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We study self-gravitating stars in the bootstrapped Newtonian picture for polytropic equations of state.
We consider stars that span a wide range of compactness values. Both matter density and pressure are
sources of the gravitational potential. Numerical solutions show that the density profiles can be well
approximated by Gaussian functions. Later we assume Gaussian density profiles to investigate the interplay
between the compactness of the source, the width of the Gaussian density profile and the polytropic index.
We also dedicate a section to comparing the pressure and density profiles of the bootstrapped Newtonian
stars to the corresponding general relativistic solutions. We also point out that no Buchdahl limit is found,
which means that the pressure can in principle support a star of arbitrarily large compactness. In fact, we
find solutions representing polytropic stars with compactness above the Buchdhal limit.
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I. INTRODUCTION AND MOTIVATION

One of the most striking features of the strong gravity
regime in general relativity is that, once a trapping surface
appears, singularity theorems require an object to collapse
all the way into a region of infinite density surrounded by a
black hole geometry [1]. Static black hole spacetimes are
however problematic in this classical description, since
pointlike sources are mathematically incompatible with
the Einstein equations [2]. One would therefore hope that
quantum physics solves this fundamental puzzle in the
description of self-gravitating objects, the same way it
removes the ultraviolet catastrophe and makes the hydrogen
atom stable. Given the strong experimental constraints on
possible deviations from general relativity, quantum effects
can only become significant in the strong field regime, where
perturbative methods hardly apply and matter likely requires
physics beyond the standard model as well [3]. In particular,
whether the scale at which quantum departures from general
relativity become appreciable is significantly large to affect
the description of compact astrophysical objects remain a
key physical question.
In light of the above observations, in Refs. [4,5] we

studied solutions of an effective equation for the gravita-
tional potential of a static source which contains a gravi-
tational self-interaction term besides the usual Newtonian
coupling with the matter density. Following an idea from

Ref. [6], the self-interaction term was derived in details
from a Fierz-Pauli Lagrangian in Ref. [7], and it could
therefore be viewed as the first step in the perturbative
reconstruction of general relativity (see e.g., Refs. [8]).
However, since the equation for the potential was solved
nonperturbatively [4,5], it could also be conjectured
that this “bootstrapped” Newtonian gravity effectively
describes the (mean field) quantum gravitational potential
of extremely compact objects after the break-down of
classical general relativity [9,10]. Moreover, we found
no equivalent of the Buchdahl limit [11], a result implying
that matter pressure (possibly of quantum origin) could
support sources of arbitrarily large compactness

X ≡GNM
R

; ð1:1Þ

where R is the radius and M the ADM-like [12] mass [13]
of the source.1

Like in Refs. [4,5], we shall just consider (static)
spherically symmetric systems, so that all quantities depend
only on the radial coordinate r, but the density profile is
not restricted to be uniform. We shall begin by assuming
that the matter density ρ ¼ ρðrÞ and pressure p ¼ pðrÞ
satisfy a polytropic equation of state and determine the
density profile numerically for different values of the
compactness (and of the polytropic parameters). This
analysis will show that the equilibrium configurations
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1In this paper we use units with c ¼ 1, and always display the
Newton constant GN explicitly.
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closely resemble Gaussian distributions. Therefore, we
shall also study Gaussian density profiles analytically
and determine a posteriori the compatible polytropic
parameters.
The paper is organized as follows: in Sec. II, we briefly

review the bootstrapped Newtonian picture; Sec. III is
dedicated to the investigation of the model within the
further assumption of a polytropic equation of state for
the matter source and to finding numerical solutions for the
density profile; that is followed in Sec. IV by an in depth
analysis of Gaussian density profiles and comparison with
general relativity in Sec. V; finally we comment about our
results and possible outlooks in Sec. VI.

II. BOOTSTRAPPED THEORY FOR THE
GRAVITATIONAL POTENTIAL

From Ref. [7], we recall that the non-linear equation for
the potential V ¼ VðrÞ describing the gravitational pull on
test particles generated by a matter density ρ ¼ ρðrÞ can be
obtained starting from the Newtonian Lagrangian

LN½V� ¼ −4π
Z

∞

0

r2dr

�ðV0Þ2
8πGN

þ ρV

�
; ð2:1Þ

where f0 ≡ df=dr, and the corresponding field equation is
the Poisson equation

r−2ðr2V 0Þ0 ≡△V ¼ 4πGNρ ð2:2Þ

for the Newtonian potential V ¼ VN. We can then include
the effects of gravitational self-interaction by noting that
the Hamiltonian

HN½V�¼−LN½V�¼4π

Z
∞

0

r2dr

�
−
V△V
8πGN

þρV

�
; ð2:3Þ

computed on-shell by means of Eq. (2.2), yields the
Newtonian potential energy

UNðrÞ ¼ 2π

Z
r

0

r̄2dr̄ρðr̄ÞVðr̄Þ

¼ −
1

2GN

Z
r

0

r̄2dr̄½V 0ðr̄Þ�2; ð2:4Þ

where we used Eq. (2.2) and then integrated by parts
discarding boundary terms. One can view the above UN as
given by the interaction of the matter distribution enclosed
in a sphere of radius r with the gravitational field.
Following Ref. [6] (see also Refs. [14]), we then define
a self-gravitational source proportional to the gravitational
energy UN per unit volume, that is

JV ≃
dUN

dV
¼ −

½V 0ðrÞ�2
2πGN

: ð2:5Þ

In Ref. [5], we found that the pressure p becomes very large
for compact sources with X ≳ 1, and we must therefore add
a corresponding potential energy UB such that

p ¼ −
dUB

dV
: ð2:6Þ

Since the latter contribution just adds to ρ, it can be easily
included by simply shifting ρ → ρþ qcp, where qc is a
positive constant which allows us to implement the non-
relativistic limit formally as qc → 0. Upon including these
new source terms, and the analogous higher order term
Jρ ¼ −2V2 which couples with the matter source, we
obtain the total Lagrangian [7]

L½V� ¼ LN½V� − 4π

Z
∞

0

r2dr½qΦJVV þ qΦJρðρþ qcpÞ�

¼ −4π
Z

∞

0

r2dr

� ðV 0Þ2
8πGN

ð1 − 4qΦVÞ

þ ðρþ qcpÞVð1 − 2qΦVÞ
�
; ð2:7Þ

where the positive parameter qΦ plays the role of a coupling
constant for the graviton current JV and the higher-order
matter current Jρ. The associated effective Hamiltonian is
simply given by

H½V� ¼ −L½V�: ð2:8Þ

Finally, the Euler-Lagrange equation for V is given by

△V ¼ 4πGNðρþ qcpÞ þ
2qΦðV 0Þ2
1 − 4qΦV

ð2:9Þ

and the conservation equation that determines the pressure
reads

p0 ¼ −V 0ðρþ qcpÞ: ð2:10Þ

The exact Newtonian equations are then recovered by
taking the nonrelativistic limit as qc → 0 and switching off
the graviton self-interaction with qΦ → 0. It is important to
remark that the couplings qΦ and qc do not need to be
small. In fact, the closest results to general relativity are
expected to occur for qΦ ≃ qc ≃ 1 [4].

III. POLYTROPIC STARS

In Refs. [4,5,7,13], the effects of the gravitational self-
interaction, encoded by the term proportional to qΦ in the
field equation (2.9), were analyzed by considering simple
sources, characterized by a homogeneous matter density
ρ ¼ ρ0 and different values of the compactness X. One of
the main results is that, for a flat density profile, the outer
mass parameter M is always larger than the proper mass
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M0 ¼ mðRÞ ¼ 4π

Z
R

0

r2dr ρðrÞ: ð3:1Þ

This is in agreement with the fact that M should also
account for the (positive) pressure required to ensure
equilibrium, with M approaching M0 for smaller and
smaller compactness X [4].
We now want to study more realistic matter distributions,

for which we expect that the degeneracy pressure is the
main component counteracting the gravitational pull, like
in neutron stars and white dwarfs. For this purpose, we will
assume a polytropic equation of state [15]

pðrÞ ¼ γρnðrÞ ¼ γ̃ρ0

�
ρðrÞ
ρ0

�
n
; ð3:2Þ

with n and γ̃ positive dimensionless parameters, and ρ0 ≡
ρð0Þ is used as a reference density. Moreover, we shall also
assume the surface pressure vanishes, pR ≡ pðRÞ ¼ 0,
which then implies that ρR ≡ ρðRÞ ¼ 0.
The relevant solutions for the density profile will have to

lead to a potential which satisfies the regularity condition
in the center

V 0
inð0Þ ¼ 0 ð3:3Þ

and be smooth across the surface r ¼ R, that is

V inðRÞ ¼ VoutðRÞ≡ VR ð3:4Þ

V 0
inðRÞ ¼ V 0

outðRÞ≡ V 0
R; ð3:5Þ

where we defined V in¼Vð0≤ r≤RÞ and Vout ¼ VðR ≤ rÞ.
The consistency of these two conditions with Eq. (3.2) will
be thoroughly analyzed below after we recall the outer
vacuum solution.

A. Outer vacuum solution

Outside the source, we have ρ ¼ p ¼ 0 and Eq. (2.10) is
trivially satisfied. Equation (2.9) reads

△V ¼ 2qΦðV 0Þ2
1 − 4qΦV

; ð3:6Þ

which is exactly solved by

Vout ¼
1

4qΦ

�
1 −

�
1þ 6qΦGNM

r

�
2=3

�
: ð3:7Þ

where two integration constants were fixed by requiring the
expected Newtonian behavior in terms of the ADM-like
mass M for large r. In fact, for large r, we have

Vout ≃ −
GNM
r

þ qΦ
G2

NM
2

r2
− q2Φ

8G3
NM

3

3r3
; ð3:8Þ

which displays the expected post-Newtonian term of order
G2

N for qΦ ¼ 1 [7].
For sufficiently large X, the outer potential gives rise to a

“Newtonian” horizon of radius [4]

rH ≃ 1.4GNM; ð3:9Þ

precisely where 2VoutðrHÞ ¼ −1. In this work, we shall
therefore assume X < 0.7 in order to avoid this feature.
From Eq. (3.7), we also obtain

VR ¼ VoutðRÞ ¼
1

4qΦ
½1 − ð1þ 6qΦXÞ2=3�; ð3:10Þ

and

RV 0
R ¼ RV 0

outðRÞ ¼
X

ð1þ 6qΦXÞ1=3
; ð3:11Þ

which we will often use since they appear in the boundary
conditions (3.4) and (3.5).

B. The inner pressure and potential

The conservation equation (2.10) for the polytropic
equation of state (3.2) immediately allows one to find
the derivative of the potential

V 0 ¼ −
nγρ0

qcγρþ ρ2−n
¼ −

nγ̃ρ0

qcγ̃ρþ ρn−10 ρ2−n
: ð3:12Þ

The regularity condition (3.3) then requires ρ0ð0Þ ¼ 0,
which can hold for any ρ0 ≡ ρð0Þ > 0. For n ≠ 1, the
above equation yields

V ¼ β −
n

ðn − 1Þqc
ln ð1þ qcγρn−1Þ

¼ β −
n

ðn − 1Þqc
ln

�
1þ qcγ̃

�
ρ

ρ0

�
n−1

�
; ð3:13Þ

where β is an integration constant. On the other hand, for
n ¼ 1 the constant γ ¼ γ̃ is dimensionless, and we find the
simpler solution

V ¼ β −
γ

qcγ þ 1
ln

�
ρ

ρ0

�
: ð3:14Þ

We remark that Eqs. (3.13) and (3.14) reproduce the
Newtonian behavior in the nonrelativistic limit qc → 0.
Moreover, the above expressions for V and V 0 evaluated at
r ¼ R must equal the respective outer values (3.10) and
(3.11), which only depend on M and R, but not on any
equation of state. Let us then analyze in details under which
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conditions the equation of state (3.2) is compatible with the
continuity of the potential and its derivative.
For n > 1, continuity of the potential (3.13) across r ¼ R

simply fixes the integration constant

β ¼ VR; ð3:15Þ

where we used ρR ¼ 0. Values of n outside this range must
however be excluded.2 In fact, for n ¼ 1, the solution (3.14)
diverges positively and so does Eq. (3.13) for 0 < n ≤ 1.
Moreover, in the allowed range n > 1, continuity of the

derivative of the potential demand

V 0
R

nγ
¼ −lim

r→R

�
ρ0

ρ2−n

�
≡ Y

nγR
> 0; ð3:16Þ

which implies that ρ0 ∼ −ρ2−n for r → R. It is important to
remark that this condition holds irrespectively of the value
of qc, precisely because n > 1 implies that the term qcρ
vanishes faster than ρ2−n. For 1 < n < 2, both ρ and ρ0
must then vanish at the star surface. For n ¼ 2, the
derivative ρ0 must be finite there, whereas for n > 2 it
must diverge (negatively) for r → R from inside. This latter
behavior could be roughly approximated with a step
discontinuity at the surface of the star. We then remark
that the text-book cases of relativistic (n ¼ 4=3) and
nonrelativistic (n ¼ 5=3) fermions belong to the range
1 < n < 2.
For n > 1, Eq. (3.5) now reads

Y ¼ X

ð1þ 6qΦXÞ1=3
; ð3:17Þ

which can be used to determine the compactnessX from the
behavior of the density at the star surface. Of the three
solutions for X, only one is real and positive and reads

Xs

Y
¼ 21=3ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 32q3ΦY

3
p

Þ2=3 þ 4qΦY

22=3ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 32q3ΦY

3
p

Þ1=3 ; ð3:18Þ

which holds for all values of Y > 0. We note that Xs ¼ Y
for qΦ ¼ 0, corresponding to the Newtonian theory, and an
expansion for small Y yields

Xs

Y
≃ 1þ 2qΦY þ 8

3
q3ΦY

3: ð3:19Þ

This shows that the compactness is always larger in the
bootstrapped theory than it would be in the Newtonian case
for the same Y (see Fig. 1 for a plot of the exact result).

Finally, we can determine more explicitly the boundary
behavior (at r≲ R) of the density, which is governed by the
equation

γnR
ρ0

ρ2−n
≃ −Y; ð3:20Þ

with the conditions that ρR ¼ 0 and n > 1. For Y > 0, we
then find

ρ ≃
�
n − 1

n

�
1 −

r
R

�
Y
γ

�
1=ðn−1Þ

≃
�
n − 1

nγ

�
1 −

r
R

�
X

ð1þ 6qΦXÞ1=3
�
1=ðn−1Þ

: ð3:21Þ

Upon expanding for small compactness, one then obtains

ρ ≃
�
n − 1

nγ

�
1 −

r
R

�
X

�
1=ðn−1Þ�

1 −
2qΦX
n − 1

�
; ð3:22Þ

which shows that the density near the surface must be
smaller in the bootstrapped theory than it is in the
Newtonian theory for a star of given (small) compactness.
We remark once more that this result is independent of the
nonrelativistic limit qc → 0 because relativistic corrections
proportional to qc are subleading near the surface of the
source for n > 1.
To summarize, we have obtained the general behavior

of the density required by the equation of state (3.2) to be
compatible with a smooth potential across the surface.
We remark that one could relax the condition (3.5) on the
derivative of the potential in order to allow for a (vanish-
ingly thin) solid crust. In Sec. IV, we shall employ an
analytical approximation for the density inside the whole
star and consider in particular the text-book equations of
state for relativistic and non-relativistic fermions, so that
1 < n < 2 and ρ0ðRÞ ¼ ρðRÞ ¼ 0. Before that, we will
tackle the problem numerically.

FIG. 1. Compactness in Eq. (3.18) with qΦ ¼ 1.

2Eq. (3.2) is often written as p ¼ γρ1þ1=n0 , with n0 > 0 in the
astrophysical literature.
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C. Density equation and numerical solutions

For the cases of interest, the potential is expressed
exactly in terms of the density by Eq. (3.13) with 1 <
n < 2 and β given in Eq. (3.15). This makes it more
convenient to rewrite the second order ordinary differential
equation (2.9) inside the source as an equation for the
density ρ ¼ ρðrÞ, with the two boundary conditions

ρðRÞ ¼ 0 ð3:23Þ

ρ0ð0Þ ¼ 0: ð3:24Þ

Furthermore, in order to solve for the density numerically,
we shall introduce dimensionless variables by using R

as the unit of length. For instance, we write the radial
coordinate r ¼ Rr̄ and note that the compactness X is
already dimensionless. Likewise, the dimensionless density
ρ̄ is defined by

GNρ ¼ Xρ̄
R2

ð3:25Þ

and the polytropic equation of state (3.2) yields

GNp ¼ γ̄

R2
ðXρ̄Þn; ð3:26Þ

where the dimensionless γ̄ should not be confused with γ̃.3

The equation for the dimensionless density then reads

∂ r̄

r̄2

�
nγ̄r̄2∂ r̄ðln ρ̄Þ
qcγ̄þ ðXρ̄Þ1−n

�
¼ −4πXρ̄½1þ qcγ̄ðXρ̄Þn−1�−

2qΦn2ðn− 1Þγ̄2½∂ r̄ðln ρ̄Þ�2
½qcγ̄þ ðXρ̄Þ1−n�2fðn− 1Þð1− 4qΦVRÞ þ 4qΦnq−1c ln ½1þ qcγ̄ðXρ̄Þn−1�g

;

ð3:27Þ

in which we note that VR is given in Eq. (3.10) and is a
function of X only.
We have performed a preliminary numerical analysis

of the above equation and boundary conditions for
qc ¼ qΦ ¼ 1. We also want to avoid values of the compact-
ness corresponding to Newtonian black holes correspond-
ing to X ≳ 0.7 (as discussed in Sec. III A). The relevant
parameter space is thus given by 0 < X < 0.7, 1 < n < 2

and γ̄ > 0, a complete analysis of which would require
extensive numerical works beyond our present scope. A
first interesting result is that, for fixed values of n and γ̄,
solutions only exist for certain ranges of X, similarly to the
case of general relativity. Examples of high compactness
are given in Figs. 2 for n ¼ 5=3, from which we see that the
larger X, the flatter the dimensionless profile of ρ̄, whereas
the fully dimensional density grows larger in the centre and
so does the pressure. Another preliminary result is that
solutions are found for lower values of X only by suitably
lowering γ̄ correspondingly. Examples for the same n¼5=3
are given in Figs. 3. Finally, we have found that smaller
values of n produce more peaked profiles, like is shown for
n ¼ 4=3 in Fig. 4.
In all the case we have been able to solve Eq. (3.27), the

density profile can be rather closely approximated with a
Gaussian function. In the following, we shall therefore
take the opposite perspective and try to determine the
polytropic parameters compatible with given Gaussian
profiles.

IV. GAUSSIAN DENSITY PROFILES

We start from assuming the density profile of the self-
gravitating object is given by

ρ ¼
(
ρ0e

− r2

b2R2 ; r ≤ R

0; r > R:
ð4:1Þ

Since ρR ≡ ρðRÞ > 0, the density (4.1) contains a steplike
discontinuity at r ¼ R, like the uniform profiles analyzed in
Refs. [4,5]. Of course, such a discontinuity is incompatible
with a polytropic equation of state if one continues to
require vanishing pressure at the surface. However, we can
set the central density ρ0 and the width b such that

−lim
r→R

�
ρ0

ρ2−n

�
¼ ρn−10

b2
e−ðn−1Þ=b2 ¼ Y

2γ
; ð4:2Þ

and note that for b ≪ 1, we can have ρR ≪ ρ0. A mild
discontinuity of this form could be tolerable, for instance,
by assuming that the surface of the object is covered by a
thin solid crust with a tension that balances the non-
vanishing pressure.
Technically, the discontinuity could also be removed

completely by subtracting the constant ρR from the profile
(4.1) for r ≤ R. In so doing, one would however introduce
more serious obstacles with the continuity of the first
derivative of the potential, since the denominator in
Eq. (3.12) would then vanish and V 0 correspondingly
diverge. We therefore find it still preferable to allow for
a (slight) discontinuity at the surface with ρR ≪ ρ0. It needs
to be mentioned that, due to this discontinuity, Eq. (3.15)
for β also gets modified, as will be seen later.

3We note that ρ0 is not a convenient parameter here since the
central density cannot be set freely.
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FIG. 3. Upper panels: density profile calculated numerically for γ̃ ¼ 0.2, n ¼ 5=3 (solid lines) and Gaussian approximation (dashed
line) for the lowest compactness (left panel: dimensionless quantities; right panel: dimensionful quantities). Lower panels: density (solid
lines) and pressure (dashed lines) for the cases in the upper panels.

FIG. 2. Upper panels: density profile calculated numerically for γ̃ ¼ 1, n ¼ 5=3 (solid lines) and Gaussian approximation (dashed
line) for the lowest compactness (left panel: dimensionless quantities; right panel: dimensionful quantities). Lower panels: density (solid
lines) and pressure (dashed lines) for the cases in the upper panels.
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Starting from Eqs. (3.12) and (3.13), and using the two
boundary conditions (3.4) and (3.5), we can determine both
β and γ as functions of the other remaining parameters.
Continuity of the first derivative of the potential (3.5)
allows us to express one of the parameters which determine
the equation of state, γ̃ (respectively γ), in terms of the
polytropic index n, the compactness X and the width b, as

γ̃ ¼ Xeðn−1Þ=b2

2n
b2 ð1þ 6qΦXÞ1=3 − qcX

: ð4:3Þ

Using the boundary condition (3.4), we then determine

β ¼ VR þ n
ðn − 1Þqc

ln ½1þ qcγ̃eð1−nÞ=b
2 �

¼ VR þ n
ðn − 1Þqc

ln

�
1þ qcX

2n
b2 ð1þ 6qΦXÞ1=3 − qcX

�
:

ð4:4Þ

These expressions for γ̃ and β can be substituted into
the field equation (2.9), but no exact analytical expression
can then be found for the remaining parameters. We can
proceed by expanding both sides of Eq. (2.9) in power
series around r ¼ 0. Equating the lowest order terms
yields

ρ0¼
3nγ̃

2πb2GNR2ð1þqcγ̃Þ2

¼ 3nXeðnþ1Þ=b2 ½2nb2 ð1þ6qΦXÞ1=3−qcX�
2πb2GNR2½en=b2qcXþe1=b

2ð2nb2 ð1þ6qΦXÞ1=3−qcXÞ�2
;

ð4:5Þ

from which we can write

ρ¼ 3nγ̃e−r
2=b2R2

2πb2GNR2ð1þqcγ̃Þ2

¼ 3nXeðnþ1−r2=R2Þ=b2 ½2nb2 ð1þ6qΦXÞ1=3−qcX�
2πb2GNR2½en=b2qcXþe1=b

2ð2nb2 ð1þ6qΦXÞ1=3−qcXÞ�2
:

ð4:6Þ

We also notice that both ρ0 and γ̃ must be positive, which
holds if

n >
qcb2X

2ð1þ 6qΦXÞ1=3
≡ nmin: ð4:7Þ

This is a non-trivial lower bound for the polytropic index
depending on the compactness and width of the density
profile. Since we expect 1 < n < 2, the compactness and
width must satisfy

FIG. 4. Upper panels: density profile calculated numerically for γ̃ ¼ 0.5, n ¼ 4=3 (solid lines) and Gaussian approximation (dashed
line) for the lowest compactness (left panel: dimensionless quantities; right panel: dimensionful quantities). Lower panels: density (solid
lines) and pressure (dashed lines) for the cases in the upper panels.
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8ð1þ 6qΦXÞ < q3cb6X3 < 64ð1þ 6qΦXÞ; ð4:8Þ

otherwise no n exists and the star cannot be described by
polytropic matter. The range of values for the compactness
X that will be considered further covers all possible types of
sources, from very low densities to objects on the brink of
contracting behind the event horizon and becoming black
holes, as discussed in Sec. III A. The lower bound nmin
from Eq. (4.7) is shown in Fig. 5 for qc ¼ qΦ ¼ 1 and
0 < X < 0.7. The entire range 1 < n < 2 is clearly
allowed.
The ADMmassM and the proper massM0 of the star are

generally different. The proper mass is obtained from the
volume integral of the density in Eq. (3.1), which, for our
Gaussian distributions, reads

M0 ¼
3nXRen=b

2 ½2nb2 ð1þ 6qΦXÞ1=3 − qcX�½e1=b2
ffiffiffi
π

p
Erfð1bÞ − 2�

2GN½en=b2qcX þ e1=b
2ð2nb2 ð1þ 6qΦXÞ1=3 − qcXÞ�2

; ð4:9Þ

where the dependence on the ADM mass is hidden in the compactness X. This allows us to calculate the ratio

M0

M
¼ 3nen=b

2 ½2nb2 ð1þ 6qΦXÞ1=3 − qcX�½e1=b2
ffiffiffi
π

p
Erfð1bÞ − 2�

2½en=b2qcX þ e1=b
2ð2nb2 ð1þ 6qΦXÞ1=3 − qcXÞ�2

: ð4:10Þ

Finally, we can rewrite the potential from Eq. (3.13) as

Vb ¼
n

ðn − 1Þqc
ln

� 2n
b2 ð1þ 6qΦXÞ1=3

2n
b2 ð1þ 6qΦXÞ1=3 þ qcXðeðn−1Þð1−r2=R2Þ=b2 − 1Þ

�
þ 1

4qΦ
½1 − ð1þ 6qΦXÞ2=3�; ð4:11Þ

where the suffix b is to remark that this analytical
expression stems form a density which only solves the
polytropic equation of state approximately due to ρR > 0.
Besides the compactness, this potential still depends on

two parameters: the width b of the density distribution and
the polytropic index n from the equation of state. Due to the
complexity of the field equation (2.9), we must rely on
some approximate method in order to study the dependence
of the equation of state on the width of the density profile.
To this purpose, we write the potential as

V ¼ Vb þW; ð4:12Þ

where V is the exact solution to Eq. (2.9) and the difference
W with respect to the analytical expression (4.11) can be
computed numerically. The preferred values, or ranges of
values, for the polytropic index n will then be obtained by
minimizing the relative error W=V for given values of the
width b and compactness X. In particular, we will perform
the analysis for three values of the compactness: small
compactness X ¼ 0.01, intermediate compactness X ¼ 0.1
and large compactness X ¼ 0.7. Considering the discussion
of the discontinuity at the surface from the beginning of this

section, and the numerical results from the previous section,
we are also interested in cases with ρ0 ≫ ρR. Therefore we
will perform simulations for b ¼ 0.5, for which
ρR=ρ0 ≃ 1.8%. In anticipation of the numerical results
and plots, smaller values of b result in much larger relative
errors W=V and do not represent good approximations.
For comparison, the relative error W=V will also be shown
for b ¼ 1, corresponding to a much larger ρR=ρ0 ≃ 37%.
In Fig. 6 we display the relative errors for several values

of the polytropic index covering the range 1 < n < 2 for all
three values of the compactness and the two values of b
discussed earlier. In general, the relative error W=V is
smaller for larger values of b, corresponding to flat
Gaussian profiles with the density at the surface approx-
imately equal to the one in the center, thus departing from
our initial approximation. This general trend was also
observed for other values of b not included here.
With very few exceptions, the relative error grows to a

maximum around the center and vanishes at r ¼ R. A
simple explanation is that, while the parameter ρ0 was
obtained using only the leading order terms in the series
expansion of the field of motion around r ¼ 0, the
boundary conditions at r ¼ R were matched exactly.

FIG. 5. Minimum value of the polytropic index n for
qc ¼ qΦ ¼ 1.
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For a fixed width b ¼ 0.5, the errors are the smallest for
n ¼ 3=2, at least for small and intermediate compactness.
In the high compactness case, even though the relative
errors are always large, they become smaller for n ¼ 5=3,
which signals a possible transition from n¼3=2 to n ¼ 5=3
as the compactness increases.
The ratioM0=M for an equation of state with n ¼ 3=2 is

presented in Fig. 7. Only values of b > 0.5 are considered
because, as stated before, the relative errors become
unacceptably large for smaller values of this parameter.
The limit of large b is in agreement with our findings from
Ref. [13], where we investigated objects with uniform
densities. There it was found that the ratio M0=M < 1 for
qΦ ¼ 1. In fact, this ratio is smaller than one throughout

most of the parameter space investigated here. The only
region in which the ratio becomes larger than one is for
objects of low compactness with the density peaked
strongly near the center. In the low compactness limit,
the ratio approaches one, as expected.
The gravitational potential from Eq. (4.11) is plotted in

Fig. 8 for the three values of X considered here and for the
values of n which minimize the relative errors W=V.
Alongside, we also show the Newtonian potential corre-
sponding to the same Gaussian distribution (4.1), given by

VN ¼
8<
:

− X½2r− ffiffi
π

p
bRe1=b

2
Erfð r

bRÞ�
r½2− ffiffi

π
p

be1=b
2
Erfð1bÞ�

; r ≤ R

− GNM
r ; r > R;

ð4:13Þ

for which we recall that the proper mass M0 ¼ M. The
plots we obtain are consistent with our earlier findings.
The errors resulting from solving the equation of motion
numerically are smaller for larger value of b, represented in
the three bottom plots, when compared to the correspond-
ing plots obtained for the same values of the compactness,
but smaller b values. As expected, the differences between
the Newtonian and the bootstrapped Newtonian potentials
are larger for more compact objects and they becomes
negligible as the density decreases. The Newtonian poten-
tial generally creates deeper wells for most sources except
for those characterized by small values of the compactness
and small values of the parameter b (in our case for
X ¼ 0.01 and b ¼ 0.5). Considering that M0 ¼ M in the
Netwonian case, this signals that the ratio M0=M crosses
one, as also observed in Fig. 7. However, we do not show

FIG. 6. Relative error for different values of the polytropic index n for qc ¼ qΦ ¼ 1. Note the different ranges on the vertical axis for
the top plots versus the ones in the bottom.

FIG. 7. RatioM0=M as a function of the parameters b and X for
qc ¼ qΦ ¼ 1 and n ¼ 3=2.
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here that, even in this case, we could find a value of the
polytropic index n slightly smaller than n ¼ 3=2, for which
the ratio M0=M remains smaller than one, although we
cannot be certain that the same happens for general values
of X and b.
Finally, we show in Fig. 9 the ratio

p
ρ
¼ Xeðn−1Þð1−r2=R2Þ=b2

2n
b2 ð1þ 6qΦXÞ1=3 − qcX

ð4:14Þ

for each of the cases presented above. For both values
of b taken into consideration, this ratio increases with the
compactness. What we observe is the expected behavior in
both limits: while the pressure is negligible with respect to
the density for objects of small compactness, the ratio
becomes larger as the objects become more compact,
until the two quantities are roughly of the same order of
magnitude.

V. COMPARISON WITH GENERAL RELATIVITY

From the physical point of view, it is important to
compare the solutions obtained in the bootstrapped
Newtonian picture with similar solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equation [16] of general
relativity, namely

r2p0 ¼ −GNðpþ ρÞðmþ 4πr3pÞ
�
1 −

2GNm
r

�
−1
; ð5:1Þ

where the Bondi mass function m ¼ mðrÞ is given by the
same expression in Eq. (3.1). It is however important to
notice that the radial coordinate r in the bootstrapped
Newtonian picture is associated with harmonic coordinates,
and differs from the areal radius usually employed in the
description of spherically symmetric systems in general
relativity.4 Correspondingly, the expression (3.1), which
defines the proper mass in the bootstrapped Newtonian
case, yields the Bondi mass of the star in general relativity.
The latter, computed at the star surface of radius r ¼ RTOV,
equals the ADM mass mðRTOVÞ ¼ MTOV of the star [12].5

Given a specific equation of state, the TOVequation (5.1)
determines the density profile ρ ¼ ρðrÞ of the compact
source and can typically be solved only numerically. In
order to keep our comparison straightforward, we confront
numerical solutions for polytropic stars in the bootstrapped
Newtonian picture, as they were obtained in Sec. III C, with
solutions obtained by solving numerically the TOV equa-
tion with the same equation of state (3.2) and central
density ρ0 ¼ ρð0Þ. In particular, since the equation of state
and ρ0 are the same, the central pressure p0 ¼ pð0Þ in the

FIG. 8. Bootstrapped potentials for qc ¼ qΦ ¼ 1: Vb in Eq. (4.11) (green lines) and V in Eq. (4.12) (red lines). For X ¼ 0.01 and
X ¼ 0.1 we used n ¼ 3=2, while for X ¼ 0.7 we used n ¼ 5=3. The dashed black lines represent the Newtonian potential VN in
Eq. (4.13) for a Gaussian matter distribution with the same b.

4We use the same symbol r for both coordinates in order to
keep the notation simpler, but a complete analysis of this
important issue requires deriving an effective bootstrapped metric
which is currently being investigated [17].

5In this section, we usually denote quantities computed in
general relativity with the suffix TOV, in order to distinguish them
from the analogous quantities computed in the bootstrapped
Newtonian picture.
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TOV solution also equals the central pressure in the
bootstrapped Newtonian solutions. A few cases corre-
sponding to different values of the compactness X are
shown in Fig. 10, where the pressure profiles p ¼ pðrÞ in
the lower panels correspond to the density profiles ρ ¼ ρðrÞ
in the upper panels. Also note that the bootstrapped
Newtonian quantities are plotted as functions of r=R, with
R the corresponding star radius, whereas the TOV quan-
tities are shown in terms of r=RTOV, with RTOV being the
star radius obtained from solving Eq. (5.1). We remark once
more that R and RTOV in general differ, as we will discuss
below. For exemplification purposes, we also included the
lines representing the Gaussian approximation. The most

relevant numerical quantities for the plotted cases are then
displayed in Table I.
We first notice that we could find general relativistic

solutions throughout the entire bootstrapped Newtonian
compactness range 0.1 ≤ X ≤ 0.7, since the values of
the corresponding TOV compactness are lower than the
Buchdahl limit, XTOV < XBL ¼ 4=9. The general relativ-
istic density profiles are always below the curves obtained
numerically in the bootstrapped picture (we will refrain
from comparisons with the Gaussian approximation since
in that case a certain degree of arbitrariness exists in the
choice of the parameter b). This is consistent with the ratio
of the masses MTOV=M always being smaller than one.

FIG. 9. Ratio of pressure to density for qc ¼ qΦ ¼ 1.

FIG. 10. Upper panels: density profiles obtained for polytropic stars by solving numerically the equation for the density (3.27) in the
bootstrapped picture (blue), the Gaussian density profiles which approximate these solutions (green) and the corresponding general
relativistic density profiles (black). Lower panels: pressure profiles for the same polytropic stars. For all plots qc ¼ qΦ ¼ 1.
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As the compactness X decreases, this ratio becomes closer
to one and the two density profiles become virtually
identical. Moreover, the radius R of a bootstrapped
Newtonian star is also usually larger than the RTOV of
the general relativistic polytrope. The fact that X > XTOV
means that the bootstrapped picture can allow for the
existence of more compact (either smaller in size or
more massive) polytropic stars than general relativity.
When looking at the lower panels of Fig. 10 in com-
parison to the upper ones, we see that just like in the case
of the density profiles, the pressure inside bootstrapped
Newtonian polytropes is always larger (for high compact-
ness values) or at least equal (for low compactness) to the
pressure inside the corresponding general relativistic cases.

VI. CONCLUSIONS AND OUTLOOK

We have extended our model of bootstrapped Newtonian
stars from Ref. [4] by investigating objects with nonuni-
form mass distribution. We assumed a polytropic equation
of state to determine the relation between the density and
the pressure inside the star. In order to avoid singular
configurations, we imposed the condition for the first
derivative of the density to vanish in the center of the star.
The other boundary condition was for the density to vanish
at the surface. Starting from the equation of continuity and
the polytropic equation, we could rewrite the field equation
in terms of the density and its derivatives. This was then
solved numerically to obtain the density profile for various
values of the compactness X of the star, the parameters γ
and n which define the polytropic state and the coupling
constants in our model (which we usually set to one for
simplicity). Ideally, in order to draw general conclusions,
one should scan the entire parameter space, which is a very
demanding numerical task we prefer to leave for future
developments. However, the numerical results presented in
Sec. III C show density profiles which can be approximated
by Gaussian distributions fairly accurately, therefore, we
focused on these solutions next.
Starting from a Gaussian density profile, along with the

polytropic equation of state, one can describe the star in
terms of the width b of the distribution, the polytropic index
n and the compactness X of the object. Analytic approx-
imations can then be obtained for the gravitational potential.
The accuracy of these analytic approximations was then
estimated numerically in order to determine the polytropic
index n compatible with such distributions. It appears that

larger values of n are favoured for larger compactness. We
also compared the proper massM0 to the ADMmassM, and
found thatM0 < M throughout most of the parameter space.
We recover our previous results obtained for uniform density
profiles in the large b limit. There is however a small region
of the parameter space where, at least for some values of the
polytropic index n, the proper massM0 > M. In this regime,
we also found that the bootstrapped potential creates a
deeper potential well than the Newtonian one, while in all
other cases the opposite occurs (see Fig. 8). The total
gravitational potential energy is computed in Appendix
and turns out to be negative for all solutions analyzed.
Finally, pressure and density were found to have the
expected behavior. In particular, their ratio increases with
compactness X and with the polytropic index n, the former
having a greater impact.
We also compared the density and pressure profiles for

bootstrapped Newtonian, respectively general relativistic,
polytropes with the same equation of state (3.2) and central
density ρ0 ¼ ρð0Þ. We emphasize once more that, while the
Newtonian limit is obtained when the couplings qΦ and qc
in Eq. (2.9) are equal to zero, the bootstrapped Newtonian
gravity is expected to yield the results closest to those of
general relativity for qΦ ≃ qc ≃ 1, which is the case inves-
tigated here. The preliminary results obtained for these
types of stars show that the bootstrapped Newtonian gravity
allows for objects with larger densities (and therefore
masses). At least in the relatively high compactness regime
considered in Sec. V, the bootstrapped picture leads to more
compact stars than those obtained by solving the TOV
equation. In other words, the bootstrapped Newtonian
gravity makes a significant difference in the high compact-
ness regime because it can accommodate for the existence
of more compact and massive self-gravitating stars than
general relativity, given the same polytropic equation of
state and central density. Of course, these more compact
and massive stars are also balanced by larger pressure
values. In the opposite limit of low compactness, the
density profiles predicted in the bootstrapped Newtonian
picture become practically identical to those of general
relativity. The phenomenological differences between the
two theories therefore manifest only for highly compact
objects, consistently with the original motivation of
accounting for the quantum nature of matter and gravity
at large compactness, a task hard to tackle starting from full
general relativity. A more in depth comparison of the
bootstrapped Newtonian and general relativistic stars will
be the subject of future work. The comparison will be
extended to not only polytropes, but also to objects
governed by other equations of state.
We would like to conclude by recalling that the boot-

strapped description for compact self-gravitating objects
was mainly developed with the purpose of investigating the
corpuscular description of quantum gravity originally put
forward for black holes [18–21]. In fact, the absence of a

TABLE I. Comparison between bootstrapped Newtonian
parameters and TOV solution for the cases in Fig. 10.

X n γ̄ GNρ0R2 GNp0R2 RTOV=R MTOV=M XTOV XTOV=X

0.7 5=3 1.0 1.40 1.75 0.92 0.35 0.23 0.33
0.4 5=3 0.6 0.81 0.42 0.81 0.39 0.23 0.58
0.1 5=3 0.2 0.11 0.005 0.95 0.83 0.070 0.70
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Buchdahl limit allows for (Newtonian) horizons surround-
ing a matter core of large but finite compactness. it was then
shown in Ref. [9] that the bootstrapped potential for
uniform sources admits a description in terms of a coherent
quantum state of gravitons, provided the matter source is
also described by quantum physics. It will therefore be
interesting to widen the survey of the parameter space for
polytropic stars here initiated in light of more explicit
quantum descriptions of matter.
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APPENDIX: GRAVITATIONAL ENERGY

The gravitational potential energy UG in the boot-
strapped picture can be estimated from the effective
Hamiltonian given in Eq. (2.8), which we separate into
three contributions as [4]

UG ¼ UBG þUin
GG þUout

GG; ðA1Þ

where

UBG ¼ 4π

Z
∞

0

r2drðρþ qcpÞVð1 − 2qΦVÞ; ðA2Þ

Uin
GG ¼ 1

2GN

Z
R

0

r2drðV 0
inÞ2ð1 − 4qΦV inÞ; ðA3Þ

Uout
GG ¼ 1

2GN

Z
∞

R
r2drðV 0

outÞ2ð1 − 4qΦVoutÞ: ðA4Þ

The contribution from the outer vacuum is exactly given by

Uout
GG ¼ GNM2

2R
; ðA5Þ

while the inner contributions can only be evaluated numeri-
cally within the approximations for the potential employed
in the previous sections.
Siince the potential V is negative and has positive slope

everywhere, one can see from their expressions above that
the “baryon-graviton” componentUBG is negative, whereas
the “graviton-graviton” contributions (Uin

GG, respectively
Uout

GG) are positive. As expected, the total gravitational
energy is found to be negative for all solutions, regardless
of the compactness of the source, the width of the gaussian,
or the polytropic index. The values for each of these
components for the cases discussed in Secs. III C and IV
can be found in Tables II and III, respectively.

TABLE II. Gravitational potential energy for the combinations of compactness and polytropic parameters
analyzed in Sec. III C.

X γ̄ n UBG=M Uin
GG=M Uout

GG=M UG=M

0.65 1 5=3 −6.9 3.6 0.21 −3.1
0.55 1 5=3 −5.8 2.8 0.15 −2.8
0.45 1 5=3 −4.7 2.0 0.10 −2.5
0.10 0.2 5=3 −1.7 × 10−2 4.0 × 10−3 4.0 × 10−3 −7.6 × 10−3

0.08 0.2 5=3 −1.3 × 10−2 2.8 × 10−3 3.2 × 10−3 −7.3 × 10−3

0.06 0.2 5=3 −1.0 × 10−2 1.8 × 10−3 1.8 × 10−3 −6.4 × 10−3

0.65 0.5 4=3 −6.6 3.8 0.21 −2.5
0.55 0.5 4=3 −5.9 3.3 0.15 −2.4
0.45 0.5 4=3 −5.2 2.8 0.10 −2.3

TABLE III. Gravitational potential energy for the combinations of Gaussian width, compactness, and polytropic
index analyzed in Sec. IV.

b X n UBG=M Uin
GG=M Uout

GG=M UG=M

0.5 0.01 3=2 −2.1 × 10−4 4.9 × 10−5 5.0 × 10−5 −1.1 × 10−4

0.5 0.1 3=2 −2.0 × 10−2 5.2 × 10−3 5.0 × 10−3 −9.7 × 10−3

0.5 0.7 5=3 −1.5 0.52 0.25 −0.74
1.0 0.01 3=2 −1.2 × 10−4 1.3 × 10−5 5.0 × 10−5 −5.5 × 10−5

1.0 0.1 3=2 −1.1 × 10−2 1.4 × 10−3 5.0 × 10−3 −4.7 × 10−3

1.0 0.7 5=3 −0.52 0.07 0.25 −0.20

POLYTROPIC STARS IN BOOTSTRAPPED NEWTONIAN … PHYS. REV. D 102, 104058 (2020)

104058-13



[1] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time (Cambridge University Press, Cambridge,
England, 1973).

[2] R. P. Geroch and J. H. Traschen, Phys. Rev. D 36, 1017
(1987); Conf. Proc. C 861214, 138 (1986); H. Balasin and
H. Nachbagauer, Classical Quantum Gravity 10, 2271
(1993).

[3] R. Brustein and A. J. M. Medved, Fortschr. Phys. 67,
1900058 (2019); Phys. Rev. D 99, 064019 (2019).

[4] R. Casadio, M. Lenzi, and O. Micu, Eur. Phys. J. C 79, 894
(2019).

[5] R. Casadio, M. Lenzi, and O. Micu, Phys. Rev. D 98,
104016 (2018).

[6] R. Casadio, A. Giugno, and A. Giusti, Phys. Lett. B 763,
337 (2016).

[7] R. Casadio, A. Giugno, A. Giusti, and M. Lenzi, Phys. Rev.
D 96, 044010 (2017).

[8] R. Carballo-Rubio, F. Di Filippo, and N. Moynihan, J.
Cosmol. Astropart. Phys. 10 (2019) 030; S. Deser, Gen.
Relativ. Gravit. 1, 9 (1970); 42, 641 (2010).

[9] R. Casadio, M. Lenzi, and A. Ciarfella, Phys. Rev. D 101,
124032 (2020).

[10] R. Casadio and I. Kuntz, Eur. Phys. J. C 80, 581 (2020).

[11] H. A. Buchdahl, Phys. Rev. 116, 1027 (1959).
[12] R. L. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 116,

1322 (1959).
[13] R. Casadio, O. Micu, and J. Mureika, Mod. Phys. Lett. A 35,

2050172 (2020).
[14] N. Dadhich, Curr. Sci. 109, 260 (2015); J. Franklin, Am. J.

Phys. 83, 332 (2015).
[15] G. P. Horendt, Polytropes: Applications in Astrophysics and

Related Fields (Springer, Netherlands, 2004).
[16] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374

(1939).
[17] R. Casadio, A. Giusti, I. Kuntz, and G. Neri (to be

published).
[18] G. Dvali and C. Gomez, J. Cosmol. Astropart. Phys. 01

(2014) 023; arXiv:1307.7630; Eur. Phys. J. C 74, 2752
(2014); Phys. Lett. B 719, 419 (2013); 716, 240 (2012);
Fortschr. Phys. 61, 742 (2013); G. Dvali, C. Gomez, and S.
Mukhanov, arXiv:1106.5894.

[19] A. Giusti, Int. J. Geom. Methods Mod. Phys. 16, 1930001
(2019).

[20] F. Kühnel and M. Sandstad, Phys. Rev. D 92, 124028
(2015).

[21] G. Dvali and A. Guβmann, Nucl. Phys. B913, 1001 (2016).

ROBERTO CASADIO and OCTAVIAN MICU PHYS. REV. D 102, 104058 (2020)

104058-14

https://doi.org/10.1103/PhysRevD.36.1017
https://doi.org/10.1103/PhysRevD.36.1017
https://doi.org/10.1088/0264-9381/10/11/010
https://doi.org/10.1088/0264-9381/10/11/010
https://doi.org/10.1002/prop.201900058
https://doi.org/10.1002/prop.201900058
https://doi.org/10.1103/PhysRevD.99.064019
https://doi.org/10.1140/epjc/s10052-019-7410-3
https://doi.org/10.1140/epjc/s10052-019-7410-3
https://doi.org/10.1103/PhysRevD.98.104016
https://doi.org/10.1103/PhysRevD.98.104016
https://doi.org/10.1016/j.physletb.2016.10.058
https://doi.org/10.1016/j.physletb.2016.10.058
https://doi.org/10.1103/PhysRevD.96.044010
https://doi.org/10.1103/PhysRevD.96.044010
https://doi.org/10.1088/1475-7516/2019/10/030
https://doi.org/10.1088/1475-7516/2019/10/030
https://doi.org/10.1007/BF00759198
https://doi.org/10.1007/BF00759198
https://doi.org/10.1007/s10714-009-0912-9
https://doi.org/10.1103/PhysRevD.101.124032
https://doi.org/10.1103/PhysRevD.101.124032
https://doi.org/10.1140/epjc/s10052-020-8146-9
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1142/S0217732320501722
https://doi.org/10.1142/S0217732320501722
https://doi.org/10.1119/1.4898585
https://doi.org/10.1119/1.4898585
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1088/1475-7516/2014/01/023
https://doi.org/10.1088/1475-7516/2014/01/023
https://arXiv.org/abs/1307.7630
https://doi.org/10.1140/epjc/s10052-014-2752-3
https://doi.org/10.1140/epjc/s10052-014-2752-3
https://doi.org/10.1016/j.physletb.2013.01.020
https://doi.org/10.1016/j.physletb.2012.08.019
https://doi.org/10.1002/prop.201300001
https://arXiv.org/abs/1106.5894
https://doi.org/10.1142/S0219887819300010
https://doi.org/10.1142/S0219887819300010
https://doi.org/10.1103/PhysRevD.92.124028
https://doi.org/10.1103/PhysRevD.92.124028
https://doi.org/10.1016/j.nuclphysb.2016.10.017

