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The analysis of the validity of Birkhoff’s theorem about the uniqueness of the spherically symmetric
solution of the gravitational field equations is extended to the framework of the Poincaré gauge gravity
theory. The class of models with the most general Lagrangians of the Yang-Mills type constructed from all
possible quadratic invariants of the curvature and the torsion is considered, including both parity-even and
parity-odd sectors. We find the families of models in which the weak and strong versions of the generalized
Birkhoff theorem are valid, by making use of the double duality technique.
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I. INTRODUCTION

Spherically symmetric solutions are of particular interest
in field-theoretic models. In the general relativity (GR)
theory, the Schwarzschild metric is a unique solution of
Einstein’s gravitational field equations under the assumption
of a spherical symmetry of spacetime and matter source
distribution. This remarkable theoretical result is known as
the Birkhoff theorem, although it was first demonstrated
independently by Jebsen [1], Eiesland [2], and Alexandrow
[3] well before a better known publication of Birkhoff [4].
The validity of this theorem is very important, in particular,
in view of the fact that the fundamental gravitational
experiments in our Solar system are perfectly consistent
with the Schwarzschild geometry. For historic overview one
may read [5,6].
In Einstein’s GR with the vanishing cosmological con-

stant, the classic Birkhoff theorem states that the only
locally spherically symmetric solution of the vacuum
gravitational field equations in four dimensions is the
Schwarzschild metric. When the cosmological constant
is nontrivial, the Birkhoff theorem is extended to the
statement [7,8] that the only locally spherically symmetric
solution of Einstein’s equations in vacuum is either the
Schwarzschild-(anti)de Sitter metric (first obtained by
Kottler [9]) or the Nariai [10] (Bertotti-Kasner [11,12])
spacetime.
Later the validity of the generalized Birkhoff theorem

was established [13–25] for nonvacuum case, for GR in
higher dimensions and for a wide variety of alternative
gravitational theories (including the conformal, Lovelock,
Gauss-Bonnet, Hořava, FðRÞ, and teleparallel models).
Here we discuss the Poincaré gauge (PG) gravity

theory which offers a physically meaningful extension of

Einstein’s GR to the case when the spin of matter is
included as a source of the gravitational field along with
the mass of matter [26–31]. The canonical spin and the
energy-momentum currents [32] underlie the correspond-
ing gauge scheme as the Noether currents for the Poincaré
group G ¼ T4⋊SOð1; 3Þ which is the semidirect product
of the 4-parameter group T4 of spacetime translations and
the 6-parameter local Lorentz group SOð1; 3Þ. In the
framework of the consistent Yang-Mills-Kibble-Utiyama
field-theoretic approach, the Poincaré gauge potentials are
identified with the coframe 1-form ϑα ¼ eαi dx

i (“transla-
tional potential” corresponding to the T4 subgroup) and the
local Lorentz connection 1-form Γαβ ¼ −Γβα ¼ Γi

αβdxi

(“rotational potential” corresponding to the SOð1; 3Þ sub-
group) which give rise to the Riemann-Cartan geometry on
the spacetime manifold [33–35].
We focus here on the analysis of the class of Poincaré

gauge gravity models based on the general Lagrangians of
the Yang–Mills type constructed from all possible quadratic
invariants of the curvature and the torsion. In contrast to
GR, a spherically symmetric solution is not unique in a
general quadratic PG gravity theory. However, certain
classes of models do admit the generalized Birkhoff
theorem which can be formulated as follows: the torsion-
less Schwarzschild (Kottler, in general) spacetime is a
unique vacuum spherically symmetric solution of the
vacuum Poincaré gauge field equations.
This generalized Birkhoff theorem is available in two

versions. In the strong version, the spherical symmetry is
understood as the form-invariance of physical and geomet-
rical variables under the SOð3Þ group of rotations, whereas
in the weak Oð3Þ version one assumes the invariance under
the rotations and spatial reflections. The earlier work was
confined to the parity-even Lagrangians only [36–43].
Following the lines of [43], we now extend the consid-

eration and generalize the class of quadratic PG models to*obukhov@ibrae.ac.ru
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include the parity-odd sector. In the recent times, there is a
growing interest to such interactions [43–49]. Quite gen-
erally, there are no convincing experimental evidence
or compelling theoretical arguments which could rule
out the violation of parity in gravity. On the contrary,
the discovery of P and CP nonconservation in the weak
interaction processes [50] had stimulated considerable
efforts in the experimental search for the electric dipole
moments of elementary particles [51], and the possibility of
extending the gravitational Lagrangian by parity odd terms
has been proposed already in the mid-1960s [52]. Later
such extensions were widely studied in the context of
the classical and quantum gravity theory [53–55], in
particular in Ashtekar’s approach and loop quantum gravity
[56,57]. Moreover, the inclusion of parity-nonconserving
terms appears to be important for the discussion of such
fundamental physical issues as the baryon asymmetry
of the universe (predicted by Sakharov [58]), where the
parity odd terms can be induced by the quantum vacuum
structure [59–61].
In order to make the discussion as transparent as

possible, all the physical and geometrical objects related
to the parity-odd sector (such as coupling constants,
irreducible pieces of the curvature and the torsion, etc.)
are marked by an overline, to distinguish them from the
corresponding parity-even objects. Other basic notation and
conventions are consistent with [33,34]. In particular,
Greek indices α; β;… ¼ 0;…; 3, denote the anholonomic
components (for example, of a coframe ϑα), while the Latin
indices i; j;… ¼ 0;…; 3, label the holonomic components
(e.g., dxi). The anholonomic vector frame basis eα is dual
to the coframe basis in the sense that eαcϑβ ¼ δβα, where c
denotes the interior product. The volume 4-form is denoted
by η, and the η-basis in the space of exterior forms is
constructed with the help of the interior products as
ηα1…αp≔eαpc…eα1cη, p¼1;…;4. They are related to the
ϑ-basis via the Hodge dual operator �, for example, ηαβ ¼
�ðϑα ∧ ϑβÞ. The Minkowski metric is gαβ ¼ diagðc2;−1;
−1;−1Þ. For exterior forms ω of various type (which in
general may carry extra anholonomic indices) we use the
standard notation for the Lie derivative Lξω ¼ dðξcωÞ þ
ξcðdωÞ along a vector field ξ.

II. POINCARÉ GAUGE FIELD EQUATIONS

The torsion 2-form Tα ¼ Dϑα ¼ dϑα þ Γβ
α ∧ ϑβ can be

decomposed into the 3 irreducible parts, whereas the
curvature 2-form Rαβ ¼ dΓαβ þ Γγ

β ∧ Γαγ has 6 irreduc-
ible pieces. Their definition is presented in the Appendix.
These irreducible parts of the Poincaré gauge field strengths
are the building blocks for constructing the Yang-Mills type
Lagrangian of the gravitational field.
The general quadratic model is described by the

Lagrangian 4-form that contains all possible linear and
quadratic invariants of the torsion and the curvature:

V ¼ 1

2κc

�
ða0ηαβ þ ā0ϑα ∧ ϑβÞ ∧ Rαβ − 2λ0η

− Tα ∧ X3
I¼1

½aI�ððIÞTαÞ þ āIðIÞTα�
�

−
1

2ρ
Rαβ ∧ X6

I¼1

½bI�ððIÞRαβÞ þ b̄IðIÞRαβ�: ð1Þ

The structure of quadratic part of the Lagrangian is
specified by the set of coupling constants: ρ, a1, a2, a3,
b1;…; b6 and ā1; ā2; ā3, b̄1;…; b̄6. In the parity-odd sector,
not all constants are independent because some of terms in
(1) are the same [31], and accordingly we have to put
ā2 ¼ ā3, b̄2 ¼ b̄4 and b̄3 ¼ b̄6. The coupling constants aI ,
āI , bI and b̄I are dimensionless, whereas the dimension
½1ρ� ¼ ½ℏ�. By demanding the existence of a macroscopic

limit to GR, we identify κ ¼ 8πG=c4 as Einstein’s gravi-
tational constant.
The Lagrangian (1) has a clear structure: the first line

encompasses the terms linear in the curvature, the second
line contains the torsion quadratic terms (all of which have
the same dimension of an area ½l2�), and finally the third
line contains the curvature quadratic invariants. For
completeness, the cosmological constant is included (with
the dimension of an inverse area, ½λ0� ¼ ½l−2�). A special
case a0 ¼ 0 and ā0 ¼ 0 describes the purely quadratic
model without the Hilbert-Einstein linear term in the
Lagrangian. Such models describe the microscopic gravi-
tational phenomena which are naturally characterized by
the parameter

l2
ρ ¼

κc
ρ

ð2Þ

with the dimension of an area ½l2
ρ� ¼ ½l2�. In order to

provide a consistent macroscopic limit to Einstein’s GR
(that is solidly confirmed at the large distances), we assume
that a0 ≠ 0.
The vacuum Poincaré gravity field equations are

obtained from the variation of the gravitational actionR
V with respect to the translational and rotational gauge

potentials:

Eα ¼
δV
δϑα

¼ a0
2
ηαβγ ∧ Rβγ þ ā0Rαβ ∧ ϑβ − λ0ηα

þ qðTÞα þ l2
ρq

ðRÞ
α −Dhα ¼ 0; ð3Þ

Cαβ ¼
δV
δΓαβ ¼ a0ηαβγ ∧ Tγ þ 2ā0T ½α ∧ ϑβ�

þ 2h½α ∧ ϑβ� − 2l2
ρDhαβ ¼ 0: ð4Þ

Here we introduced the 2-forms which are linear functions
of the torsion and the curvature, respectively, by
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hα ¼
X3
I¼1

½aI�ððIÞTαÞ þ āIðIÞTα�; ð5Þ

hαβ ¼
X6
I¼1

½bI�ððIÞRαβÞ þ b̄IðIÞRαβ�; ð6Þ

and the 3-forms which are quadratic in the torsion and in
the curvature, respectively:

qðTÞα ¼ 1

2
½ðeαcTβÞ ∧ hβ − Tβ ∧ eαchβ�; ð7Þ

qðRÞα ¼ 1

2
½ðeαcRβγÞ ∧ hβγ − Rβγ ∧ eαchβγ�: ð8Þ

III. SPHERICALLY SYMMETRIC FIELDS IN
POINCARÉ GAUGE GRAVITY

The analysis of the validity of the generalized Birkhoff
theorem in PG is based on the appropriate ansatz for the
coframe ϑα and the local Lorentz connection Γαβ. Let us
choose the local coordinates xi ¼ ðt; r; θ;φÞ. The most
general spherically symmetric spacetime interval reads

ds2 ¼ A2dt2 − B2dr2 − C2ðdθ2 þ sin2θdφ2Þ; ð9Þ

where A ¼ Aðt; rÞ, B ¼ Bðt; rÞ, C ¼ Cðt; rÞ are arbitrary
functions of time and radial coordinate.
This follows from the study of the invariance under the

action of the rotation symmetry group on the spacetime
manifold. The corresponding infinitesimal motion is gen-
erated by the vector fields

ξx ¼ sinφ∂θ þ
cosφ
sin θ

cos θ∂φ; ð10Þ

ξy ¼ − cosφ∂θ þ
sinφ
sin θ

cos θ∂φ; ð11Þ

ξz ¼ −∂φ; ð12Þ

the commutators of which form the Lie algebra soð3Þ of
the rotation group. The form (9) of the line element
ds2 ¼ gijdxidxj is then fixed by demanding the invariance
of the metric under the action ξ∶SOð3Þ ×M → M of the
group SOð3Þ on the spacetime manifold M. Technically,
the invariance condition means the vanishing of the Lie
derivative Lξgij ¼ 0 along the vector fields (10)–(12). For
more details see, e.g., [62–65].
The general spherically symmetric configuration of the

Poincaré gauge fields is described by the coframe ϑα:

ϑ0̂¼Adt; ϑ1̂¼Bdr; ϑ2̂¼Cdθ; ϑ3̂¼Csinθdφ; ð13Þ

and the local Lorentz connection Γαβ:

Γ0̂ 1̂ ¼ fdtþ gdr; Γ2̂ 3̂ ¼ f̄dtþ ḡdr − cos θdφ; ð14Þ

Γ0̂ 2̂¼pdθ− q̄ sinθdφ; Γ3̂ 1̂¼ p̄dθ−q sinθdφ; ð15Þ

Γ0̂ 3̂¼p sinθdφþ q̄dθ; Γ1̂ 2̂¼ p̄ sinθdφþqdθ: ð16Þ

The configuration for the local Lorentz connection
encompasses the eight functions f ¼ fðt; rÞ, g ¼ gðt; rÞ,
p ¼ pðt; rÞ, q ¼ qðt; rÞ, and f̄ ¼ f̄ðt; rÞ, ḡ ¼ ḡðt; rÞ,
p̄ ¼ p̄ðt; rÞ, q̄ ¼ q̄ðt; rÞ.
The Poincaré gauge potentials (13) and (14)–(16) satisfy

the invariance conditions

Lξϑ
α ¼ λ

ðξÞ
β
αϑβ; LξΓαβ ¼ −D λ

ðξÞ
αβ: ð17Þ

Here the Lie algebra-valued λ
ðξÞ

αβ ¼ − λ
ðξÞ

βα parameter is
determined by vector fields which generate symmetries.
Explicitly, for the rotation symmetry (10)–(12) we have:

λ
ðξxÞ

αβ ¼ 2
cosφ
sin θ

δ½α
2̂
δβ�
3̂
; ð18Þ

λ
ðξyÞ

αβ ¼ 2
sinφ
sin θ

δ½α
2̂
δβ�
3̂
; ð19Þ

λ
ðξzÞ

αβ ¼ 0: ð20Þ

The Poincaré gauge fields (13) and (14)–(16) represent
a general solution of the invariance conditions (17).
Obviously, these configurations are determined up to an
arbitrary local Lorentz transformation Λα

β ¼ Λα
βðxÞ ∈

SOð1; 3Þ of the coframe, dual frame and connection

ϑμ → Λα
μϑα; eα → Λ−1

α
μeμ; ð21Þ

Γα
β → Λν

βΓμ
νΛ−1

α
μ þ Λμ

βdΛ−1
α
μ; ð22Þ

however, without loosing generality it is more convenient
to work with the diagonal coframe (13). For the trans-
formed configurations (21), (22), the Lie algebra valued

parameter λ
ðξÞ

αβ is accordingly transformed.
It is important to notice that the general spherically

symmetric configuration (13) and (14)–(16) is only invari-
ant under the group of proper rotations SOð3Þ, whereas this
configuration in not invariant under spatial reflections. This
is manifest by the presence of parity-odd terms with
nontrivial functions f̄, ḡ, p̄, q̄. For the thorough discussion
of reflections, see [65]. When in addition to the pure
rotations we demand also the invariance under reflections,
the symmetry group is extended to the full rotation group
Oð3Þ. Such an extension imposes an additional condition
on field configurations, which forbids parity-odd terms:
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f̄ ¼ ḡ ¼ p̄ ¼ q̄ ¼ 0. As a result, the number of arbitrary
functions in (14)–(16) is reduced from eight to four.
There exists an alternative approach, in which the

symmetries are discussed directly for the tensor field
configurations such as the torsion and the curvature. Our
study is completely consistent with the latter, since in view
of the invariance condition (17) we straightforwardly find,
with ξ ¼ ξi∂i,

Lξgij ¼ ð∂iξ
kÞgkj þ ð∂jξ

kÞgik ¼ 0; ð23Þ
LξΓki

j¼ð∂kξ
lÞΓli

jþð∂iξ
lÞΓkl

j− ð∂lξ
jÞΓki

lþ∂2
kiξ

j¼ 0;

ð24Þ

for the metric gij ¼ eiαejβgαβ and the world connection

Γki
j ¼ eαi Γkα

βejβ þ eαi ∂ke
j
α. As a result, all the relevant

tensor fields constructed from the metric and connection
are automatically invariant: LξTki

j ¼ 0, LξRkli
j ¼ 0,

and so on.
Here we use a more fundamental approach, starting from

the gravitational field potentials ðϑα;ΓαβÞ.

IV. SPHERICALLY SYMMETRIC
CURVATURE AND TORSION

From the gauge gravitational potentials (13) and
(14)–(16) we can straightforwardly compute the Poincaré
gauge field strengths: the curvature (“rotational” field
strength) and the torsion (“translational” field strength).
As a preliminary technical step, it is convenient to divide
the anholonomic indices, α; β;…, into the two groups:
A;B;… ¼ 0, 1 and a; b;… ¼ 2, 3.
Then for the components of the Riemann-Cartan curva-

ture 2-form we find

RAB ¼ μϑA ∧ ϑB þ μ̄ �ðϑA ∧ ϑBÞ; ð25Þ

Rab ¼ νϑa ∧ ϑb þ ν̄ �ðϑa ∧ ϑbÞ; ð26Þ

RAb ¼ −RbA ¼ UA ∧ ϑb þ �ðŪA ∧ ϑbÞ; ð27Þ

where we denoted

μ ¼ −f0 þ _g
AB

; μ̄ ¼ 2
pp̄þ qq̄

C2
; ð28Þ

ν ¼ p2 − p̄2 − q2 þ q̄2 þ 1

C2
; ν̄ ¼ −f̄0 þ _̄g

AB
; ð29Þ

and introduced the 1-formsUA and ŪA with the components

U0̂ ¼ _pþ fqþ f̄ q̄
AC

ϑ0̂ þ p0 þ gqþ ḡ q̄
BC

ϑ1̂; ð30Þ

U1̂ ¼ _qþ fp − f̄ p̄
AC

ϑ0̂ þ q0 þ gp − ḡ p̄
BC

ϑ1̂; ð31Þ

Ū0̂ ¼ −q̄0 þ gp̄þ ḡp
BC

ϑ0̂ þ − _̄qþ fp̄þ f̄p
AC

ϑ1̂; ð32Þ

Ū1̂ ¼ p̄0 − gq̄þ ḡq
BC

ϑ0̂ þ _̄p − fq̄þ f̄q
AC

ϑ1̂: ð33Þ

Hereafter, the dot _ and the prime 0 denote derivatives with
respect to the time t and the radial coordinate r, respectively.
Using these objects, we can construct the Yang-Mills

type quadratic curvature invariant

Rαβ ∧ �Rαβ ¼ 2ðν2 − μ2 þ μ̄2 − ν̄2Þη
þ 4ðUA ∧ �UA − ŪA ∧ �ŪAÞ: ð34Þ

Raising and lowering of the indices is done with the help of
the corresponding effective two-dimensional metric tensors
which arise as the sub-blocks of the four-dimensional
Minkowski metric gαβ ¼ ðgAB

0
0
gab
Þ:

gAB ¼
�
1 0

0 −1

�
; gab ¼

�−1 0

0 −1

�
: ð35Þ

Similarly, a direct computation yields for components of
the spherically symmetric torsion 2-form:

TA ¼ ϑA ∧ ð2V þ T=3Þ − �ðϑA ∧ ð2V̄ þ T̄=3ÞÞ; ð36Þ

Ta ¼ −ϑa ∧ ðV − T=3Þ þ �ðϑa ∧ ðV̄ − T̄=3ÞÞ: ð37Þ

Here we introduced the quartet of 1-forms

T¼ tAϑA; T̄¼ t̄AϑA; V¼ vAϑA; V̄¼ v̄AϑA; ð38Þ

the components of which read explicitly as follows:

t0̂ ¼
1

A

�
−

_B
B
− 2

_C
C
þ g

A
B
þ 2p

A
C

�
; ð39Þ

t1̂ ¼
1

B

�
−
A0

A
− 2

C0

C
þ f

B
A
− 2q

B
C

�
; ð40Þ

t̄0̂ ¼ 2
ḡ
B
þ 4

p̄
C
; t̄1̂ ¼ 2

f̄
A
þ 4

q̄
C
; ð41Þ

and

v0̂ ¼
1

3A

�
−

_B
B
þ

_C
C
þ g

A
B
− p

A
C

�
; ð42Þ

v1̂ ¼
1

3B

�
−
A0

A
þ C0

C
þ f

B
A
þ q

B
C

�
; ð43Þ

v̄0̂ ¼ −
ḡ
3B

þ p̄
3C

; v̄1̂ ¼ −
f̄
3A

þ q̄
3C

: ð44Þ
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All together, the general spherically symmetric torsion
configuration thus includes eight variables (39)–(44)—
the components of the 1-forms T; T̄; V; V̄:

tAðt; rÞ; t̄Aðt; rÞ; vAðt; rÞ; v̄Aðt; rÞ; A ¼ 0; 1: ð45Þ
These four 1-forms determine the torsion invariants, in

particular for the Yang-Mills quadratic invariant we find

Tα∧ �Tα¼6ðV∧ �V− V̄∧ �V̄Þþ1

3
ðT∧ �T− T̄∧ �T̄Þ: ð46Þ

For the analysis of the validity of the generalized
Birkhoff theorem, it is instructive to find the structure of
irreducible parts of the spherically symmetric torsion and
curvature 2-forms.

A. Irreducible torsion decomposition

The decomposition of the spherically symmetric torsion
(36)–(37) into its three irreducible parts is straightforward.
The 1st irreducible (traceless tensor) torsion is constructed
from the 1-forms V and V̄:

ð1ÞTA ¼ 2ϑA ∧ V þ 2eAc�V̄; ð47Þ
ð1ÞTa ¼ −ϑa ∧ V − eac�V̄; ð48Þ

whereas the 2nd (torsion trace) and the 3rd (axial trace)
parts read

ð2ÞTα ¼ 1

3
ϑα ∧ T; ð3ÞTα ¼ 1

3
eαc�T̄: ð49Þ

B. Irreducible curvature decomposition

All six irreducible parts of the curvature are nontrivial, in
general. In order to clarify the structure of the irreducible
pieces of the spherically symmetric curvature 2-form
(25)–(27), one needs a somewhat different parametrization
of its components. Namely, it turns out to be more
convenient to replace μ; ν; μ̄; ν̄ and components of the 1-
formsUA and ŪA by the set of the new variables as follows:

μ ¼ Mþ 2KþN
2

; ν ¼ Mþ 2K −N
2

;

μ ¼ Mþ 2K̄þ N̄
2

; ν̄ ¼ Mþ 2K̄ − N̄
2

; ð50Þ

U0̂
0̂
¼ M −Kþ L

2
; U0̂

1̂
¼ Qþ P

2
;

U1̂
0̂
¼ Q − P

2
; U1̂

1̂
¼ M −K − L

2
: ð51Þ

Ū0̂
0̂
¼ M − K̄þ L̄

2
; Ū0̂

1̂
¼ Q̄þ P̄

2
;

Ū1̂
0̂
¼ Q̄ − P̄

2
; Ū1̂

1̂
¼ M − K̄ − L̄

2
: ð52Þ

In terms of the new variables, one then finds the 1st
irreducible (the Weyl) part of the curvature:

ð1ÞR0̂ 1̂ ¼ Kϑ0̂ ∧ ϑ1̂ − K̄ϑ2̂ ∧ ϑ3̂;

ð1ÞR0̂ 2̂ ¼ −
K
2
ϑ0̂ ∧ ϑ2̂ þ K̄

2
ϑ3̂ ∧ ϑ1̂;

ð1ÞR0̂ 3̂ ¼ −
K
2
ϑ0̂ ∧ ϑ3̂ þ K̄

2
ϑ1̂ ∧ ϑ2̂; ð53Þ

ð1ÞR2̂ 3̂ ¼ Kϑ2̂ ∧ ϑ3̂ þ K̄ϑ0̂ ∧ ϑ1̂;

ð1ÞR3̂ 1̂ ¼ −
K
2
ϑ3̂ ∧ ϑ1̂ −

K̄
2
ϑ0̂ ∧ ϑ2̂;

ð1ÞR1̂ 2̂ ¼ −
K
2
ϑ1̂ ∧ ϑ2̂ −

K̄
2
ϑ0̂ ∧ ϑ3̂; ð54Þ

the 2nd (the pair anticommutator) part:

ð2ÞR0̂ 1̂ ¼−
N̄
2
ϑ2̂ ∧ ϑ3̂; ð2ÞR0̂ 2̂ ¼−

L̄
2
ϑ3̂ ∧ ϑ1̂þ P̄

2
ϑ0̂ ∧ ϑ3̂;

ð2ÞR0̂ 3̂ ¼−
L̄
2
ϑ1̂ ∧ϑ2̂−

P̄
2
ϑ0̂ ∧ ϑ2̂; ð55Þ

ð2ÞR2̂ 3̂ ¼−
N̄
2
ϑ0̂ ∧ ϑ1̂; ð2ÞR3̂ 1̂ ¼−

L̄
2
ϑ0̂ ∧ ϑ2̂−

P̄
2
ϑ1̂ ∧ ϑ2̂;

ð2ÞR1̂ 2̂ ¼−
L̄
2
ϑ0̂ ∧ϑ3̂þ P̄

2
ϑ3̂ ∧ ϑ1̂; ð56Þ

the 4th (the traceless Ricci) part:

ð4ÞR0̂ 1̂ ¼N
2
ϑ0̂ ∧ ϑ1̂; ð4ÞR0̂ 2̂¼L

2
ϑ0̂ ∧ ϑ2̂þP

2
ϑ1̂ ∧ ϑ2̂;

ð4ÞR0̂ 3̂ ¼L
2
ϑ0̂ ∧ ϑ3̂−

P
2
ϑ3̂ ∧ ϑ1̂; ð57Þ

ð4ÞR2̂ 3̂ ¼−
N
2
ϑ2̂ ∧ ϑ3̂; ð4ÞR3̂ 1̂ ¼−

L
2
ϑ3̂ ∧ ϑ1̂þP

2
ϑ0̂ ∧ ϑ3̂;

ð4ÞR1̂ 2̂ ¼−
L
2
ϑ1̂ ∧ϑ2̂−

P
2
ϑ0̂ ∧ ϑ2̂; ð58Þ

the 5th (the skew-symmetric Ricci) part:

ð5ÞR0̂ 1̂ ¼ 0; ð5ÞR0̂ 2̂ ¼ Q
2
ϑ1̂ ∧ ϑ2̂ þ Q̄

2
ϑ0̂ ∧ ϑ3̂;

ð5ÞR0̂ 3̂ ¼ −
Q
2
ϑ3̂ ∧ ϑ1̂ −

Q̄
2
ϑ0̂ ∧ ϑ2̂; ð59Þ

ð5ÞR2̂ 3̂ ¼ 0; ð5ÞR3̂ 1̂ ¼ −
Q
2
ϑ0̂ ∧ ϑ3̂ þ Q̄

2
ϑ1̂ ∧ ϑ2̂;

ð5ÞR1̂ 2̂ ¼ Q
2
ϑ0̂ ∧ ϑ2̂ −

Q̄
2
ϑ3̂ ∧ ϑ1̂; ð60Þ

and finally the 3rd and 6th (the curvature pseudoscalar and
scalar) parts:
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ð3ÞRαβ ¼ M̄
2

ηαβ; ð6ÞRαβ ¼ M
2

ϑα ∧ ϑβ: ð61Þ

By the direct inspection of (53)–(61) we check the
double duality properties of the irreducible curvature parts:

�ððIÞRαβÞ ¼
KI

2
ηαβμν

ðIÞRμν; ð62Þ
where KI ¼ 1 for I ¼ 1, 3, 5, 6, and KI ¼ −1 for I ¼ 2, 4.
One can prove that (62) is true not only for the spherically
symmetric configurations but also in general case [30].
These double duality properties will play a crucial role in
the analysis of the validity of the generalized Birkhoff’s
theorem in the Poincaré gauge gravity.

C. Weitzenböck spacetime limit

There is a special interest in the literature to the gravity
models based on the teleparallelism when the Riemann-
Cartan curvature is zero (Weitzenböck spacetime). For the

sake of completeness, here we describe the spherically
symmetric field configuration for this case.
Assuming f̄ ¼ ḡ ¼ k̄ ¼ h̄ ¼ 0, we automatically have

μ̄ ¼ ν̄ ¼ 0 and ŪA ¼ 0, and the Riemann-Cartan curvature
(25)–(27) becomes flat Rαβ ¼ 0 when

μ ¼ 0; ν ¼ 0; UA ¼ 0: ð63Þ

Directly from the definitions (28)–(31), we find the general
solution of the system of differential and algebraic equa-
tions (63):

f¼ _W; g¼W0; q¼ coshW; p¼−sinhW; ð64Þ

where W ¼ Wðt; rÞ is an arbitrary function [55].
As a result, the local Lorentz connection (14)–(16)

reduces to

Γα
β ¼

0
BBB@

0 dW − sinhWdθ − sinhW sin θdφ

dW 0 coshWdθ coshW sin θdφ

− sinhWdθ − coshWdθ 0 − cos θdφ

− sinhW sin θdφ − coshW sin θdφ cos θdφ 0

1
CCCCCA
; ð65Þ

using the obvious matrix notation. It is straightforward to check that

Γα
β ¼ ðΛ−1ÞβγdΛγ

α; ð66Þ

where the local Lorentz transformation Λα
β matrix is a product of two rotations and a boost Λ ¼ R1R2L, with

R1 ¼

0
BBBBB@

1 0 0 0

0 1 0 0

0 0 cosφ −sinφ

0 0 sinφ cosφ

1
CCCCCA
; R2¼

0
BBBBB@

1 0 0 0

0 cosθ sinθ 0

0 −sinθ cosθ 0

0 0 0 1

1
CCCCCA
; L¼

0
BBBBB@

coshW sinhW 0 0

sinhW coshW 0 0

0 0 1 0

0 0 0 1

1
CCCCCA
: ð67Þ

Another case is described by f̄ ¼ ḡ ¼ p ¼ q ¼ 0, and

f¼ _W; g¼W0; p̄¼ coshW; q̄¼ sinhW; ð68Þ

where as before W ¼ Wðt; rÞ is an arbitrary function.

V. GENERALIZED BIRKHOFF THEOREM

After these preparations, we are in a position to analyse
the generalized Birkhoff theorem in the Poincaré gauge
gravity theory.
We begin by recalling that there are two versions of this

theorem: the strong and the weak ones. It is worthwhile to
explain this terminology which was proposed earlier in

[37–39] and may sound confusing, at least at the first sight.
It seems reasonable to view a result derived under smaller
number of assumptions as stronger than the same result
obtained under more restrictive assumptions. In the context
of our study of the Birkhoff theorem, the assumption of the
spherical symmetry can be described either by SOð3Þ
rotation group, or by a larger (hence more restrictive) full
rotation group Oð3Þ.
Accordingly, in the strong version of Birkhoff’s theorem,

the spherical symmetry is understood as the invariance
under the pure rotations from the proper SOð3Þ group. The
corresponding symmetric connection configuration is
described by the set (14)–(16) of 8 arbitrary functions:
f, g, p, q, and f̄; ḡ; p̄; q̄. An equivalent description can be
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formulated in terms of the spherically symmetric torsion
configuration that also encompasses eight variables (45)—
the components of the 1-forms T; T̄; V; V̄, see (39)–(44).
In the weak version of Birkhoff’s theorem, the spherical

symmetry is understood as invariance under the full
rotation group Oð3Þ which includes spatial reflections
along with the pure rotations. Accordingly, in the weak
version only parity-even objects are allowed, whereas the
parity-odd variables are forbidden: f̄ ¼ ḡ ¼ p̄ ¼ q̄ ¼ 0,
which reduces to 4 the number of connection components.
This then yields t̄A ¼ v̄A ¼ 0 and hence T̄ ¼ V̄ ¼ 0,
reducing the number of nontrivial torsion components
also to 4.
To prove the generalized Birkhoff theorem, one needs to

plug the spherically symmetric ansatz (13) and (14)–(16)
into the field equations (3)–(4) and establish the conditions
under which these field equations admit only solutions with
the vanishing torsion and the Schwarzschild metric. Some
of these conditions may restrict the coupling constants
(hence, the structure of the Lagrangian), other conditions
may impose constraints on the geometric properties of
spacetime. Among the latter are: (i) an asymptotic flatness
condition which requires that the metric (9) approaches the
Minkowski line element, i.e., A → 1, B → 1, C → r in the
limit of r → ∞, or (ii) an assumption of the vanishing scalar
curvature X ¼ R ¼ eαceβcRαβ ¼ 0.
In the earlier literature [36–43], only the parity-

even class of models was analyzed with āI ¼ 0, b̄J ¼ 0.
Here we consistently include the parity-odd sector into the
consideration.

A. Strong SOð3Þ version
In order to make the discussion more clear, we will

explicitly mention the corresponding symmetry group in
the name of a theorem, and thus instead of potentially
confusing names for the “strong” and “weak” Birkhoff’s
theorem, we will speak of the “strong SOð3Þ version” and
the “weak Oð3Þ version”, respectively.
The strong SOð3Þ version of the generalized Birkhoff

theorem reads: the torsion-less Schwarzschild (Kottler, in
general) spacetime is a unique solution of the vacuum
Poincaré gauge field equations (3)–(4) which is spherically
symmetric in the sense of invariance under the proper
rotation SOð3Þ group.
It is important to stress that vanishing of the torsion is not

an additional assumption on top of the spherical symmetry,
but one finds that the torsion vanishes from the field
equations.

1. Strong SOð3Þ version: case (SB1)

Let us consider the class of models (1) without the
curvature-square terms,

bI ¼ 0; b̄I ¼ 0; I ¼ 1;…; 6: ð69Þ

From (6) and (8) we find hαβ ¼ 0 and qðRÞα ¼ 0, and the
second PG field equation (4) then reduces to an algebraic
system for the torsion components, which can be recast into

− a0�
�

ð1ÞTα þ 2ð2ÞTα þ 1

2
ð3ÞTα

�

− ā0ðð1ÞTα þ ð2ÞTα þ ð3ÞTαÞ − hα ¼ 0: ð70Þ

Substituting (5), we derive

− ða0 þ a1Þ�ðð1ÞTαÞ þ ð2a0 − a2Þ�ðð2ÞTαÞ

þ
�
a0
2
− a3

�
�ðð3ÞTαÞ − ðā0 þ ā1Þð1ÞTα

− ðā0 þ ā2Þð2ÞTα − ðā0 þ ā3Þð3ÞTα ¼ 0: ð71Þ

A direct inspection of this system, combined with its Hodge
dual, shows that the vanishing torsion Tα ¼ 0 is its only
solution, provided

ða0 þ a1Þð2a0 − a2Þða0 − 2a3Þ ≠ 0;

ðā0 þ ā1Þðā0 þ ā2Þðā0 þ ā3Þ ≠ 0.

�
ð72Þ

Then the first PG field equation (3) reduces to the usual
Einstein equation

a0
2
ηαβγ ∧ R̃βγ − λ0ηα ¼ 0: ð73Þ

Hereafter we denote the Riemannian objects by the tilde. In
particular, the Levi-Civita connection Γ̃αβ is torsion-free,
D̃ϑα ¼ dϑα þ Γ̃β

α ∧ ϑβ ¼ 0, and R̃αβ ¼ dΓ̃αβ þ Γ̃γ
β ∧ Γ̃αγ

is the corresponding Riemannian curvature 2-form.
Since the standard Birkhoff theorem holds for (73), we

thus have demonstrated the validity of the generalized
Birkhoff theorem for the family of PG models (69), (72).

2. Strong SOð3Þ version: case (SB2)

Let us consider a family of PG models where quadratic
curvature terms are included in the Lagrangian (1) with the
coupling constants chosen as

b1 ¼ b5 ¼ −b2 ¼ −b4; b̄1 ¼ b̄2 ¼ b̄4 ¼ b̄5: ð74Þ

Then, by making use of the double duality properties (62),
for (6) we have

hαβ ¼
b1
2
ηαβμνRμν þ b̄1Rαβ − b1−3�ð3ÞRαβ

− b1−6�ð6ÞRαβ − b̄1−3ðð3ÞRαβ þ ð6ÞRαβÞ: ð75Þ

Here we introduced a convenient compact notation for the
linear combinations of the coupling constants:
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bI�J ≔ bI � bJ; b̄I�J ≔ b̄I � b̄J: ð76Þ

Making an additional assumption that the curvature
scalars M and M̄ are constant, we then find the covariant
derivative

Dhαβ ¼ −
1

2
ðb1−6Mþ b̄1−3M̄ÞDηαβ

−
1

2
ðb̄1−3M − b1−3M̄ÞDðϑα ∧ ϑβÞ; ð77Þ

where we used (61), and the covariant derivative of the first
two terms in (75) vanish in view of the Bianchi identity
DRαβ ¼ 0. Substituting (77) into the second PG field
equation (4), the latter yields

− ðaeff0 þ a1Þ�ðð1ÞTαÞ þ ð2aeff0 − a2Þ�ðð2ÞTαÞ

þ
�
aeff0

2
− a3

�
�ðð3ÞTαÞ − ðāeff0 þ ā1Þð1ÞTα

− ðāeff0 þ ā2Þð2ÞTα − ðāeff0 þ ā3Þð3ÞTα ¼ 0; ð78Þ

where we introduced the effective coupling constants

aeff0 ¼ a0 þ l2
ρðb1−6Mþ b̄1−3M̄Þ; ð79Þ

āeff0 ¼ ā0 þ l2
ρðb̄1−3M − b1−3M̄Þ: ð80Þ

The vanishing torsion Tα ¼ 0 is the only solution of (78),
provided

ðaeff0 þ a1Þð2aeff0 − a2Þðaeff0 − 2a3Þ ≠ 0;

ðāeff0 þ ā1Þðāeff0 þ ā2Þðāeff0 þ ā3Þ ≠ 0;

�
ð81Þ

and then the first PG field equation (3) again reduces to the
usual Einstein equation (73) and the validity of generalized
Birkhoff theorem is therefore established.

3. Strong SOð3Þ version: case (SB3)

For a sub-family of PGmodels (74) when the choice (74)
of coupling constants is further specified to

b1 ¼ b3 ¼ b5 ¼ b6 ¼ −b2 ¼ −b4;
b̄1 ¼ b̄2 ¼ b̄3 ¼ b̄4 ¼ b̄5 ¼ b̄6;

�
ð82Þ

the 2-form (75) is simplified to

hαβ ¼
b1
2
ηαβμνRμν þ b̄1Rαβ; ð83Þ

so that Dhαβ ¼ 0, and the second field equation (4) yields
(71). The latter, as we already know, admits the vanishing
torsion as a unique solution, provided the coupling con-
stants satisfy (72), and the generalized Birkhoff theorem is

established because qðRÞα ¼ 0 for (82) and therefore the first
PG field equation (3) again reduces to GR’s (73).

4. Strong SOð3Þ version: case (SB4)

Let us conclude the analysis of the strong Birkhoff
theorem by considering the class of models (1) without the
torsion-square terms,

aI ¼ 0; āI ¼ 0; I ¼ 1; 2; 3; ð84Þ

when the curvature-square coupling constants satisfy (74),
and in addition, are restricted by the relations

ā0b̄1−3 þ a0b1−3 ¼ 0; ā0b1−6 − a0b̄1−3 ¼ 0: ð85Þ

In view of (84), we have hα ¼ 0, and computing the trace of
the first PG field equation (3), ϑα ∧ Eα ¼ 0, we get

a0Mþ ā0M̄ −
2λ0
3

¼ 0: ð86Þ

On the other hand, hαβ, which is still given by (75), with the
help of (85) reduces to

hαβ ¼
b1
2
ηαβμνRμν þ b̄1Rαβ

−
a0Mþ ā0M̄

a0
ðb1−6ηαβ þ b̄1−3ϑα ∧ ϑβÞ: ð87Þ

With an account of (86), the second PG field equation (4)
then becomes a special case of (78) in which we should
insert (84). The effective coupling constants remain the
same (79) and (80). As a result, we discover the vanishing
torsion Tα ¼ 0 as the only solution of (78), provided

aeff0 ≠ 0; āeff0 ≠ 0; ð88Þ

and the generalized Birkhoff theorem is therefore valid,
since the first PG field equation (3) again reduces to the
usual Einstein equation (73).

B. Weak Oð3Þ version
The weak Oð3Þ version of the generalized Birkhoff

theorem reads: the torsionless Schwarzschild (Kottler, in
general) spacetime is a unique solution of the vacuum
Poincaré gauge field equations (3)–(4), which is spherically
symmetric in the sense of invariance under the full rotation
Oð3Þ group, when spatial reflections are included in
addition to the proper rotations.
As before, an important remark is that vanishing of

the torsion is not an additional assumption on top of the
spherical symmetry, but one finds that the torsion vanishes
from the field equations.
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In order to study the weak Oð3Þ version of the gener-
alized Birkhoff theorem, we put f̄ ¼ ḡ ¼ p̄ ¼ q̄ ¼ 0 which
are forbidden by the spatial reflection symmetry. Therefore,
t̄A ¼ v̄A ¼ 0 and hence T̄ ¼ V̄ ¼ 0, and also ŪA ¼ 0. As a
result, we find Q̄¼P̄¼L̄¼N̄ ¼K̄¼M̄¼0. Consequently,
from (49), (55)–(56), (61) we conclude that one torsion
irreducible part and two of the irreducible curvature parts
are trivial

ð3ÞTα ¼ 0; ð2ÞRαβ ¼ 0; ð3ÞRαβ ¼ 0: ð89Þ

Similarly to the strong version of the generalized
Birkhoff theorem, the weak version can be established
for several families of quadratic PG models.

1. Weak Oð3Þ version: case (WB1)

Let us consider the class of models (1) without the
curvature-square terms,

bI ¼ 0; b̄I ¼ 0; I ¼ 1;…; 6: ð90Þ

From we have hαβ ¼ 0 and qðRÞα ¼ 0, and the second PG
field equation (4) then reduces to

− ða0 þ a1Þ�ðð1ÞTαÞ þ ð2a0 − a2Þ�ðð2ÞTαÞ
− ðā0 þ ā1Þð1ÞTα − ðā0 þ ā2Þð2ÞTα ¼ 0: ð91Þ

The vanishing torsion Tα ¼ 0 is its only solution, provided

ða0þa1Þð2a0−a2Þ≠ 0; ðā0þ ā1Þðā0þ ā2Þ≠ 0: ð92Þ

The first PG field equation (3) then reduces to the usual
Einstein equation (73), which demonstrates the validity of
the generalized Birkhoff theorem for the family of PG
models (69), (72).

2. Weak Oð3Þ version: case (WB2)

Let us consider a family of PG models where quadratic
curvature terms are included in the Lagrangian (1) with the
coupling constants chosen as

b1 ¼ b5 ¼ −b4; b̄1 ¼ b̄4 ¼ b̄5: ð93Þ

Then, by making use of the double duality properties (62),
for (6) we have

hαβ¼
b1
2
ηαβμνRμνþ b̄1Rαβ−b1−6�ð6ÞRαβ− b̄1−3ð6ÞRαβ: ð94Þ

Under an additional assumption that the curvature scalar
M is constant, we then find the covariant derivative

Dhαβ ¼ −
M
2

½b1−6Dηαβ þ b̄1−3Dðϑα ∧ ϑβÞ�; ð95Þ

and hence the second PG field equation (4) reduces to

− ðaeff0 þ a1Þ�ðð1ÞTαÞ þ ð2aeff0 − a2Þ�ðð2ÞTαÞ
− ðāeff0 þ ā1Þð1ÞTα − ðāeff0 þ ā2Þð2ÞTα ¼ 0; ð96Þ

with the effective coupling constants

aeff0 ¼ a0 þ b1−6l2
ρM; ð97Þ

āeff0 ¼ ā0 þ b̄1−3l2
ρM: ð98Þ

The vanishing torsion Tα ¼ 0 is the only solution of (96),
provided

ðaeff0 þa1Þð2aeff0 −a2Þ≠ 0; ðāeff0 þ ā1Þðāeff0 þ ā2Þ≠ 0;

ð99Þ

and then the first PG field equation (3) again reduces to the
usual Einstein equation (73) and the validity of generalized
Birkhoff theorem is therefore established.

3. Weak Oð3Þ version: case (WB3)

For a sub-family of PGmodels (93) when the choice (93)
of coupling constants is further specified to

b1 ¼ b5 ¼ b6 ¼ −b4; b̄1 ¼ b̄4 ¼ b̄5 ¼ b̄6; ð100Þ

the 2-form (94) is simplified to

hαβ ¼
b1
2
ηαβμνRμν þ b̄1Rαβ; ð101Þ

so that Dhαβ ¼ 0, and the second field equation (4) yields
(91). The latter, as we already know, admits the vanishing
torsion as a unique solution, provided the coupling con-
stants satisfy (92), and the generalized Birkhoff theorem is

established because qðRÞα ¼ 0 for (100) and therefore the
first PG field equation (3) again reduces to GR’s (73).

4. Weak Oð3Þ version: case (WB4)

Similarly to the analysis of the strong Birkhoff theorem,
let us consider the class of models (1) without the torsion-
square terms,

a1 ¼ a2 ¼ 0; ā1 ¼ ā2 ¼ 0; ð102Þ

whereas the curvature-square coupling constants
satisfy (93). In view of (102), we have hα ¼ 0, and
computing the trace of the first PG field equation (3),
ϑα ∧ Eα ¼ 2ð3a0M − 2λ0Þη ¼ 0, we get

M ¼ 2λ0
3a0

: ð103Þ
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Since hαβ is still given by (94), with an account of (103) its
covariant derivative is the same (95), and the second PG
field equation (4) becomes a special case of (96) in which
we should insert (102). The effective coupling constants
remain the same (97) and (98). Consequently, the vanishing
torsion Tα ¼ 0 is the only solution of (96), provided

aeff0 ≠ 0; āeff0 ≠ 0; ð104Þ

and the generalized Birkhoff theorem is therefore valid,
since the first PG field equation (3) again reduces to the
usual Einstein equation (73).

5. Weak Oð3Þ version: cases (WB5), (WB6), (WB7)

Let us study in greater detail the case (102) when a1 ¼
a2 ¼ 0 and ā1 ¼ ā2 ¼ 0, however without a priori fixing
the values of the curvature-square coupling constants bI , b̄I .

Then hα ¼ 0 and qðTÞα ¼ 0, and the PG field equations (3)
and (4) read in vacuum

Eα¼
a0
2
ηαβγ ∧Rβγþ ā0Rαβ∧ϑβ−λ0ηαþl2

ρq
ðRÞ
α ¼0; ð105Þ

Cαβ ¼ a0ηαβγ ∧Tγþ ā0ðTα ∧ ϑβ−Tβ ∧ ϑαÞ−2l2
ρDhαβ ¼ 0:

ð106Þ

For the trace of the first field equation (105), we found the
constant scalar curvature (103).
Before we consider the general case, let us analyse the

special case when

Q ¼ P ¼ L ¼ N ¼ 0: ð107Þ

Then from (57)–(60) we conclude that ð4ÞRαβ ¼ ð5ÞRαβ ¼ 0,
and in view of (89) the curvature has a simple structure

Rαβ ¼ ð1ÞRαβ þ ð6ÞRαβ: ð108Þ

As a result, the 2-form (6) is given by (94), its covariant
derivative Dhαβ is given by (95) with an account of (103),
and we then find for the second PG field equation (106):

aeff0 ηαβγ ∧ Tγ þ āeff0 ðTα ∧ ϑβ − Tβ ∧ ϑαÞ ¼ 0; ð109Þ

where the effective coupling constants are (97) and (98).
The algebraic equation (109) has a unique trivial torsion
Tα ¼ 0 under the condition (104). Indeed, contracting
(109) with the Levi-Civita tensor ηαβμν, one finds

aeff0 ðTα ∧ ϑβ − Tβ ∧ ϑαÞ − āeff0 ηαβγ ∧ Tγ ¼ 0; ð110Þ

and combining this with (109), we prove that the solution
for the torsion is trivial under the condition (104).
Turning to the first field equation, one can straightfor-

wardly verify that qðRÞα ¼ 0 for the curvature (108), and the
field equation (105) reduces to (73) the standard Einstein
equation for the Riemannian case for which the generalized
Birkhoff theorem is valid.
We will call (104) a primary condition and from now on

will assume that it is satisfied. For the class of models
without the cosmological constant λ0 ¼ 0 (hence M ¼ 0),
the primary condition reduces to the requirement a0 ≠
0; ā0 ≠ 0 which excludes the purely curvature quadratic
models. We will therefore assume that a0 ≠ 0 and ā0 ≠ 0
and taking into account (103), we write down the primary
condition explicitly as

�
a0 þ

2l2
ρλ0

3a0
b1−6

��
ā0 þ

2l2
ρλ0

3a0
b̄1−6

�
≠ 0: ð111Þ

Now, let us consider the general case, without assuming
(107) in advance. Inserting the spherically symmetric
ansatz for the coframe (13) and connection (14)–(16) into
the first field equation (105), we find explicitly:

E 0̂ ¼ η0̂

�
1

2
a0ð3M − 2L −N Þ − λ0 þ

1

2
l2
ρ½2b4þ5QP þ 2b1þ4KðN − LÞ þ b4þ6Mð2LþN Þ�

�

þ η1̂fa0ðP −QÞ þ l2
ρ½b1þ4KP − b4þ6MP − b1−5QK − b4þ5QL − b5−6QM�g; ð112Þ

E1̂ ¼ η1̂

�
1

2
a0ð3Mþ 2L −N Þ − λ0 þ

1

2
l2
ρ½−2b4þ5QP þ 2b1þ4KðN þ LÞ þ b4þ6Mð−2LþN Þ�

�

þ η0̂f−a0ðP þQÞ þ l2
ρ½−b1þ4KP þ b4þ6MP − b1−5QKþ b4þ5QL − b5−6QM�g: ð113Þ

E2̂ ¼ η2̂

�
1

2
a0ð3MþN Þ − λ0 þ

1

2
l2
ρ½−2b1þ4KN − b4þ6MN �

�
− η3̂Qfā0 þ l2

ρ½b̄1−5Kþ b̄5−6M�g; ð114Þ

E3̂ ¼ η3̂

�
1

2
a0ð3MþN Þ − λ0 þ

1

2
l2
ρ½−2b1þ4KN − b4þ6MN �

�
þ η2̂Qfā0 þ l2

ρ½b̄1−5Kþ b̄5−6M�g: ð115Þ
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The trace (103) can be verified directly from (112)–
(115). With an account of (103), the vacuum field equa-
tions (112)–(115) are recast into the system

Qfā0 þ l2
ρ½b̄1−5Kþ b̄5−6M�g ¼ 0; ð116Þ

a0N − l2
ρ½2b1þ4KN þ b4þ6MN � ¼ 0; ð117Þ

a0L − l2
ρ½b4þ5QP − b1þ4KLþ b4þ6ML� ¼ 0; ð118Þ

a0P − l2
ρ½b4þ5QL − b1þ4KP þ b4þ6MP� ¼ 0; ð119Þ

Qfa0 þ l2
ρ½b1−5Kþ b5−6M�g ¼ 0: ð120Þ

From the Eqs. (120) and (116) we conclude that Q ¼ 0,
except for an exotic case when the coupling constants
satisfy

a0 þ l2
ρ½b1−5Kþ b5−6M� ¼ 0; ð121Þ

ā0 þ l2
ρ½b̄1−5Kþ b̄5−6M� ¼ 0; ð122Þ

which is possible only when

a0b̄1−5− ā0b1−5þ
2l2

ρλ0
3a0

½b̄1−5b5−6−b1−5b̄5−6� ¼ 0: ð123Þ

The analysis of the second field equation (106) is
simplified greatly by making use of the double-duality
properties of the curvature. Namely, the crucial observation
is that we can recast the 2-form hαβ, defined in (6), into

hαβ ¼ −
b4
2
ηαβμνRμν þ b̄4Rαβ þ heffαβ ; ð124Þ

where we introduced the effective quantity

heffαβ ¼ �ðb1þ4
ð1ÞRαβ þ b5þ4

ð5ÞRαβ þ b6þ4
ð6ÞRαβÞ

þ b̄1−4ð1ÞRαβ þ b̄5−4ð5ÞRαβ þ b̄6−4ð6ÞRαβ: ð125Þ
The derivation is based on a straightforward use of the
properties (62). The advantage of the representation (124)
is that we identically have

Dhαβ ≡Dheffαβ ; ð126Þ
in view of the Bianchi identity DRαβ ¼ 0.
The second field equation (106) read in components

C0̂ 2̂¼H0η2̂− H̄0η3̂¼ 0; C0̂ 3̂ ¼H0η3̂þ H̄0η2̂ ¼ 0; C0̂ 1̂¼F 0η1̂−F 1η0̂¼ 0; ð127Þ

C1̂ 2̂ ¼ H1η2̂ − H̄1η3̂ ¼ 0; C1̂ 3̂ ¼ H1η3̂ þ H̄1η2̂ ¼ 0; C2̂ 3̂ ¼ F̄ 0η1̂ − F̄ 1η0̂ ¼ 0; ð128Þ

and making use of (125), (126) and (53)–(61), we find explicitly

F 0 ¼ l2
ρ

�
2b1þ4

_Kþ b6þ4
_M

A
þ 2ð3b1þ4Kpþ b5þ4QqÞ

C

�
þ 2

�
v0̂ −

1

3
t0̂

�
½−a0 þ l2

ρð2b1þ4Kþ b6þ4MÞ�; ð129Þ

F 1 ¼ l2
ρ

�
2b1þ4K0 þ b6þ4M0

B
−
2ð3b1þ4Kqþ b5þ4QpÞ

C

�
þ 2

�
v1̂ −

1

3
t1̂

�
½−a0 þ l2

ρð2b1þ4Kþ b6þ4MÞ�; ð130Þ

F̄ 0 ¼ l2
ρ

�
2b̄1−4 _Kþ b̄6−4 _M

A
þ 2ð3b̄1−4Kpþ b̄5−4QqÞ

C

�
þ 2

�
v0̂ −

1

3
t0̂

�
½−ā0 þ l2

ρð2b̄1−4Kþ b̄6−4MÞ�; ð131Þ

F̄ 1 ¼ l2
ρ

�
2b̄1−4K0 þ b̄6−4M0

B
−
2ð3b̄1−4Kqþ b̄5−4QpÞ

C

�
þ 2

�
v1̂ −

1

3
t1̂

�
½−ā0 þ l2

ρð2b̄1−4Kþ b̄6−4MÞ�; ð132Þ

H0 ¼ l2
ρ

�
−b1þ4

_Kþ b6þ4
_M

A
−
b5þ4Q0

B
−
3b1þ4Kp − b5þ4Qq

C

�
þ t1̂l

2
ρb5þ4Qþ t0̂½a0 þ l2

ρðb1þ4K − b6þ4MÞ�; ð133Þ

H1 ¼ l2
ρ

�
−b1þ4K0 þ b6þ4M0

B
−
b5þ4

_Q
A

þ 3b1þ4Kq − b5þ4Qp
C

�
þ t0̂l

2
ρb5þ4Qþ t1̂½a0 þ l2

ρðb1þ4K − b6þ4MÞ�; ð134Þ

H̄0 ¼ l2
ρ

�
b̄1−4K0 − b̄6−4M0

B
þ b̄5−4 _Q

A
−
3b̄1−4Kqþ b̄5−4Qp

C

�
− t0̂l

2
ρb̄5−4Q − t1̂½ā0 þ l2

ρðb̄1−4K − b̄6−4MÞ�; ð135Þ

H̄1 ¼ l2
ρ

�
b̄1−4 _K − b̄6−4 _M

A
þ b̄5−4Q0

B
þ 3b̄1−4Kp − b̄5−4Qq

C

�
− t1̂l

2
ρb̄5−4Q − t0̂½ā0 þ l2

ρðb̄1−4K − b̄6−4MÞ�: ð136Þ
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After these preliminaries, we are in a position to
demonstrate that Birkhoff’s theorem is valid for the
following three cases (WB5), (WB6) and (WB7):
Case (WB5). Assuming the primary condition (104),

(111), the family of PG models specified by

b1 ¼ −b4 ¼ b5: ð137Þ

If, in addition to the primary condition, we assume the
secondary conditions

a0 −
2l2

ρλ0
3a0

ðb4 þ b6Þ ≠ 0; ð138Þ

a0 −
2l2

ρλ0
3a0

ð2b1 þ 3b4 þ b6Þ ≠ 0; ð139Þ

we find two more possibilities:
Case (WB6). Lagrangians with the coupling constants

b1 ¼ b5; b4 ≠ −b5: ð140Þ

Case (WB7):

b4 ¼ −b5; b1 ≠ b5: ð141Þ

The proof is straightforward. Case (WB5): When the
coupling constant satisfy (137), or equivalently, b1þ4 ¼
b4þ5 ¼ 0 and b1−5 ¼ 0, the set of equations (117)–(120)
reduces to

N ða0 þ l2
ρMb1−6Þ ¼ 0; ð142Þ

Lða0 þ l2
ρMb1−6Þ ¼ 0; ð143Þ

Pða0 þ l2
ρMb1−6Þ ¼ 0; ð144Þ

Qða0 þ l2
ρMb1−6Þ ¼ 0; ð145Þ

and in view of the primary condition (104), we find
Q ¼ P ¼ N ¼ L ¼ 0. Thus the special case (107) is
recovered for which the validity of the Birkhoff theorem
was already established.
Case (WB6). Assuming (140), eq. (120) is recast into

Qfa0 þ l2
ρMb1−6g ¼ 0; ð146Þ

and hence Q ¼ 0 due to the primary condition (104). As a
result, the system (117)–(119) reduces to

N f−a0 þ l2
ρ½2b1þ4Kþ b4þ6M�g ¼ 0; ð147Þ

Lf−a0 þ l2
ρ½−b1þ4Kþ b4þ6M�g ¼ 0; ð148Þ

Pf−a0 þ l2
ρ½−b1þ4Kþ b4þ6M�g ¼ 0: ð149Þ

Therefore, either P ¼ N ¼ L ¼ 0, and we again recover
the special case (107), or we face the two subcases:

−a0 þ l2
ρ½2b1þ4Kþ b4þ6M� ¼ 0; ð150Þ

or

−a0 þ l2
ρ½−b1þ4Kþ b4þ6M� ¼ 0: ð151Þ

Subcase WB6.1. If we have (150), then under the
secondary condition (138),

l2
ρb1þ4K ¼ 1

2
ða0 − l2

ρMb4þ6Þ ≠ 0: ð152Þ

But in this subcase the field equations (129) and (130), that
is F 0 ¼ 0 and F 1 ¼ 0, then yield

p ¼ 0; q ¼ 0; ð153Þ

which means that UA ¼ 0, see (30) and (31). By making
use of (51), we therefore conclude that K ¼ M and
substituting this into (150), we find

−a0 þ l2
ρMð2b1þ4 þ b4þ6Þ ¼ 0; ð154Þ

which contradicts the secondary condition (139).
Subcase WB6.2. Assuming (151) under the secondary

condition (138) we find

l2
ρb1þ4K ¼ −ða0 − l2

ρMb4þ6Þ ≠ 0; ð155Þ

and using the field equations (133) and (134), i.e., H0 ¼ 0
andH1 ¼ 0, we again end up with (153). This again yields
UA ¼ 0 via (30) and (31), and by using (51), we have K ¼
M as in the previous subcase. Substituting this into (151),
we find

−a0 þ l2
ρMð−b1þ4 þ b4þ6Þ ¼ −ða0 þ l2

ρMb1−6Þ ¼ 0;

ð156Þ

which thus contradicts the secondary condition (138).
Case (WB7) is similar. Under the assumption (141), the

system (117)–(120) reduces to

N f−a0 þ l2
ρ½2b1þ4Kþ b4þ6M�g ¼ 0; ð157Þ

Lf−a0 þ l2
ρ½−b1þ4Kþ b4þ6M�g ¼ 0; ð158Þ

Pf−a0 þ l2
ρ½−b1þ4Kþ b4þ6M�g ¼ 0; ð159Þ

Qf−a0 þ l2
ρ½−b1þ4Kþ b4þ6M�g ¼ 0: ð160Þ

Therefore, eitherQ ¼ P ¼ N ¼ L ¼ 0 and we recover the
special case (107) for which the validity of the Birkhoff
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theorem was already established, or we have to consider the
two subcases (150) and (151). The corresponding analysis
is verbatim the same as in the subcases WB6.1 and
WB6.2 above.

VI. ON THE PHYSICAL MEANING OF PRIMARY
AND SECONDARY CONDITIONS

In order to reach a better understanding of the primary
and secondary conditions (111), (138), (139), let us go
beyond the spherical symmetry. A Riemannian spacetime
which arises as a solution of the vacuum Einstein equa-
tion (73) with a cosmological constant is called an Einstein
space. A thorough investigation of Einstein spaces can be
found in the book of Petrov [66]. If we put the torsion equal
zero in the general quadratic PG field equations (3)–(4),
one can straightforwardly verify that Einstein spaces (73)
are exact solutions of the latter.
However, a much stronger and more nontrivial result

concerns the uniqueness of Einstein spaces as torsionless
solutions of PG field equations. Namely, one can prove
[30,31,43,67,68] that Einstein spaces (73) are the only
torsionless solutions of the general quadratic PG field
equations (3)–(4) for an arbitrary PG Lagrangian (1),
excluding the three exceptional cases when the coupling
constants satisfy one of the following equalities

a0 þ
2l2

ρλ0
3a0

ðb1 − b6Þ ¼ 0; ð161Þ

a0 −
2l2

ρλ0
3a0

ðb4 þ b6Þ ¼ 0; ð162Þ

a0 −
2l2

ρλ0
3a0

ð2b1 þ 3b4 þ b6Þ ¼ 0: ð163Þ

The field equations of the PG models, belonging to one of
these exceptional cases, admit torsionless solutions which
are not Einstein spaces. As a specific example we can
mention the Stephenson-Kilmister-Yang (SKY) gravity
theory [69–71] which is known to have non-Einsteinian
vacuum solutions [72–75].
In other words, the primary and secondary conditions

(111), (138), (139) are not only necessary to ensure the
validity of the generalized Birkhoff theorem for the spheri-
cally symmetric solutions of the quadratic PG models, they
are also sufficient conditions to prohibit (161)–(163) and
thereby to guarantee that the only torsionless solutions of
the Poincaré field equations are Einstein spaces.

VII. VACUUM SOLUTIONS VIOLATING
BIRKHOFF’S THEOREM

All quadratic PG models admit Schwarzschild (or in
general, Kottler, when the cosmological constant is non-
trivial) spherically symmetric solution without torsion.

However, other spherically symmetric solutions, besides
the torsionless Schwarzschild/Kottler, may exist in those
PG models which do not belong to one of the families
described in Sec. V. Here we consider such a case and
explicitly construct a spherically symmetric solution with
nontrivial torsion. Let us specialize to the Lagrangian (1)
where the torsion-square part is described by the coupling
constants

a1 ¼ −a0; a2 ¼ 2a0; a3 ¼ 1
2
a0;

ā1 ¼ −ā0; ā2 ¼ −ā0; ā3 ¼ −ā0;

�
ð164Þ

which directly violates (72). At the same time, we fix the
structure of the curvature-square part of the Lagrangian (1)
by the following choice of the coupling constants:

b3 ¼ −b2; b5 ¼ − b2
3
; b1 ¼ b4 ¼ b6 ¼ 0;

b̄3 ¼ b̄2; b̄5 ¼ b̄2
3
; b̄1 ¼ b̄4 ¼ b̄6 ¼ 0.

�
ð165Þ

Therefore, this model is characterized by the two coupling
parameters b2 and b̄2, in addition to a0 and ā0.
There are two geometrical identities [30,31] which hold

for the choice of the constants (164):

a0
2
ηαβγ ∧ Rβγ þ ā0Rαβ ∧ ϑβ

þqðTÞα −Dhα ≡ a0
2
ηαβγ ∧ R̃βγ; ð166Þ

a0ηαβγ ∧ Tγ þ 2ā0T ½α ∧ ϑβ� þ 2h½α ∧ ϑβ� ≡ 0: ð167Þ

Both these relations are valid for all configurations of
Poincaré gauge fields (not only spherically symmetric)
irrespectively of their dynamics.
As a result, the vacuum PG field equations (3) and (4)

reduce to

a0
2
ηαβγ ∧ R̃βγ − λ0ηα þ l2

ρq
ðRÞ
α ¼ 0; ð168Þ

−2l2
ρDhαβ ¼ 0: ð169Þ

Recall that the tilde denotes the Riemannian objects. In
view of (165), we have explicitly

hαβ ¼ b2
��ð2ÞRαβ − ð3ÞRαβ −

1

3
ð5ÞRαβ

�

þb̄2

�
ð2ÞRαβ þ ð3ÞRαβ þ

1

3
ð5ÞRαβ

�
: ð170Þ

The subsequent derivations are based on the methods
developed in [76–78]. Let us further specify the general
spherically symmetric ansatz (13), (14)–(16) and consider
the static (no time dependence) configuration

GENERALIZED BIRKHOFF THEOREM IN THE POINCARÉ … PHYS. REV. D 102, 104059 (2020)

104059-13



B ¼ 1

A
; C ¼ r; ð171Þ

f ¼ 0; g ¼ A0

A
; p ¼ −q ¼ A

2
; ð172Þ

f̄
A
þ ḡ
B
¼ 0; p̄ ¼ q̄ ¼ 0: ð173Þ

The prime 0 denotes derivative with respect to the radial
coordinate r. This simplifies the torsion 2-form Tα to

T 0̂ ¼ T 1̂ ¼ −A0ϑ0̂ ∧ ϑ1̂; ð174Þ

T 2̂ ¼ −
A
2r

k ∧ ϑ2̂ þ f̄
A
k ∧ ϑ3̂; ð175Þ

T 3̂ ¼ −
A
2r

k ∧ ϑ3̂ −
f̄
A
k ∧ ϑ2̂; ð176Þ

where we introduced a null 1-form

k ¼ ϑ0̂ − ϑ1̂: ð177Þ

Accordingly, the torsion 1-forms (38) reduce to

T ¼
�
A0 þ A

r

�
k; T̄ ¼ −2

f̄
A
k; ð178Þ

V ¼ 1

3

�
A0 −

A
r

�
k; V̄ ¼ f̄

3A
k: ð179Þ

As a result, the torsion invariant (46) vanishes in view of the
null property k ∧ �k ¼ 0 of the 1-form (177).
At the same time, the spherically symmetric curvature

2-form (25)–(27) also considerably simplifies because the
coefficients (28)–(33) reduce to

μ ¼ 0; μ̄ ¼ 0; ð180Þ

ν ¼ 1

r2
; ν̄ ¼ −f̄0; ð181Þ

UA ¼ 0; Ū0̂ ¼ −Ū1̂ ¼ −
f̄
2r

k: ð182Þ

Consequently, we have

eAcŪA ¼ −
f̄
r
; ϑA ∧ ŪA ¼ f̄

r
ϑ0̂ ∧ ϑ1̂: ð183Þ

Inserting (180)–(183) into (50)–(52), we derive explicitly

M ¼ 1

3r2
; K ¼ 1

3r2
; N ¼ −

1

r2
; ð184Þ

Q ¼ 0; L ¼ 0; P ¼ 0; ð185Þ

M̄¼−
f̄0

3
−
2f̄
3r

; K̄¼−
f̄0

3
þ f̄
3r

; N̄ ¼ f̄; ð186Þ

Q̄ ¼ f̄
r
; L̄ ¼ 0; P̄ ¼ 0: ð187Þ

As we see, the torsion and the curvature are determined
by the two unknown functions A ¼ AðrÞ and f̄ ¼ f̄ðrÞ. It
remains to check whether one can solve the Poincaré field
equations (168) and (169) for some A, f̄.
The spherically symmetric configuration of the torsion

(174)–(176) and the Riemann-Cartan curvature (184)–
(187) described above has a remarkable property that the
covariant derivative of the 2-form (170) vanishes

Dhαβ ¼ 0; ð188Þ

provided the function f̄ has the form of a “Coulomb
potential”

f̄ ¼ τ0
r
; ð189Þ

with an arbitrary constant τ0. Accordingly, we obtain an
exact vacuum solution of the second field equation (169).
Another remarkable property of hαβ is that the 3-form (8)

reads

qðRÞα ¼ −
Q2

r4
½δ0̂αη0̂ þ δ1̂αη1̂ − δ2̂αη2̂ − δ3̂αη3̂�; ð190Þ

where the constant

Q2 ¼ 2b2τ20 þ b̄2τ0
3

: ð191Þ

Substituting this into (168), we immediately verify that the
first field equation is solved for

A2 ¼ 1 −
2m
r

þ l2
ρQ2

a0r2
−

λ0
3a0

r2: ð192Þ

We thus recover a Reissner-Nordström-de Sitter solution
where the integration constant m can be interpreted as the
mass of a point-like source. However, unlike in the genuine
Reissner-Nordström gravitational field, here the effective
“electric charge” of the source is generated by the geometry
of spacetime. Moreover, although we formally introduced
Q2 as a quadratic quantity, it is obvious that (191) is not
necessarily positive, with its value and sign depending on
the constants b2; b̄2 and τ0.
This spherically symmetric vacuum solution of the PG

theory (which extends the Cembranos-Valcarcel results
[79,80] to a much wider family of Lagrangians) represents
an explicit example of the violation of Birkhoff’s theorem.
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VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have revisited the Birkhoff theorem for
the Poincaré gauge gravity theory. In the class of quadratic
PG models with the most general Lagrangian (1) which
includes both the parity-even and parity-odd terms, we have
established the validity of the generalized Birkhoff theorem
for the families of models (SB1)-(SB4) and (WB1)-(WB7)
in the strong SOð3Þ and the weak Oð3Þ versions, respec-
tively. In the strong version, the spherical symmetry is
understood as the invariance under the pure rotations from
the proper SOð3Þ group, while in the weak version of
Birkhoff’s theorem, the spherical symmetry is understood
as invariance under the full rotation group Oð3Þ which
includes spatial reflections along with the pure rotations.
With an account of a nontrivial cosmological constant,

the Birkhoff theorem in both versions states that the only
locally spherically symmetric solution of the PG field
equations in vacuum (3)–(4) is either the Schwarzschild-
(anti)de Sitter (Kottler) metric or the Nariai (Bertotti-
Kasner) spacetime without torsion. The vanishing of the
torsion is not an additional assumption on top of the
spherical symmetry, but this is a consequence of the field
equations.
It is important to notice that the generalized Birkhoff

theorem is not valid for the most general Lagrangian (1),
which was known already for the parity-even class
of models studied earlier in the literature [36–43]. In
order to demonstrate the violation of the generalized
Birkhoff theorem, in Sec. VII we explicitly construct a
spherically symmetric solution with torsion for the PG
model which does not belong to the families (SB1)-(SB4)
and (WB1)-(WB7).
As a comment to the primary and the secondary

conditions (111) and (138), (139), we should note that
they impose only mild restrictions on the structure of the
PG Lagrangian. From the technical point of view, these
conditions merely rule out some special values of the
cosmological constant, and when λ0 ¼ 0 these conditions
reduce just to the requirement that the Lagrangian should
necessarily contain linear curvature terms with nonvanish-
ing a0 and ā0. This explains why the Birkhoff theorem
is violated in the purely quadratic models such as the
SKY gravity.
An interesting question arises whether our methods and

results can be extended to other gravitational theories. The
metric-affine gravity (MAG) [33,34] is the nearest gener-
alization of the Poincaré gauge gravity, in which the
spacetime geometry includes, in addition to the torsion,
the nonmetricity as another post-Riemannian geometrical
structure. Based on the recent analysis of the spherical
symmetry in the metric-affine geometry [64,65], one can
study the validity of the Birkhoff theorem for MAG models
with the Yang-Mills type quadratic Lagrangians along the
lines of the PG approach discussed above. On the other
hand, it may be of interest going beyond the quadratic

Lagrangians. In the recent times, the teleparallel gravity and
especially the modified fðTÞ and fðT; BÞ models [81,82]
attract much of attention in relation with the discussion of
the dark matter and the dark energy problems in the modern
astrophysics and cosmology. Since such models are
dynamically related via conformal transformations to
scalar-tensor theories [18,82], it seems reasonable to study
a possibility of combining our approach with the con-
formal/scalar-tensor methods. We plan to address these
open issues in a future research.
The results obtained contribute to the understanding of the

dynamical structure of the Poincaré gravity theory. The
analysis of the validity of the generalized Birkhoff theorem
helps to reduce the large number of the coupling constants in
the general quadratic Lagrangian (1) to a set that determines
a class of physically viablemodels which are consistent with
Einstein’s GR at large distances. Other criteria such as the
unitarity and stability (absence of ghost and tachyon modes
in the particle spectrum) impose additional restrictions on
the coupling constants [48,49,55,83–93], which should be
combined with our findings.
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APPENDIX: IRREDUCIBLE DECOMPOSITIONS

The torsion 2-form can be decomposed into the three
irreducible pieces, Tα ¼ ð1ÞTα þ ð2ÞTα þ ð3ÞTα:

ð1ÞTα ¼ Tα − ð2ÞTα − ð3ÞTα; ðA1Þ
ð2ÞTα ¼ 1

3
ϑα ∧ T; ðA2Þ

ð3ÞTα ¼ −
1

3
�ðϑα ∧ T̄Þ; ðA3Þ

where the 1-forms of the torsion trace and axial trace are
defined as

T ¼ eνcTν; T̄ ¼ �ðTν ∧ ϑνÞ: ðA4Þ

The Riemann-Cartan curvature 2-form is decomposed
Rαβ ¼ P

6
I¼1

ðIÞRαβ into the 6 irreducible parts

ð2ÞRαβ ¼ −�ðϑ½α ∧ Ψ̄β�Þ; ðA5Þ

ð3ÞRαβ ¼ −
1

12
�ðX̄ϑα ∧ ϑβÞ; ðA6Þ

ð4ÞRαβ ¼ −ϑ½α ∧ Ψβ�; ðA7Þ
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ð5ÞRαβ ¼ −
1

2
ϑ½α ∧ eβ�cðϑγ ∧ XγÞ; ðA8Þ

ð6ÞRαβ ¼ −
1

12
Xϑα ∧ ϑβ; ðA9Þ

ð1ÞRαβ ¼ Rαβ −
X6
I¼2

ðIÞRαβ; ðA10Þ

where we denoted

Xα ≔ eβcRαβ; X ≔ eαcXα; ðA11Þ

X̄α ≔ �ðRβα ∧ ϑβÞ; X̄ ≔ eαcX̄α; ðA12Þ

Ψα ≔ Xα −
1

4
ϑαX −

1

2
eαcðϑβ ∧ XβÞ; ðA13Þ

Ψ̄α ≔ X̄α −
1

4
ϑαX̄ −

1

2
eαcðϑβ ∧ X̄βÞ: ðA14Þ
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