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Here we propose a minimal analog gravity setup and suggest how to select two surface gravity wave
packets in order to mimic some key aspects of Hawking radiation from the horizon of nonrotating black
holes. Our proposed setup, unlike the scattering problem conventionally studied, constitutes of a constant
mean flow over a flat bathymetry, in which the two wave packets possess the same amount of wave action
but equal and opposite (sign) amount of energy, thereby mimicking virtual particles created out of near
horizon vacuum fluctuations. Attention is given to the physical mechanism relating to the signs of the wave
action and energy norm with the wave’s intrinsic and total phase speeds. We construct narrow wave packets
of equal wave action, the one with positive energy and group speed propagates against the mean flow and
escapes from the black hole as Hawking radiation, while the other with negative energy and group speed is
drifted by the mean flow and falls into it. Hawking’s prediction of low frequency mode amplification is
satisfied in our minimal model by construction. We find that the centroid wave numbers and surface
elevation amplitudes of the wave packets are related by simple analytical expressions.
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I. INTRODUCTION

Direct probing of Hawking radiation in gravitational
black holes (BHs) seems to be unlikely in the near future.
Hence, laboratory studies of the phenomena in analogous
physical systems, obeying similar equations of motion as
the fields around BHs, provide tools to examine and
demonstrate different features of Hawking radiation. In
the pursuit of finding laboratory analogs of BH radiation
(c.f. Barceló [1] for an updated review), Schutzhold
and Unruh [2] theoretically demonstrated how surface
gravity waves, in the presence of a countercurrent flow
in a shallow basin, can be used to simulate phenomena
around BHs in the laboratory. Rousseaux et al. [3] reported
the first successful analog gravity experiment mimicking
white hole (WH) horizons by surface gravity waves.
Weinfurtner et al. [4] used localized obstacle to block
the upstream propagation of a long wave, converting it into
a pair of short waves with opposite-signed energy, one with
positive and the other with negative energy. This experi-
ment successfully demonstrated the thermal nature of the

stimulated Hawking process at an analog WH horizon.
Hawking radiation in analog wave-current systems have
been further established experimentally and numerically in
recent years, see Refs. [5–7]. Specifically, Euvé et al. [5]
established analog quantum Hawking radiation using
correlation of the randomly fluctuating free surface down-
stream of the obstacle.
The objective in this paper is more modest. It aims to

propose a minimal water wave analog of pairs of virtual
particles with equal and opposite energy, created out of near
horizon vacuum fluctuations, where the particle with the
positive energy escapes to infinity, and the one with
negative energy falls into the BH, leading to BH evapo-
ration [8,9]. As this phenomena by itself is not necessarily
related to wave scattering, it is enough to assume here a
flow system with a constant mean countercurrent over a flat
bathymetry (i.e., constant water depth, see Fig. 1).

II. PSEUDOENERGY AND PSEUDOMOMENTUM

Consider for simplicity a rectangular quasi-2D domain
ðx; zÞ of the size ð0; LÞ × ð−H; η0Þ, filled with water
(assumed here to be inviscid and incompressible), where
L is the horizontal length, H is the mean fluid depth, and*anirbanguha.ubc@gmail.com
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η0ðx; tÞ denotes the free surface elevation about the mean
depth (e.g., Fig. 1). For this setup the continuity and Euler’s
momentum equations read:

∇ · u ¼ 0;
Du
Dt

≡
� ∂
∂tþ u ·∇

�
u ¼ −

∇p
ρ

þ g:

ð1a; bÞ

Here ∇≡ ð∂=∂x; ∂=∂zÞ is the 2D gradient operator, u ¼
ðu; wÞ denotes velocity, p denotes pressure, ρ is the density
of water (assumed constant), and g ¼ −gẑ is the gravity
vector pointing downwards.
Assuming periodic boundary conditions at x ¼ 0 and L,

it is straightforward to show that both the domain-
integrated momentum in the x direction (P) and the total
fluid energy (E):

P ¼ ρ

Z
L

x¼0

Z
η0

z¼−H
udxdz; ð2aÞ

E ¼ ρ

2

Z
L

x¼0

��Z
η0

z¼−H
juj2dz

�
þ gðη02 −H2Þ

�
dx; ð2bÞ

are conserved [10]. The two terms in the rhs of Eq. (2b) are,
respectively, the fluid kinetic and potential energy.
Consider a steady mean current in the negative x direction:
u ¼ ð−Ū; 0Þ with Ū > 0, and a constant mean height H
satisfying hydrostatic balance. This flow is a solution of
Eq. (1a,b) and posses the domain integrated momentum
and energy

P̄ ¼ −ρLHŪ; Ē ¼ ρLH
2

ðŪ2 − gHÞ: ð3a; bÞ

Now suppose that on top of this steady base state we add a
perturbation that is composed of surface gravity waves of
the form η0ðx; tÞ ¼ aeiðkx−ωtÞ þ c:c:, where a and k, respec-
tively, denote amplitude and wave number (defined positive
here), ω ¼ kcp denotes frequency, cp is the phase speed,
and c.c. denotes complex conjugate. Then

ω ¼ ω̂ − kŪ ¼ kðĉp − ŪÞ ¼ kcp; ð4Þ

where the intrinsic surface gravity wave frequency and
phase speeds (denoted by hat) are given by the familiar
dispersion relation:

ω̂ ¼ kĉp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanh kH

p
: ð5Þ

Denoting the wave fields by prime so that
u ¼ ð−Ū þ u0; w0Þ, we obtain

P ¼ P̄þ δP; δP ¼ ρ

Z
L

x¼0

Z
η0

z¼0

u0dxdz; ð6aÞ

E ¼ Ēþ δE; δE ¼ E0 − ŪδP;

E0 ¼ ρ

2

Z
L

x¼0

�Z
η0

z¼−H
ju0j2dzþ gη02

�
dx: ð6bÞ

The quantities δP and δE are, respectively, known by
(the somewhat confusing terms) pseudomomentum and
pseudoenergy. As is evident from Eqs. (6a) and (6b), they
are simply the momentum and energy contribution of the
waves to the system. Since P̄ and Ē are constant, δP and δE
are also conserved (in the Appendix we explicitly show that
δE in the shallow water limit is equivalent to the energy
density integral in Schützhold and Unruh [2] [Eqs. (67)
and (68)]). Note that E0—the positive definite wave eddy
energy—is only one of the contributions by the surface
waves to the total change in the energy (as will be clarified
further in the next section). Hence, neither the pseudomo-
mentum nor the pseudoenergy are sign definite; negative
pseudoenergy implies that the addition of linear waves to
the base flow reduces the energy of the system below its
mean value Ē, whereas positive pseudoenergy increases the
energy above its mean value.

III. PAIRS OF ZERO-SUM PSEUDOENERGY
WAVE PACKETS

The essential idea in this analogy is that confined surface
gravity wave packets represent virtual particles. Therefore
we aim to choose superposition pairs of wave packets with
equal and opposite values of pseudoenergy δE in a way that
the sign of their group velocity (in the frame of rest) will be
equal to the sign of their pseudoenergy. When this is
achieved, the wave packet with the positive pseudoenergy
manages to overcome the leftward countercurrent −Ū and
escapes rightward (from the BH horizon into the outer
space), whereas the negative pseudoenergy wave packet is
drifted leftward with the base flow (into the BH).
Consequently, the energy in the left region (inside the
BH) is reduced on average and become Ē − jδEj.
Eventually when the leftward wave packet dissipates, it
is expected to reduce the mean energy of BH, so that the
new mean energy Ēnew ≈ Ē − jδEj.

FIG. 1. Schematic diagram of the black hole analog setup. For
details about the various symbols, see text.
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Next we wish to suggest how to choose excited pairs of
oppositely signed pseudoenergy wave packets based on
their physical properties. We first note that for surface
waves it can be shown, after some algebra, that the wave
eddy energy satisfies

E0 ¼ 1

2
ρgLa2 ¼ ĉpδP; ð7Þ

implying that ĉp and δP are of the same sign. This sign
agreement can be understood from Fig. 2. The mechanism
of surface wave propagation is such that the horizontal
convergence (divergence) results in upward (downward)
motion that translates the vertical height anomaly η0. Hence
for rightward or positive propagation, ĉp > 0 [Fig. 2(a)],
and u0 is in phase with η0. Therefore the vertical integration
of positive u0 from the bottom to the wave crests exceeds
the vertical integration of negative u0 from the bottom to the
wave troughs and consequently δP is positive, in agreement
with Eq. (6a). By the same argument it follows that δP is
negative when ĉp is negative [Fig. 2(b)]. Equations (4),
(6b), and (7) then imply the following relations:

δE ¼ ðĉp − ŪÞδP ¼ cpδP ¼
�
1 −

Ū
ĉp

�
E0: ð8Þ

Consider then two waves with different wave numbers
kþ and k− (both defined positive), where both waves have a
positive ĉp (and hence a positive δP). Thus both waves
are “trying” to propagate to the right (in the positive x
direction) against the mean current −Ū, see Fig. 1. If we
assume a situation such that

ĉ−p < Ū < ĉþp ;

then Eq. (8) implies that δEþ > 0 while δE− < 0. In other
words, the wave that manages to counterpropagate against
the current with a positive phase speed in the rest frame
(cþp > 0) carries a positive pseudoenergy, whereas the wave
whose intrinsic phase speed is not large enough to match
the opposed current (c−p < 0) carries a negative pseudoe-
nergy and consequently propagates to the left in the rest
frame (despite that the pseudomomentum of both waves

being positive), as shown in Fig. 1. This statement can be
written in terms of frequency and wave action. Defining the
wave action as δA≡ δP=k, we obtain from Eq. (8) that
δE ¼ ωδA. Consider δA as an analog for ℏ, then for
positive δA the sign of the pseudoenergy is determined
by the sign of its frequency ω. This suggests that we can set
a perturbation of zero pseudoenergy composed of two
waves (δE ¼ δEþ þ δE− ¼ 0) with the same positive
value of wave action δAþ ¼ δA− > 0. These in combina-
tion yield

Ωþ ¼ −Ω− > 0 ⇒ Ω̂þ þ Ω̂− ¼ αþ þ α−; ð9aÞ

�
a−

aþ

�
2

¼ Ω̂−

Ω̂þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α− tanh α−

αþ tanh αþ

r
: ð9bÞ

Here we have used the following nondimensionaliza-
tions: αþð−Þ ≡ kþð−ÞH, Ω̂þð−Þ ≡ ω̂þð−ÞH=Ū and Ωþð−Þ≡
ωþð−ÞH=Ū. Additionally Eq. (4) has also been used, from
which we obtain Ωþð−Þ ¼ Ω̂þð−Þ − αþð−Þ, where Ω̂þð−Þ ¼
Fr−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþð−Þ tanhαþð−Þp

, in which the Froude number
Fr≡ Ū=

ffiffiffiffiffiffiffi
gH

p
. According to Eq. (9a), the waves have

equal and opposite frequencies. Hence in the rest frame, the
“þ” wave will propagate to the right against the mean
current whereas the “−” wave will be drifted to the left,
following the scenario depicted in Fig. 1. Furthermore,
Eq. (9b) provides a direct relation of the amplitude ratio of
the “þ” and “−” waves. An interesting point to notice from
Eq. (9b) is that the condition of zero pseudoenergy super-
position does not imply that the free surface should be
initially flat.
While the pseudomomentum of a monochromatic sinus-

oidal wave is perfectly well defined, its position is
obviously not. Therefore, in order to generate an initial
zero pseudoenergy perturbation whose position and
momentum are both reasonably well defined, we should
construct pairs of narrow wave packets rather than pairs of
monochromatic waves. Hence, the positive (negative)
pseudoenergy wave packet should propagate with a pos-
itive (negative) group speed cg (or in nondimensional

terms, Cþð−Þ
g ≡ cþð−Þ

g =Ū), satisfying:

FIG. 2. Schematic description of the fact that (a) rightward propagating surface waves have a positive pseudomomentum, while
(b) leftward propagating surface waves have a negative pseudomomentum.
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Cþð−Þ
g ≡ ∂Ωþð−Þ

∂αþð−Þ

¼ −1þ 1

2Fr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

αþð−Þ tanh α
þð−Þ

r �
1þ 2αþð−Þ

sinh 2αþð−Þ

�
:

ð10Þ

Furthermore, the centroid group and phase speeds of each
wave packet should posses the same sign. This is because

the sign of cp (or in nondimensional terms, Cþð−Þ
p ≡

cþð−Þ
p =Ū) determines the sign of δE whereas the sign of
cg determines the wave packet’s direction of propagation.
Consider the positive branch of Ω and address only

subcritical flows, i.e., Fr < 1, in order to enable wave’s
counterpropagation. The variations of Ω and Cp with α for
different Fr values are respectively plotted in Figs. 3(a)
and 3(b). Two wave packets with equal wave action, and
equal and opposite pseudoenergy, consist of a “pair wave”
(denoted by the same colored “*”s), and therefore satisfies
Eqs. (9a) and (9b). The “þ” (“−”) wave packet’s frequency,
phase and group speeds are all positive (negative), and
hence escapes into space (falls into the BH), in analogy
with Hawking radiation. Notice that for subcritical flows,
this condition fails in the shallow-water limit (since the
pseudoenergy is always positive); see the Appendix.
Figure 4 shows a pair of wave packets (both having

positive wave action but equal and opposite pseudoenergy)
in a countercurrent flow over a flat bathymetry. This
configuration is numerically simulated using an in-house

high-order spectral code, detailed in Raj and Guha [11].
As already mentioned, a zero-sum pseudoenergy does not
necessarily imply that the superposition of the wave packet
pair would render the free surface flat, as clearly shown in
Fig. 4(a), which is the configuration at t ¼ 0. The back-
ground flow is subcritical with Fr ¼ 0.7. The “þ” wave
packet (centroid wave number αþ ¼ 0.8) emits as Hawking
radiation while the “−” wave packet (centroid wave
number α− ¼ 2.47) falls inside the BH; the wave pair
has the same magnitude of centroid frequency as per
Eq. (9a). Here the definition of the event horizon is
arbitrary; however it must be located to the left of the
superposed wave packets at t ¼ 0. The fact that α− > αþ is
evident from the dispersion curve in Fig. 3(a). A conse-
quence of α− > αþ is that a− > aþ as per Eq. (9b), which is
also clear from Fig. 4(b).

IV. PARALLELS WITH THE RATIO OF
BOGOLIUBOV COEFFICIENTS AND

LOW-FREQUENCY MODE AMPLIFICATION

The study of classical and quantum fields around BHs
reveals that a pair wave created with a temporal frequency
Ω satisfies [2,8]:

�
β−

βþ

�
2

¼ exp

�
−
Ω
T

�
; ð11Þ

where βþð−Þ are referred to as the positive (negative) norm
amplitudes (also known as the Bogoliubov coefficients),

FIG. 3. Dispersion curves: (a) Ω versus α, and (b) Cp versus α. The blue, yellow and green curves, respectively, denote
Fr ¼ 0.4, 0.6 and 0.8. The short red lines in (a) denotes the slope of the blue curve, which equals to the group speed. The “*”s of same
color denote a pair wave; the one above the zero line has δA > 0 and δE > 0, while that below the zero line has δA > 0 and δE < 0.

FIG. 4. Simulation of zero-sum pseudoenergy wave packet pair for Fr ¼ 0.7. (a) Configuration at t ¼ 0, and (b) configuration at a
later time when the “þ” wave packet escapes the BH while the “−” wave packet falls inside it.
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and T denotes an effective temperature proportional to the
surface gravity of a BH. According the Hawking’s pre-
diction ðβ−Þ2 ¼ ½expðΩ=TÞ − 1�−1, which implies diver-
gence as Ω → 0 since for this limit, ðβ−Þ2 ≈ T=Ω.
In analog gravity experiments with surface waves in a

countercurrent flow over a localized obstacle, parallels
between Eq. (11) and the scattering coefficients were first
established in Weinfurtner et al. [4], and then in subsequent
studies, e.g., see Refs. [5,6]. The scattering coefficients in
the analog-gravity experiments correspond to the wave
action of the “þ” and “−” waves [4]. We emphasize that
here we have not solved a scattering problem, therefore its
relevancy to Eq. (11) is somewhat limited. Yet, it is
interesting to see that in the current analysis δAþ ¼ δA−,
hence the Ω → 0 limit of Eq. (11) is always satisfied.
Furthermore, noting that

δAþð−Þ ¼ ρgL
2

faþð−Þg2
ωþð−Þ þ kþð−ÞŪ

; ð12Þ

we readily find that δAþ → ∞ when ω̂þ → 0, leading to
both kþ → 0 and ωþ → 0 [c.f. Fig. 3(a)]. Hence by
construction δA− → ∞, however the denominator in
Eq. (12) for this case does not vanish, rather a− → ∞.
This fact can also be clearly observed from Eq. (9b). In
summary, the aspect of low-frequency mode amplification
in Hawking’s prediction is satisfied by this minimal model.

V. DISCUSSION

The aim of this paper is to characterize the properties of
zero-sum energy pair wave packets in the hydrodynamic
analogy of Hawking radiation. First we wished to clarify
the somewhat non-intuitive physical meaning of positive
and negative energy norms (pseudoenergy), how those are
related to the wave propagation mechanism, and how the
general energy norm converges to the one suggested by
Schützhold and Unruh [2] in the shallow water limit.
Next we considered a simple setup consisting of a

constant subcritical countercurrent flow over a flat bathym-
etry; this setup was enough to demonstrate the analog
phenomena where positive (negative) energy wave packets
escape from (drifted into) the black hole. The combined
requirements of a wave packet pair with equal (and positive
in our case) wave action, and equal and opposite signed
pseudoenergy, determine their centroid wave numbers as
well as their surface elevation amplitude.
While forming such pairs of wave packets in the

laboratory might not be a simple task, it is straight forward
to numerically simulate stochastic generation of such
zero-sum energy pairs, mimicking near-horizon vacuum
fluctuations. The nonlinear effects of wave dissipation and
wave-mean flow interaction, which feedback into the
countercurrent and shift the horizon position, are under
ongoing numerical investigation and will be published in a
follow-up paper.
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APPENDIX: PSEUDOENERGY OF SHALLOW
WATER GRAVITY WAVE

Writing the pseudoenergy explicitly, using Eqs. (6a)
and (6b) we obtain

δE ¼ ρ

2

Z
L

x¼0

�Z
η0

z¼−H
ðju0j2 − 2Ūu0Þdzþ gη02

�
dx: ðA1Þ

In the shallow water limit, ju0j2 ⇒ u02, and u0 is not a
function of z. Consequently the pseudo-energy expression
for shallow water gravity waves for this setup becomes

δESW ¼ ρ

2

Z
L

x¼0

ðHu02 þ gη02 − 2Ūu0η0Þdx: ðA2Þ

Let us define the perturbation velocity potential ϕ0 to satisfy
u0 ¼ ∇ϕ0, then for the shallow water the linearized, time-
dependent Bernoulli’s potential equation (or equivalently,
the linearized momentum in the x direction) implies

� ∂
∂t − Ū

∂
∂x

�
ϕ0 ¼ −gη0: ðA3Þ

This relation allows writing the integrand of Eq. (A2) solely
in terms of ϕ0

δESW ¼ ρ

2g

Z
L

x¼0

�
gH

�∂ϕ0

∂x
�

2

þ
�∂ϕ0

∂t
�

2

−
�
Ū
∂ϕ0

∂x
�

2
�
dx;

ðA4Þ

which is equivalent to the energy norm defined in Eqs. (67)
and (68) in Schützhold and Unruh [2]. Furthermore, for the
shallow water surface gravity wave, the amplitudes of the
vertical displacement a, and the velocity potential ampli-
tude jϕj, are related by [12]

a ¼ αjϕjffiffiffiffiffiffiffi
gH

p :

Using Eq. (8) and ĉp ¼ � ffiffiffiffiffiffiffi
gH

p
, we can express the

pseudoenergy in terms of jϕj as

δESW ¼ ρL
2H

α2jϕj2ð1 ∓ FrÞ: ðA5Þ

Hence pseudoenergy for shallow-water waves is always
positive for subcritical flows (Fr < 1). Therefore pairs of
opposite pseudoenergy wave packets in subcritical flows
require nonshallow water dynamics.
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