the Lagrangian degenerate. This is a
necessary condition to remove the unwanted degree
of freedom [62,63].

(4) The secondary constraint-enforcing relation
H̃00

ab ¼ 0, where

H̃μν
ab ≡ ∂2L

∂ _A½a
μ ∂Ab�

ν

; ð4Þ

is the “secondary Hessian” and the brackets mean
unnormalized antisymmetrization, must be satisfied
in flat spacetime so that the primary constraint holds
at all times.6 This condition together with the
preceding one are necessary and sufficient to remove
the unwanted degree of freedom in flat spacetime
[109,110].

(5) The decoupling limit of the theory must be free of
the Ostrogradski ghost as must happen since the full
theory is free of it. This implies that the scalar limit
of GSU2P must belong to the non-Abelian extension
of the multi-Galileon theory [57–60,103] or any of
its beyond or DHOST versions.

III. L2

All the Lagrangian pieces LA
i built exclusively from

contractions of Aa
μν and Aa

μ with the primitive invariants of
the Lorentz group7 [114–116], collected in a generic
Lagrangian piece called L2ðAa

μν; Aa
μÞ, satisfy automatically

both the primary and secondary constraint-enforcing rela-
tions thanks to the antisymmetry of Aa

μν. To see it, let us
calculate the primary and secondary Hessians. First of all,

∂LA
i

∂ _Aa
μ

¼ ∂LA
i

∂Ac
ρσ

∂Ac
ρσ

∂ _Aa
μ

¼ ∂LA
i

∂Ac
ρσ
δ0½ρδ

μ
σ�δ

c
a

¼ ∂LA
i

∂Aa
ρμ

����
ρ¼0

−
∂LA

i

∂Aa
μσ

����
σ¼0

¼ 2
∂LA

i

∂Aa
ρμ

����
ρ¼0

: ð5Þ

Any possible ambiguity in the second line of the previous
equation is clarified having in mind that LA

i is always
written as Aa

μν contracted with an antisymmetric tensor.8

Thus,

∂2LA
i

∂ _Ab
ν∂ _Aa

μ

¼ 2
∂2LA

i

∂Aa
ρμ∂Ac

αβ

����
ρ¼0

∂Ac
αβ

∂ _Ab
ν

¼ 2
∂2LA

i

∂Aa
ρμ∂Ac

αβ

����
ρ¼0

δ0½αδ
ν
β�δ

c
b

¼ 2
∂2LA

i

∂Aa
ρμ∂Ab

αν

����
ρ¼0;α¼0

− 2
∂2LA

i

∂Aa
ρμ∂Ab

νβ

����
ρ¼0;β¼0

¼ 4
∂2LA

i

∂Aa
ρμ∂Ab

αν

����
ρ¼0;α¼0

: ð6Þ

The primary constraint-enforcing relation is, therefore,
satisfied:

H0ν
ab ¼ 4

∂2LA
i

∂Aa
ρμ∂Ab

αν

����
ρ¼0;μ¼0;α¼0

¼ 0 ð7Þ

because of the antisymmetry of Aa
μν.

Regarding the secondary constraint-enforcing relation,
we obtain from Eq. (5)

∂2LA
i

∂Ab
ν∂ _Aa

μ

¼ 2
∂2LA

i

∂Aa
ρμ∂Ab

ν

����
ρ¼0

; ð8Þ

which leads to the secondary Hessian

H̃00
ab ¼ 2

∂2LA
i

∂A½a
ρμ∂Ab�

ν

����
ρ¼0;μ¼0;ν¼0

¼ 0; ð9Þ

in view, again, of the antisymmetry of Aa
μν.

Hence, we can conclude that the L2ðAa
μν; Aa

μÞ Lagrangian
piece satisfies automatically the first and secondary con-
straint-enforcing relations necessary to propagate only
three degrees of freedom. This is the reason why such a
Lagrangian piece is so particular, differing in its structure
and arbitrariness from the other Lagrangian pieces we are
going to describe in the following. On the other hand, the
generalization of L2 to curved spacetime is straightforward.

6This condition bears a great resemblance to that obtained in
Refs. [117,118] for mechanical systems with multiple degrees of
freedom.

7They may, of course, either preserve or violate parity.

8Except for the case where no Aa
μν tensors are involved.

However, in such a case, ∂LA
i

∂ _Aa
μ
¼ 0 automatically.
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IV. ONE DERIVATIVE AND
TWO VECTOR FIELDS

Lagrangian building blocks constructed from one deriva-
tive and two vector fields, linearly independent fromL2, are
terms of the form SμνAρAσ which, as can be seen, involve
four spacetime indices. Group theory tells us that four
building blocks can be constructed upon contractions of
SμνAρAσ with the following tensors [114–116]:

gμνgρσ;

gμρgνσ;

gμσgνρ;

ϵμνρσ; ð10Þ

where gμν is the contravariant Minkowski metric and ϵμνρσ

is the Levi-Civita tensor. Thus, the only building blocks
either different than zero or with the potential of becoming
different than zero after adding the internal group indices
are the following:

SμμðA · AÞ;
SμνAμAν: ð11Þ

The addition of the internal group indices leads to terms of
the form SaAbAc that involve three internal group indices
and which, from group theory [114–116], can be contracted
only with the totally antisymmetric tensor ϵabc:

9

Sμaμ ðAb · AcÞϵabc;
SaμνAμbAνcϵabc: ð12Þ

Such terms vanish because of the antisymmetry of ϵabc, so
we conclude that there do not exist terms in GSU2P,
linearly independent of L2, that involve one derivative and
two vector fields.

V. ONE DERIVATIVE AND FOUR
VECTOR FIELDS

A. The Lagrangian building blocks

Lagrangian building blocks built from one derivative and
four vector fields, linearly independent of L2, are terms of
the form SμνAρAσAαAβ that involve six spacetime indices.
Group theory [114–116] tells us that, in this case, the
building blocks are constructed upon contractions of
SμνAρAσAαAβ with the following 15 permutations of the
product of three spacetime metrics:

gμνgρσgαβ;

gμνgραgσβ;

gμνgρβgσα;

gμρgνσgαβ;

gμρgναgσβ;

gμρgνβgσα;

gμσgνρgαβ;

gμσgναgρβ;

gμσgνβgρα;

gμαgνρgσβ;

gμαgνσgρβ;

gμαgνβgρσ;

gμβgνρgσα;

gμβgνσgρα;

gμβgναgρσ; ð13Þ

as well as with the following ten products of a spacetime
metric and a Levi-Civita tensor:

gνρϵμσαβ;

gνσϵμραβ;

gναϵμρσβ;

gνβϵμρσα;

gρσϵμναβ;

gραϵμνσβ;

gρβϵμνσα;

gσαϵμνρβ;

gσβϵμνρα;

gαβϵμνρσ: ð14Þ

Another five contractions of the form gϵ are possible, but
they are not linearly independent because of the property

gμνϵρσαβ ¼ gνρϵμσαβ − gνσϵμραβ

þ gναϵμρσβ − gνβϵμρσα: ð15Þ

Thus, only three building blocks either are nonvanishing or
have the potential of becoming different than zero once the
internal group indices are added10:

9This tensor represents the structure constants of the SU(2)
group. See, in particular, the Misner, Thorne, and Wheeler
treatise on gravitation [113] for a description of the SU(2) group
as a manifold endowed with a metric gab and an orientability form
described by ϵabc.

10From now on, the starred Lagrangian building blocks and
total derivatives will be those that vanish according to the
Poincaré group but that otherwise survive when considering also
the SU(2) group.
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SμμðA · AÞðA · AÞ;
SμνAμAνðA · AÞ;
SμνAνAσAαAβϵ

μσαβ:ð�Þ ð16Þ

When adding the internal group indices, these terms
acquire the form SaAbAcAdAe which can be contracted,
according to group theory [114–116], only with the
following six products of an internal group metric and
the respective structure constants:

gabϵcde;

gacϵbde;

gadϵbce;

gbcϵade;

gbdϵace;

gcdϵabe: ð17Þ

Another four contractions of the form gϵ are possible, but
they are not linearly independent because of the property

gaeϵbcd ¼ gabϵcde − gacϵbde þ gadϵbce: ð18Þ

Therefore, there exist only four linearly independent
building blocks in GSU2P that involve one derivative
and four vector fields:

L1
3 ¼ SaμνAμbAνcðAb · AeÞϵace;

L2
3 ¼ SaμνAν

aAc
σAd

αAe
βϵ

μσαβϵcde;

L3
3 ¼ SaμνAσaAνbAd

αAe
βϵ

μσαβϵbde;

L4
3 ¼ SaμνAνbAσbAd

αAe
βϵ

μσαβϵade: ð19Þ

B. The Hessian constraints

The Lagrangian is, hence, written as a linear combination
of the Lagrangian building blocks of Eq. (19):

L ¼
X4
i¼1

xiLi
3; ð20Þ

where the xi are arbitrary constants. Because only one
derivative has been considered, the primary constraint-
enforcing relation is satisfied automatically. Regarding the
secondary constraint-enforcing relation, the secondary
Hessian gives the following result:

H̃00
ab ¼ 2½−A0cðA½b · AeÞϵa�ce − A0cðAc · AeÞϵ½ab�e

þ A0
½bA

0cA0eϵa�ce þ A0eA0cA0
eϵ½ajcjb��x1

− 2Aσ½ajAd
αAe

βϵ
0σαβϵjb�deðx3 − x4Þ; ð21Þ

which can vanish only if

x1 ¼ 0;

x3 − x4 ¼ 0: ð22Þ

Thus, the Lagrangian that satisfies the constraint algebra is
given by

L ¼ x2L2
3 þ x3ðL3

3 þ L4
3Þ: ð23Þ

C. Total derivatives

Although the Lagrangian in Eq. (23) satisfies require-
ments 1–4 in Sec. II, some of its Lagrangian pieces might
be redundant, compared to L2, via total derivatives. To
find it out, we must proceed to build all the possible total
derivatives of currents involving five vector fields. To this
end, we must follow a path similar to the ones in
previous sections, i.e., employing group theory. In this
way, a term of the form ∂μðAνAρAσAαAβÞ, which involves
six spacetime indices, must be contracted with all the
terms in Eqs. (13) and (14). However, the Lagrangian
pieces we are interested in, L2

3 and L3
3 þ L4

3, explicitly
violate parity. Therefore, only the terms in Eq. (14) are
actually needed. This leads to just one term that satisfies
the requirement of either being nonvanishing or having
the potential of being nonvanishing once the internal
group indices are added:

∂μ½ðA · AÞAσAαAβ�ϵμσαβ:ð�Þ ð24Þ

The addition of the internal group indices leads to terms
of the form ∂ðAaAbAcAdAeÞ that involve five internal
group indices. Therefore, they must be contracted with
all the terms in Eq. (17), which results in

∂μJ
μ
1 ¼ ∂μ½ðAa · AaÞAc

σAd
αAe

β�ϵμσαβϵcde;
∂μJ

μ
2 ¼ ∂μ½ðAa · AbÞAσaAd

αAe
β�ϵμσαβϵbde: ð25Þ

These total derivatives can be expressed in terms
of Lagrangian building blocks involving one derivative
and four vector fields, which is the key to observe
whether some of the two Lagrangian pieces in
Eq. (23) are redundant:
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∂μJ
μ
1 ¼

1

2
½2Aa

μνAν
aAc

σAd
αAe

β

þ 3Ac
μσAd

αAe
βðAa · AaÞ�ϵμσαβϵcde

þ L2
3;

∂μJ
μ
2 ¼

1

2
½Aa

μνAνbAσaAd
αAe

β

þ Aa
νAμ

νbAσaAd
αAe

β

þ ðAa · AbÞAμσaAd
αAe

β

þ 2ðAa · AbÞAσaAd
μαAe

β�ϵμσαβϵbde
þ 1

2
ðL3

3 þ L4
3Þ: ð26Þ

We can see that, even after covariantization, the two
Lagrangian pieces in Eq. (23) can be removed, via total
derivatives, in favor of terms already contained in L2.
Now, from the previous two expressions and the results
of Secs. III and V B, we can see that it is legitimate to
employ ∂μJ

μ
1 and ∂μJ

μ
2, since they satisfy the Hessian

constraints. Therefore, the conclusion is that there do not
exist terms in GSU2P, linearly independent of L2, that
involve one derivative and four vector fields.

VI. TWO DERIVATIVES

A. The Lagrangian building blocks

When dealing with two derivatives only, the Lagrangian
building blocks, linearly independent of L2, acquire two
possible structures: either AμνSρσ or SμνSρσ. In both cases,
the number of spacetime indices is four, so we have to
contract with all the terms in Eq. (10). This results in

SμμS
ρ
ρ;

SμνSμν; ð27Þ

these terms being the only ones that either do not vanish or
have the potential of being nonvanishing once the internal
group indices are added. Indeed, when this is done, these
terms acquire the form SaSb which can be contracted only
with the group metric gab [114–116]. Thus, the Lagrangian
building blocks are

L1
4 ¼ Sμaμ Sρρa;

L2
4 ¼ SaμνS

μν
a : ð28Þ

B. The Hessian constraints

The Lagrangian is therefore written as a linear combi-
nation of the Lagrangian building blocks of Eq. (28):

L ¼
X2
i¼1

xiLi
4; ð29Þ

where the xi are arbitrary constants. Since this Lagrangian
involves only vector fields through spacetime derivatives,
the secondary constraint-enforcing relation is satisfied
automatically. Regarding the primary constraint-enforcing
relation, the primary Hessian gives the following result:

H0ν
ab ¼ −8gabg0νðx1 þ x2Þ; ð30Þ

which vanishes only if

x1 þ x2 ¼ 0: ð31Þ

Thus, the Lagrangian that satisfies the constraint algebra is
given by

L ¼ x1ðL1
4 − L2

4Þ: ð32Þ

C. Total derivatives

Again, it is absolutely necessary to test if the Lagrangian
in Eq. (32) is not already included in L2. To this end, it is
necessary to build the total derivatives of currents built with
one derivative and one vector field. These terms, being of
the form ∂μ½Aνð∂ρAσÞ�, involve four spacetime indices, so
that they are constructed by means of contractions with the
terms in Eq. (10) except for the last one in that equation as
the Lagrangian piece we are interested in, L1

4 − L2
4,

explicitly preserves parity. In this case, none of the terms
vanishes, so we end up with three possible total derivatives:

∂μ½Aμð∂ · AÞ�;
∂μ½Aνð∂μAνÞ�;
∂μ½Aνð∂νAμÞ�: ð33Þ

Since these terms are of the form ∂½Aað∂AbÞ�, once the
internal group indices have been added, they can be
contracted only with a group metric. Thus, the total
derivatives we have been looking for are

∂μJ
μ
1 ¼ ∂μ½Aμað∂ · AaÞ�;

∂μJ
μ
2 ¼ ∂μ½Aa

νð∂μAν
aÞ�;

∂μJ
μ
3 ¼ ∂μ½Aa

νð∂νAμ
aÞ�: ð34Þ

It is easy to see that these total derivatives, in their actual
form, are anyway useless, because they lead to terms
involving second-order derivatives in addition to the ones
we are interested in which involve just two first-order
derivatives. The only way to circumvent this situation, at
least partially but enough, is to construct the linear
combination
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∂μJ̃
μ
1 ≡ ∂μJ

μ
1 − ∂μJ

μ
3

¼ −
1

4
Aa
μνA

νμ
a þ 1

4
ðL1

4 − L2
4Þ þ Aμa½∂μ; ∂ν�Aν

a; ð35Þ

that removes the second-order derivatives, since the com-
mutator in the last line trivially vanishes in flat spacetime.
Indeed, from this result and the findings in Secs. III and VI
B, we can see that employing ∂μJ̃

μ
1 is allowed, since it

satisfies the Hessian constraints. The Lagrangian in
Eq. (32) is, in consequence, already contained in L2 in
flat spacetime up to a total derivative. Things, however, are
different in curved spacetime.

D. Covariantization

As is usual the case, the covariantization of Eq. (35)
implies the replacement of partial derivatives with space-
time covariant derivatives and of the Minkowski metric
with an arbitrary spacetime metric. Thus, the curved
spacetime version of Eq. (35) reads

∇μJ̃
μ
1 ¼ −

1

4
Aa
μνA

νμ
a þ 1

4
ðL1

4 − L2
4Þ þ Aμa½∇μ;∇ν�Aν

a

¼ −
1

4
Aa
μνA

νμ
a þ 1

4
ðL1

4 − L2
4Þ − AμaRμνAν

a; ð36Þ

where Rμν is the Ricci tensor. Then, we can conclude that
the Lagrangian in Eq. (32) is actually independent of L2 in
a nonredundant way in curved spacetime, whereas it is
already included in L2 in flat spacetime. To remind the
reader of this fact, we will in the following deal with
AμaRμνAν

a instead of L1
4 − L2

4.

E. The decoupling limit

The Helmholtz theorem tells us that any vector field Aμ

can be decomposed into its transverse part, a divergence-
free vector field Aμ, and its longitudinal part, the gradient
of scalar field ∇μπ:

Aμ ¼ Aμ þ∇μπ: ð37Þ

The decoupling limit of GSU2P, understood as an effective
field theory, which corresponds in this case to the replace-
ment Aa

μ → ∇μπ
a, must also be a healthy theory; i.e., it

must be free of the Ostrogradski instability. Examining the
term AμaRμνAν

a, we can observe that its decoupling limit
∇μπaRμν∇νπa is not healthy, as the field equation resultant
of the variation of the action with respect to πa leads to a
term proportional to ∇μRμν, i.e., a higher-order term. To
avoid such a pathological behavior (see Ref. [34]), it is
necessary to add −RðAa · AaÞ=2 as a counterterm, R being
the Ricci scalar:

L4;0 ¼ AμaRμνAν
a −

1

2
RðAa · AaÞ ¼ GμνAμaAν

a; ð38Þ

where Gμν is the Einstein tensor. Indeed, this Lagrangian is
healthy in the decoupling limit because of the divergence-
less character ofGμν. Our conclusion, different than the one
encountered in Ref. [103], where no term with just two
derivatives was found while GμνAμaAν

a was just postulated,
finds its origin in the fact that the total derivative in Eq. (35)
was first covariantized and later employed (not) to dismiss
some terms in favor of others. This way of proceeding was
identified in Ref. [111], and it is the mechanism to uncover
the beyond SU(2) Proca terms as we will later see. To
finish, the notation L4;0 is introduced in Eq. (38) to label
this Lagrangian as one that involves (or comes from) two
derivatives (this is the reason for the 4) and no vector fields
(this is the reason for the 0).

VII. TWO DERIVATIVES AND TWO
VECTOR FIELDS

A. Lagrangian building blocks

Lagrangian building blocks built from two derivatives
and two vector fields are terms of the form AμνSρσAαAβ or
SμνSρσAαAβ that involve six spacetime indices. In order to
uncover them, we must contract with all the terms in
Eqs. (13) and (14). As a result, the Lagrangian building
blocks that either do not vanish or have the potential of
becoming different than zero once the internal group
indices are added are the following:

AμνS
μ
σAνAσ;

AμνS
ρ
ρAμAν;

AμνSνσAαAβϵ
μσαβ; ð�Þ

AμνS
ρ
ρAαAβϵ

μναβ; ð�Þ
AμνSρσAρAβϵ

μνσβ;

SμμS
ρ
ρðA · AÞ;

SμμSρσAρAσ;

SμνSμνðA · AÞ;
SμνS

μ
σAνAσ;

SμνSνσAαAβϵ
μσαβ:ð�Þ ð39Þ

When the internal indices are added, these terms are of the
form Aa

fgS
bAcAd or SaSbAcAd; i.e., they involve four

internal group indices. So, in order to obtain the
Lagrangian building blocks, and according to group theory
[114–116], we must contract with the following products of
two group metrics:
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gabgcd;

gacgbd;

gadgbc: ð40Þ

This results in the following 19 Lagrangian building blocks
linearly independent of L2:

L1
4 ¼ Aa

μνS
μ
σaAνcAσ

c;

L2
4 ¼ Aa

μνS
μb
σ Aν

aAσ
b;

L3
4 ¼ Aa

μνS
μb
σ Aν

bA
σ
a;

L4
4 ¼ Aa

μνS
ρb
ρ Aμ

aAν
b;

L5
4 ¼ Aa

μνSνbσ AαaAβbϵ
μσαβ;

L6
4 ¼ Aa

μνS
ρb
ρ AαaAβbϵ

μναβ;

L7
4 ¼ Aa

μνSρσaAρcAβcϵ
μνσβ;

L8
4 ¼ Aa

μνSbρσA
ρ
aAβbϵ

μνσβ;

L9
4 ¼ Aa

μνSbρσA
ρ
bAβaϵ

μνσβ;

L10
4 ¼ Sμaμ SρρaðAc · AcÞ;

L11
4 ¼ Sμaμ Sρbρ ðAa · AbÞ;

L12
4 ¼ Sμaμ SρσaAρcAσ

c;

L13
4 ¼ Sμaμ SbρσA

ρ
aAσ

b;

L14
4 ¼ SaμνS

μν
a ðAc · AcÞ;

L15
4 ¼ SaμνSμνbðAa · AbÞ;

L16
4 ¼ SaμνS

μ
σaAνcAσ

c;

L17
4 ¼ SaμνS

μb
σ Aν

aAσ
b;

L18
4 ¼ SaμνS

μb
σ Aν

bA
σ
a;

L19
4 ¼ SaμνSνbσ AαaAβbϵ

μσαβ: ð41Þ

B. The Hessian constraints

The Lagrangian is written as a linear combination of the
Lagrangian building blocks found in the previous section.
Thus,

L ¼
X19
i¼1

xiLi
4; ð42Þ

where the xi are arbitrary constants. Since the Lagrangian
involves two derivatives and two vector fields, none of the
Hessian constraints is trivially satisfied in this case.
Performing the calculations, we find for the primary
Hessian

H0ν
ab ¼ −2A0

cAνcgabðx1 þ 2x12 þ 2x16Þ
− 2A0

cA0cg0νgabðx1 − 2x12 − 2x16Þ
− 2A0

aAν
bðx2 − x4 þ x13 þ 2x17Þ

− 2A0
aA0

bg
0νðx2 þ x3 − 2x13 − 2x17 − 2x18Þ

− 2A0
bA

ν
aðx3 þ x4 þ x13 þ 2x18Þ

− 2ϵ0ναβAαbAβaðx5 þ 2x6 − 2x19Þ
− 8ðAc · AcÞg0νgabðx10 þ x14Þ
− 8ðAa · AbÞg0νðx11 þ x15Þ; ð43Þ

whereas for the secondary Hessian

H̃00
ab ¼ −2Aα

½bjA
0
αja�ðx1 − x3 − x4Þ

− 2Aα
½bjS

0
αja�ð2x12 − x13 þ 2x16 − 2x18Þ

− 2ϵβα0σAσ½ajAβαjb�ðx6 − x7 þ x8Þ
þ 2A0

½ajS
α
αjb�ð4x10 − 2x11 þ 2x12 − x13Þ

− 4A0
½aS

00
b� ð2x14 − x15 þ x16 − x17Þ: ð44Þ

Both expressions vanish, therefore, only when the follow-
ing 11 constraints are satisfied:

x1 ¼ 0;

x3 ¼ −x2;

x4 ¼ x2;

x8 ¼ −x6 þ x7;

x13 ¼ 4x10 − 2x11 þ 2x12;

x14 ¼ −x10;

x15 ¼ −x11;

x16 ¼ −x12;

x17 ¼ −2x10 þ x11 − x12;

x18 ¼ −2x10 þ x11 − x12;

x19 ¼
x5
2
þ x6: ð45Þ

Thus, the Lagrangian that satisfies the constraint algebra is
given by

L ¼ x2ðL2
4 − L3

4 þ L4
4Þ þ x5

�
L5
4 þ

L19
4

2

�

þ x6ðL6
4 − L8

4 þ L19
4 Þ þ x7ðL7

4 þ L8
4Þ

þ x9L9
4 þ x10ðL10

4 þ 4L13
4 − L14

4 − 2L17
4 − 2L18

4 Þ
þ x11ðL11

4 − 2L13
4 − L15

4 þ L17
4 þ L18

4 Þ
þ x12ðL12

4 þ 2L13
4 − L16

4 − L17
4 − L18

4 Þ: ð46Þ
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C. Total derivatives

With the purpose of establishing which of the
Lagrangian pieces in Eq. (46) are redundant, the total
derivatives of terms involving one derivative and three
vector fields must be constructed. These derivatives are
terms of the form ∂μ½Aνð∂ρAσÞAαAβ� that involve six
spacetime indices, so contractions with the terms in
Eqs. (13) and (14) must be done. As a result, the only
terms that either are different than zero or have the potential
of becoming so after introducing the internal group indices
are the following:

∂μ½Aμð∂ · AÞðA · AÞ�;
∂μ½Aμð∂ρAσÞAρAσ�;
∂μ½Aνð∂μAνÞðA · AÞ�;
∂μ½Aνð∂νAμÞðA · AÞ�;
∂μ½Aνð∂νAσÞAαAβ�ϵμσαβ; ð�Þ
∂μ½Aνð∂ρAνÞAαAβ�ϵμραβ; ð�Þ
∂μ½ð∂ρAσÞAβðA · AÞ�ϵμρσβ;
∂μ½ð∂ · AÞAνAαAβ�ϵμναβ:ð�Þ ð47Þ

These total derivatives become terms of the form
∂½Aað∂AbÞAcAd� once the internal group indices are added.
Since they involve four internal group indices, contractions
with the terms in Eq. (40) are needed, which results in

∂μJ
μ
1 ¼ ∂μ½Aμað∂ · AaÞðAc · AcÞ�;

∂μJ
μ
2 ¼ ∂μ½Aμað∂ · AbÞðAa · AbÞ�;

∂μJ
μ
3 ¼ ∂μ½Aμað∂ρAσaÞAρcAσ

c�;
∂μJ

μ
4 ¼ ∂μ½Aμað∂ρAb

σÞAρ
aAσ

b�;
∂μJ

μ
5 ¼ ∂μ½Aμað∂ρAb

σÞAρ
bA

σ
a�;

∂μJ
μ
6 ¼ ∂μ½Aa

νð∂μAν
aÞðAc · AcÞ�;

∂μJ
μ
7 ¼ ∂μ½Aa

νð∂μAνbÞðAa · AbÞ�;
∂μJ

μ
8 ¼ ∂μ½Aa

νð∂νAμ
aÞðAc · AcÞ�;

∂μJ
μ
9 ¼ ∂μ½Aa

νð∂νAμbÞðAa · AbÞ�;
∂μJ

μ
10 ¼ ∂μ½Aa

νð∂νAb
σÞAαaAβb�ϵμσαβ;

∂μJ
μ
11 ¼ ∂μ½Aa

νð∂ρAνbÞAαaAβb�ϵμραβ;
∂μJ

μ
12 ¼ ∂μ½ð∂ρAa

σÞAβaðAc · AcÞ�ϵμρσβ;
∂μJ

μ
13 ¼ ∂μ½ð∂ρAa

σÞAb
βðAa · AbÞ�ϵμρσβ: ð48Þ

All these total derivatives are useless as long as they
produce terms with second-order derivatives. Fortunately,
this circumstance can be redeemed, although not in all the
cases, by building the following linear combinations:

∂μJ̃
μ
1 ≡ ∂μJ

μ
1 − ∂μJ

μ
8

¼ −
1

4
½Aa

μνA
νμ
a ðAc · AcÞ þ 2Aa

νA
νμ
a Ac

μρA
ρ
c�

þ 1

4
ðL10

4 − L14
4 þ 2L13

4 − 2L17
4 − 2L4

4Þ
þ Aμa½∂μ; ∂ν�Aν

aðAc · AcÞ;
∂μJ̃

μ
2 ≡ ∂μJ

μ
2 − ∂μJ

μ
9

¼ −
1

4
½Aa

μνAνμbðAa · AbÞ þ Aa
νAνμbAμ

ρ
aAρb

þ Aa
νAνμbAμρbA

ρ
a�

þ 1

4
ðL11

4 þ L13
4 þ L12

4 − L15
4 − L18

4 − L16
4 þ L4

4Þ
þ Aμa½∂μ; ∂ν�AνbðAa · AbÞ;

∂μJ̃
μ
3 ≡ ∂μJ

μ
3 − ∂μJ

μ
5

¼ −
1

4
½AμaAc

ρσAμ
ρ
cAσ

a þ AμaAc
ρσAμ

σ
aA

ρ
c�

þ 1

4
ðL12

4 þ 2L18
4 − L13

4 − L16
4

− L17
4 − 2L3

4 − L4
4 þ 2L2

4Þ
þ Aμa½∂μ; ∂ρ�AσaAρcAσ

c; ð49Þ

while in the following cases the problem is automatically
solved thanks to the symmetries of the Levi-Civita tensor:

∂μJ̃
μ
4 ≡ ∂μJ

μ
11

¼ 1

4
½Aa

μνAρ
νbAαaAβb þ Aρ

νbAμαaAa
νAβb

þ Aρ
νbAμβbAa

νAαa�ϵμραβ

þ 1

4
ðL19

4 þ 2L5
4 − L8

4 þ L7
4Þ

þ 1

2
Aa
ν ½∂μ; ∂ρ�AνbAαaAβbϵ

μραβ;

∂μJ̃
μ
5 ≡ ∂μJ

μ
12

¼ 1

4
½Aa

ρσAμβaðAc · AcÞ þ 2Aa
ρσAc

μαAβaAα
c �ϵμρσβ

þ 1

2
L9
4

þ 1

2
Aβa½∂μ; ∂ρ�Aa

σðAc · AcÞϵμρσβ;
∂μJ̃

μ
6 ≡ ∂μJ

μ
13

¼ 1

4
½Aa

ρσAb
μβðAa · AbÞ þ Aa

ρσAμ
α
aA

b
βAαb

þ Aa
ρσAμαbAb

βA
α
a�ϵμρσβ

þ 1

4
ðL7

4 þ L8
4Þ

þ 1

2
Ab
β½∂μ; ∂ρ�Aa

σðAa · AbÞϵμρσβ: ð50Þ
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However, even like this, these total derivatives continue to
be useless unless they satisfy the Hessian constraints.
Comparison of these expressions with Eqs. (43) and (44)
and with the findings in Sec. III reveals that the following
linear combinations are the only ones that pass the test:

∂μðJ̃μ3 þ 3J̃μ2Þ;
∂μð2J̃μ3 − 3J̃μ1Þ;
∂μJ̃

μ
5;

∂μJ̃
μ
6: ð51Þ

We have now the four total derivatives that will help us remove some redundant terms from Eq. (46). However,
covariantization must be performed first.

D. Covariantization

The minimal covariantization scheme described in Sec. VI D and applied to the total derivatives of Eq. (51) produces the
curved spacetime versions

∇μðJ̃μ3 þ 3J̃μ2Þ ¼ ð… ∈ L2Þ þ
1

2
ðL2

4 −L3
4 þL4

4Þ þ
3

4
ðL11

4 − 2L13
4 −L15

4 þL17
4 þL18

4 Þ þ ðL12
4 þ 2L13

4 −L16
4 −L17

4 −L18
4 Þ

þAμaRα
σρμAαaAρcAσ

c − 3AμaRμαAαbðAa ·AbÞ;

∇μð2J̃μ3 − 3J̃μ1Þ ¼ ð… ∈ L2Þ þ ðL2
4 −L3

4 þL4
4Þ þ

1

2
ðL12

4 þ 2L13
4 −L16

4 −L17
4 −L18

4 Þ− 3

4
ðL10

4 þ 4L13
4 −L14

4 − 2L17
4 − 2L18

4 Þ
þ 2AμaRα

σρμAαaAρcAσ
c þ 3AμaRμαAα

aðAc ·AcÞ;

∇μJ̃
μ
5 ¼ ð… ∈ L2Þ þ

1

2
L9
4 þ

1

2
AβaRα

σρμAa
αðAc ·AcÞϵμρσβ;

∇μJ̃
μ
6 ¼ ð… ∈ L2Þ þ

1

4
ðL7

4 þL8
4Þ þ

1

2
Ab
βR

α
σρμAa

αðAa ·AbÞϵμρσβ; ð52Þ

where ð… ∈ L2Þ means terms belonging to L2 and Rα
σρμ is the Riemann tensor. We see, therefore, that some terms in

Eq. (46) can be dismissed in flat spacetime but not in curved spacetime. Indeed, to remind the reader of this difference, these
terms will be traded by their respective curvature-dependent companions that appear in the total derivatives in Eq. (52):

L ¼ ðx2 þ 2x11 − 2x12ÞðL2
4 − L3

4 þ L4
4Þ þ

x5
2
ð2L5

4 þ L19
4 Þ þ x6ðL6

4 − L8
4 þ L19

4 Þ − 2x7Ab
βR

α
σρμAa

αðAa · AbÞϵμρσβ

− x9AβaRα
σρμAa

αðAc · AcÞϵμρσβ þ
�
x10 − 2x11 þ

3

2
x12

�
ðL10

4 þ 4L13
4 − L14

4 − 2L17
4 − 2L18

4 Þ − 4

3
x11½AμaRα

σρμAαaAρcAσ
c

− 3AμaRμαAαbðAa · AbÞ� þ
�
8

3
x11 − 2x12

�
½2AμaRα

σρμAαaA
ρcAσ

c þ 3AμaRμαAα
aðAc · AcÞ�: ð53Þ

E. Change of basis

There are eight linear independent Lagrangian pieces in Eq. (53) which form a basis set for the construction of the
Lagrangian involving two derivatives and two vector fields. For purposes that will be clear in the following section, we will
perform a change of basis that will affect the third and sixth to eighth Lagrangian basis elements in Eq. (53):

L6
4 − L8

4 þ L19
4 → L5

4 −
L6
4

2
þ L8

4

2

¼ 1

2
ð2L5

4 þ L19
4 Þ − 1

2
ðL6

4 − L8
4 þ L19

4 Þ;

L10
4 þ 4L13

4 − L14
4 − 2L17

4 − 2L18
4 →

1

4
ðL10

4 − L14
4 þ 2L11

4 − 2L15
4 Þ

¼ ð… ∈ L2Þ þ ðL2
4 − L3

4 þ L4
4Þ −

3

4
ðL10

4 þ 4L13
4 − L14

4 − 2L17
4 − 2L18

4 Þ

þ 2

3
f∇μðJ̃μ3 þ 3J̃μ2Þ − ½AμaRα

σρμAαaAρcAσ
c − 3AμaRμαAαbðAa · AbÞ�g

−
4

3
f∇μð2J̃μ3 − 3J̃μ1Þ − ½2AμaRα

σρμAαaAρcAσ
c þ 3AμaRμαAα

aðAc · AcÞ�g;
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AμaRα
σρμAαaAρcAσ

c−3AμaRμαAαbðAa ·AbÞ→AμaRα
σρμAαaAρcAσ

c−3AμaRμαAαbðAa ·AbÞþ ã

�
1

4
ðL10

4 −L14
4 þ2L11

4 −2L15
4 Þ

�
;

2AμaRα
σρμAαaAρcAσ

cþ3AμaRμαAα
aðAc ·AcÞ→2AμaRα

σρμAαaAρcAσ
cþ3AμaRμαAα

aðAc ·AcÞþ b̃

�
1

4
ðL10

4 −L14
4 þ2L11

4 −2L15
4 Þ

�
;

ð54Þ

where ã and b̃ are arbitrary constants. Thus, the Lagrangian
involving two derivatives and two vector fields is written as
follows:

L ¼
X8
i¼1

α̂iL̂
i
4; ð55Þ

with

L̂1
4 ¼

1

4
ðL10

4 − L14
4 þ 2L11

4 − 2L15
4 Þ;

L̂2
4 ¼ L2

4 − L3
4 þ L4

4;

L̂3
4 ¼ AμaRα

σρμAαaAρcAσ
c − 3AμaRμαAαbðAa · AbÞ

þ ã

�
1

4
ðL10

4 − L14
4 þ 2L11

4 − 2L15
4 Þ

�
;

L̂4
4 ¼ 2AμaRα

σρμAαaAρcAσ
c þ 3AμaRμαAα

aðAc · AcÞ

þ b̃

�
1

4
ðL10

4 − L14
4 þ 2L11

4 − 2L15
4 Þ

�
;

L̂5
4 ¼ 2L5

4 þ L19
4 ;

L̂6
4 ¼ L5

4 −
L6
4

2
þ L8

4

2
;

L̂7
4 ¼ Ab

βR
α
σρμAa

αðAa · AbÞϵμρσβ;
L̂8
4 ¼ AβaRα

σρμAa
αðAc · AcÞϵμρσβ; ð56Þ

where the α̂i are arbitrary constants. We have deliberately
ordered the Lagrangian pieces this way so that the first four
are the ones that preserve parity while the last four, in
contrast, are the ones that do not preserve it.

F. The decoupling limit

Following the general description of Sec. VI E, the
decoupling limit of the theory described by Eqs. (55)
and (56), obtained by making the replacement Aa

μ → ∇μπ
a,

must be free of the Ostrogradski instability. This is easy to
verify for L̂2

4 and L̂
6
4 whose decoupling limits vanish thanks

to the antisymmetry of Aa
μν. It is also easy to verify for L̂7

4

and L̂8
4 having in mind their relation to ∇μJ̃

μ
6 and ∇μJ̃

μ
5,

respectively, as shown in Eq. (52), and, again, the anti-
symmetry of Aa

μν. Now, regarding L̂1
4, its decoupling limit

leads to higher-order field equations, because, contrary to
partial derivatives, covariant derivatives do not commute.

This can be redeemed by adding a specific counterterm so
that the healthy version of L̂1

4 becomes

L̂1;h
4 ¼ 1

4
ðAb · AbÞ½Sμaμ Sννa − Sμaν Sνμa − RðAa · AaÞ�

þ 1

2
ðAa · AbÞ½Sμaμ Sνbν − Sμaν Sνbμ − RðAa · AbÞ�: ð57Þ

In contrast, although the decoupling limit of L̂5
4, specifi-

cally the term L19
4 , leads as well to higher-order field

equations, it turned out impossible to find out the required
counterterm.11 This leaves us with two possibilities: Either
we must discard L̂5

4, as it is pathological in the decoupling
limit, or we must keep it, because its decoupling limit is
degenerate and this property might, in principle, remove the
ghostly degree of freedom [42,43]. We will not know which
possibility is the right one until a proper and dedicated
analysis of the degeneracy conditions in the decoupling
limit is performed.12 Finally, L̂3

4 and L̂
4
4 are the non-Abelian

versions of a term in the generalized Proca theory identified
unequivocally in Ref. [111] as the beyond Proca term
[112]. We conjecture then that L̂3

4 and L̂4
4 are the beyond

generalized SU(2) Proca terms whose decoupling limits
must satisfy all the conditions required to remove the
Ostrogradski ghosts. This fixes the ã and b̃ constants, but,
since the non-Abelian extension of the beyond multi-
Galileon theory has not been constructed yet, the actual
values of ã and b̃ are unknown to us. To circumvent this
lack of knowledge, we can take advantage of the fact that,
although the Abelian and non-Abelian vector-tensor theo-
ries are different13 despite sharing many aspects in their
construction, the non-Abelian theory stripped of the inter-
nal group indices must be contained in the Abelian theory.
Thus, once L̂3

4 is stripped of the internal group indices, it
becomes

L̂3
4 → −3AμRμαAαA2 þ ã

3

4
A2ðSμμSνν − SμνSνμÞ; ð58Þ

11The isolation of L19
4 in just one Lagrangian piece is

motivated by the impossibility of finding out a counterterm,
and it is the reason of the first change in basis elements shown in
the previous section.

12This seems quite nontrivial, so we rather leave it for future
work.

13Abelian theories display some terms whose non-Abelian
versions do not exist and vice versa.
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which must be compared with Eq. (42) in Ref. [111]14:

LBP
4 ¼ GNðXÞRμνAμAν

− ½2XGN;XðXÞ þGNðXÞ�
1

4
ðSμμSνν − SμνSνμÞ; ð59Þ

where X ¼ −A2=2, GNðXÞ is an arbitrary function of X,
and GN;XðXÞ is the derivative of GNðXÞ with respect to X.
We see that these two Lagrangian pieces are equivalent for
GNðXÞ ¼ 6X and ã ¼ 3. Similarly, once L̂4

4 is stripped of
the internal group indices, it becomes

L̂4
4 → 3AμRμαAαA2 þ b̃

3

4
A2ðSμμSνν − SμνSνμÞ; ð60Þ

which is equivalent to the Lagrangian piece in Eq. (59) for
GNðXÞ ¼ −6X and b̃ ¼ −3.

G. A new change of basis

Having found the actual values for ã and b̃ in the
previous section, L̂3

4 and L̂4
4 acquire the form

L̂3
4 ¼ AμaRα

σρμAαaAρcAσ
c − 3AμaRμαAαbðAa · AbÞ

þ 3

�
1

4
ðAb · AbÞðSμaμ Sννa − Sμaν SνμaÞ

þ 1

2
ðAa · AbÞðSμaμ Sνbν − Sμaν Sνbμ Þ

�
;

L̂4
4 ¼ 2AμaRα

σρμAαaAρcAσ
c þ 3AμaRμαAα

aðAc · AcÞ

− 3

�
1

4
ðAb · AbÞðSμaμ Sννa − Sμaν SνμaÞ

þ 1

2
ðAa · AbÞðSμaμ Sνbν − Sμaν Sνbμ Þ

�
; ð61Þ

which can be replaced by

L̂3
4 → AμaRα

σρμAαaAρcAσ
c þ

3

4
ðAb · AbÞðAa · AaÞR

¼ L̂3
4 − 3L̂1;h

4 þ 3GμνAμaAνbðAa · AbÞ;
L̂4
4 → 2AμaRα

σρμAαaAρcAσ
c

þ 3

4
½ðAb · AbÞðAa · AaÞ − 2ðAa · AbÞðAa · AbÞ�R

¼ L̂4
4 þ 3L̂1;h

4 − 3GμνAμaAν
aðAb · AbÞ; ð62Þ

where we have added and subtracted, respectively, the
Lagrangian pieces GμνAμaAνbðAa · AbÞ and GμνAμaAν

aðAb ·
AbÞ that exist only in curved spacetime and whose
decoupling limit is healthy, since Gμν is divergenceless.

Furthermore, we can replace the second Lagrangian piece
in the previous expression as follows:

L̂4
4 þ 3L̂1;h

4 − 3GμνAμaAν
aðAb · AbÞ

→ −
3

4
½ðAb · AbÞðAa · AaÞ þ 2ðAa · AbÞðAa · AbÞ�R

¼ L̂4
4 þ 3L̂1;h

4 − 3GμνAμaAν
aðAb · AbÞ

− 2½L̂3
4 − 3L̂1;h

4 þ 3GμνAμaAνbðAa · AbÞ�; ð63Þ

which is indeed very interesting, because now L̂1;h
4 can be

replaced by

L̂1;h
4 →

1

4
fðAb · AbÞ½Sμaμ Sννa − Sμaν Sνμa�

þ 2ðAa · AbÞ½Sμaμ Sνbν − Sμaν Sνbμ �g

¼ 3L̂1;h
4 þ 3

4
½ðAb · AbÞðAa · AaÞ

þ 2ðAa · AbÞðAa · AbÞ�R; ð64Þ

this just being the original L1
4, i.e., without its respective

counterterm.
All together, we can formulate the reconstructed GSU2P

Lagrangian composed of two derivatives and two vector
fields as follows:

L4;2 ¼
X6
i¼1

αi
m2

P
Li
4;2 þ

X4
i¼1

α̃i
m2

P
L̃i
4;2; ð65Þ

where

L1
4;2¼ðAb ·AbÞ½Sμaμ Sννa−Sμaν Sνμa�

þ2ðAa ·AbÞ½Sμaμ Sνbν −Sμaν Sνbμ �;
L2
4;2¼Aa

μνS
μb
σ Aν

aAσ
b−Aa

μνS
μb
σ Aν

bA
σ
aþAa

μνS
ρb
ρ Aμ

aAν
b;

L3
4;2¼AμaRα

σρμAαaAρbAσ
bþ 3

4
ðAb ·AbÞðAa ·AaÞR;

L4
4;2¼½ðAb ·AbÞðAa ·AaÞþ2ðAa ·AbÞðAa ·AbÞ�R;

L5
4;2¼GμνAμaAν

aðAb ·AbÞ;
L6
4;2¼GμνAμaAνbðAa ·AbÞ;

ð66Þ

L̃1
4;2¼−2Aa

μνS
μb
σ AαaAβbϵ

νσαβþSaμνSνbσ AαaAβbϵ
μσαβ;

L̃2
4;2¼Aa

μνS
μb
σ AαaAβbϵ

νσαβ−Ãαβ
a SbραAρaAβb

þÃαβ
a SρρbA

a
αAb

β;

L̃3
4;2¼Ab

βR
α
σρμAa

αðAa ·AbÞϵμρσβ;
L̃4
4;2¼AβaRα

σρμAa
αðAb ·AbÞϵμρσβ;

ð67Þ

the αi and α̃i being arbitrary dimensionless constants, mP

being the reduced Planck mass, Ãμν
a ≡ 1

2
ϵμνρσAρσa being the

14This is the reason of the third and fourth changes in basis
elements shown in the previous section.
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Hodge dual of Aa
μν, and the Lagrangian pieces having been

deliberately split into those that preserve parity (the ones
without a tilde) and those that do not preserve it (the ones
with a tilde). It is worthwhile mentioning that the subscripts
4,2 have been introduced to remind the reader that two
derivatives and two vector fields have been employed to
build the different Lagrangian pieces.

VIII. THREE DERIVATIVES

A. Lagrangian building blocks

Terms of the form AμνAρσSαβ, AμνSρσSαβ, and SμνSρσSαβ,
that involve six spacetime indices, are the ones that become
the Lagrangian building blocks of a Lagrangian built with
just three derivatives once they are contracted with the
terms in Eqs. (13) and (14). Upon the contractions, the only
blocks that either do not vanish or have the potential of
becoming nonvanishing once the internal group indices are
introduced are the following:

AμνAμνSαα;

AμνAμ
σSνσ;

AμνAρσSνβϵ
μρσβ;

AμνAρσSααϵμνρσ;

AμνS
μ
σSνσ; ð�Þ

AμνSρσS
ρ
βϵ

μνσβ; ð�Þ
SμμS

ρ
ρSαα;

SμμSρσSρσ;

SμνSμσSνσ: ð68Þ

The introduction of the internal group indices makes
these terms become of the form Aa

fgA
b
fgS

c, Aa
fgS

bSc, or

SaSbSc, involving three internal group indices, which lead
to group-invariant Lagrangian building blocks upon con-
tractions with ϵabc. Most of these blocks, however, vanish
because of the antisymmetric nature of ϵabc, the only
survivals being

L1
5 ¼ Aa

μνAb
ρσSνcβ ϵμρσβϵabc;

L2
5 ¼ Aa

μνS
μb
σ Sνσcϵabc;

L3
5 ¼ Aa

μνSbρσS
ρc
β ϵμνσβϵabc: ð69Þ

B. The Hessian constraints

The linear combination

L ¼
X3
i¼1

xiLi
5; ð70Þ

where the xi are arbitrary constants and the Li
5 are the ones

in Eq. (69), makes the GSU2P Lagrangian built with just
three derivatives. Because no single vector field appears in
this Lagrangian, the secondary constraint-enforcing rela-
tion is trivially satisfied. Regarding the primary constraint-
enforcing relation, the primary Hessian gives the following
result:

H0ν
ab ¼ 2Ac

ρσϵ
νρσ0ϵbcaðx1 þ 2x3Þ

þ 4ðS0νc þ g0νS00c − A0νcÞϵabcx2; ð71Þ

which vanishes only if

x1 þ 2x3 ¼ 0;

x2 ¼ 0: ð72Þ

The Lagrangian that satisfies the constraint algebra is,
therefore,

L ¼ x3ð−2L1
5 þ L3

5Þ: ð73Þ

C. Total derivatives

As with the other Lagrangians involving a different
number of derivatives and/or vector fields, we must be sure
that the Lagrangian in Eq. (73) is not redundant compared
with terms in L2. To this end, we must construct total
derivatives of terms involving two derivatives and one
vector field, i.e., total derivatives of the form
∂μ½Aνð∂ρAσÞð∂αAβÞ�. These terms involve six spacetime
indices, so that they must be contracted with those terms in
Eq. (13) and (14). However, since the Lagrangian in
Eq. (73) does not preserve parity, it will be enough to
contract with the terms in Eq. (14). Thus, the only terms
that either are nonvanishing or can become nonvanishing
once the internal group indices are added are the following:

∂μ½Aνð∂νAσÞð∂αAβÞ�ϵμσαβ;
∂μ½Aνð∂ρAνÞð∂αAβÞ�ϵμραβ;
∂μ½Aνð∂ · AÞð∂αAβÞ�ϵμναβ;
∂μ½Aνð∂ρAσÞð∂ρAβÞ�ϵμνσβ; ð�Þ
∂μ½Aνð∂ρAσÞð∂αAρÞ�ϵμνσα;
∂μ½Aνð∂ρAσÞð∂αAσÞ�ϵμνρα; ð�Þ ð74Þ

which, in turn, can be contracted only with ϵabc after adding
the internal group indices, since the total derivatives acquire
the form ∂½Aað∂AbÞð∂AcÞ�:
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∂μJ
μ
1 ¼ ∂μ½Aa

νð∂νAb
σÞð∂αAc

βÞ�ϵμσαβϵabc;
∂μJ

μ
2 ¼ ∂μ½Aa

νð∂ρAνbÞð∂αAc
βÞ�ϵμραβϵabc;

∂μJ
μ
3 ¼ ∂μ½Aa

νð∂ · AbÞð∂αAc
βÞ�ϵμναβϵabc;

∂μJ
μ
4 ¼ ∂μ½Aa

νð∂ρAb
σÞð∂ρAc

βÞ�ϵμνσβϵabc;
∂μJ

μ
5 ¼ ∂μ½Aa

νð∂ρAb
σÞð∂αAρcÞ�ϵμνσαϵabc;

∂μJ
μ
6 ¼ ∂μ½Aa

νð∂ρAb
σÞð∂αAσcÞ�ϵμνραϵabc: ð75Þ

As the reader has already learned, these total derivatives are
completely useless unless the second derivatives they
produce may be canceled out. After a careful observation
of these terms, only two are able by themselves to get rid of
the second derivatives in flat spacetime thanks to the
antisymmetry of the Levi-Civita tensor:

∂μJ̃
μ
1 ≡ ∂μJ

μ
2

¼ 1

8
Aa
μνAρ

νbAc
αβϵ

μραβϵabc

þ 1

8
ð−2L1

5 þ L3
5Þ

þ 1

4
fAa

ν ½∂μ; ∂ρ�AνbAc
αβ þ Aa

νAρ
νb½∂μ; ∂α�Ac

β

þ Aa
νSνbρ ½∂μ; ∂α�Ac

βgϵμραβϵabc;
∂μJ̃

μ
2 ≡ ∂μJ

μ
6

¼ 1

8
Aa
μνAb

ρσAα
σcϵμνραϵabc

þ 1

8
ð−2L1

5 þ L3
5Þ

þ 1

2
fAa

ν ½∂μ; ∂ρ�Ab
σAα

σc

þ Aa
ν ½∂μ; ∂ρ�Ab

σSσcα gϵμνραϵabc: ð76Þ

Indeed, from this result and the findings in Secs. III and
VIII B, we can see that employing either ∂μJ̃

μ
1 or ∂μJ̃

μ
2 is

allowed, since they satisfy the Hessian constraints. The
conclusion is that the Lagrangian in Eq. (73) is already
contained in L2 in flat spacetime, up to a total derivative, so
that, in this framework, the GSU2P does not contain terms
built exclusively with three derivatives that are linearly
independent of L2. The conclusion is, nonetheless, com-
pletely different in curved spacetime.

D. Covariantization

The minimal covariantization scheme applied to the
suitable combination ∂μð2J̃μ1 þ J̃μ2Þ of terms in Eq. (76)
leads to

∇μð2J̃μ1 þ J̃μ2Þ
¼ ð… ∈ L2Þ

þ 3

8
ð−2L1

5 þ L3
5Þ

þ 1

2
AνaRσ

νρμAb
σAc

αβϵ
μραβϵabc: ð77Þ

The Lagrangian in Eq. (73) is, therefore, not redundant
against L2 in curved spacetime. As a remainder of
this fact, we will dismiss −2L1

5 þ L3
5 in favor of

1
2
AνaRσ

νρμAb
σAc

αβϵ
μραβϵabc. We conclude then that the recon-

structed GSU2P exhibits the following Lagrangian built
from just three derivatives:

L̃5;0 ¼ AνaRσ
νρμAb

σÃ
μρcϵabc: ð78Þ

E. The decoupling limit

Since the Lagrangian given in the previous expression
vanishes in the decoupling limit Aa

μ → ∇μπ
a, because of the

antisymmetry of Ãa
μν, it is free of the Ostrogradski

instability.

IX. COMPARISON WITH THE “OLD” GSU2P

The old GSU2P, formulated in Ref. [103], is described
by the following Lagrangian:

Lold ¼ Lold
2 þ

X3
i¼1

αiL
i;old
4 þ

X4
i¼i

βiL
i;old
Curv; ð79Þ

where the αi and βi are dimensionful arbitrary constants,
Lold
2 ≡ Lold

2 ðAa
μν; Aa

μÞ is an arbitrary function of Aa
μν and Aa

μ,
and

L1;old
4 ¼ ðAb · AbÞ½Sμaμ Sννa − Sμaν Sνμa − RðAa · AaÞ�

þ 2ðAa · AbÞ½Sμaμ Sνbν − Sμaν Sνbμ − RðAa · AbÞ�;
L2;old
4 ¼ ðAa · AbÞ½Sμaμ Sνbν − Sμaν Sνbμ − RðAa · AbÞ�

þ Aa
μAb

ν ½Sμαa Sναb − Sμαb Sναa

þ 2Aμα
a Sναb − 2Aμα

b Sναa þ 2AρaAσbRμνρσ�;
L3;old
4 ¼ Aμ

aÃb
μσSσνaAνb;

L1;old
Curv ¼ GμνAμaAν

a;

L2;old
Curv ¼ LμνρσAμνaAρσ

a ;

L3;old
Curv ¼ LμνρσAμνaAρbAσcϵabc;

L4;old
Curv ¼ LμνρσAμaAνbAρ

aAσ
b; ð80Þ

where Lμνρσ ≡ 1
2
ϵμναβϵρσγδRαβγδ is the double dual of the

Riemann tensor. This old theory was built following the
same steps that we followed here except for three aspects:
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(1) All the Lagrangian building blocks were constructed
employing the full ∂μAa

ν instead of splitting it into its
symmetric Saμν and antisymmetric Aa

μν parts. This, of
course, produced a lot more blocks (and a lot more
work) than needed, many linear combinations of
them already included in L2.

(2) Only the primary constraint-enforcing relation was
considered. As was shown in Refs. [109,110], this is
not enough to remove the Ostrogradski ghost.

(3) Many terms were dismissed by employing total
derivatives already at the flat spacetime level, which
led to a loss of several terms that exist only in curved
spacetime, including the beyond SU(2) Proca ones.
Moreover, most of the total derivatives employed do
not satisfy the secondary Hessian constraint.

The application of this theory to inflation and dark energy
was investigated in Refs. [106,107], and the stability
analysis of the same was performed in Ref. [108], so we
wonder how the results of these works could change in the
light of the new theory presented in this paper.
As can be seen, our L̂1;h

4 in Eq. (57) is identical to L1;old
4 ,

this being one of the reasons of the second change in basis
elements in Sec. VII E. Examined from the viewpoint of the
reconstructed GSU2P [see Eqs. (65) and (66)], L1;old

4 can
also be written as

L1;old
4 ¼ L1

4;2 − L4
4;2: ð81Þ

Thus, we conclude that L1;old
4 is free of the Ostrogradski

ghost (at least in flat spacetime).
Now, L2;old

4 was shown in Ref. [110] not to satisfy the
secondary Hessian constraint and, so, as an example of the
ghost instabilities that plagued the old GSU2P. Never-
theless, a bit of algebra shows us that

L2;old
4 − 2∂μJ̃

μ
2 ¼ ð… ∈ L2Þ

þ 1

12
L1
4;2 −

1

3
L2
4;2

−
5

9
∂μðJ̃μ3 þ 3J̃μ2Þ þ

1

9
∂μð2J̃μ3 − 3J̃μ1Þ; ð82Þ

at the flat spacetime level, where the quantities in this
expression, except for L2;old

4 , are those of Sec. VII. Thus,
although neither L2;old

4 is healthy, nor ∂μJ̃
μ
2 is, the combi-

nation L2;old
4 − 2∂μJ̃

μ
2 satisfies the secondary constraint-

enforcing relation, and, therefore, all the physics extracted
from the unhealthy curved spacetime version of L2;old

4 , for
instance, in Ref. [108], is equivalent to that extracted from
the healthy L2;old

4 − 2∇μJ̃
μ
2.

Something similar occurs for L3;old
4 :

L3;old
4 þ 2∂μJ̃

μ
4 ¼ ð… ∈ L2Þ

þ 1

2
ðL̃1

4;2 þ 4∂μJ̃
μ
6Þ; ð83Þ

at the flat spacetime level, so although neither L3;old
4 nor

∂μJ̃
μ
4 are healthy, the combination L3;old

4 þ 2∂μJ̃
μ
4 is, and,

therefore, all the physics extracted from the unhealthy
curved spacetime version of L3;old

4 is equivalent to that
extracted from the healthy L3;old

4 þ 2∇μJ̃
μ
4.

Now, as can be seen in Eq. (67), there exist only two
parity-violating terms in flat spacetime in the reconstructed
GSU2P. Then, why is it that in the old GSU2P there exists
only one? Leaving aside the fact that L̃1

4;2 might be
unhealthy in its decoupling limit, the reason lies in a small
mistake in the conditions of Eq. (37) in Ref. [103] to make
the primary constraint-enforcing relation vanish that pre-
vented the authors of that work from finding a second
parity-violating Lagrangian piece.
Finally, among the Lold

Curv of Eq. (80), the only one that
appears in the reconstructed theory is L1;old

Curv, which is
exactly the same as our L4;0 of Eq. (38). The other Lold

Curv
were just postulated, as they are obviously healthy because
of the divergenceless nature of Lμνρσ . We could have
postulated them as well in the reconstructed GSU2P, but
we would rather not do it. This is because we expect them
to naturally appear in the theory when more than six
spacetime indices are considered in the Lagrangian build-
ing blocks without contractions.

X. COMPARISON WITH THE GENERALIZED
PROCA THEORY

Finding the beyond GSU2P in Sec. VII required deter-
mining the values of the constants ã and b̃ in Eq. (56). We
could have followed the standard procedure of finding out
the kinetic matrix of its decoupling limit and making it
degenerate [42,43]. However, we followed an alternative
route based on the fact that the GSU2P stripped of the
internal group indices must be contained in the generalized
Proca theory. Indeed, the other reason why we performed
the second change in basis elements in Sec. VII E is that
L̂1;h
4 stripped of the internal group indices is nothing else

than L4 of the generalized Proca theory (see Ref. [65]):

L4 ¼ G4ðXÞRþ G4;XðXÞ
4

ðSμμSνν − SμνSνμÞ; ð84Þ

for G4ðXÞ ¼ −3X2. Then, what about the other Lagrangian
pieces that make L4;0 and L4;2? First of all, L4;0 stripped of
the internal group indices is just L4, up to a total derivative,
with G4ðXÞ ¼ X. In contrast, L2

4;2 and L̃1
4;2 reduce to zero
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when stripped of the internal group indices. Regarding L5
4;2

and L6
4;2 without internal group indices, they are just healthy

extensions of GμνAμAν that were not recognized in
Ref. [103]. Finally, L̃2

4;2, L̃
3
4;2, and L̃4

4;2, stripped of their
internal group indices, reduce, up to total derivatives, to
AβÃ

βαSαρAρ, which was shown in Refs. [106,119] to be part
of L2 up to a total derivative. To end up, the only parity-
violating terms in the generalized Proca theory belong to L2

[66], so L̃5;0 stripped of its internal group indices should be
either zero, a total derivative, or contained in L2; in fact,
observing Eq. (78), the first alternative is the correct one.

XI. CONCLUSIONS

GSU2P and beyond GSU2P are described by the
Lagrangians in Eqs. (38), (65)–(67), and (78). The theory
has been written so as to make it explicit which Lagrangian
pieces exist only in curved spacetime and which ones exist
even in flat spacetime; indeed, from the 12 Lagrangian
pieces that compose the theory, only four, L1

4;2, L
2
4;2, L̃

1
4;2,

and L̃2
4;2, survive in flat spacetime. The nature of some of

the Lagrangian pieces is purely non-Abelian—i.e., they
vanish when stripped of their internal group indices—
specifically, L2

4;2; L̃
1
4;2, and L̃5;0 belong to this subset. It is

worthwhile mentioning that L̃2
4;2 is the parity-violating

version of L2
4;2 as can be easily observed. On the other

hand, the theory is diffeomorphism invariant, so that the
energy and momentum are locally conserved [113].
Much remains to be done in the exploration of this theory

as a candidate of an effective theory for the gravitational
interaction. First of all, it is not clear yet whether the
decoupling limits of the beyond GSU2P terms as well as
that of L̃1

4;2 are actually healthy.15 Other self-consistency
issues must be addressed, such as the possible existence of
ghosts (other than the Ostrogradski one) and Laplacian
instabilities, as a follow-up of the work in Ref. [108], the
generalization of the constraint algebra to curved spacetime
[121,122], the analysis of the causal structure [123], and the
calculation of the cutoff scale of the theory and its

comparison with the GW170817 event frequency [22]
(to see whether the bound on the gravitational waves speed
applies to GSU2P16). We might as well construct an
extended version of this theory, considering all the pos-
sibilities to degenerate the kinetic matrix in curved space-
time, as was done for the generalized Proca theory in
Ref. [119,120]. The theory must, of course, be put under
test against observations; in this regard, determining
whether there exists a screening mechanism at Solar
System scales, as was studied in Ref. [78] for the
generalized Proca theory, is a crucial aspect. Of course,
the cosmological and astrophysical implications must be
properly studied both at the background (see, for instance,
Ref. [107]) and at the perturbative level (see, for instance,
Refs. [125–127]). We finish this paper by reminding the
readers and ourselves of one important message given to us
by Misner, Thorne, and Wheeler in their marvelous treatise
on gravitation [113]: “To be complete, a theory of gravity
must be capable of analyzing from ‘first principles’ the
outcome of every experiment of interest. It must therefore
mesh with and incorporate a consistent set of laws for
electromagnetism, quantum mechanics, and all other phys-
ics.”There is a long road in this direction ahead of us that we
hope we will travel.
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[104] J. Beltrán Jiménez and L. Heisenberg, Generalized multi-
Proca fields, Phys. Lett. B 770, 16 (2017).

[105] A. Nicolis, R. Penco, F. Piazza, and R. Rattazzi, Zoology
of condensed matter: Framids, ordinary stuff, extra-
ordinary stuff, J. High Energy Phys. 06 (2015) 155.

[106] Y. Rodríguez and A. A. Navarro, Scalar and vector
Galileons, J. Phys. Conf. Ser. 831, 012004 (2017).

[107] Y. Rodríguez and A. A. Navarro, Non-Abelian S-term dark
energy and inflation, Phys. Dark Universe 19, 129 (2018).

[108] L. G. Gómez and Y. Rodríguez, Stability conditions in the
generalized SU(2) Proca theory, Phys. Rev. D 100, 084048
(2019).

[109] V. Errasti Díez, B. Gording, J. A. Méndez-Zavaleta, and A.
Schmidt-May, Complete theory of Maxwell and Proca
fields, Phys. Rev. D 101, 045008 (2020).

[110] V. Errasti Díez, B. Gording, J. A. Méndez-Zavaleta, and A.
Schmidt-May, Maxwell-Proca theory: Definition and con-
struction, Phys. Rev. D 101, 045009 (2020).

[111] A. Gallego Cadavid and Y. Rodríguez, A systematic
procedure to build the beyond generalized Proca field
theory, Phys. Lett. B 798, 134958 (2019).

[112] L. Heisenberg, R. Kase, and S. Tsujikawa, Beyond
generalized Proca theories, Phys. Lett. B 760, 617 (2016).

[113] C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
(W. H. Freeman, San Francisco, 1973).

[114] J. Fuchs and C. Schweigert, Symmetries, Lie Algebras
and Representations: A Graduate Course for Physicists
(Cambridge University Press, Cambridge, England, 2003).

[115] P. Ramond, Group Theory: A Physicist’s Survey
(Cambridge University Press, Cambridge, England, 2010).

[116] R. Feger and T.W. Kephart, LieART—A mathematica
application for Lie algebras and representation theory,
Comput. Phys. Commun. 192, 166 (2015).

[117] H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi, and D.
Langlois, Healthy degenerate theories with higher deriv-
atives, J. Cosmol. Astropart. Phys. 07 (2016) 033.

[118] R. Klein and D. Roest, Exorcising the Ostrogradsky ghost
in coupled systems, J. High Energy Phys. 07 (2016) 130.

[119] R. Kimura, A. Naruko, and D. Yoshida, Extended vector-
tensor theories, J. Cosmol. Astropart. Phys. 01 (2017) 002.

[120] C. de Rham and V. Pozsgay, New class of Proca inter-
actions, Phys. Rev. D 102, 083508 (2020).

[121] V. Errasti Díez, M. Maier, J. A. Méndez-Zavaleta, and M.
Taslimi Tehrani, Lagrangian constraint analysis of first-
order classical field theories with an application to gravity,
Phys. Rev. D 102, 065015 (2020).

[122] M. J. Heidari and A. Shirzad, Structure of constrained
systems in Lagrangian formalism and degree of freedom
count, arXiv:2003.13269.

GALLEGO, RODRÍGUEZ, and GÓMEZ PHYS. REV. D 102, 104066 (2020)

104066-20

https://doi.org/10.1088/1475-7516/2016/06/048
https://doi.org/10.1103/PhysRevD.94.044024
https://doi.org/10.1088/1475-7516/2016/11/008
https://doi.org/10.1088/1475-7516/2016/11/008
https://doi.org/10.1103/PhysRevD.95.123540
https://doi.org/10.1103/PhysRevD.95.123540
https://arXiv.org/abs/2010.00513
https://doi.org/10.1088/1475-7516/2017/08/024
https://doi.org/10.1088/1475-7516/2017/08/024
https://doi.org/10.1103/PhysRevD.97.084009
https://doi.org/10.1103/PhysRevD.97.084009
https://doi.org/10.1088/1475-7516/2018/02/048
https://doi.org/10.1088/1475-7516/2018/02/048
https://doi.org/10.1103/PhysRevD.102.024067
https://doi.org/10.1103/PhysRevD.86.021301
https://doi.org/10.1103/PhysRevLett.102.191302
https://doi.org/10.1103/PhysRevLett.102.191302
https://doi.org/10.1088/1475-7516/2004/07/007
https://doi.org/10.1088/1475-7516/2008/06/009
https://doi.org/10.1088/1475-7516/2017/03/058
https://doi.org/10.1088/1475-7516/2017/03/058
https://doi.org/10.1088/1361-6382/ab3775
https://doi.org/10.1088/1361-6382/ab3775
https://arXiv.org/abs/2004.06466
https://doi.org/10.1016/j.physletb.2013.05.001
https://doi.org/10.1016/j.physletb.2013.05.001
https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1142/S0217732316400058
https://doi.org/10.1007/JHEP08(2017)130
https://doi.org/10.1007/JHEP08(2017)130
https://doi.org/10.1103/PhysRevD.102.083507
https://doi.org/10.1103/PhysRevD.102.083507
https://doi.org/10.1103/PhysRevLett.38.121
https://doi.org/10.1103/PhysRevD.34.1141
https://doi.org/10.1103/PhysRevD.34.1141
https://doi.org/10.1007/BF01200108
https://doi.org/10.1103/PhysRevD.94.084041
https://doi.org/10.1016/j.physletb.2017.03.002
https://doi.org/10.1007/JHEP06(2015)155
https://doi.org/10.1088/1742-6596/831/1/012004
https://doi.org/10.1016/j.dark.2018.01.003
https://doi.org/10.1103/PhysRevD.100.084048
https://doi.org/10.1103/PhysRevD.100.084048
https://doi.org/10.1103/PhysRevD.101.045008
https://doi.org/10.1103/PhysRevD.101.045009
https://doi.org/10.1016/j.physletb.2019.134958
https://doi.org/10.1016/j.physletb.2016.07.052
https://doi.org/10.1016/j.cpc.2014.12.023
https://doi.org/10.1088/1475-7516/2016/07/033
https://doi.org/10.1007/JHEP07(2016)130
https://doi.org/10.1088/1475-7516/2017/01/002
https://doi.org/10.1103/PhysRevD.102.083508
https://doi.org/10.1103/PhysRevD.102.065015
https://arXiv.org/abs/2003.13269


[123] S.W. Hawking and G. F. R. Ellis, The Large Scale
Structure of Space-Time, Cambridge Monographs on
Mathematical Physics (Cambridge University Press,
Cambridge, England, 1973).

[124] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and
I. Sawicki, Strong Constraints on Cosmological Gravity
from GW170817 and GRB 170817A, Phys. Rev. Lett. 119,
251301 (2017).

[125] K. Dimopoulos, M. Karčiauskas, D. H. Lyth, and
Y. Rodríguez, Statistical anisotropy of the curvature

perturbation from vector field perturbations, J. Cosmol.
Astropart. Phys. 05 (2009) 013.

[126] L. G. Gómez and Y. Rodríguez, Statistical anisotropy in
inflationary models with many vector fields and/or pro-
longed anisotropic expansion, AIP Conf. Proc. 1548, 270
(2013).

[127] J. P. Beltrán Almeida, Y. Rodríguez, and C. A. Valenzuela-
Toledo, Scale and shape dependent non-Gaussianity in the
presence of inflationary vector fields, Phys. Rev. D 90,
103511 (2014).

GENERALIZED SU(2) PROCA THEORY RECONSTRUCTED AND … PHYS. REV. D 102, 104066 (2020)

104066-21

https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1088/1475-7516/2009/05/013
https://doi.org/10.1088/1475-7516/2009/05/013
https://doi.org/10.1063/1.4817056
https://doi.org/10.1063/1.4817056
https://doi.org/10.1103/PhysRevD.90.103511
https://doi.org/10.1103/PhysRevD.90.103511

