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We address the homogeneous in space and time Gödel-type metrics within the cubic Galileon theory, a
particular class of generalized Galileon theories. We check the consistency of such space-times for a
physically well-motivated matter content, namely, a perfect fluid and an electromagnetic field. In this
scenario, we find that the admissible solutions impose constraints on the constant couplings (cis) of the
cubic Galileon theory to ensure the consistency. Also, we show the existence of a vacuum completely
causal solution.
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I. INTRODUCTION

General relativity (GR) is up to now the most successful
theory of gravity from the phenomenological point of view;
it has been confirmed by highly accurate experiments
both in weak and strong field regimes, see [1–4]. In spite
of that, the notorious problem of GR is the presence of
pathological solutions suffering from unavoidable theoreti-
cal problems. For example, Schwarzschild solution suffers
from a physical singularity located at r ¼ 0, that means that
the geodesics of particles end at this point and cannot be
extended beyond (geodesic incompleteness). Physically
speaking, it leads to the impossibility to make measure-
ments of observables at this point and then Einstein
equations break down. The further example is the Gödel
metric [5] that displays another kind of severe conceptual
problem—causality violation. In fact, this metric is plagued
by closed timelike curves (CTCs) that allow an observer
traveling along them come back to the past, thus breaking
the causality and violating the chronology protection
conjecture [6]. Such aforementioned questions raised a
suggestion that a new approach for gravity should be taken
into account, for example, a consistent quantum theory of
gravity in which string theory is the most prominent
candidate. Alternatively, a promising way also would be
consider alternative theories of gravity mainly driven by
astrophysical and cosmological observations [7,8].
As it is well known, there are two main theoretical

motivations for developing alternative gravity models—
first, GR displays essential problems at the perturbative
level being nonrenormalizable; second, it does not succeed

to explain accelerated expansion of the Universe without
incorporating exotic matter [9] (for a review of various
manners to implement modifications in gravity see [10]).
The main directions of extending GR are, first, modifying
the purely gravitational sector through adding higher-
derivative terms and, second, introducing new fields,
usually scalar or vector ones, which have nothing to do
with the usual matter, thereby being an extra ingredient to
participate in the dynamics.
The Brans-Dicke theory [11] has been the first scalar-

tensor theory proposed, since then such extended GR
models have received increasingly more attention.
Recently, another sort of scalar-tensor model called the
Horndeski theory [12] (see [13] for a recent review) have
attracted much attention, this model exhibits all possible
(non)minimal couplings between the scalar field and the
curvature engendering second-order equations of motion,
thus avoiding Ostrogradsky instabilities [14]. The
Horndeski theory is equivalent to the generalized covariant
Galileon theory in four dimensions [15–17]—the mapping
between both was first checked out in [18]. Particularly, the
Galileon theory was first introduced in flat space [19] in
order to study the accelerated expansion of the Universe
without need of the cosmological constant. Such a model
has a symmetry resembling the Galilean symmetry in
mechanics, i.e., π → π þ bμxμ þ c, where π is the scalar
field commonly called Galileon. Conversely, its covariant
version, covariant Galileon theory, does not possess this
symmetry since the Galilean symmetry is broken along the
“covariantization” procedure [15]. Particular covariant
Galileon theories have been derived from other contexts:
for example, in disformally coupled theories [20], in the
decoupling limit of the Dvali-Gabadadze-Porrati (DGP)
braneworld model [21] and in the higher-dimensional
Einstein-Maxwell Gauss-Bonnet theory after a consistent
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Kaluza-Klein reduction to four dimensions [22]. Also, it is
interesting to note a link between Galileons and massive
gravity [23]. However, up to now, most part of papers
on Galileon gravity is devoted to cosmological studies
(see [20,24]).
At the same time, besides the cosmological Friedmann-

Robertson-Walker metric and spherically symmetric met-
rics (the black holes solutions have been extensively
discussed within Galileons framework, e.g., in [25]), one
more relatively simple metric deserves to be studied, that is,
the Gödel metric, which is one of the first known metric
displaying causality violation [5]. This violation arises due
to the existence of CTCs. The further generalization of this
metric has been performed in [26] where the class of Gödel-
type metrics has been defined (various aspects of such
metrics have been discussed further in [27]). It is worth
emphasizing that Gödel-type metrics have a completely
causal region (without CTCs) for a specific relationship
between their two parameters distinguishing to Gödel
metric. Studies of Gödel-type metrics in various alternative
gravity models have been carried out [28].
Our aim in this paper is to study the consistency of the

Gödel and Gödel-type metrics within a particular model
of covariant Galileon theories called the cubic Galileon
gravity model [29–31], that is, the version of Galileon
theory involving terms up to the third order in the
Galileon scalar field (as it is known, the most general
form of the Galileon action includes terms up to the fifth
order [13]). In [32], the authors have been investigated
Gödel-type metrics in Einstein-Horndeski theory, which
does not involve the cubic Galileon term.
The structure of the paper is as follows. In Sec. II, we

define the cubic Galileon gravity model. In Sec. III, we
check consistency of the usual Gödel metric within it. In
Sec. IV, we briefly discuss the main features of Gödel-type
metrics. Next, Sec. V is focused on Gödel-type solutions in
the cubic Galileon gravity model as well as their causality
properties. Finally, in the Sec. VI, our conclusions are
presented.

II. THE MODEL: CUBIC GALILEON GRAVITY

The dynamics of the cubic Galileon field π is described
by the action (for a general form of its action see, e.g., [19];
in our paper we, for the sake of simplicity, restrict ourselves
the particular case c4 ¼ c5 ¼ 0; i.e., we take into account
only terms up to the third order in π)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R − 2Λþ 1

2

X3
i¼1

ciLi

�
þ Sm; ð1Þ

where g is the metric determinant, MP is the Planck mass,
cis [33] are dimensionless constants, Sm is the action
associated with the content of matter and

L1 ¼ M3π; ð2Þ

L2 ¼ ð∇πÞ2; ð3Þ

L3 ¼
1

M3
ð∇πÞ2□π; ð4Þ

with M being a mass dimension constant and

ð∇πÞ2 ¼ gμν∇μπ∇νπ; ð5Þ

□π ¼ gμν∇μ∇νπ: ð6Þ

Varying the action with respect to the metric gμν, the
modified Einstein equations are

Gμν þ Λgμν ¼ M−2
P ½TðmÞ

μν þ TðπÞ
μν �; ð7Þ

where Gμν is the Einstein tensor, TðmÞ
μν is the energy-

momentum tensor associated with the content of matter,

Λ is the cosmological constant and TðπÞ
μν is the energy-

momentum tensor associated with the Galileon field, which
is defined as

TðπÞ
μν ¼ c1M3

2
gμνπ − c2

�
∇μπ∇νπ −

1

2
gμνð∇πÞ2

�

−
c3
M3

½∇μπ∇νπ□π −∇ρπð∇μπ∇ν∇ρπ

þ∇νπ∇μ∇ρπÞ þ gμν∇απ∇α∇βπ∇βπ�: ð8Þ

The field equation for the Galileon field π is given as

c1M3

2
− c2□π þ c3

M3
½−ð□πÞ2 þ Rμν∇μπ∇νπ

þ∇μ∇νπ∇μ∇νπ� ¼ 0; ð9Þ

where Rμν is the Ricci tensor.
In the next sections, we employ these equations in order

to verify consistency of Gödel and Gödel-type solutions
within the framework of the cubic Galileon gravity.

III. GÖDEL UNIVERSE IN CUBIC
GALILEON GRAVITY

To start with this section, let us outline the main
properties of a Gödel universe in GR. This metric is a
solution of GR with cosmological constant describing a
rotating Universe in the presence of a dust source with
density ρ. Its most remarkable feature is that it presents
CTCs, i.e., observers, traveling along these closed curves
that could return to the past and, thereby, violating the
causality even though holding valid the locally principles of
special relativity. Next, we shall investigate the consistency
of the Gödel universe within Galileon gravity as well as the
causality properties.
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Now let us study the field equations (7) and (9) for the
Gödel universe. Its metric looks like this [5]:

ds2 ¼ a2
�
−dt2 þ dx2 −

1

2
e2xdy2 þ dz2 − 2exdtdy

�
;

ð10Þ
where a is an arbitrary number. The relevant tensor
quantities associated with this metric are these:
(1) Nonzero Christoffel symbols:

Γ0
01 ¼ 1; Γ0

12 ¼ Γ1
02 ¼

ex

2
;

Γ1
22 ¼

e2x

2
; Γ2

01 ¼ −e−x: ð11Þ

(2) Nonzero Ricci tensor components are

R00 ¼ 1; R02 ¼ R20 ¼ ex; R22 ¼ e2x: ð12Þ

(3) The Ricci scalar is

R ¼ 1

a2
: ð13Þ

(4) Nonzero Einstein tensor components are

G00 ¼ G11 ¼ G33 ¼
1

2
; G02 ¼

1

2
ex;

G22 ¼
3

4
e2x: ð14Þ

In order to calculate the energy-momentum tensor
associated with the Galileon field, let us consider that π ¼
πðtÞ [34]. Using that

∇μπ ¼ ∂μπ; ð15Þ

∇μ∇νπ ¼ ∇μð∂νπÞ ¼ ∂μ∂νπ − Γλ
μν∂λπ; ð16Þ

the nonzero components of the energy-momentum tensor
are

TðπÞ
00 ¼ c1M3

2
a2π −

c2
2
_π2; ð17Þ

TðπÞ
01 ¼ c3

M3a2
_π3; ð18Þ

TðπÞ
02 ¼ c1M3

2
a2exπ þ c2

2
ex _π2 −

c3
M3a2

ex _π2π̈; ð19Þ

TðπÞ
11 ¼ −

c1M3

2
a2π −

c2
2
_π2 þ c3

M3a2
_π2π̈; ð20Þ

TðπÞ
22 ¼ c1M3

2

a2e2x

2
π þ c2

2

e2x

2
_π2 −

c3
M3a2

e2x

2
_π2π̈; ð21Þ

TðπÞ
33 ¼ −

c1M3

2
a2π −

c2
2
_π2 þ c3

M3a2
_π2π̈: ð22Þ

By taking as matter content

TðmÞ
μν ¼ ρuμuν; ð23Þ

with ρ being the energy density and uμ ¼ ða; 0; aex; 0Þ the
four velocity, the components of the field equation (7) take
the form

ð0; 0Þ∶ 1

2
¼ M−2

P

�
ρa2 þ c1M3

2
a2π −

c2
2
_π2
�
þ Λa2; ð24Þ

ð0; 1Þ∶ 0 ¼ M−2
P

c3
M3a2

_π3; ð25Þ

ð0; 2Þ∶ 1

2
ex ¼ M−2

P

�
ρa2ex þ c1M3

2
a2exπ þ c2

2
ex _π2 −

c3
M3a2

ex _π2π̈

�
þ Λa2ex; ð26Þ

ð1; 1Þ ¼ ð3; 3Þ∶ 1

2
¼ M−2

P

�
−
c1M3

2
a2π −

c2
2
_π2 þ c3

M3a2
_π2π̈

�
− Λa2; ð27Þ

ð2; 2Þ∶ 3

4
e2x ¼ M−2

P

�
ρa2e2x þ c1M3

2

a2e2x

2
π þ c2

2

e2x

2
_π2 −

c3
M3a2

e2x

2
_π2π̈

�
þ 1

2
a2e2xΛ: ð28Þ

Equation (25) leads to

_π3 ¼ 0 ⇒ π ¼ c; ð29Þ
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where c is an arbitrary constant. The field equation for the
field π, i.e., Eq. (9), provides

c1M3

2
¼ 0: ð30Þ

Thus, in this case the Galileon gravity is reduced to the
usual Einstein gravity. Therefore, the Galileon gravity
admits the Gödel solution, that is, the field equations are
solved for the condition

ρ ¼ M2
P

a2
and Λ ¼ −

1

2a2
: ð31Þ

This implies that the CTCs are allowed in the cubic
Galileon gravity.

IV. GÖDEL-TYPE METRICS

In this section we briefly discuss the main features
of a generalized class of metrics called Gödel-type
metrics assuming homogeneity in the space and time
(ST-homogeneous ones), in the following we shall discuss
the homogeneity conditions. In a wider perspective, the
Gödel metric discussed in the former section sets up as a
particular example of the class of ST-homogeneous Gödel-
type metrics. As shown in [27], its line element takes the
following form in cylindrical coordinates

ds2 ¼ −½dtþHðrÞdθ�2 þD2ðrÞdθ2 þ dr2 þ dz2; ð32Þ

where HðrÞ and DðrÞ are metric functions depending only
on radius coordinate r. Apart from this, the homogeneity
conditions in the space-time are achieved by the following
relations between metric functions, namely these:

H0ðrÞ
DðrÞ ¼ 2ω;

D00ðrÞ
DðrÞ ¼ m2; ð33Þ

where the prime stands for derivative with respect to the
radius coordinate. The pair of constant parameters ðm2;ωÞ
describes entirely the ST-homogeneity conditions as laid out
in Eq. (33). They are restricted to take on values in the range:
−∞ ≤ m2 ≤ ∞ and ω ≠ 0 (which is physically interpreted
as the rotation of the space-time). As remarked in [27], the
ST-homogeneous Gödel-type spaces can be split into three
different classes by depending on the sign of m2:

(i) hyperbolic class: m2 > 0, ω ≠ 0:

HðrÞ ¼ 2ω

m2
½coshðmrÞ − 1�;

DðrÞ ¼ 1

m
sinhðmrÞ; ð34Þ

(ii) trigonometric class: −μ2 ¼ m2 < 0, ω ≠ 0:

HðrÞ ¼ 2ω

μ2
½1 − cosðμrÞ�;

DðrÞ ¼ 1

μ
sinðμrÞ; ð35Þ

(iii) linear class: m2 ¼ 0, ω ≠ 0:

HðrÞ ¼ ωr2;

DðrÞ ¼ r: ð36Þ

Recall that we are getting rid of the degenarate class that
corresponds toω ¼ 0. It is noteworthy that the Gödel metric
(m2 ¼ 2ω2) belongs to the hyperbolic class. Another impor-
tant feature of the ST-homogeneous Gödel-type spaces
concern to the isometry group, for example: the class
m2 ¼ 4ω2 admits the larger isometric group,G7 [27], whilst
for m2 < 4ω2 admits G5 as the isometry group.
The ST-homogeneous Gödel-type spaces present CTCs

that are circles C¼ fðt; r;θ; zÞ; t; r; z¼ const;θ ∈ ½0;2π�g,
defined in a region limited by the range (r1 < r < r2),
whereGðrÞ ¼ D2ðrÞ −H2ðrÞ becomes negative within this
range. It is interesting to note that there are not CTCs for the
hyperbolic class corresponding to m2 ≥ 4ω2, otherwise, it
does. Hence, for the hyperbolic class with the range of
parameters 0 < m2 < 4ω2, there exist CTCs inside the
region corresponding to r > rc, where rc is the critical
radius (limiting radius separating the causal and noncausal
regions), its explicit form is given by

sinh2
�
mrc
2

�
¼

�
4ω2

m2
− 1

�
−1
: ð37Þ

Similarly, the linear and trigonometric classes also exhibit
CTCs. Both cases display a noncausal region, namely, for
the linear one, this region is hit for r > rc and the critical
radius rc ¼ 1

ω. In the trigonometric case, the situation is
more subtle since there exists an infinite set of alternating
noncausal and causal regions (see for example for an
explicit form of rc). In the next section, we shall check
the consistency of ST-homogeneous Gödel-type metrics
and also their causality properties inside the Galileon
gravity.

V. GÖDEL-TYPE SOLUTION IN CUBIC
GALILEON GRAVITY

We now focus our attention on the study of Gödel-type
metrics in cubic Galileon gravity. In order to proceed any
further, let us define a local set of tetrad basis θA ¼ eAμdxμ,
the reason is only to make calculations simpler as we will
see later. In particular, a good choice for the tetrad basis
looks like this:
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θð0Þ ¼ dtþHðrÞdϕ; θð1Þ ¼ dr; θð2Þ ¼ DðrÞdϕ;
θð3Þ ¼ dz; ð38Þ

where we have adopted capital Latin letters to label tetrad
indices. Thus, the line element takes the form

ds2 ¼ ηABθ
AθB ¼ −ðθð0ÞÞ2 þ ðθð1ÞÞ2 þ ðθð2ÞÞ2 þ ðθð3ÞÞ2;

ð39Þ
where ηAB is the Minkowski metric.
Thus the field equations in the tetrad basis (38) becomes

GAB þ ΛgAB ¼ M−2
P ½TðmÞ

AB þ TðπÞ
AB�; ð40Þ

the dynamical Galileon equation

c1M3

2
− c2□π þ c3

M3
½−ð□πÞ2 þ RAB∇Aπ∇Bπ

þ∇A∇Bπ∇A∇Bπ� ¼ 0; ð41Þ
where

GAB ¼ eμAe
ν
BGμν; TAB ¼ eμAe

ν
BTμν;

gAB ¼ eμAe
ν
Bgμν; ∇A ¼ eνA∇ν; ð42Þ

with eμB being the inverse of eAμ and then satisfying the
following condition eAμeμB ¼ δAB.
By taking π ¼ πðtÞ the d’Alembertian operator takes the

form

□π ¼
�
D2 −H2

D2

�
π̈: ð43Þ

The nonzero components of the energy-momentum tensor
associated to the Galileon field are

TðπÞ
ð0Þð0Þ ¼ −

c1M3

2
π −

c2
2

�
1þH2

D2

�
_π2 −

c3
M3

H2

D2

×

�
1 −

H2

D2

�
_π2π̈; ð44Þ

TðπÞ
ð0Þð1Þ ¼ −

c3
M3

H
D

�
2ω −

HD0

D2

�
_π3; ð45Þ

TðπÞ
ð0Þð2Þ ¼ −c2

H
D

_π2 −
c3
M3

H
D

�
1 −

H2

D2

�
_π2π̈; ð46Þ

TðπÞ
ð1Þð1Þ ¼

c1M3

2
π −

c2
2

�
1 −

H2

D2

�
_π2 −

c3
M3

�
1 −

H2

D2

�
2

_π2π̈;

ð47Þ

TðπÞ
ð1Þð2Þ ¼ −

c3
M3

H
D

�
2ω −

HD0

D2

�
_π3; ð48Þ

TðπÞ
ð2Þð2Þ ¼

c1M3

2
π −

c2
2

�
1þH2

D2

�
_π2 −

c3
M3

�
1 −

H2

D2

�
_π2π̈;

ð49Þ

TðπÞ
ð3Þð3Þ ¼

c1M3

2
π −

c2
2

�
1 −

H2

D2

�
_π2 −

c3
M3

�
1 −

H2

D2

�
2

_π2π̈:

ð50Þ

To write the field equations the following quantities are
necessary. The nonzero components of Einstein tensor, in
the tetrad basis (38), are

Gð0Þð0Þ ¼ 3ω2 −m2; Gð1Þð1Þ ¼ Gð2Þð2Þ ¼ ω2;

Gð3Þð3Þ ¼ m2 − ω2: ð51Þ

It remains only to fix the matter content as the last
ingredient to complete the field equations. The well-
motivated matter sources for Gödel-type metrics have been
worked out in [26] where they were shown to be presented
by a perfect fluid, a scalar field and an electromagnetic
field. Here, we will pick a perfect fluid and an electro-
magnetic field as matter sources only. Let us get started by
describing the perfect fluid whose the energy-momentum
tensor in the tetrad basis (38) is given by

TðpfÞ
AB ¼ ðρþ pÞuAuB − pηAB; ð52Þ

where uA ¼ eA0 is the four velocity of the fluid defining in
the comoving frame and ρ and p are the density and
pressure of the fluid, respectively. The nonzero components
are

TðpfÞ
ð0Þð0Þ ¼ ρ; TðpfÞ

ð1Þð1Þ ¼ TðpfÞ
ð2Þð2Þ ¼ TðpfÞ

ð3Þð3Þ ¼ p: ð53Þ

Regarding the electromagnetic field FAB, we assumeFAB in
such a way that the electric and magnetic fields lie in z
direction in agreement to [26]. In this case, the nonzero
components of the energy-momentum tensor are

TðefÞ
ð0Þð0Þ ¼ TðefÞ

ð1Þð1Þ ¼ TðefÞ
ð2Þð2Þ ¼

e2

2
; TðefÞ

ð3Þð3Þ ¼ −
e2

2
; ð54Þ

where e is the amplitude of the electromagnetic field.
Therefore, the energy-momentum tensor of the matter
sources is

TðmÞ
AB ¼ TðpfÞ

AB þ TðefÞ
AB ; ð55Þ

that, as a result of the symmetries of the space-time, it is
completely diagonal and their components are constants.
Accordingly, the field equations, Eq. (40), in the tetrad
basis, look like
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3ω2 −m2 − Λ ¼ M−2
P ρþM−2

P
e2

2
þM−2

P

�
−
c1M3

2
π −

c2
2

�
1þH2

D2

�
_π2 −

c3
M3

H2

D2

�
1 −

H2

D2

�
_π2π̈

�
; ð56Þ

ω2 þ Λ ¼ M−2
P pþM−2

P
e2

2
þM−2

P

�
c1M3

2
π −

c2
2

�
1 −

H2

D2

�
_π2 −

c3
M3

�
1 −

H2

D2

�
2

_π2π̈

�
; ð57Þ

ω2 þ Λ ¼ M−2
P pþM−2

P
e2

2
þM−2

P

�
c1M3

2
π −

c2
2

�
1þH2

D2

�
_π2 −

c3
M3

�
1 −

H2

D2

�
_π2π̈

�
; ð58Þ

m2 − ω2 þ Λ ¼ M−2
P p −M−2

P
e2

2
þM−2

P

�
c1M3

2
π −

c2
2

�
1 −

H2

D2

�
_π2 −

c3
M3

�
1 −

H2

D2

�
2

_π2π̈

�
: ð59Þ

These are the diagonal components (0,0),(1,1),(2,2), and
(3,3), respectively. The off-diagonal components (0,1),
(0,2), and (1,2), are, respectively,

−
c3
M3

H
D

�
2ω −

HD0

D2

�
_π3 ¼ 0; ð60Þ

−c2
H
D

_π2 −
c3
M3

H
D

�
1 −

H2

D2

�
_π2π̈ ¼ 0; ð61Þ

−c2
H
D

_π2 −
c3
M3

H
D

�
1 −

H2

D2

�
_π2π̈ ¼ 0: ð62Þ

A direct inspection in these off-diagonal components imply
that the field π is a constant. In addition, the field equation

for the Galileon field, Eq. (41), leads to c1M3

2
¼ 0. Therefore,

in this case the Gödel-type solutions in Galileon gravity
reduce to the GR solutions. For example, in the absence of
electromagnetic field, the condition m2 ¼ 2ω2 is obtained
andCTCsare allowed [5].As a consequence, in this casewith
π ¼ πðtÞ, the violation of causality is permitted.
It is noteworthy that either the Ansatz with cylindrical

symmetry, πðt; r; zÞ, or a radial dependent Galileon, πðrÞ,
lead to cumbersome nonlinear scalar field equations, whose
analytical solutions cannot be found. The question as to
whether another dependence on the Galileon field could
generate analytical Gödel-type causal solutions naturally

arises at this point. To answer this question, we consider the
ansatz π ¼ πðzÞ, which is a suggestive choice: since the
Gödel-type metrics display a preferred direction along the z
axis (rotation axis), it might lead to dynamical nontrivial
effects and affect the causality properties correspondingly.
Furthermore, such a choice avoids the appearance of
nonlinear terms in the scalar field equation as we will
see in the following.
For this case, the d’Alembertian operator acts on the

field as

□πðzÞ ¼ −π00ðzÞ; ð63Þ

where the prime denotes the derivative with respect to z.
The nonzero components of the energy-momentum tensor
are

TðπÞ
ð0Þð0Þ ¼ −

c1M3

2
π −

c2
2
π02 þ c3

M3
π02π00; ð64Þ

TðπÞ
ð1Þð1Þ ¼ TðπÞ

ð2Þð2Þ ¼
c1M3

2
π þ c2

2
π02 −

c3
M3

π02π00; ð65Þ

TðπÞ
ð3Þð3Þ ¼

c1M3

2
π −

c2
2
π02: ð66Þ

Then the nonzero components of the field equation are

3ω2 −m2 − Λ ¼ M−2
P ρþM−2

P
e2

2
þM−2

P

�
−
c1M3

2
π −

c2
2
π02 þ c3

M3
π02π00

�
; ð67Þ

ω2 þ Λ ¼ M−2
P pþM−2

P
e2

2
þM−2

P

�
c1M3

2
π þ c2

2
π02 −

c3
M3

π02π00
�
; ð68Þ

m2 − ω2 þ Λ ¼ M−2
P p −M−2

P
e2

2
þM−2

P

�
c1M3

2
π −

c2
2
π02

�
; ð69Þ

where Eq. (55) has been used.
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The field equation for the Galileon, Eq. (41), reduces to

c1M3

2
− c2π00 ¼ 0; ð70Þ

whose solution is

πðzÞ ¼ Bþ AzþM3c1
4c2

z2; ð71Þ

where A and B are integration constants. Now, plugging
Eq. (71) into Eqs. (67), (68), and (69), we arrive at

3ω2 −m2 − Λ ¼ M−2
P ρþM−2

P
e2

2
−
z2

4

�
c21M

6

M2
pc2

−
1

2

c3c31M
6

M2
pc32

�
− z

�
c1M3A
M2

p
−
1

2

c3c21M
3A

M2
pc22

�

−
1

2

c2A2

M2
p
þ 1

2

c3c1A2

M2
pc2

−
1

2

c1M3B
M2

p
; ð72Þ

ω2 þ Λ ¼ M−2
P pþM−2

P
e2

2
þ z2

4

�
c21M

6

M2
pc2

−
1

2

c3c31M
6

M2
pc32

�
þ z

�
c1M3A
M2

p
−
1

2

c3c21M
3A

M2
pc22

�

þ 1

2

c2A2

M2
p
−
1

2

c3c1A2

M2
pc2

þ 1

2

c1M3B
M2

p
; ð73Þ

m2 − ω2 þ Λ ¼ M−2
P p −M−2

P
e2

2
−
1

2

c2A2

M2
p
þ 1

2

c1M3B
M2

p
: ð74Þ

Note that the rhs of the former equations explicitly depend
on the coordinate z while the lhs does not, thus for the sake
of consistency one requires constraints among the cis
coupling constants, namely: either 2c22 ¼ c1c3 or c1 ¼ 0,
thereby precluding z-coordinate dependency.

(i) First case: 2c22 ¼ c1c3.
In this situation, the aforementioned equations reduce to

3ω2 −m2 − Λ ¼ M−2
P ρþM−2

P
e2

2
þ 1

2

c2A2

M2
p
−
1

2

c1M3B
M2

p
;

ð75Þ

ω2 þ Λ ¼ M−2
P pþM−2

P
e2

2
−
1

2

c2A2

M2
p
þ 1

2

c1M3B
M2

p
;

ð76Þ

m2 − ω2 þ Λ ¼ M−2
P p −M−2

P
e2

2
−
1

2

c2A2

M2
p
þ 1

2

c1M3B
M2

p
:

ð77Þ

Now, subtracting Eqs. (76)–(77), we have

m2 − 2ω2 ¼ −
e2

M2
p
; ð78Þ

which is a striking relation linking up the metric parameters
with the matter content. It shows that m2 is bounded on
the top, i.e., m2 ≤ 2ω2, as a result, no completely causal
solution can be found. On the other hand, there is no lower

bound in m2, thus all three classes of Gödel-type metrics
are achieved. The hyperbolic class is covered
for m2 ¼ 2ω2 − e2

M2
p
> 0, the linear class is covered for

ω2 ¼ e2

2M2
p
while the trigonometric class is obtained for

μ2 ¼ e2

M2
p
− 2ω2 > 0. In particular, the Gödel solution is

reached in the absence of electromagnetic field as can be
seen from Eq. (78).
Combining Eqs. (76), (77), and (78) we find the

cosmological constant to be

Λ ¼ M−2
p

�
p
2
−
ρ

2
þ e2

2
− c2A2 þ c1M3B

�
: ð79Þ

Note that the cosmological constant depends on the
parameters of the model and the matter content as well.
Therefore, this relation is more generic than in GR where
the cosmological constant is entirely determined by the
matter content while in cubic Galileon theory is not.
(ii) Second case: c1 ¼ 0.
Now, the set of gravitational field equations reduce to

3ω2 −m2 − Λ ¼ M−2
P ρþM−2

P
e2

2
−
1

2

c2A2

M2
p
; ð80Þ

ω2 þ Λ ¼ M−2
P pþM−2

P
e2

2
þ 1

2

c2A2

M2
p
; ð81Þ

m2 − ω2 þ Λ ¼ M−2
P p −M−2

P
e2

2
−
1

2

c2A2

M2
p
: ð82Þ
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Notice that, in this case, the cubic term plays an irrelevant
role in the above equations. From Eqs. (81) and (82) we
find

m2 − 2ω2 ¼ −
1

M2
p
ðe2 þ c2A2Þ: ð83Þ

Since we are looking for possible completely causal
solutions we must demand c2 ¼ −jc2j and also jc2j ≥ e2

to find the condition

m2 ≥ 2ω2; ð84Þ

which displays a lower bound for m2. Then, only solutions
within the hyperbolic class are admissible. The Gödel
metric is arrived at by imposing e2 ¼ jc2jA2 as can be seen
from Eq. (83).
To proceed further, by summing Eqs. (80) and (81) we

arrive at

m2 − 4ω2 ¼ −M−2
p ðpþ ρþ e2Þ ≤ 0; ð85Þ

which shows that neither parameters of the model nor the
Galileon field are involved. Remarkably, this relation is
exactly the same to GR even in the presence of the
Galileon. Hence, the admissible solutions are restricted
to the range 2ω2 ≤ m2 ≤ 4ω2.
This result leads to some possible causal Gödel-type

solutions. (i) For an empty universe, that is, e¼ρ¼p¼0,
with the Galileon field of the form πðzÞ ¼ Bþ Az, the
condition m2 ¼ 4ω2 is obtained. (ii) If the Universe is
filled with an exotic fluid (dark energy) such that p ¼ −ρ,
in the absence of electromagnetic field and Galileon
πðzÞ ¼ Bþ Az, the causal condition is permitted.
The cosmological constant is readily obtained from

Eqs. (80), (81), and (82) and it reads

Λ ¼ M−2
p

�
p
2
−
ρ

2
þ e2

2
− jc2jA2

�
: ð86Þ

As expected, similar to the former case, the cosmological
constant depends on the parameters of the model and also
the Galileon field form. Formally, such a solution is
identical to GR plus a scalar field for the particular case:
jc2j ¼ 1 [26]. Of course, it happens as a result of the
contribution of the cubic term vanishes in the field
equations, when c1 ¼ 0.

VI. SUMMARY AND CONCLUSIONS

We discussed the Gödel and Gödel-type metrics within
the cubic Galileon gravity with the Galileon field taking the

following forms: π ¼ πðtÞ and π ¼ πðzÞ. In addition, this
occurs in the presence of the matter sources, namely a
perfect fluid and an electromagnetic field. In this outlook,
we have succeed to generate Gödel-type solutions having
no analogy with GR only for π ¼ πðzÞ whose dynamical
equation solution imposes a quadratic form given by
Eq. (71), in the case π ¼ πðtÞ the solution is trivial and
reduces to GR identically. Regarding the nontrivial case
(71), the coupling constant must satisfy two constraint for
consistency of the field equations.
The first case occurs when the coupling constants satisfy

the constraint: 2c22 ¼ c1c3. In this case we remarked that
the solutions have a lower upper bound giving by
m2 ≤ 2ω2, where the equality is accomplished in the
absence of electromagnetic field and then corresponds to
the Gödel solution in the cubic Galileon gravity. In any
situation, one cannot find completely causal solution
(m2 ≥ 4ω2). Furthermore, solving the dynamical equation
for the Galileon we found that its form is quadratic in the z
coordinate, which is completely different from the results
obtained in other models [28].
The second case occurs for c1 ¼ 0, such a situation is

fairly discussed in the literature [29–31] in other contexts.
In a distinguishing way to the former case, now, we shown
that, apart from a lower upper bound for m2, there exists a
lower bound as well, i.e., 2ω2 ≤ m2 ≤ 4ω2. This result is
only reached by requiring c2 < 0, and c3 can be generic.
The completely causal solution was found corresponding
to either the vacuum solution or for an exotic fluid p ¼ −ρ
with no electromagnetic field. Apart from this, the Galileon
must be linear in the z coordinate, albeit this result is not
surprising since the cubic Galileon theory with c1 ¼ 0 is
invariant under shift transformation π → π þ c represent-
ing themselves as a particular case of “Galilean”-like
transformations π → π þ bμxμ þ c mentioned in the
introduction.
The natural continuation of this study could consist in

consideration of more generic Galileon gravity involving
quartic and quintic terms. Besides of this, clearly, an
important direction of study within the framework of the
Galileon gravity could consist in treating other interesting
metrics, such as various black hole and wormhole sol-
utions. We plan to do these studies in forthcoming papers.
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