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Starting froma local action formimetic gravity that includes higher derivatives of a scalar fieldϕ, we derive
a gauge-fixed canonical action of the theory in the Arnowitt-Deser-Misner canonical formalism in the time
gauge ϕ ¼ t. This reduced action reveals (i) a nonvanishing conserved physical Hamiltonian that is a sum of
two terms, the expression for the Hamiltonian constraint of general relativity and a function of the expansion
scalar, and (ii) a reduced symplectic structure that geometrically provides the Dirac brackets. As applications
of our general analysis, we compute the physical Hamiltonians and canonical equations for perturbations
around Minkowski spacetime, homogeneous cosmologies, and spherically symmetric spacetimes.
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I. INTRODUCTION

Since there is no widely accepted final theory of
quantum gravity from which phenomenological conse-
quences may be computed, there is continuing interest in
effective classical theories that are postulated to include
expected effects from quantum gravity. One such feature
is singularity avoidance in cosmology and black-hole
physics. Among such theories are effective loop quantum
cosmology [1], Hořava-Lifshitz gravity [2], and most
recently, mimetic gravity [3,4].
While the main interest in such models is often restricted

to the derivation of special classes of solutions such as
cosmological models and spherically symmetric geom-
etries, it is also useful to study their general structure,
particularly from the canonical point of view. This is
because the manifestation of general covariance in
Hamiltonian theories is through the algebra of first class
constraints. For pure gravity theories with only metric
degrees of freedom, there is a severe restriction on possible
deformations of constraints [5]: first class constraints obey
the Dirac-Bergmann algebra of hypersurface deformations.
Inclusion of matter fields allows more possibilities, permit-
ting certain modified algebras. Examples of this are the use
of matter reference systems in Ref. [6] and anomaly-free
deformations of the constraints algebra designed to encode
quantum-geometry corrections [7].
For gravity theories the canonical formulation is the

appropriate framework to identify convenient choices of
time and their corresponding physical Hamiltonians. This is
potentially useful not just for quantization and the related
“problem of time,” but also for understanding features of the

dynamics at both the classical and quantum levels—some
physical Hamiltonians may be more useful than others,
particularly if they turn out to be time independent. This last
feature typically requires matter time gauges rather than
geometric ones made from the Arnowitt-Deser-Misner
(ADM) variables [6]; obvious choices such as t ¼ ðspatial
volumeÞ yield unwieldy time-dependent Hamiltonians that
are singular at t ¼ 0. For general relativity (GR) coupled to
pressureless irrotational dust [6,8,9], or a massless scalar
field with zero potential [10,11], the ϕ ¼ t gauge condition
yields Hamiltonians that are time independent. As we show,
this gauge is also a natural one in scalar-tensor theories such
asmimetic gravity, although in the literature on thesemodels
ϕ ¼ t is usually seen as a consequence of the field equations
in synchronous coordinates (see, e.g., Ref. [4]), rather than
as a canonical gauge in theHamiltonian theory. It is with this
perspective in mind that we approach the topic of this paper.
Ourmain result in this paper is a derivation of the physical

Hamiltonian for mimetic gravity in the time gauge ϕ ¼ t
(“dust time gauge”). This follows a path similar to the
derivation for GR with dust [8], but has a certain distinctive
feature; this is a restriction of the symplectic structure to a
surface in the phase space that goes beyond just the
condition ϕ ¼ t due to the presence of auxiliary fields in
the starting action. We note that Hamiltonian analyses of
mimetic gravity have appeared in Refs. [12–14]. However,
neither of these works considers ϕ ¼ t as a canonical gauge
choice that naturally provides a reduced action, symplectic
structure, and physical Hamiltonian.
In the present work we focus on the version of mimetic

gravity proposed in Ref. [4], using the simpler equivalent
action used in Ref. [13]. This theory is a generalization of
the original mimetic gravity [3] (whose reformulation [15]
led to further developments in Refs. [4,16]). For a review,
see Ref. [17].
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Theories of this type and their generalizations have been
applied in various contexts, including cosmological mod-
els, where the question of whether its equations correspond
to those of effective loop quantum cosmology (LQC) is
addressed [13,18–21]. It has also been noted that the
mimetic gravity models belong to a class of modified
gravity theories where the Kasner exponents in the pre- and
post-bounce phases obey the same transition rules as in
LQC [22,23]. However, these applications to LQC have
limitations in the anisotropic [24,25] and spherically
symmetric sectors [26]. Anisotropic bouncing solutions
of [4] have also been used in [27] to study holographic
signatures of resolved singularities.
The outline of the paper is as follows. In Sec. II we give

the canonical analysis of the action in the ADM formalism.
This begins with the action given in Ref. [13], but differs in
the subsequent analysis. We show that the Hamiltonian and
diffeomorphism constraints are first class and close as the
standard Dirac-Bergmann algebra. We use this fact in
Sec. III to fix the gauge ϕ ¼ t, show that it is free from
the Gribov ambiguity, and proceed to derive the reduced
canonical action. This requires a reduction of the symplec-
tic structure to take into account the field equations of the
auxiliary fields in the action. In Sec. IV we analyze the
linearized theory around Minkowski spacetime. In Sec. V
we apply the general results to the flat Friedmann-
Lemaître-Robertson-Walker (FLRW) model and to spheri-
cally symmetric spacetimes. We conclude in Sec. VI with a
summary and discussion. Finally in a technical appendix
(Appendix) we analyze in detail a singular limit of the
theory and show that this limit has hidden symmetries.
[We use the metric signature ð−þþþÞ, and units such
that c ¼ 8πG ¼ 1.]

II. CANONICAL ANALYSIS

We begin with the action [13]

S½gab;ϕ; λ; β; χ� ¼
Z
Σ×R

d4x
ffiffiffiffiffiffi
−g

p �
R
2
−
λ

2
ð1þ gab∂aϕ∂bϕÞ

þ fðχÞ þ βχ − gab∂aβ∂bϕ

�

≡ SG½gab� þ SM½ϕ; λ; β; χ; gab�; ð2:1Þ

where SG denotes the Einstein-Hilbert action and SM is the
action for the scalar field sector.1 The spacetime manifold is
assumed to be Σ ×R. The action (2.1) is dynamically
equivalent to the version of mimetic gravity proposed in
Ref. [4] (which includes higher derivatives of the scalar ϕ
through the function f), but is better suited for a canonical

analysis. (The original action of Ref. [4] is recovered by
eliminating the auxiliary fields β and χ, using their
equations of motion.)
We start by reviewing the ADM decomposition of the

action (2.1) [13], generalizing the well-known procedure in
GR. We introduce on the manifold a timelike vector field
ta ¼ Nna þ Na, where na is the unit normal to the spatial
hypersurfaces Σ. This leads to the definition of the positive-
definite spatial metric qab ¼ gab þ nanb, and

ffiffiffiffiffiffi
−g

p ¼ N
ffiffiffi
q

p
; gab ¼ qab −

1

N2
ðta − NaÞðtb − NbÞ:

ð2:2Þ

The action can then be rewritten, up to a boundary term, as

S ¼
Z

d4xN
ffiffiffi
q

p �
R
2
−
λ

2
ð1þ qab∂aϕ∂bϕ − ðLnϕÞ2Þ

þ fðχÞ þ βχ − qab∂aβ∂bϕþ LnβLnϕ

�
: ð2:3Þ

The Lie derivative of a generic scalar function F along the
normal direction na can be decomposed as follows:

LnF ¼ na∂aF ¼ 1

N
ð _F − LNF Þ; ð2:4Þ

where an overdot is used to denote the Lie derivative along
ta, i.e. _F ≔ LtF . Using Eq. (2.4), we can easily obtain the
canonical momenta expressed in terms of the velocities

pβ ≔
δS

δ _β
¼ ffiffiffi

q
p

Lnϕ ¼
ffiffiffi
q

p
N

ð _ϕ − LNϕÞ; ð2:5Þ

pϕ ≔
δS

δ _ϕ
¼ ffiffiffi

q
p ðλLnϕþ LnβÞ

¼
ffiffiffi
q

p
N

½ðλ _ϕþ _βÞ − ðλLNϕþ LNβÞ�: ð2:6Þ

The momenta canonically conjugated to χ, λ, N, and Na

vanish identically. Since the gravitational sector of (2.1) is
the same as in GR, the relation between the canonical
momentum πab and the extrinsic curvature Kab is the
standard one,

πab ≔
δS
δ _qab

¼
ffiffiffi
q

p
2

ðKab − KqabÞ; ð2:7Þ

where the extrinsic curvature is defined as usual

Kab ≔
1

2
Lnqab ¼

1

2N
ð _qab − 2DðaNbÞÞ: ð2:8Þ

Inverting the relations (2.5) and (2.7) and substituting for
the velocities in (2.1) gives the canonical action

1Our conventions for the signs of the terms in the action (2.1)
are slightly different from Ref. [13], and are such that on-shell we
have χ ¼ −□ϕ, which is consistent with the geometric inter-
pretation of χ as the expansion in the synchronous gauge [4].
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S¼
Z

dtd3xðπab _qabþpϕ
_ϕþpβ

_β−NH−NaCaÞ; ð2:9Þ

where

H¼ 2ffiffiffi
q

p
�
π2ab−

1

2
π2
�
−

ffiffiffi
q

p
2

Rð3Þ þ pβffiffiffi
q

p
�
pϕ−

λ

2
pβ

�

þ ffiffiffi
q

p �
λ

2
ð1þqabDaϕDbϕÞþqabDaβDbϕ−fðχÞ−βχ

�
;

ð2:10Þ

Ca ¼ −2Dbπ
b
a þ pϕDaϕþ pβDaβ: ð2:11Þ

Varying the action with respect to N and Na gives the
Hamiltonian and diffeomorphism constraints

H ≈ 0; Ca ≈ 0: ð2:12Þ

At this stage we do not derive the remaining constraints
by applying the Dirac algorithm (as done in Ref. [13]).
Instead, as we will see below, it is technically advantageous
to first fix a canonical time gauge after establishing that the
surface deformation algebra remains first class.

A. Constraint algebra

We now show that the algebra of constraints (2.12) is the
expected Dirac-Bergmann algebra and is therefore first
class. This necessary step sets the stage for fixing the time
gauge ϕ ¼ t, which we carry out in the next section.
The nontrivial calculation is the Poisson bracket of the

Hamiltonian constraint with itself. It is convenient to split
the Hamiltonian constraint into the sum of two terms
H ¼ HG þHM, representing a gravitational contribution
and nonstandard matter Hamiltonian, given respectively by

HG ¼ 2ffiffiffi
q

p
�
π2ab −

1

2
π2
�
−

ffiffiffi
q

p
2

Rð3Þ; ð2:13Þ

HM¼ pβffiffiffi
q

p
�
pϕ−

λ

2
pβ

�

þ ffiffiffi
q

p �
λ

2
ð1þqabDaϕDbϕÞþqabDaβDbϕ−fðχÞ−βχ

�
:

ð2:14Þ

HG coincides with the standard GR Hamiltonian constraint,
and therefore we have the standard result

fHGðxÞ;HGðyÞg
¼ ð2πabðxÞ−πðxÞqabðxÞÞT̂ ab

ðyÞδðx;yÞ− ðx↔ yÞ; ð2:15Þ

where

T̂ ab ≔ 2DðaDbÞ − qabDcDc: ð2:16Þ

The Poisson bracket for the matter terms is

fHMðxÞ;HMðyÞg
¼ −qabðyÞðpϕðxÞDaϕðyÞ þ pβðxÞDaβðyÞÞDðyÞ

b δðx; yÞ
− ðx ↔ yÞ; ð2:17Þ

and for the mixed term it is

fHGðxÞ;HMðyÞg ∝ δðx; yÞ: ð2:18Þ

The detailed form of the proportionality factor in Eq. (2.18)
is unimportant for our purposes; it will be sufficient to
note that no derivatives of the delta function appear in
(2.18), which implies that such a term is exactly canceled
by fHMðyÞ;HGðxÞg. Combining these results gives the
Poisson bracket of the full Hamiltonian constraint with
itself,

fHðxÞ;HðyÞg ¼ fHGðxÞ;HGðyÞg þ fHMðxÞ;HMðyÞg
¼ ð2πabðxÞ − πðxÞqabðxÞÞT̂ab

ðyÞδðx; yÞ
− qabðyÞðpϕðxÞDaϕðyÞ
þ pβðxÞDaβðyÞÞDðyÞ

b δðx; yÞ
− ðx ↔ yÞ: ð2:19Þ

Denoting the smeared Hamiltonian and diffeomorphism
constraints, respectively, as H⊥½N� ¼ R

d3xNðxÞHðxÞ and
C½N⃗� ¼ R

d3xNaCaðxÞ, we obtain from the above results

fH⊥½M�; H⊥½N�g ¼ C½V⃗�; ð2:20Þ

where Va ¼ habðM∂bN − N∂bMÞ. The remaining Poisson
brackets are straightforward to compute, since the vector
constraint (2.11) is canonical and therefore is a generator
of the algebra of three-dimensional diffeomorphisms.
A straightforward standard calculation gives

fC½M⃗�; C½N⃗�g ¼ C½LN⃗M⃗�; ð2:21Þ

fC½M⃗�; H⊥½N�g ¼ H⊥½LN⃗N�: ð2:22Þ

III. “DUST TIME GAUGE” AND REDUCED
CANONICAL ACTION

Having established that the Hamiltonian constraint is
first class, that is, the time reparametrizations it generates
are gauge transformations, we can proceed to identify the
physical degrees of freedom by a canonical gauge fixing of
this transformation. This amounts to setting a scalar
function of phase-space variables to be time; the negative
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of the canonically conjugate phase-space function is then
the physical Hamiltonian. After the gauge fixing, we use
the equations of motion for the canonical variables β and pβ

to reduce the theory further to obtain a final action of only
the ADM variables ðqab; πabÞ. These steps form the key
differences from the procedure followed in [13]. (For a
review of gauge fixing in canonical theory see, e.g., [28].)

A. Time gauge fixing

We impose the canonical gauge condition ϕ ¼ t for the
time coordinate. This is a good gauge fixing since it is
second class with the Hamiltonian constraint; denoting
G ≔ ϕ − t we have

fGðxÞ;HðyÞg ¼ pβffiffiffi
q

p δðx; yÞ; ð3:1Þ

and the Dirac matrix

Δ ¼
�

0 fG;Hg
fH;Gg 0

�
¼ pβffiffiffi

q
p

�
0 1

−1 0

�
ð3:2Þ

is everywhere nondegenerate, with the exception of the
points where pβ=

ffiffiffi
q

p ¼ 0. But these points are not realized
dynamically since pβ ≠ 0 and

ffiffiffi
q

p
→ ∞ is not realized in

finite time.
Locally, Eq. (3.1) means that the gauge orbits intersect

the gauge-fixing surface G ¼ 0 once and only once. This is
also true globally (i.e. there is no Gribov ambiguity) since
the Faddeev-Popov determinant is nonzero everywhere;
this determinant is given by the Pfaffian of the Dirac matrix
Δ (see, e.g., Ref. [29]), and therefore equals pβ=

ffiffiffi
q

p
.

To obtain the gauge fixed actionwe solve theHamiltonian
constraint HG þHM ¼ 0 strongly for pϕ to get

pϕ ¼ −
ffiffiffi
q

p
pβ

HG þ q
pβ

�
fðχÞ þ βχ −

λ

2

�
1 −

p2
β

q

��
: ð3:3Þ

We also have the condition that the gauge be preserved in
time

1 ¼ _ϕ ¼
�
ϕ;

Z
d3xðNHM þ NaCMa Þ

�
ϕ¼t

¼
�
Npβffiffiffi

q
p þ LNϕ

�
ϕ¼t

: ð3:4Þ

This fixes the lapse function

N ¼
ffiffiffi
q

p
pβ

: ð3:5Þ

Substituting Eqs. (3.3) and (3.5) as well as the gauge
condition ϕ ¼ t into the canonical action, we obtain the
gauge fixed action

SGF½q; π; β; pβ; χ; λ�

¼
Z

dtd3x½πab _qab þ pβ
_β − H̃ − NaðCGa þ CβaÞ�; ð3:6Þ

where

H̃ ¼
ffiffiffi
q

p
pβ

HG −
q
pβ

�
fðχÞ þ βχ −

λ

2

�
1 −

p2
β

q

��
: ð3:7Þ

This expression is a function of the canonical pairs
ðqab; πabÞ and ðβ; pβÞ and the auxiliary fields λ and χ.
We note that Eq. (3.7) represents a true Hamiltonian
density, as opposed to the Hamiltonian constraint, and
the diffeomorphism constraint remains as the only gauge
symmetry.

B. Elimination of auxiliary fields

At this stage we would like to eliminate the auxiliary
fields β, pβ, and χ. To begin with, we note that variation of
the action (3.6) with respect to λ and χ, respectively, leads
to the following equations:

Cλ ≔ p2
β − q ¼ 0; Cχ ≔ β þ f0ðχÞ ¼ 0: ð3:8Þ

The constraint Cλ ¼ 0 shows that N ¼ ffiffiffi
q

p
=pβ ¼ 1.

Variation of (3.6) with respect to β gives, using (3.8),

χ ¼ 1ffiffiffi
q

p ðLt − LN⃗Þ
ffiffiffi
q

p ¼ Ln ln
ffiffiffi
q

p
: ð3:9Þ

Using the equation of motion

Lt
ffiffiffi
q

p ¼
� ffiffiffi

q
p

;
Z

d3x½HG þ NaCG�
�

¼ −π þ LN
ffiffiffi
q

p ð3:10Þ

(with π ≔ πabqab) then gives

χ ¼ −
πffiffiffi
q

p : ð3:11Þ

Equation (3.9) shows that χ admits a neat geometric
interpretation as the expansion of the congruence generated
by the normal vector field na in the ϕ ¼ t gauge. We also
note that χ is proportional to the momentum conjugate to
the volume V ¼ ffiffiffi

q
p

.
The constraints (3.8) determine a surface in the time-

gauge fixed phase space with canonical coordinates
ðqab; πab; β; pβÞ. These constraints have three effects on
the action: they (i) simplify the physical Hamiltonian (3.7)
to a function of only the ADM variables
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HP ¼HGþ ffiffiffi
q

p ðχf0ðχÞ−fðχÞÞ; with χ¼−
πffiffiffi
q

p ; ð3:12Þ

(ii) modify the symplectic potential to [30]

ω ¼
Z

d3xðπabδqab þ pβδβÞCλ;Cχ¼0

¼
Z

d3xðπabδqab − βδpβÞCλ;Cχ¼0

¼
Z

d3x

�
πab þ f0ðχÞ

ffiffiffi
q

p
2

qab
�
δqab; ð3:13Þ

where δ is the exterior derivative on phase space and the
second equality holds up to an exact one-form, and
(iii) modify the diffeomorphism constraint to

C̄a ≡ ð−2Dbπ
b
a þ pβDaβÞCλ;Cχ¼0

¼ −2Db

�
πba þ

f0ðχÞ
2

ffiffiffi
q

p
qba

�
¼ 0: ð3:14Þ

The last two equations (3.13) and (3.14) show, respectively,
that the new momentum

π̄ab ≔ πab þ f0ðχÞ
2

ffiffiffi
q

p
qab ð3:15Þ

is canonically conjugate to qab on the surface defined by
(3.8) and the diffeomorphism constraint becomes

C̄a ≡ −2Dbπ̄
b
a ¼ 0: ð3:16Þ

This form makes it clear that this constraint remains first
class. Putting these results together the action simplifies to

SGF½q; π̄� ¼
Z

dtd3x½π̄ab _qab − H̄P − NaC̄a�; ð3:17Þ

where

H̄P ¼ 2ffiffiffi
q

p
�
π̄abπ̄

ab −
1

2
π̄2
�
−

ffiffiffi
q

p
2

Rð3Þ

−
ffiffiffi
q

p �
fðχÞ − 3

4
ðf0ðχÞÞ2

�
; ð3:18Þ

and χ and π̄ are related using (3.11) and (3.15) by

π̄ ¼ ffiffiffi
q

p �
3

2
f0ðχÞ − χ

�
: ð3:19Þ

This action and Hamiltonian constitute our main result. We
note that the action may also be written in terms of the
original ADM variables as

SGF½q; π�

¼
Z

dtd3x

��
πab þ f0ðχÞ

ffiffiffi
q

p
2

qab
�
_qab −HP − NaC̄a

�
;

ð3:20Þ

with HP and C̄a as in (3.12) and (3.14).
An accounting of physical degrees of freedom is imme-

diate from (3.17): the canonical pair ðqab; π̄abÞ represents a
12-dimensional phase space per space point, subject to the
three first-class constraints C̄a ¼ 0; therefore [with excep-
tion f0ðχÞ ¼ 2χ=3 corresponding to π̄ ¼ 0, to be discussed
below], there are three independent physical configuration
degrees of freedom per point. Thus, compared to GR there
is one extra local degree of freedom. Perturbatively, this
corresponds to a propagating scalar mode, which has been
studied in several works [see, e.g., Refs. [31,32], as well as
Refs. [16,33,34] for earlier works with fðχÞ quadratic]; we
rederive this below in the canonical theory. It is interesting
to observe that the number of degrees of freedom is three
also in the special case fðχÞ ¼ 0, which corresponds to GR
minimally coupled to a dust fluid in the dust time gauge [8];
in this special case the perturbative dynamics of the scalar
mode becomes ultralocal (i.e. there are no spatial gradients
in the second-order action) (see Refs. [35,36]).
We note the following additional remarks concerning the

above procedure:
(i) The canonical symplectic two-form on the partially

reduced phase space obtained from (3.13) is

Ω ¼ −δω

¼
Z

d3x

�
δaðcδ

b
dÞ −

1

2
qabqcdf00ðχÞ

�
δqab ∧ δπcd:

ð3:21Þ

The corresponding Poisson bracket is obtained by
inverting the tensor in brackets in (3.21). This gives
the Dirac bracket

fqab; πcdg⋆ ¼ δcðaδ
d
bÞ þ

f00ðχÞ
2 − 3f00ðχÞ qabq

cd; ð3:22Þ

provided that f00ðχÞ ≠ 2
3
. (The singular case where

this condition does not hold is discussed below.) The
canonical equations of motion for the variables qab
and πab are obtained by varying the action (3.17);
they read as

_qab ¼ fqab;HPg⋆; _πab ¼ fπab;HPg⋆; ð3:23Þ

with HP as in (3.12). Using Eq. (3.12) and the
fundamental Dirac bracket (3.22) it is easy, if
tedious, to show that the first equation in (3.23)
gives the standard relation between velocity and
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momentum, consistently with Eq. (2.7). We also
observe that the physical Hamiltonian HP is a first
integral of the system, since it does not depend on ϕ
time explicitly. The existence of such a first integral
in the gauge-fixed theory stems from the shift
invariance of the original action (2.1).

(ii) It is clear from Eq. (3.22) that the two-form (3.21) is
not invertible if f00ðχÞ ¼ 2

3
. With the form

fðχÞ ¼ c0 þ c1χ þ
1

3
χ2; ð3:24Þ

we find from (3.11) and (3.15) that

π̄ab ¼ πab −
1

3
πqab þ c1

2

ffiffiffi
q

p
qab; π̄ ¼ 3c1

2

ffiffiffi
q

p
;

ð3:25Þ

and the Hamiltonian (3.18) becomes

HP
sing ¼

2ffiffiffi
q

p π̄abπ̄
ab −

ffiffiffi
q

p
2

ðRð3Þ þ 2c0Þ; ð3:26Þ

this is independent of c1. It is evident that (3.25)
defines a surface in phase space so that π̄ and

ffiffiffi
q

p
are

no longer independent. This is manifested in the
symplectic structure, which takes the form

Ω ¼ −δω ¼
Z

d3x

�
δaðcδ

b
dÞ −

1

3
qabqcd

�
δqab ∧ δπcd

¼
Z

d3xδq̄ab ∧ δπ̄ab; ð3:27Þ

where δπ̄ab is the variation of (3.25) and

δq̄ab ≔ δqab −
1

3
qab

δq
q
: ð3:28Þ

This expression is obtained from contracting the
term in brackets in (3.27) (which is a projector onto
the subspace of traceless symmetric matrices) with
δqab. The symplectic two-form (3.27) can also be
recast as

Ω ¼
Z

d3x

�
δqab ∧ δπab −

1

3q
δq ∧ δπ

�
: ð3:29Þ

It is therefore evident that the dimension of the phase
space is reduced by two (per point).
For c1 ¼ 0, we have π̄ab ¼ πhabi (i.e. its traceless

part). The case c1 ≠ 0 is related to c1 ¼ 0 by a
canonical transformation, since the corresponding
symplectic potentials differ by an exact one-form:

π̄abδqab ¼ πhabiδqab þ
c1
2

ffiffiffi
q

p
qabδqab

¼ πhabiδqab þ c1δð
ffiffiffi
q

p Þ: ð3:30Þ

Both the symplectic two-form and the physical
Hamiltonian are unaffected by a nonzero value for
c1, and therefore the dynamics is equivalent to the
c1 ¼ 0 case.

The canonical action for the singular case then
reads

SGFsing½q; π� ¼
Z

dtd3x½π̄ab _̄qab −HP
sing − π̄abLNq̄ab�;

ð3:31Þ

where q̄ab is any solution of Eq. (3.28).
We note that the expression for the physical

Hamiltonian (3.26) still depends on qab through
each of its terms. Therefore the variation of HP

sing is
of the form

δHP
sing¼ð���Þabδπ̄abþð���Þabδq̄abþð���Þδq: ð3:32Þ

The first two terms give the Hamilton equations for
the canonical variables ðq̄ab; π̄abÞ, whereas the last
term gives an additional equation: the coefficient of
δq must vanish. Let us compute this term:

δHP
sing

δq
¼ δHP

sing

δqab

δqab
δq

¼ 1

q
qab

δHP
sing

δqab
¼ 1

6q
HP

sing:

ð3:33Þ

Thus we find that for this special case the physical
Hamiltonian must vanish. This is consistent with the
analysis presented in the Appendix, where it is
shown that pϕ must be zero.2 This requirement
constitutes a restriction on the initial conditions (in
the cosmological case considered in Sec. VA it
amounts to a vanishing energy density for the dust
component). Last, for fðχÞ ¼ 1

3
χ2, i.e. c0 ¼ c1 ¼ 0

in (3.24), we see from (3.25) that π̄ ¼ 0, and the last
term in the physical Hamiltonian (3.26) becomes
zero. Thus, although this physical Hamiltonian
becomes the same as in GR coupled to a dust fluid
[8], the theory is in fact not the same due to the
singular symplectic structure (3.20), as discussed in
the last paragraph: it has one less degree of freedom.

To summarize this section, we obtained the action and
physical Hamiltonian for mimetic gravity in the time gauge

2Recall that, after gauge fixing, pϕ is no longer a phase-space
variable but instead becomes a function of the remaining
canonical variables and coincides with the negative of the
physical Hamiltonian.
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ϕ ¼ t as a theory of only the metric qab and its conjugate
momentum π̄ab. We also commented in detail on the
degenerate case of fðχÞ (3.24). We conclude this section
with a few comments.
The Dirac bracket (3.22) has been previously obtained in

Ref. [13] following the Dirac algorithm and imposing
Daϕ ¼ 0 only after computing the inverse of the Dirac
matrix. However, in that work the status of the condition
Daϕ ¼ 0 within the canonical theory was not clear.
Therefore the relation between the Dirac bracket and the
symplectic structure of the reduced phase space could not
be fully established. We have shown that if the more
restrictive condition ϕ ¼ t is imposed as a canonical gauge
fixing condition the reduced phase space can easily be
obtained after solving the (second class) constraints (3.8)
algebraically. Similar considerations apply to any gauge-
fixing condition of the type ϕ ¼ ϕðtÞ, as long as ϕðtÞ is
invertible; we focused on ϕ ¼ t since it is a natural choice
that leads to a simple form for the physical Hamiltonian.
The condition Daϕ ¼ 0 could also be imposed as a
canonical gauge fixing, since it is second class with the
Hamiltonian constraint, but it does not fully fix the gauge
and leaves the lapse as an arbitrary function of time.

IV. LINEARIZED THEORY
AROUND MINKOWSKI

We now derive the linearized equations of motion about
the flat spacetime using the action (3.20); it is algebraically
easier to perform the perturbative expansion using the
variables (qab; πab) and convert to the canonically con-
jugated variables (qab; π̄ab) at a later stage. We use the
approach developed in Ref. [35], where the case fðχÞ ¼ 0
is studied.
Assuming fð0Þ ¼ 0 (i.e. the vanishing cosmological

constant) the background solution is

qð0Þab ¼ eab; πabð0Þ ¼ 0; Nað0Þ ¼ 0: ð4:1Þ

Without loss of generality, it is also convenient to set
f0ð0Þ ¼ 0, which can always be achieved by means of a
canonical transformation [in fact, a nonzero value for f0ð0Þ
only changes the symplectic potential (3.13) by an exact
differential]. It follows from Eq. (3.11) that χ ¼ 0. We
introduce the expansion of the fields

qabðt; x⃗Þ ¼ eab þ habðt; x⃗Þ;
πabðt; x⃗Þ ¼ 0þ pabðt; x⃗Þ;
Naðt; x⃗Þ ¼ 0þ ξaðt; x⃗Þ: ð4:2Þ

Equation (3.11) then gives, to first order,

χ ≃ −p; ð4:3Þ

where p ¼ eabpab. We substitute the expansions (4.2) and
Eq. (4.3) into the action (3.20) and expand to second order
in the perturbations to obtain, up to surface terms

Sð2Þ≡
Z

dtd3x

��
pab−

1

2
f00ð0Þpeab

�
_hab−Hð2Þ

P −ξaC̄ð1Þ
a

�
;

ð4:4Þ

where

Hð2Þ
P ¼ 2

�
pabpab −

1

2
p2

�
−
h
4

�
∂a∂bhab −

1

2
∂2h

�

þ hab

4

�
∂b∂chca −

1

2
∂2hab

�
þ 1

2
f00ð0Þp2; ð4:5Þ

C̄ð1Þ
a ¼ −2∂b

�
pab −

1

2
f00ð0Þpeab

�
: ð4:6Þ

Now we introduce a new momentum variable

p̄ab ¼ pab −
1

2
f00ð0Þpeab; ð4:7Þ

which is canonically conjugate to the metric perturbation
hab. Thus, we have, inverting this equation, pab ¼
p̄ab þ γp̄eab, where we used the notation γ ¼ 1

2
f00ð0Þ=

ð1 − 3
2
f00ð0ÞÞ. After this transformation, the action reads

Sð2Þ ¼
Z

dtd3x½p̄ab _hab − H̄ð2Þ
P − ξaC̄ð1Þ

a �; ð4:8Þ

with

Hð2Þ
P ¼ 2

�
p̄abp̄ab −

1

2
p̄2

�
−
h
4

�
∂a∂bhab −

1

2
∂2h

�

þ hab

4

�
∂b∂chca −

1

2
∂2hab

�
− γp̄2; ð4:9Þ

C̄ð1Þ
a ¼ −2∂bp̄ab: ð4:10Þ

The second-order action is most easily analyzed in
3-momentum space. For this purpose we introduce the
Fourier expansions

habðt; x⃗Þ ¼
1

ð2πÞ3=2
Z

d3k½eik⃗:x⃗MI
abðk⃗ÞhIðt; k⃗Þ�; ð4:11Þ

p̄abðt; x⃗Þ ¼ 1

ð2πÞ3=2
Z

d3k½eik⃗:x⃗Mab
I ðk⃗ÞpIðt; k⃗Þ�; ð4:12Þ

ξaðt; x⃗Þ ¼ 1

ð2πÞ3=2
Z

d3k½eik⃗:x⃗ξ̃aðt; k⃗Þ�: ð4:13Þ
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Here the matrices MI
abðk⃗Þ, I ¼ 1…6 (to be defined below)

form a time-independent basis for 3 × 3 real symmetric
matrices that give a decomposition of the gravitational
phase-space variables into the canonical set ðhI; pIÞ. The
matrices MI must satisfy the orthogonality condition

TrðMIðk⃗ÞMJðk⃗ÞÞ ¼ MI
abðk⃗ÞMabJðk⃗Þ ¼ δIJ: ð4:14Þ

The matrices MIðk⃗Þ are defined using the unit vector κa ¼
ka=jkj and the eigenvectors ϵa� ¼ ðϵa1 � iϵa2Þ=

ffiffiffi
2

p
of rota-

tions about the κa axis (where ϵa1; ϵ
a
2 are coordinate unit

vectors for the flat metric eab, and together with κa they
form a right-handed basis). These fall into the following
cases that respectively transform as scalars, tensors, and
vectors under the rotation group:

Mab
1 ðk⃗Þ¼ 1ffiffiffi

3
p eab; Mab

2 ðk⃗Þ¼
ffiffiffi
3

2

r �
κaκb−

1

3
eab

�
;

Mab
3 ðk⃗Þ¼ iffiffiffi

2
p ðϵa−ϵb−−ϵaþϵbþÞ; Mab

4 ðk⃗Þ¼ 1ffiffiffi
2

p ðϵa−ϵb−þϵaþϵbþÞ;

Mab
5 ðk⃗Þ¼ iðϵða− κbÞ−ϵðaþ κbÞÞ; Mab

6 ðk⃗Þ¼ϵða− κbÞþϵðaþ κbÞ;

ð4:15Þ

and satisfy the properties

eabMI
abðk⃗Þ ¼ 0; I ¼ 2…6;

κaMI
abðk⃗Þ ¼ 0; I ¼ 3; 4;

κaκbMI
abðk⃗Þ ¼ 0; I ¼ 5; 6: ð4:16Þ

We also note that the matrices Mab
3 ðk⃗Þ and Mab

6 ðk⃗Þ are

odd under the parity transformation k⃗ → −k⃗, whereby
ϵa� → ϵa∓; the remaining matrices are parity even. We
express this property as

Mab
I ð−k⃗Þ ¼ ð−1Þ1þPðIÞMab

I ðk⃗Þ; ð4:17Þ

where PðIÞ ¼ −1 only for I ¼ 3, 6, and PðIÞ ¼ 1
otherwise.
The reality of the real-space fields in Eqs. (4.11) implies

that the Fourier coefficients must satisfy the following
conditions:

ðhIðt; k⃗ÞÞ� ¼ ð−1Þ1þPðIÞhIðt;−k⃗Þ;
ðpIðt; k⃗ÞÞ� ¼ ð−1Þ1þPðIÞpIðt;−k⃗Þ;
ðξ̃aðt; k⃗ÞÞ� ¼ ξ̃aðt;−k⃗Þ: ð4:18Þ

The properties above imply that the symplectic term in
the canonical action for perturbations (4.8) in k-space
reads as

Z
d3xdtp̄ab _hab ¼

Z
d3kdtpIðt; k⃗Þ� _hIðt; k⃗Þ; ð4:19Þ

whence we read off the fundamental Poisson brackets

fhIðk⃗Þ;pJðk⃗0Þ�g¼ fhIðk⃗Þ�;pJðk⃗0Þg¼ δJI δðk⃗− k⃗0Þ: ð4:20Þ

The perturbation of the shift vector may also be
decomposed into its transverse (ϵ1, ϵ2) and longitudinal
(κa) components as

ξ̃aðt; k⃗Þ ¼ ξ1ðt; k⃗Þϵa1 þ ξ2ðt; k⃗Þϵa2 þ ξjjðt; k⃗Þκa: ð4:21Þ

The momentum space action then reads as

Sð2Þ ¼
Z

dtd3k½pIðk⃗Þ� _hIðk⃗Þ − H̃ð2Þ
P ðk⃗Þ − iξ̃aðk⃗Þ�C̃aðk⃗Þ�:

ð4:22Þ

(Here and in the following we only indicate the momentum
dependence and omit the time dependence in order to
make the notation lighter.) The second order Hamiltonian
splits into a sum of three contributions H̃ð2Þ

P ¼ HS þHV þ
HT (corresponding, respectively, to scalars, vectors, and
tensors), given by (after suitable symmetrization over
momenta k⃗ and −k⃗)

HSðk⃗Þ¼ 2

�
jp2ðk⃗Þj2−

1

2
jp1ðk⃗Þj2

�
−
k2

12

				h1ðk⃗Þ− 1ffiffiffi
2

p h2ðk⃗Þ
				
2

−3γjp1ðk⃗Þj2; ð4:23Þ

HVðk⃗Þ ¼ 2ðjp5ðk⃗Þj2 þ jp6ðk⃗Þj2Þ; ð4:24Þ

HTðk⃗Þ ¼ 2ðjp3ðk⃗Þj2 þ jp4ðk⃗Þj2Þ

þ 1

8
k2ðjh3ðk⃗Þj2 þ jh4ðk⃗Þj2Þ; ð4:25Þ

and the diffeomorphism constraint is

C̃aðk⃗Þ ¼ −2k
�
ðp1ðk⃗Þ þ

ffiffiffi
2

p
p2ðk⃗ÞÞ

κaffiffiffi
3

p

þ p6ðk⃗Þϵ1a þ p5ðk⃗Þϵ2a
�
: ð4:26Þ

A. Partial gauge fixing: Removal of vector modes

At this stage it is useful to perform a gauge fixing to
remove the vector modes. This involves imposing canoni-
cal gauge conditions on these modes and solving strongly
the corresponding diffeomorphism constraint components.
The above decomposition reveals the convenient choice

h5 ¼ h6 ¼ 0: ð4:27Þ
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These conditions are second class with the transverse
component C⊥ of the diffeomorphism constraint,

fh5; C⊥g ¼ −2kϵ2a; fh6; C⊥g ¼ −2kϵ1a; ð4:28Þ

unless k ¼ 0. Since we are interested in propagating modes
(where the diffeomorphism constraint is not identically
zero), and in regions far from a potential singularity, these
gauge choices are sufficient. The constraint C⊥ ¼ 0 is then
solved by setting p5 ¼ p6 ¼ 0.
With this gauge fixing the second-order Hamiltonian

H̃ð2Þ and the linearized diffeomorphism constraint now
reduce respectively to

H̃ð2Þ ¼ HS þHT; ð4:29Þ

Ck ≡ −
2ffiffiffi
3

p kðp1 þ
ffiffiffi
2

p
p2Þ ¼ 0: ð4:30Þ

This remaining system gives the dynamics of the graviton
and scalar modes, with residual gauge symmetry generated
by Ck. It is useful to note that the graviton sector phase-
space variables ðh3; p3Þ and ðh4; p4Þ have vanishing
Poisson brackets with this constraint, and so are gauge
invariant to this order.
The perturbation of the three-dimensional curvature

scalar is

Rð3Þ ¼ ð∂a∂bhab − ∂2hÞ; ð4:31Þ

and in Fourier space becomes

R̃ð3Þ ¼ 2k2ffiffiffi
3

p
�
h1 −

h2ffiffiffi
2

p
�
: ð4:32Þ

We observe that this quantity Poisson commutes with the
diffeomorphism constraint

fCk; R̃ð3Þg ¼ 0: ð4:33Þ

Thus, the curvature perturbation is gauge invariant under
spatial diffeomorphisms.
The combination that appears in Eq. (4.32) is propor-

tional to the Bardeen potential3

ΨB ¼ 1

2
ffiffiffi
3

p
�
h1 −

h2ffiffiffi
2

p
�
; ð4:34Þ

and is therefore invariant under four-dimensional infini-
tesimal diffeomorphisms, as it is well-known. The curva-
ture perturbation potential R in the δϕ ¼ 0 slicing is
defined as (recall that we are working in the ϕ ¼ t time
gauge)

R̃ð3Þ ¼ 4k2R; ð4:35Þ

whence it follows that R ¼ ΨB.

B. Tensor modes

The equations of motion for tensor modes are derived
from the Hamiltonian (4.25). Hamilton’s equations read as

_hIðk⃗Þ ¼
�
hIðk⃗Þ;

Z
d3kHTðk⃗0Þ

�
;

_pIðt; k⃗Þ ¼
�
pIðk⃗Þ;

Z
d3kHTðk⃗0Þ

�
; I ¼ 3; 4 ð4:36Þ

and lead to

ḧIðk⃗Þ þ k2hIðk⃗Þ ¼ 0; I ¼ 3; 4: ð4:37Þ

This is consistent with the well-known result that the
propagation of tensor perturbations in the theory at
hand is the same as in GR. [We note that the Fourier
components hIðk⃗Þ are not all independent due to the reality
conditions.]

C. Scalar mode

It is convenient to fix the residual gauge symmetry
generated by the longitudinal component Ck of the diffeo-
morphism constraint. We choose the canonical gauge
h2¼0, which is second class with Ck. We then solve

the constraint Ck ¼ 0, which implies p1 þ
ffiffiffi
2

p
p2 ¼ 0.

Substituting these two conditions into Eq. (4.23), the
Hamiltonian for scalar perturbations becomes

HSðk⃗Þ ¼ −
k2

12
jh1ðk⃗Þj2 − 3γjp1ðk⃗Þj2: ð4:38Þ

In this gauge, the curvature perturbation is R ¼ 1

2
ffiffi
3

p h1. Its

conjugatemomentum is thereforeΠR¼2
ffiffiffi
3

p
p1. Substituting

in Eq. (4.38), we finally obtain the Hamiltonian for the
curvature perturbation

HSðk⃗Þ ¼ −
γ

4
jΠRðk⃗Þj2 − k2jRðk⃗Þj2: ð4:39Þ

This Hamiltonian is the flat-space limit of the result pre-
viously obtained in Ref. [31]. As noted there, this
Hamiltonian is never bounded from below; depending on
the sign of γ, two distinct types of instabilities arise for γ ≠ 0:

3The relation between the scalar perturbations h1 and h2 and
more standard variables used in cosmological perturbation theory
is h1 ¼ −2

ffiffiffi
3

p
ψ , h2 ¼ ð2= ffiffiffi

3
p Þk2E (in Fourier space), using the

conventions in Ref. [37]. The Bardeen potential is defined in
terms of such variables asΨB ¼ −ψ þ 1

6
k2Eþ _aðB − a _EÞ (in our

case we are expanding around Minkowski, and therefore _a ¼ 0
identically).
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a ghost instability4 (i.e. negative kinetic energy) for γ > 0,
and a gradient instability5 for γ < 0 (see also Refs. [33,34]).
In the case γ ¼ 0, the dynamics of perturbations becomes
ultralocal and the curvature perturbation is conserved.6

The Hamilton equations read as

_Rðk⃗Þ ¼ −
γ

2
ΠRðk⃗Þ; _ΠRðk⃗Þ ¼ 2k2Rðk⃗Þ; ð4:40Þ

which can be combined to give the wave equation

R̈ðk⃗Þ þ γk2Rðk⃗Þ ¼ 0: ð4:41Þ

The quantity γ is therefore interpreted as the sound speed.
Note that scalar modes are superluminal for jγj > 1.
From the canonical action for scalar perturbations

Sð2Þ ¼
Z

dtd3k½ΠRð−k⃗Þ _Rðk⃗Þ −HSðk⃗Þ�; ð4:42Þ

we can write down the corresponding second-order
action for gauge-invariant curvature perturbations in the
Lagrangian form

Sð2Þ ¼
Z

dtd3k

�
1

γ
j _Rðk⃗Þj2 þ k2jRðk⃗Þj2

�
: ð4:43Þ

As we noted earlier, the singular case f00ðχÞ ¼ 2=3 is
excluded from this perturbative analysis, since scalar
perturbations are not part of phase space in this case.
We observe that the sound speed γ is divergent when the
limit f00ð0Þ → 2=3 is approached from either side (note that
the sign of γ depends on the direction of approach, which
also determines the type of instability). This gives rise to a
discontinuity in the number of degrees of freedom.
Another interesting limit is f00ð0Þ → 0, whereby the

sound speed γ tends to zero and the dynamics of scalar
perturbations becomes ultralocal. In this limit, the number
of degrees of freedom is preserved in the Hamiltonian
theory, at the perturbative level as well as nonperturbatively
(see Sec. III). This should be contrasted with the γ → 0
limit of the covariant action (4.43), which would naively
appear to be singular.

V. SYMMETRY REDUCED MODELS

Weapply symmetry reductions directly to theHamiltonian
formalism developed above by computing the physical
Hamiltonian and dynamical equations for cosmological
and spherically symmetric spacetimes. While these cases
have been studied in the literature, this section serves merely
as an illustration of our alternative method. In particular, the
equations for the spherically symmetric sector may be useful
for studying generalizations of the Lemaître-Tolman-Bondi
(LTB) metrics and for numerical studies of gravitational
collapse with additional matter fields.

A. Cosmological spacetimes

For the k ¼ 0 FLRW model, the ADM variables are
parametrized by

qab ¼ a2ðtÞeab; πab ¼ paðtÞ
6aðtÞ e

ab: ð5:1Þ

This leads to the vanishing of the diffeomorphism con-
straint. Substituting this parametrization into the action
(3.20) gives the symmetry-reduced gauge-fixed canonical
action

SGF ¼ V0

Z
dt½ðpa þ 3a2f0ðχÞÞ _a −HP�; ð5:2Þ

where V0 is a fiducial comoving volume, and

HP ¼ −
p2
a

12a
þ a3ϵ̃ðχÞ; ð5:3Þ

having defined

ϵ̃ðχÞ ¼ ðχf0ðχÞ − fðχÞÞ; χ ¼ −
pa

2a2
: ð5:4Þ

The Dirac bracket (3.22) reduces to

fa; pag⋆ ¼
�
1 −

3

2
f00ðχÞ

�
−1
: ð5:5Þ

This shows that for f00 ¼ 2=3 the Dirac bracket of a and pa
is ill-defined; this is due to the fact that in this special
case a and pa Poisson commute and therefore cease to be
independent phase-space variables, in agreement with our
general discussion in Sec. III. For f00 ≠ 3=2 Hamilton’s
equations are

_a ¼ fa;HPg⋆ ¼ −
pa

6a
; ð5:6Þ

_pa ¼ fpa;HPg⋆
¼ −

�
1 −

3

2
f00ðχÞ

�
−1
�
1

12

p2
a

a2
ð1 − 6f00ðχÞÞ þ 3a2ϵ̃ðχÞ

�
:

ð5:7Þ

4At the quantum level, a ghost instability is responsible for
vacuum decay, which was studied in Ref. [33]. Ghosts can pose a
problem at the classical level too, if the unstable modes are
coupled to other fields (e.g., matter) [38].

5We note that in the case of a gradient instability (i.e.
imaginary sound speed) the equations governing the perturba-
tions are elliptic partial differential equations rather than hyper-
bolic, which implies that the initial value problem is ill-posed and
therefore uniqueness of the solution is lost in general [39].

6Note that, if the theory is regarded as fundamental (as
opposed to an effective classical theory), then at the quantum
level small values of γ are linked to a low strong coupling scale,
as discussed in Ref. [33].
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As already noted after the more general Eq. (3.23), the
relation between _a and pa in (5.6) is the standard ADM
one, while (5.7) includes deviations from the standard
Friedmann dynamics obtained in GR.
The physical Hamiltonian (5.3) may be reexpressed

using the energy density ρ ¼ −HP=a3 ¼ pϕ=a3 and the
expansion scalar χ as

1

3
χ2 ¼ ϵ̃ðχÞ þ ρ: ð5:8Þ

On shell, χ ¼ 3H using Eq. (5.6), and the last equation
becomes

�
_a
a

�
2

¼ 1

3
½ρþ ϵ̃ðχÞ�: ð5:9Þ

The first term on the right-hand side (RHS) is the energy
density of pressureless dust, referred to in the literature as
“mimetic dark matter” [3].
We can alternatively obtain equivalent dynamics by

working with the action (3.17), and the parametrization

qab ¼ a2ðtÞeab; π̄ab ¼ p̄aðtÞ
6aðtÞ e

ab; ð5:10Þ

with the Poisson bracket fa; p̄ag ¼ 1. The Hamiltonian
becomes (3.18)

H̄P ¼ −
p̄2
a

12a
− a3

�
fðχÞ − 3

4
ðf0ðχÞÞ2

�
ð5:11Þ

with χ given implicitly by Eq. (3.19):

p̄a

2a2
¼ 3

2
f0ðχÞ − χ: ð5:12Þ

These give the equation of motion

_a ¼ fa; H̄Pg ¼ −
p̄a

6a
− a3fa; χgf0ðχÞ

�
1 −

3

2
f00ðχÞ

�

¼ −
p̄a

6a
þ af0ðχÞ

2
¼ −

pa

6a
; ð5:13Þ

where fa; χg follows from Eq. (5.12). The _̄pa equation is
similarly derived and can be transformed to Eq. (5.7). Thus,
either form of the action is suitable for deriving equations
of motion, with a simple mapping between them given by
the relation between πab and π̄ab. A similar analysis is
possible for homogeneous and anisotropic spacetimes, such
as Bianchi models and Kantowski-Sachs.

B. Spherically symmetric spacetime

For this case we give a parametrization of the symmetry
reduction starting from the action (3.17), since the compu-
tation is more streamlined in the variables (qab; π̄ab),

qab ¼ Λðr; tÞ2sasb þ
Rðr; tÞ2

r2
ðeab − sasbÞ; ð5:14Þ

π̄ab ¼ P̄Λðr; tÞ
2Λðr; tÞ s

asb þ r2P̄Rðr; tÞ
4Rðr; tÞ ðeab − sasbÞ; ð5:15Þ

where eab is the flat Euclidean three-metric and sa ¼ ð ∂∂rÞa
is the radial vector having a unit norm with respect to eab.
The spatial line element is therefore

dl2 ¼ Λ2ðr; tÞdr2 þ R2ðr; tÞdΩ2: ð5:16Þ

With this form the symplectic term in (3.17) becomes

π̄ab _qab ¼ P̄R
_Rþ P̄Λ _Λ; ð5:17Þ

and the action (3.17) reduces to

S ¼ 4π

Z
dtdrðP̄R

_Rþ P̄Λ _Λ − H̄P − NrC̄rÞ

þ surface term; ð5:18Þ

where we have performed the angular integral. The surface
term is necessary to ensure that the action is functionally
differentiable for specified fall-off conditions as r → ∞.
Only in this section we use a prime to denote the

derivative with respect to r. The physical Hamiltonian
density and diffeomorphism constraints are

H̄P ¼ 1

R2Λ

�
1

4
ðP̄ΛΛÞ2 −

1

2
ðP̄ΛΛÞðP̄RRÞ

�

þ 1

Λ2
½2RR00Λ − 2RR0Λ0 þ ΛðR0Þ2�

− ΛR2FðχÞ; ð5:19Þ

C̄r ¼ P̄RR0 − ΛP̄0
Λ ¼ 0; ð5:20Þ

where

FðχÞ ¼
�
fðχÞ − 3

4

�
df
dχ

�
2
�

ð5:21Þ

and χ is given by

π̄¼ π̄abqab ¼
1

2
ðΛP̄ΛþRP̄RÞ¼ΛR2

�
3

2

df
dχ

−χ

�
: ð5:22Þ

At this stage we can fix the radial diffeomorphism freedom
with the gauge Rðr; tÞ ¼ r. Solving the diffeomorphism
constraint strongly for P̄R, and substituting the result back
into the action gives
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SGFR ¼ 4π

Z
dtdr½P̄Λ _Λ − H̄GF

P �; ð5:23Þ

where

H̄GF
P ¼ −

Λ
2

�
P̄2
Λ

2r

�0
þ Λ

�
r
Λ2

�0
− Λr2FðχÞ ð5:24Þ

and (5.22) becomes

1

2r2
ðrP̄ΛÞ0 ¼

3

2

df
dχ

− χ: ð5:25Þ

The evolution equations simplify to

_Λ ¼
�
Λ;

Z
∞

0

drH̄GF
P

�
¼ P̄ΛΛ0

2r
−
r
2

�
Λ
df
dχ

�0
; ð5:26Þ

_̄PΛ¼
�
P̄Λ;

Z
∞

0

drH̄GF
P

�
¼
�
P̄2
Λ

4r

�0
−

1

Λ2
þr2FðχÞ; ð5:27Þ

where (5.22) is used to simplify the RHS of (5.26). We note
that these equations may be rewritten using the ADM
momentum πab, where in the similar parametrization,
we have P̄Λ ¼ PΛ þ df

dχ r
2 using (3.15). Equations (5.26)

and (5.27) represent the starting point for numerical
investigations.
Among the features of interest for effective theories is the

modification of the behavior of apparent horizons. These
may be computed as a function of phase-space variables. In
the parametrization we are using, in the gauge R ¼ r, the
radially inward and outward null expansions θ− and θþ are
given by (see Ref. [40])

θ� ¼ ∓PΛ

2Λ
− ðr2ΛÞ0: ð5:28Þ

Thus for a solution ðΛ; PΛÞ, θþ ¼ 0 gives the horizon
equation

PΛ ¼ −2Λðr2ΛÞ0: ð5:29Þ

These equations may also be written in terms of P̄Λ. It is
therefore clear that fðχÞ affects horizon location and
evolution. Certain choices of f may not even permit
horizon formation, in which case θþ is never zero: this
is a possibility that deserves further study.
Matter fields can easily be included in this scheme. For

instance, if a minimally coupled scalar field ψ ¼ ψðr; tÞ
with a potential VðψÞ is included, its contributions to the
physical Hamiltonian (5.19) and to the radial diffeomor-
phism constraint (5.20) are, respectively,

Hψ ¼ 1

2Λr2
π2ψ þ r2

2Λ
ðψ 0Þ2 þ Λr2VðψÞ; Cr;ψ ¼ πψψ

0:

ð5:30Þ

Such effective models would provide alternatives to several
that have been studied in the literature from various points
of view, all of which introduce mechanisms for singularity
avoidance; see, e.g., [41–44]. These works in turn are
attempts to extend well-established results in classical
gravitational collapse in spherically symmetry [45].

VI. SUMMARY AND DISCUSSION

Our main result is the derivation of the physical
Hamiltonian of mimetic gravity in the gauge ϕ ¼ t; we
showed that this provides a complete time gauge fixing free
of Gribov ambiguities. In all earlier work, this condition
was used to provide a partial solution of the equations of
motion or as a convenient condition to simplify constraint
algebra calculations; its implications for the canonical
theory were not addressed. The structure of the physical
Hamiltonian we derive is interesting; its first term is
identical in form to the Hamiltonian constraint of GR,
and the second term is a function of the expansion scalar.
The method we followed used the canonical action at the

forefront. The gauge fixed action (3.6) led directly to the
identification of the modified symplectic structure (3.21)
after elimination of the auxiliary fields λ and ϕ. This
provides a symplectic-geometric picture of the derivation of
the Dirac brackets; in the conventional approach the latter
would follow from identifying the second class constraints
and constructing the Dirac matrix.
We paid particular attention to the special case

f00ðχÞ ¼ 2=3, where we showed that the number of physical
degrees of freedom reduces by one to give a theory of 2
metric degrees of freedom. In Appendix Awe showed that
this reduction may be viewed as a consequence of a hidden
gauge symmetry that arises only in the gauges Daϕ ¼ 0;
we also elaborate there on the case where this gauge is not
fixed—the resulting theory in any other gauge turns out to
have three configuration degrees of freedom. This is a
highly unusual circumstance which is likely the result of
the special structure in these theories coming from the
constraint gab∂aϕ∂bϕ ¼ −1.
As applications of our canonical analysis we developed a

Hamiltonian perturbation theory about the Minkowski
space solution, deriving the tensor and scalar mode
equations. We showed that these reproduce, relatively
simply, the results of covariant analyses, including the
degenerate case. The spherically symmetric equations we
derived provide a useful testing ground for numerical
studies of gravitational collapse, similar to that done for
general relativity coupled to a scalar field [45].
As a final comment, the methodwe usedwould illuminate

the canonical structure of other scalar-vector-tensor theories,
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especially if these contain a pressureless dust field, or
equivalently any scalar field subject to a timelike gradient
condition.
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APPENDIX: ANALYSIS OF THE SINGULAR
CASE f 00ðχ Þ= 2=3

We examine in detail the singular case fðχÞ ¼ 1
3
χ2

without first imposing the time gauge fixing ϕ ¼ t. We
will see that the reduction in the number of degrees of
freedom noted above arises due to the emergence of a new
gauge symmetry for this special case.
Let us first note that the auxiliary field χ may be replaced

in the Hamiltonian constraint (2.10) using its equation of
motion χ ¼ −3β=2. This gives

H ¼ 2ffiffiffi
q

p
�
π2ab −

1

2
π2
�
−

ffiffiffi
q

p
2

Rð3Þ þ pβffiffiffi
q

p
�
pϕ −

λ

2
pβ

�

þ ffiffiffi
q

p �
λ

2
ð1þ qabDaϕDbϕÞ þ qabDaβDbϕþ 3

4
β2
�
:

ðA1Þ

Second, the action (2.1) gives β ¼ −f0ðχÞ ¼ − 2
3
χ and

χ ¼ −□ϕ. These imply

□ϕ −
3

2
β ¼ 0: ðA2Þ

Varying the action with respect to λ gives the “mimetic
constraint”

ðLnϕÞ2 ¼ 1þ qabDaϕDbϕ: ðA3Þ

Taken together, the last two equations may be written as a
function of phase-space variables as follows. First, the
Laplacian of the scalar field can be written in the ADM
decomposition as

□ϕ ≔ gab∇a∇bϕ ¼ ðqab − nanbÞ∇a½ðqcb − nbncÞ∇cϕ�
¼ △ϕ − L2

nϕ − KLnϕþ N−1qabDaNDbϕ: ðA4Þ

The term L2
nϕ in the last expression may be expanded using

Eq. (A3) by taking the positive root and differentiating to
obtain

L2
nϕ ¼ ðLnqabÞDaϕDbϕþ 2qabDaϕLnðDbϕÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

p

¼ ðLnqabÞDaϕDbϕþ 2qabDaϕDbðLnϕÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

p

¼ −
KabDaϕDbϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

p
þ qabDaϕDb log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

q
: ðA5Þ

Using the above and expressing the result in terms of the
ADM momenta gives

□ϕ ¼ △ϕþ 2πabDaϕDbϕþ πffiffiffi
q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

p

− qabDaϕDb log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

q

þ N−1qabDaNDbϕ: ðA6Þ

Multiplying this equation by N
ffiffiffi
q

p
, using the fact that pβ ¼ffiffiffi

q
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qabDaϕDbϕ
p

from the canonical action (2.9), and
discarding a surface term leads to the smeared functional

Z
d3xN

ffiffiffi
q

p
□ϕ ¼

Z
d3xN

ffiffiffi
q

p
p−1
β

�
2πabDaϕDbϕ

þ π −
ffiffiffi
q

p
qabDaϕDb

�
pβffiffiffi
q

p
��

: ðA7Þ

Now, rescaling the lapse gives a smeared version of the
equation □ϕ − 3

2
β ¼ 0:

L½N� ≔
Z

d3x2N

�
2πabDaϕDbϕþ π

−
ffiffiffi
q

p
qabDaϕDb

�
pβffiffiffi
q

p
�
−
3

2
βpβ

�
¼ 0: ðA8Þ

This is a constraint equation (the overall factor of 2 is
introduced for convenience). In the ϕ ¼ t gauge this
constraint gives π ¼ 3βpβ=2. L½N� generates the following
transformations:

fqab; L½N�g ¼ 2Nðqab þ 2DaϕDbϕÞ; ðA9Þ

fπab; L½N�g ¼ −2N
�
πab −

ffiffiffi
q

p
DaϕDb

�
pβffiffiffi
q

p
��

; ðA10Þ

fβ; L½N�g ¼ −3Nβ þ 2ffiffiffi
q

p ∂aðN
ffiffiffi
q

p
qab∂bϕÞ; ðA11Þ

fpβ; L½N�g ¼ 3Npβ: ðA12Þ

PHYSICAL HAMILTONIAN FOR MIMETIC GRAVITY PHYS. REV. D 102, 104052 (2020)

104052-13



In time gauges where Daϕ ¼ 0, and only in these gauges,
L½N� generates conformal transformations (Weyl rescal-
ings)7; the metric qab and the canonical momentum πab

have conformal weights þ2 and −2, while β and its
conjugate momentum pβ have the nonstandard conformal
weights −3 and 3, respectively (this is due to the fact that
pβ is actually a scalar density). However, in a generic
frame, L½N� generates a “disformal” transformation [47], as
it is clear from Eq. (A9).
Let us now define

M½ω� ≔
Z

d3xω


pβ −

ffiffiffi
q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

q �
¼ 0:

ðA13Þ

This is the smeared version of the constraint obtained by
varying the canonical action with respect to the Lagrange
multiplier λ. Since we have eliminated the auxiliary field χ
from the Hamiltonian constraint (A1), L½ε� and M½ω� are
the only constraints other than the Hamiltonian and diffeo-
morphism constraints on the space ðqab; πab; β; pβÞ.8
We note the Poisson brackets of L, M with the diffeo-

morphism and Hamiltonian constraints. The following are
immediate:

fM½ω�;C½N⃗�g¼LNM½ω�≈0; fL½ε�;C½N⃗�g¼LNL½ε�≈0;

fΦ½ω�;H½N�g≈0: ðA14Þ

For the bracket fL½ε�;H½N�gwe must differentiate between
two cases. If Daϕ ≠ 0, we have

fL½ε�;H½N�g

≈
Z

d3xεN

�
3λffiffiffi
q

p
�
p2
β − q −

4

3
qqabDaϕDbϕ

�
þ � � �

�
:

ðA15Þ

To avoid generating new constraints we can fix λ such that
the RHS vanishes; the precise form of the remaining terms
on the RHS of Eq. (A15) is irrelevant for argument).
However, for Daϕ ¼ 0 we must keep all terms in the
bracket; the result is

fL½ε�;H½N�g ≈ −3
Z

d3xεNpϕ: ðA16Þ

Therefore to generate no new constraints (for the case
Daϕ ¼ 0) we must impose pϕ ≈ 0. Recalling that −pϕ is
the physical Hamiltonian in the gauge ϕ ¼ t as shown in
Sec. III, this amounts to a restriction on the initial data. An
analysis in the more general gauge ϕ ¼ fðtÞ, where fðtÞ is
an arbitrary function, proceeds in close analogy and leads
to the same conclusion.
In order to better understand the difference between the

cases Daϕ ¼ 0 and Daϕ ≠ 0, let us compute the algebra of
these constraints:

fM½ω1�;M½ω2�g ¼ 0; ðA17Þ

fM½ω�; L½ε�g ¼ 3

Z
d3xωε

�
pβ −

ffiffiffi
q

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

p
�

≈ 3

Z
d3xωε

ffiffiffi
q

p �
α −

1

α

�
; ðA18Þ

fL½ε1�; L½ε2�g ¼ −3
Z

d3xpβqabDaϕðε1∂bε2 − ε2∂bε1Þ;

ðA19Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qabDaϕDbϕ

p
. This shows that the con-

straint algebra of L andM is not closed unless Daϕ ¼ 0. If
Daϕ ¼ 0, this algebra reduces to

fM½ω1�;M½ω2�g ¼ 0; fM½ω�; L½ε�g ¼ M½3ωϵ�;
fL½ε1�; L½ε2�g ¼ 0: ðA20Þ

Thus the algebra becomes first class ifDaϕ ¼ 0 is imposed.
This is the “hidden symmetry” together with the initial data
condition pϕ ¼ 0 noted above.
Let us summarize. Starting from the configuration space

ðϕ; β; qabÞ we find the following:
(i) Daϕ ≠ 0: the constraints L, M are preserved under

evolution provided λ is fixed; the algebra of L andM
is second class so these constraints must be solved
strongly. Therefore the phase space has 2 fewer
degrees of freedom per space point, for a total of 6.

(ii) Daϕ ¼ 0: the constraints L, M are preserved under
evolution provided pϕ ¼ 0; the algebra of L and M
is first class. Therefore there are 4 fewer phase-space
degrees of freedom per point, for a total of 4.

This shows that the singular case f00ðχÞ ¼ 2=3 actually
yields two distinct theories: the gauge Daϕ ¼ 0 reveals a
new gauge symmetry, resulting in one fewer configuration
degree of freedom.

7It is interesting to compare the constraint L½N� and its action
on the dynamical fields with the Weyl constraint in Brans-Dicke
theory with conformal coupling studied in Ref. [46].

8For comparison, see also Ref. [13], where additional con-
straints arise due to the presence of the other auxiliary fields,
which we have eliminated at an early stage.
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