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We derive an electrically charged static black hole spacetime of the Einstein-Euler-Heisenberg theory, in
terms of the Plebański dual variables. This solution is a nonlinear electromagnetic generalization of the
Reissner-Nordström solution, and it is characterized by the massM, the electric chargeQ of the black hole,
and the Euler-Heisenberg nonlinear constant, which includes the fine structure constant α. We study all
possible equatorial trajectories of test particles. Moreover, the orbits of photons are analyzed by means of
the effective Plebański pseudometric related to the geometrical metric and to the electromagnetic energy-
momentum tensor. The shape of the shadow of the black hole is also presented and discussed.

DOI: 10.1103/PhysRevD.102.104054

I. INTRODUCTION

The coupling of the Einstein theory to the class of
nonlinear electrodynamics (NLED) proposed by Plebański
[1] admits regular black hole solutions [2], i.e., black holes
whose curvature invariants R, RμνRμν, and RμναβRμναβ are
nonsingular. Therefore, there exist nowadays a great revival
of interest on it.
The interest in nonlinear electrodynamics began in 1912

when Mie [3] put forward the first model for nonlinear
electrodynamics. Between 1932 and 1935 Born and Infeld
[4] proposed their nonlinear theory, which represents a
classical generalization of the Maxwell-Lorentz theory for
accommodating stable solutions for the description of
electrons. Because of the nonlinearity of the electromag-
netic theory, the field of a point charge turns out to be finite
at r ¼ 0, in contrast to the well-known 1=r2 singularity of
the Coulomb field in Maxwell-Lorentz electrodynamics.
Moreover, the characteristic surface, the light cone,
depends on the field strength, and the superposition
principle for the electromagnetic field does not hold any
longer.
Black hole solutions to the Born-Infeld (BI) nonlinear

electrodynamics have been found first by Hoffmann [5] in
1935 and later by Salazar et al. [6] in 1987. Then, Plebański
[1] postulated a more general nonlinear electrodynamics,
which contains the Born-Infeld theory as special case.
Parity violating terms could emerge in Plebański nonlinear

electrodynamics [7]. A regular black hole solution to this
theory has been obtained by Ayón–Beato et al. [2] in 1998.1
Additionally, Bretón in 2002 [8] studied the trajectories of
test particles in a geometry that is the Born-Infeld nonlinear
electromagnetic generalization of the Reissner-Nordström
solution.
Currently, there exists a revival of interest in nonlinear

electrodynamics since the effective theory arising from
superstrings is an electrodynamics of the Born-Infeld type
[9–12]. Besides, much attention has been deserved to the
interpretation of the solutions to the Born-Infeld equations
as states of D-branes [13].
Moreover, quantum electrodynamical vacuum correc-

tions to the Maxwell-Lorentz theory can be accounted for
by an effective nonlinear theory derived by Euler and
Heisenberg [14,15]. The vacuum is treated as a specific
type of medium, the polarizability and magnetizability
properties of which are determined by the clouds of virtual
charges surrounding the real currents and charges [16].
Recently, Brodin et al. [17] proposed a possible direct
measurement of the Euler-Heisenberg effect. This theory is
a valid physical theory [18], and it is the low field limit of
the Born-Infeld one [19].
On the other hand, the concepts of a black hole shadow

surrounded by a photon ring have played an important role
since they are crucial for the interpretation of the obser-
vations recently reported by the Event Horizon Telescope
team from the supermassive black hole encountered at the
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1The curvature invariants mentioned above are nonsingular.
We do not know if its geodesic completeness has been studied.
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nucleus of the galaxy M87 [20]. The shadow at its center
contains the event horizon, i.e., a spherical surface that
represents a point of no return. Since light can cross the
surface only one way, inwards, the sphere should look
completely black. Close to the event horizon light rays bend
so much that they effectively orbit the black hole, forming a
photon ring [21].
In this paper, we rederive a static, spherically symmetric,

electrically charged black hole solution, by means of the
Plebański dual variables. This geometry is the Einstein-
Euler-Heisenberg (EEH) nonlinear electromagnetic gener-
alization of the Reissner-Nordström (RN) black hole
solution, characterized by its charge Q, its mass M, and
the Euler-Heisenberg constant, which includes the fine
structure constant α. The effective potentials of all possible
equatorial geodesics of test particles are studied.We consider
neutral massive and massless particles, charged particles, and
photons. Additionally, the shape of its shadow is analyzed.
It turns out that the nonlinearity of the electromagnetic

field modifies the size of the horizon as well as the effective
geometry seen by the Euler-Heisenberg nonlinear photons.
The outline of the paper is as follows: In Sec. II the

Einstein-Euler-Heisenberg theory is revisited, and the dual
variables are introduced. In Sec. III the static electrically
charged black hole solution of the theory is derived; the
event horizon is studied. Then, in Sec. IV, the effective
potentials for all the possible equatorial trajectories of test
particles are presented and analyzed. We consider
uncharged massive and massless particles, charged par-
ticles and photons. In Sec. V the shape of the shadow of the
electrically charged Einstein-Euler-Heisenberg black hole
is obtained and discussed. In Sec. VI the conclusions and a
summary of the work are presented.

II. THE EINSTEIN-EULER-HEISENBERG
THEORY AND DUAL VARIABLES

We revisit in this section the basic features of nonlinear
electrodynamics proposed by Euler and Heisenberg [14] in
the formalism introduced by Plebański [1] for solutions of
Petrov type-D.
The action for Einstein gravity minimally coupled to the

Euler-Heisenberg theory reads [14,22]

S ¼ 1

16πG

Z
M4

d4x
ffiffiffiffiffiffi
−g

p
R

þ 1

4π

Z
M4

d4x
ffiffiffiffiffiffi
−g

p �
−X þ 2α2

45m4
f4X2 þ 7Y2g

�
; ð1Þ

where R is the Ricci scalar curvature, G is the Newton’s
constant which we will take G ¼ 1, m the electron mass,
and α the fine structure constant, and the variables X and Y
are the only two independent relativistic invariants con-
structed from the Maxwell field in four dimensions, which
are defined as

X ¼ 1

4
FμνFμν; Y ¼ 1

4
Fμν

�Fμν; ð2Þ

�Fμν is the dual of the Faraday tensor Fμν ¼ Aμ;ν − Aν;μ,
and it is defined as usual �Fμν ¼ 1

2
ffiffiffiffi−gp ϵμνσρFσρ, and ϵμνσρ

is the completely antisymmetric tensor that satisfies
ϵμνσρϵ

μνσρ ¼ −4!.
The equations of motion derived from this action are

more easily written in terms of the Legendre dual descrip-
tion of nonlinear electrodynamics [1], which involves the
introduction of the tensor Pμν ¼ Bμ;ν − Bν;μ defined by

dLðX; YÞ ¼ −
1

2
PμνdFμν; ð3Þ

where LðX; YÞ is the Lagrangian density for the Euler-
Heisenberg nonlinear electrodynamics. Note that Pμν

coincides with Fμν for the linear Maxwell theory. In general
it reads

Pμν ¼ −ðLXFμν þ LY
�FμνÞ; ð4Þ

where subscripts on L denote differentiation. In our case it
reads

Pμν ¼ Fμν −
4α2

45m4
f4XFμν þ 7Y�Fμνg: ð5Þ

The components of Pμν are just the electric inductionD and
the magnetic field H; therefore (5) are the constitutive
relations of the Euler-Heisenberg nonlinear electrodynam-
ics. We denote by s and t the two independent invariants in
terms of the dual Plebański variables Pμν defined in the
following way:

s ¼ −
1

4
PμνPμν; t ¼ −

1

4
Pμν

�Pμν; ð6Þ

where �Pμν ¼ 1
2
ffiffiffiffi−gp ϵμνσρPσρ.

The covariant Hamiltonian Hðs; tÞ is written as

Hðs; tÞ ¼ −
1

2
PμνFμν − L: ð7Þ

For the Euler-Heisenberg theory the Hamiltonian (up to
terms of higher order in α) reads

Hðs; tÞ ¼ s −
2α2

45m4
f4s2 þ 7t2g: ð8Þ

The equations of the motion for the coupled system
read [6]

DμPμν ¼ 0; Rμν −
1

2
Rgμν ¼ 8πTμν; ð9Þ
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with the energy-momentum tensor,

Tμν ¼
1

4π
½HsPμ

βPνβ þ gμνð2sHs þ tHt −HÞ�: ð10Þ

The energy-momentum tensor for the Euler-Heisenberg
nonlinear electromagnetic field is given by

Tμν ¼
1

4π

��
1 −

16α2

45m4
s

�
Pμ

βPνβ

þ gμν

�
s −

2α2

45m4
f12s2 þ 7t2g

��
; ð11Þ

or in terms of the standard Maxwell variables,

Tμν ¼
1

4π

��
1 −

16α2

45m4
X
�
Fμ

βFνβ

−
28α2

45m4
YðFμ

β�Fνβ þ �Fμ
βFνβÞ

− gμν

�
X −

2α2

45m4
f4X2 þ 21Y2g

��
: ð12Þ

Setting α ¼ 0, Eq. (12) reduces to the standard linear
Maxwell energy-momentum tensor.
To obtain the original variables we use the constitutive or

material equations that relate Fμν with Pμν. These are

Fμν ¼ ½Hs þHt�Pμν ¼
�
1 −

4α2

45m4
f4sþ 7tg

�
Pμν: ð13Þ

III. ELECTRICALLY CHARGED STATIC
BLACK HOLE SOLUTIONS

In order to obtain the Einstein-Euler-Heisenberg gener-
alization of the Reissner-Nordström solution, we consider
the following static and spherically symmetric black hole
metric:

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð14Þ
with the signature f−;þ;þ;þg and fðrÞ ¼ 1–2mðrÞ=r,
and look for electrically charged black hole solutions. It is
important to mention the fact that, in the framework of
nonlinear electrodynamics, if one is looking for an exact
electrically charged black hole solution the natural varia-
bles one should use are the dual Plebański variables (Pμν),
and if one wants to find an exact magnetically charged one
the natural variables one should use are the standard
Maxwell variables (Fμν). Therefore, it is not possible to
have an exact solution with both charges with the same
variables.
Yajima et al. [23] were the first to find electrically/

magnetically charged black holes solutions to the EEH
theory.

On the one hand Ruffini et al. [24] obtained a similar
electrically charged solution, but they are devoted to study
QED effects near the horizon and QED corrections to
thermodynamical quantities as the black hole entropy, total
energy, and maximally extractable energy. On the other
hand, we analyze all the possible trajectories in the space-
time of the electrically charged EEH black hole and study
the vacuum polarization effects on its shadow, by using the
Plebański dual variables. The constitutive equations (13)
relate both the standard and the dual variables.
For the electrically charged case we assume the follow-

ing ansatz for the electromagnetic field:

Pμν ¼
Q
r2
ðδ0μδ1ν − δ1μδ

0
νÞ: ð15Þ

This ansatz satisfies the electromagnetic equation (9). The
invariants, Eq. (6), read

s ¼ Q2

2r4
; t ¼ 0; ð16Þ

the pseudoinvariant t is D ·H.
Therefore, integrating the Einstein equations, the electri-

cally charged static black hole solution reads

mðrÞ ¼ M −
Q̃2

2r
; ð17Þ

where the black hole charge is screened due to the Euler-
Heisenberg vacuum polarization effect,

Q → Q̃ ¼ Q

�
1 −

α

225π
E2
QðrÞ

�
1=2

: ð18Þ

When the electric field EQðrÞ≡ Q
r2Ec

of the charged black

hole is overcritical, electron-positron pair productions take
place, and EQ is screened down to its critical value

Ec ≡ m2c3
eℏ .

We use the units with ℏ ¼ c ¼ 1 throughout the article.
We consider the electric field EQ as a constant field at a
given r [24]. Notice that Eq. (17) behaves asymptotically
(r → ∞) as the Reissner-Nordström (RN) solution.
Additionally, for α ¼ 0, we recover the linear RN solution.
For Q ¼ 0 it reduces to the Schwarzschild solution.

A. The event horizon

The zeroes of the function fðrÞ indicate the existence
of a coordinates singularity which can eventually be
removed by a suitable change of coordinates, like
Eddington-Finkelstein ones. Thus, the event horizon
locus rh is determined by the condition fðrhÞ ¼ 0, which
leads to

mðrhÞ
rh

¼ 1

2
;⇒

M
rh

−
Q2

2r2h

�
1 −

α

225π
E2
Qh

�
¼ 1

2
; ð19Þ
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when using Eq. (17). Here EQh
¼ EQðrRNh

Þ is the value of
the electric field at the RN event horizon, since we are
studying the QED Euler-Heisenberg correction to the RN
black hole event horizon [24]. Solving this condition one
obtains

rh� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

�
1 −

α

225π
E2
Q�

�s
; ð20Þ

where EQ� ¼ EQðrRN�Þ, with the RN horizon locus

rRN� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
.

Due to the QED charge screening, the EEH event
horizon barely stretches in comparison to the RN event
horizon, as shown on Table I. On the other hand, the EEH
inner horizon shrinks as shown on Table II.

1. The extreme case

In the extreme case, rhþ ¼ rh− ¼ rhe . This happens when

r2he ¼ M2 ¼ Q2

�
1 −

α

225π
E2
Qhe

�
: ð21Þ

Or, since EQhe
¼ EQðrRNhe

¼ Q ¼ MÞ ¼ Q
M2Ec

, one gets

rhe ¼ M ¼ jQj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

α

225πQ2E2
c

r
: ð22Þ

Due to the nonlinear term, when the charge Q is fixed, the
extreme horizon shrinks compared to the RN case.
The reason is that the charge screening effect decreases
the electrostatic energy; hence, this leads to a smaller mass
M for the extreme black hole [24], since Q > M.

IV. TRAJECTORIES OF TEST PARTICLES

In this section we study all possible trajectories of test
particles on the equatorial plane (θ ¼ π=2) of the electri-
cally charged Einstein-Euler-Heisenberg static black hole.
Due to the spherical symmetry we can consider only these
orbits without loss of generality [25]. We study the
geodesic equations for uncharged and charged test par-
ticles, and also for photons. The problem reduces to analyze
ordinary effective potentials. The test particles have at least
two conserved quantities, corresponding to the two Killing
vectors ∂t, and ∂ϕ, which correspond to the energy E and
angular momentum l of the test particle.

A. Uncharged test particles

The geodesic equation for uncharged test particles reads

d2xμ

dτ2
þ Γμ

σρ
dxσ

dτ
dxρ

dτ
¼ 0: ð23Þ

On the equatorial plane, the Lagrangian is given by

L ¼ −fðrÞ_t2 þ _r2

fðrÞ þ
l2

r2
: ð24Þ

Massive test particles travel on timelike geodesics L ¼ −1,
while massless particles travel along null geodesics L ¼ 0.
The two conserved quantities, namely the energy and the
angular momentum are given by

E ¼ fðrÞ_t; l ¼ r2 _ϕ: ð25Þ

The components of the geodesic equation read

̈t ¼ −
f0ðrÞ
fðrÞ _r _t;

̈r ¼ −
1

2
fðrÞf0ðrÞ_t2 þ f0ðrÞ

2fðrÞ _r
2 þ rfðrÞ _ϕ2;

ϕ̈ ¼ −2l
_r
r3
: ð26Þ

Replacing the conserved quantities we obtain a first
integration of the equation for the r component. We obtain
an energylike equation _r2 þ VeffðrÞ ¼ E2, where the effec-
tive potential reads

TABLE I. The comparison between the EEH event horizon
locus rEHþ ¼ rhþ of Eq. (20) and that of the RN one rRNþ when
varying Q with fixed M ¼ 106 M⊙. We also show the screened
charge of the black hole Q̃ at the event horizon. The difference is
visible in the last two digits.

Q=M rRNþ=M Q̃=M rEHþ=M

0.4 1.916515139 0.39999991 1.916515177
0.5 1.86602540 0.4999998 1.86602551
0.6 1.8 0.5999996 1.80000039
0.7 1.7141428 0.6999993 1.7141436
0.8 1.6 0.799999 1.600002
0.9 1.43589 0.899997 1.43590
1 1.0 0.99998 1.0061

TABLE II. The comparison between the EEH inner horizon
locus rEH−

¼ rh− of Eq. (20) and that of the RN one rRN−
when

varying Q with fixed M ¼ 106 M⊙. We also show the screened
charge of the black hole Q̃ at the inner horizon. The difference is
visible in the last two digits.

Q=M rRN−
=M Q̃=M rEH−

=M

0.4 0.083 0.375 0.073
0.5 0.134 0.493 0.130
0.6 0.2 0.5975 0.198
0.7 0.2859 0.6991 0.2849
0.8 0.4 0.7996 0.3995
0.9 0.5641 0.8999 0.5638
1 1.0 0.99998 0.9939
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Veff ¼ fðrÞ
�
l2

r2
− L

�
: ð27Þ

Figure 1 shows the behavior of the effective potential
varying the angular momentum and the black hole charge.
There exist maxima of the potential for values of l=M
greater than 4. These correspond to unstable circular orbits
of radius rc as shown later in Fig. 3. For l ¼ 4M we find
minima of the potential which correspond to stable circular
orbits of radius rs. Bound orbits may occur due to the
existence of these minima. Figure 2 shows the behavior of
the effective potential as varying the mass M of the black
hole. These plots correspond to massive particles L ¼ −1.
In order that the massive particle L ¼ −1 remains in a

circular orbit with constant r ¼ rn the conditions to be
fulfilled are _r ¼ 0 and ̈r ¼ 0. Respectively,

E2 − VeffðrnÞ ¼ 0 ⇒ ð1 − E2Þr4n − 2Mr3n

þ ðl2 þ Q̃2Þr2n þ 2Ml2rn þ Q̃2l2 ¼ 0;

ð28Þ

V 0
effðrnÞ ¼ 0 ⇒ r3n −

l2 þ Q̃2

M
r2n þ 3l2rn −

2Q̃2l2

M
¼ 0;

ð29Þ

where Q̃ is the screened charge, Eq. (18), and rn is one of
the roots of the third degree polynomial of Eq. (29). From
Eqs. (28), (29),

l2 ¼ r2nðMrn − Q̃2Þ
r2n − 3Mrn þ 2Q̃2

; ð30Þ

FIG. 1. The behavior of the EEH effective potential VeffðrÞ for massive test particles L ¼ −1 and fixed black hole massM ¼ 105 M⊙
is shown. On the left-hand side we vary the angular momentum l with fixed RN charge Q ¼ 0.5M. The dashed curve corresponds to a
value of l ¼ 4M, while each upper curve corresponds to bigger values of the angular momentum: l=M ¼ f4; 6; 8; 10; 12g. On the right-
hand side we vary the RN charge Q for fixed l ¼ 10M. As the value of Q increases, the effective potential grows. The dashed curve
corresponds to Schwarzschild,Q ¼ 0. The RN charge values areQ=M ¼ f0; 0.4; 0.6; 0.8; 1g. For each value ofQ at a radius r there is a
screened charge Q̃ðrÞ. The values of the screened charge at the respective maximum locus Q̃ðrnÞ are displayed on each plot; the
nonlinear effects are barely visible. The maximum radius rn depends on both l and Q̃, as it is shown later in Eq. (29).

FIG. 2. The behavior of the EEH effective potential VeffðrÞ varyingM for massive test particles L ¼ −1. The parameters are l ¼ 4M,
Q ¼ 0.5M and M=M⊙ ¼ f105; 106; 107; 108g. As the solution is asymptotically RN, the nonlinear effects are barely visible, when
increasingM on the left-hand side (lhs). Bound orbits are found for these values of the parameters. On the right-hand side (rhs) the mass
M of the black hole varies fromM ¼ 104 M⊙ toM ¼ 108 M⊙ in 101=5 M⊙ steps. The maximum locus rc (rhs down) barely decreases,
and the effective potential evaluated on it VeffðrcÞ (rhs up) barely increases asM increases. There seems to be an asymptote asM → ∞
which would be analogue to the RN case α ¼ 0. The RN chargeQ ¼ 0.5M is being screened for each value of r. For example, at r ¼ rc
forM ¼ 104 M⊙, the screened charge is Q̃ ≈ 0.499867M. Therefore, the differences between the EEH case when compared with the RN
one are quantitatively very small.
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E2 ¼ ðr2n − 2Mrn þ Q̃2Þ2
r2nðr2n − 3Mrn þ 2Q̃2Þ : ð31Þ

An analytic solution of Eq. (29) reads [26]

rn
M

¼ Rþ 2
ffiffiffiffi
D

p
cos

�
1

3
arccosB þ 2

3
nπ

�
; n ¼ 0; 1; 2:

ð32Þ

The label n denotes each of the roots of the third degree
polynomial. The solution n ¼ 0 usually coincides with the
locus rs of a stable circular orbit, while the solution n ¼ 2
usually coincides with that of an unstable circular orbit
(UCO) rc. The quantities,

R ¼ l2 þ Q̃2

3M2
; D ¼ R2 −

l2

M2
;

B ¼
�
R3 −

l2

2M4
ðl2 − Q̃2Þ

�
D−3=2: ð33Þ

The screened charge at the stable circular orbit is evaluated
at the Reissner-Nordström stable circular orbit locus rsRN ,
which corresponds to Eq. (32) for Q instead of Q̃.
Analogously, for the UCO, the screened charge is Q̃ðrcRNÞ.

1. Innermost stable circular orbit

When solving the cubic equation, Eq. (29), by the
Cardano method [26] we find out that the discriminant Δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3ðB2 − 1Þ

p
of the cubic vanishes when B2 ¼ 1. This

corresponds to the innermost stable circular orbit (ISCO),

and it depends on the parameters Q̃=M and l=M, as seen
from Eq. (33). Thus, for a fixed Q̃ we may compute the
value of the angular momentum li which satisfies the
condition B2 ¼ 1, in order that the root of the Eq. (29) now
corresponds to the radius ri of the ISCO of the black hole
with an electric charge Q̃ at ri.
In Table III we show the corresponding angular momen-

tum li and ISCO radius ri for the EEH black hole, when
varying Q, in comparison with the RN case. The screened
charge is now evaluated at the RN ISCO, Q̃ðriRNÞ. Due to
the EH nonlinear contribution the ISCO barely stretches.
The ISCO satisfies the extremal condition [25],

V 00
effðriÞ ¼ 0 ⇒ 2Mr3i − 3Q̃2r2i

− l2i ð3r2i − 12Mri þ 10Q̃2Þ ¼ 0; ð34Þ

which together with Eq. (30) for rs ¼ ri and l ¼ li, gives

r3i − 6Mr2i þ 9Q̃2ri − 4Q̃4=M ¼ 0: ð35Þ

For the extreme case, Eq. (22),

lex ¼ 2
ffiffiffi
2

p
M ¼ 2

ffiffiffi
2

p
Q̃; riex ¼ 4M ¼ 4Q̃: ð36Þ

Although the ISCO stretches due to the EH nonlinear
contribution when compared to the RN case, in the extreme
case riex ¼ 4Q̃ < 4Q, since Q > M.
In order to perform a second integration of the r

component of the geodesic equation, Eq. (26), one should
use the change of variable u ¼ 1=r. From Eq. (27) with
L ¼ −1, the integral to be solved reads

�ϕ ¼
Z

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2 − 1þ 2Mu�=l2 − ð1þ Q̃2=l2Þu2 þ 2Mu3 − Q̃2u4

q : ð37Þ

Two points where the polynomial inside the square root vanishes correspond to the root of Eq. (29), i.e., the stable circular
orbit for instance, us ¼ 1=rs. Then Eq. (37) becomes

TABLE III. We display the screened charge of the black hole Q̃ at the ISCO, the EEH ISCO radius riEH ¼ ri, Eq. (32), with its
corresponding angular momentum liEH ¼ li, Eq. (30), and that of the RN case riRN with liRN , when varying Q with fixed M ¼ 104 M⊙.
The difference is visible in the last two digits.

Q=M liRN=M riRN=M Q̃=M liEH=M riEH=M

0
ffiffiffiffiffi
12

p
6 0

ffiffiffiffiffi
12

p
6

0.4 3.3847209 5.752780 0.399989 3.3847253 5.752794
0.5 3.337737 5.606643 0.499977 3.337750 5.606682
0.6 3.277653 5.41984 0.599954 3.277684 5.41994
0.7 3.202220 5.18523 0.699912 3.202294 5.18546
0.8 3.10779 4.8908 0.79983 3.10797 4.8913
0.9 2.9879 4.5137 0.89968 2.9883 4.5151
1 2.8284 4 0.99928 2.8298 4.0045
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�ϕ ¼
Z

du

ðu − usÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q̃2u2 þ 2ðM − Q̃2usÞuþ usðM − Q̃2us −M=ðl2u2sÞÞ

q : ð38Þ

Using the change of variable ξ ¼ ðu − usÞ−1,

∓ ϕ ¼
Z

dξ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q̃2 þ βξþ δξ2

p ; ð39Þ

with β ¼ 2ðM − 2Q̃2usÞ and δ ¼ usð3M − 4Q̃2us −M2=ðl2u2sÞÞ. The solution reads [27]

∓ ϕ ¼ 1ffiffiffi
δ

p ln
h
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δð−Q̃2 þ βξþ δξ2Þ

q
þ 2δξþ β

i
; δ > 0; ∓ ϕ ¼ −

1ffiffiffiffiffiffi
−δ

p arcsin

�
2δξþ βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δQ̃2 þ β2

p �
; δ < 0: ð40Þ

Figure 3 shows the trajectories of massive particles in the spacetime of EEH charged black hole.

FIG. 3. The behavior of the EEH effective potential VeffðrÞ varying the angular momentum l for massive test particles L ¼ −1 with
RN charge Q ¼ 0.8M and fixed black hole mass M ¼ 104 M⊙ (lhs), and the corresponding trajectories (rhs) are displayed. On the rhs
the continuous circle corresponds to a stable circular orbit and the dashed circle corresponds to the unstable circular orbit (UCO), i.e., the
solutions in Eq. (32). The dotted circles are the outer and the inner event horizons, Eq. (20), at rh ¼ 1.619M and rhint ¼ 0.38M
respectively. The dot-dashed line is the trajectory of a massive particle which goes near the black hole and returns to infinity. Finally, the
continuous line corresponds to the trajectory of a particle that reaches the UCO and then falls into the black hole interior. It corresponds
to the solution, Eq. (40). On the upper side we plot the case l ¼ 4M, where there are both a stable and an unstable circular orbits. The plot
below corresponds to the ISCO case with l ¼ 3.10797M. We also show the screened charge Q̃ at the ISCO (see Table III for Q̃
at the ISCO).

GEODESIC STRUCTURE OF THE EULER-HEISENBERG STATIC … PHYS. REV. D 102, 104054 (2020)

104054-7



B. Charged test particles

The geodesic equation of a test particle with charge q and
mass μ includes the contribution of the Lorentz force,

d2xα

dτ2
þ Γα

βδ

dxβ

dτ
dxδ

dτ
¼ −

q
μ
Fα

ν
dxν

dτ
: ð41Þ

For the electrically charged EEH black hole, by using the
material equations, Eq. (13), it reads [1]

d2xα

dτ2
þ Γα

βδ

dxβ

dτ
dxδ

dτ
¼ −

q
μ

�
1 −

10α

225π
E2
Q

�
Pα

ν
dxν

dτ
: ð42Þ

The Lagrangian, from which this geodesic equation arises,
is given by [25]

L ¼
�
−fðrÞ_t2 þ _r2

fðrÞ þ r2 _ϕ2

�
−
2q̃ Q̃
μr

_t; ð43Þ

where due to the Euler-Heisenberg vacuum polarization
effect the charge of the test particle is also screened,

q → q̃ ¼ q
�
1 −

19α

225π
E2
Q

�
1=2

; ð44Þ

analogously to Eq. (18). The angular momentum is still
l ¼ r2 _ϕ. From the t component of the geodesic equation we
find the conserved quantity related to the energy of the
charged test particle,

E ¼ fðrÞ_tþ q̃ Q̃
μr

: ð45Þ

In the RN limit, α ¼ 0, we recover the usual expression for
the energy of charged test particles, which involves the
Coulomb potential. In the EH nonlinear case we get the
Coulomb potential for the screened charges Q̃ and q̃. When

the test particle is uncharged q ¼ 0, the energies from
Eq. (25) and Eq. (45) coincide, i.e., E ¼ E, as expected.
The components of the geodesic equation for charged

test particles read

̈tþ f0ðrÞ
fðrÞ _r _t ¼

_r
fðrÞ

q̃ Q̃
μr2

;

̈rþ 1

2
fðrÞf0ðrÞ_t2 − f0ðrÞ

2fðrÞ _r
2 − rfðrÞ _ϕ2 ¼ q̃ Q̃

μr2
fðrÞ_t;

ϕ̈þ 2l
_r
r3

¼ 0: ð46Þ

FIG. 4. The behavior of the EEH effective potential VeffðrÞ varying the test particle charge q=μ. The parameters are l ¼ 4M, E ¼ 1,
M ¼ 104 M⊙,Q ¼ 0.5M and q=μ ¼ f0;−0.05;−0.1;−0.15; 0.05; 0.1; 0.15g. The central dashed line corresponds to the uncharged test
particle q ¼ 0. The upper curves correspond to positive test charges and the lower ones correspond to negative test charges. On the
lhs the effective potential is plotted and bound orbits are found. As in Fig. 2, the RN charge Q ¼ 0.5M is screened to Q̃ ≈ 0.499867M
at the maximum locus, now the test particle charge q is also screened. On the rhs we show the behavior of both the minimum locus rmin
(rhs down) and the effective potential evaluated on it VeffðrminÞ (rhs up) while varying q=μ.

FIG. 5. The behavior of the EEH effective potential VeffðrÞ
varying the RN charge Q. The dashed curve corresponds to
Schwarzschild. The parameters are l ¼ 10M, E ¼ 1, q=μ ¼ 0.1,
M ¼ 105 M⊙, and Q=M ¼ f0;−0.6;−0.7;−0.8; 0.6; 0.7; 0.8g.
For bigger values of jQj the potential grows, but there is an
upper curve and a lower one for each sign of the charge. For each
value of Q at a radius r the charge Q̃ðrÞ is screened, as on the rhs
of Fig. 1, also the particle charge q̃ðrÞ is screened.
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After a first integration of the r component, we get an
equation of the form _r2 þ VeffðrÞ ¼ 0, with the effective
potential,

Veff ¼ fðrÞ
�
l2

r2
þ 1

�
−
�
E −

q̃ Q̃
μr

�
2

: ð47Þ

The effective potential depends on the energy E, angular
momentum l, and charge q̃ of the test particle. We are
interested in the product of the charges q̃ Q̃. When both the
black hole and the test particle have the same charge sign,
the effective potential will grow due to an acting repulsive
force. When the signs of the charges are opposite, there will
be an attractive force.

This effect is shown in Fig. 4, where the maximum of the
potential grows or decreases depending on the sign of both
the black hole and the test particle charges. Nevertheless,
the effect is small since we are considering test charges. In
Fig. 5 we show the effect of varying the RN charge Q,
considering both positive and negative charges, since the
cross term of Eq. (47) depends lineally on the black hole
charge. We may find maxima and minima of the potential,
which would correspond to the critical radius of the
unstable and of the stable circular orbits.
In order to perform a second integration of the r

component, Eq. (47), we use the change of variable
u ¼ 1=r. The integral to be solved reads

�ϕ ¼
Z

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2 − 1þ 2ðM − EQ̃ q̃ =μÞu�=l2 − ½1þ Q̃2=l2 − q̃2Q̃2=ðμ2l2Þ�u2 þ 2Mu3 − Q̃2u4

q : ð48Þ

Analogously, the polynomial inside the square root vanishes at the critical points uch. Hence, Eq. (48) becomes

�ϕ ¼
Z

du

ðu − uchÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q̃2u2 þ 2ðM − Q̃2uchÞuþ uchðM − Q̃2uch − ðM − EQ̃ q̃ =μÞ=ðl2u2chÞÞ

q : ð49Þ

Using the change of variable ξ ¼ ðu − uchÞ−1, the integral
to be solved is equivalent to that of Eq. (39), with
β ¼ 2ðM − 2Q̃2uchÞ and δ ¼ uchð3M − 4Q̃2uch−
ðM − EQ̃ q̃ =μÞ=ðl2u2chÞÞ. The solution is Eq. (40) with
the corresponding values of β and δ.

C. Massless test particles

The effective potential for massless test particles (like
gravitons) is that of Eq. (27) with L ¼ 0, i.e.,

Veff ¼ fðrÞ l
2

r2
: ð50Þ

In order that the massless particle remains in a circular orbit
with r ¼ rcg ¼ const the conditions to be fulfilled, are

_r ¼ 0 ⇒ E2 − VeffðrcgÞ ¼ 0; ̈r ¼ 0 ⇒ V 0
effðrcgÞ ¼ 0:

ð51Þ
From E2 − VeffðrcgÞ ¼ 0 one has

η2 ¼ r2cg
fðrcgÞ

; ð52Þ

where η≡ l
E is the impact parameter and r ¼ rcg is one of

the roots of the polynomial arising from the condition
V 0
effðrÞ ¼ 0, i.e.,

rðr − 3MÞ þ 2Q̃2 ¼ 0: ð53Þ
Its solutions read

rcg� ¼ 3

2
M

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9

�
Q̃
M

�
2

s !
; ð54Þ

and rcg ¼ rcgþ corresponds to the radius of the massless
particles unstable circular orbit (UCO).
Analogously to the massive particles case, we use the

change of variable u ¼ 1=r to perform a second integration.
From Eq. (50), the integral to be solved reads

�ϕ ¼
Z

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q̃2u4 þ 2Mu3 − u2 þ 1

η2

q ;

¼
Z

du

ðu − ucgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q̃2u2 þ 2ðM − Q̃2ucgÞuþ ucgðM − Q̃2ucgÞ

q : ð55Þ
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In this case, the points where the polynomial inside the
square root vanishes correspond to the UCO ucg ¼ 1=rcg .
Using the change of variable ξ ¼ ðu − ucgÞ−1, the integral
to be solved is equivalent to that of Eq. (39), with
β ¼ 2ðM − 2Q̃2ucgÞ and δ ¼ ucgð3M − 4Q̃2ucgÞ, and the
solution is Eq. (40).

D. Photons

In linear Maxwell-Lorentz electrodynamics, the discon-
tinuities of the field propagate according to the equation for
the characteristic surfaces, which in standard optics is
known as eikonal equation. On a curved spacetime the
equation for the characteristic surfaces reads

gμνS;μS;ν ¼ 0; ð56Þ
the corresponding linear photons travel along null geo-
desics of the geometrical metric gμν. In EH nonlinear
electrodynamics, photons propagate along null geodesics
of the effective Plebański pseudometric γμν [1] given by

γμν ¼ gμν þ 64πα2

45m4
Tμν; ð57Þ

which differs from the geometrical metric gμν, since it
contains the energy-momentum tensor as well. Replacing
the energy-momentum tensor, Eq. (11), with t ¼ 0 and up
to the leading order in α, one obtains

γμν ¼
�
1þ 16α2

45m4
s

�
gμν þ 16α2

45m4
PμβPν

β: ð58Þ

The propagation equation for the nonlinear electromagnetic
field discontinuities reads

γμνS;μS;ν ¼ 0; ð59Þ
where S;μ are the normal vectors to the characteristic
surface S. For the EEH theory the propagation equation
reads

��
1þ 16α2

45m4
s

�
gμν þ 16α2

45m4
PμβPν

β

�
S;μS;ν ¼ 0: ð60Þ

Therefore, the energy-momentum tensor, Tμν of the EH
nonlinear field is responsible for the fact that these surfaces
are not null surfaces of the geometrical metric, obeying
Eq. (56). However, for α ¼ 0, i.e., linear Maxwell-Lorentz
electrodynamics, both metrics coincide.
Hence, the trajectories of nonlinear photons are obtained

from the effective metric Eq. (57),

γμν _xμ _xν ¼
�
gμν −

64πα2

45m4
Tμν

�
_xμ _xν ¼ 0: ð61Þ

On the equatorial plane, the trajectories for photons satisfy
the equation,

_r2 þ
�
1 −

32α2

45m4
s

�
fðrÞr2 _ϕ2 ¼ ðfðrÞ_tÞ2: ð62Þ

In order to compare it with the RN case, α ¼ 0, we
introduce the constants of motion, Eq. (25). Identifying
α ¼ e2=4π and 2s ¼ E2

QE
2
c, the analogous effective poten-

tial for nonlinear photons reads

Veff ¼
�
1 −

20α

225π
E2
Q

�
fðrÞl2
r2

; ð63Þ

which differs from Eq. (50) by the factor −20αE2
Q=225π.

Both potentials coincide in the linear case α ¼ 0.
On the left-hand side of Fig. 6 the effect on the effective

potential of varying the RN charge Q is shown. It lays
always under that of the linear RN case. On the right-hand
side of Fig. 6 we show the effect of varying the mass M of
the black hole. We observe that the effect is barely
appreciable, for some values of the parameters one must
consider the screening effect on the light trajectories.

FIG. 6. On the lhs we show the effective potential for photons, Eq. (63), for different values of the RN charge Q. The values of the
parameters are l ¼ 10M,M ¼ 104 M⊙, and Q=M ¼ f0; 0.4; 0.6; 0.8g. The dashed curve corresponds to Schwarzschild (Q ¼ 0). As Q
increases the potential grows, it is always located under the RN case, since Q is screened for each value of r. This is shown on the rhs,
where we vary the massM of the black hole, for fixed l ¼ 10M and Q ¼ 0.5M. The casesM=M⊙ ¼ f105; 106g are together on the top
of the plot with the linear case α ¼ 0, but the screening effect becomes relevant forM ¼ 104 M⊙ and near the maximum of the potential,
which corresponds to the UCO. There are no stable bound orbits outside the event horizon.
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On the other hand, the equations of motion on the
equatorial plane are now

ð_t; _r; _θ; _ϕÞ ¼
��

1−
10α

225π
E2
Q

�
E

fðrÞ ;�
1−

10α

225π
E2
Q

� ffiffiffiffiffiffiffiffiffi
RðrÞ

p
;0;

�
1þ 10α

225π
E2
Q

�
l
r2

�
;

ð64Þ

with the effective potential,

RðrÞ ¼ E2 −
�
1þ 10α

225πE
2
Q

1 − 10α
225πE

2
Q

�
fðrÞ l

2

r2
: ð65Þ

Notice that the constants of motion E and l contain now an
EH term.
The photons on the light ring satisfy the conditions

RðrcÞ ¼ 0 and R0ðrcÞ ¼ 0. The impact parameter η now
reads

η2 ¼ r2c
fðrcÞ

�
1 − 10α

225πE
2
Q

1þ 10α
225πE

2
Q

�
: ð66Þ

Thus, from the second condition R0ðrcÞ¼0⇒V 0
effðrcÞ¼0,

with VeffðrÞ the effective potential for massless particles,
Eq. (50). This means that rc ¼ rcg , Eq. (54).
The second integration to be performed is, up to the

leading term on α,

�ϕ

1þ 10α
225πE

2
Q

¼
Z

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Q̃2u4 þ 2Mu3 − u2 þ 1

η2Q

q ; ð67Þ

which is similar to that of Eq. (55) with ηQ≈
η=½1 − 10α

225πE
2
Q� and η of Eq. (66). Hence, the solution is that

of Eq. (40) with β ¼ 2ðM − 2Q̃2ucÞ, δ ¼ ucð3M − 4Q̃2ucÞ,
and considering the EH term dividing ϕ on Eq. (67). The
critical point corresponds to the light ring uc ¼ 1=rc.

FIG. 7. The comparison between the effective potential for photons in the EEH black hole (down) and that in the linear RN one α ¼ 0

(up), with fixed massM ¼ 104 M⊙ and RN charge Q ¼ 0.8M. Since in the EEH case the charged is screened, we show its value at the
UCO Q̃ðrcÞ. On the rhs of each potential we show the corresponding trajectories (continuous line) of a particle that reaches the UCO
(dashed circles) and then falls into the event horizon and reaches the inner horizon (dotted circles). There are no minima of the potential;
thus there are no stable bound orbits. The screening effect stretches the light ring when compared to the RN case.
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Figure 7 shows the comparison between the effective
potential for photons in the RN case, and that in the EEH
case. These potentials have no minimum; thus there cannot
exist stable bound orbits as in the case for massive particles
(see Fig. 3). There are unstable circular orbits at the
maxima of the potential which correspond to the light rings.

V. SHADOW OF THE EINSTEIN-EULER-
HEISENBERG BLACK HOLE

As it is well known, the spacetime curvature deflects the
light trajectories. In particular the strong gravitational
fields, like the ones generated by black holes, are able
to increase the deflection angles significantly. In particular,
they can produce unstable circular orbits of light around
them, the so-called light rings. Since the orbits are not
stable, part of the photons leaves them and gets out to a
distant observer and the other part of them goes into the
event horizon and falls down into the black hole interior.
They are not a radiation source.
As it was already mentioned, in nonlinear electrody-

namics, photons follow null geodesics of the effective
Plebański pseudometric, which differ from the null geo-
desics of the geometrical metric followed by the massless
particles like gravitons. In the case of photons the unstable
circular orbits are the light rings, and the scattered photons
reaching a distant observer are the boundary of the black
hole shadow. Each point of the boundary is associated to a
particular orbit [28].
Photons follow null geodesics of γμν, Eq. (58). From

Eq. (64), the covariant momenta pμ ¼ γμν _xν in the equa-
torial plane, up to first order in α, read

pμ ¼
�
−E;

ffiffiffiffiffiffiffiffiffi
RðrÞp
fðrÞ ; 0; l

�
; ð68Þ

with the function RðrÞ given by Eq. (65). Now, we calculate
the plane of the image for a distant observer in the
equatorial plane with fixed coordinates r ¼ r0, θ ¼ π=2,
and whose worldlines are perpendicular to the hypersurface
t ¼ t0 ¼ const. A basis of this frame is given by [21,29],

eμðtÞ ¼
�

1ffiffiffiffiffiffiffiffiffi
fðrÞp ; 0; 0; 0

�
; eμðrÞ ¼ ð0;

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
; 0; 0Þ;

eμðθÞ ¼
�
0; 0;

1

r
; 0

�
; eμðϕÞ ¼

�
0; 0; 0;

1

r

�
: ð69Þ

In this basis the momenta pðαÞ ¼ ηðαβÞeμðβÞpμ of the photon

read

pðαÞ ¼
 

Effiffiffiffiffiffiffiffiffi
fðrÞp ;

ffiffiffiffiffiffiffiffiffi
RðrÞ
fðrÞ

s
; 0;

l
r

!
: ð70Þ

In terms of the impact parameter η, the celestial coordinates
x and y, for r0 → ∞ and θ0 ¼ π=2, are the following:

y ¼ r0

�
pðθÞ

pðtÞ

�
0

¼ 0; x ¼ −r0
�
pðϕÞ

pðtÞ

�
0

¼ −η: ð71Þ

If the observer is in the equatorial plane, the light ring only
determines two points of the shadow boundary. Taking
advantage of the spherical symmetry this result can be
generalized for distant observers outside of the equatorial
plane, by using Eq. (66).
Hence, the celestial coordinates fulfill the equation for

the circle,

x2 þ y2 ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 10α
225πE

2
Q

1þ 10α
225πE

2
Q

s
rcffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p
!2

: ð72Þ

We recover the linear Reissner-Nordström case for α ¼ 0.
Equation (72) corresponds to the shadow of the EEH black
hole. This result means that although the photons remain in
a circle of radius rc, the distant observer measures a ring
which contains not only the factor fðrcÞ−1=2, but also a
factor containing the EH nonlinear term. This factor is
always less than 1. Hence, the EEH shadow is always
inside of the RN one, rshEH < rshRN .

FIG. 8. EEH black hole shadow radius rsh. On the lhs we vary the RN charge from Q ¼ 0 to Q ¼ M in 0.05 steps, with fixed mass
M ¼ 105 M⊙. As Q increases, the shadow shrinks. On the rhs we varyM fromM ¼ 105 M⊙ toM ¼ 109 M⊙ in 101=5 M⊙ increments,
with fixed RN charge Q ¼ 0.5M. As M increases, rsh increases; nevertheless the EEH shadow is always inside of the RN one, which
would correspond to the asymptote M → ∞.
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For the extreme RN case Q ¼ M the shadow radius is
rshRN ¼ 4Q, while for the extreme EEH case Eq. (22), the
shadow radius is rsh ¼ 4Q̃ < 4Q. We display the shadow
radius in Fig. 8 varying the values of the RN charge Q=M
and the mass M. In Fig. 9 we display the shadow of the
EEH black hole for fixed Q=M and M.

VI. CONCLUSIONS AND SUMMARY

We consider the effective QED theory after one-loop,
i.e., the Euler-Heisenberg nonlinear electrodynamics.
The vacuum is treated as a specific type of medium, the
polarizability properties of which are determined by the
clouds of virtual charges surrounding the real ones,
this represents a screening effect of the real charges.
We found an Einstein-Euler-Heisenberg generalization
of the Reissner-Nordström black hole solution. The
Einstein-Euler-Heisenberg static black hole solution is
asymptotically Reissner-Nordström and reduces to
Reissner-Nordström for α ¼ 0. Moreover, for Q ¼ 0 it

reduces to the Schwarzschild black hole. The screening
effect on the charge stretches the size of the event horizon.
In the extreme case of the Einstein-Euler-Heisenberg black
hole, the horizon shrinks compared to the extreme RN
horizon and the charge becomes greater than the mass.
We studied all the possible trajectories in this spacetime,

by analytically integrating the geodesic equations and
analyzing the corresponding effective potentials. The stable
and the unstable circular orbits of massive test particles are
barely modified due to the EH nonlinear contribution. In
particular the ISCO barely stretches when compared to the
RN one. We also studied the trajectories of charged test
particles, considering the contribution of the Lorentz force.
We find out that the test particle charge is also screened due
to the vacuum polarization effect.
The screening effect on the trajectories of uncharged and

charged test particles is barely visible. Nevertheless the
effect becomes relevant for the photons trajectories, due to
the fact that the effective Plebański pseudometric contains
the energy-momentum tensor of the nonlinear Euler-
Heisenberg electromagnetic field [1,30]. The effective
potential for the nonlinear photons lays always under that
for the linear Reissner-Nordström ones.
We also studied the shadow of the black hole measured

by a distant observer, by means of the effective Plebański
pseudometric. The shadow barely shrinks when we con-
sider the Euler-Heisenberg screening effect. The Einstein-
Euler-Heisenberg black hole shadow lays always inside the
shadow of the RN black hole. It is worthwhile to stress
the fact that the tiny variations of the shadow induced by the
Einstein-Euler-Heisenberg metric (or the RN metric) are in
general not observable, unless one has extremely accurate
mass and distance measurements of the black hole, what is
usually not the case. Notice that a Schwarzschild black hole
with a slightly decreased mass could produce the exactly
same shadow.
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