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The Wheeler equation, for electromagnetic disturbances in a gravitational field, was found by Fiziev to
have exact solutions both above and below the event horizon, in the form of waves propagating both
inwardly and outwardly. This observation can be interpreted and verified from the optical point of view,
entirely on the basis of the Schwarzschild metric for length contraction and time dilation, in order to derive
a differential version of Snell’s law for the Schwarzschild black hole. It reveals interesting physics,
including the correct amount of light deflection by the Sun, internal and external Oppenheimer-Snyder
cones of the black hole, properties of its phonon sphere and the conclusion that light rays are kept below the
horizon by length contraction and time dilation rather than deflection.
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I. INTRODUCTION

Electromagnetic fields in the Schwarzschild metric have
been investigated for a long time [1–12] and Fiziev secured
an unusual advance in 2006 [13]. With an explicit sub-
stitution he transformed the Wheeler equation [14] into
Heun’s equation [15] which is known to have exact
solutions, both above and below the event horizon of a
black hole, in the form of waves propagating both inwardly
and outwardly. He presented a number of such solutions
and commented on their eventual physical significance and
some open problems [13].
The Wheeler equation was derived in 1955, from a

system of fundamental equations for coupled electromag-
netic and gravitational fields, to study strong electromag-
netic disturbances capable of distorting spacetime to trap
themselves [14]. Sometimes the Wheeler equation is
referred to as the Regge-Wheeler equation probably
because, in 1957, the two authors jointly published a
paper on a related topic [16]. In the case of a black hole
and weak electromagnetic disturbances the Wheeler equa-
tion assumes a specific form in the so-called tortoise
coordinate in association with the Schwarzschild metric.
With this specific Wheeler equation Fiziev applied his
substitution and linked it to Heun’s equation.
Heun’s equation was studied by Karl Heun in the late

19th century and still is an active topic of contemporary
investigation. It is a second-order ordinary differential
equation with four singularities in its general form. By
the process of confluence the number of singularities can be
reduced (to three in the case of the Wheeler equation) for a

rich variety of useful and important applications. Solutions
to Heun’s equation include local solutions (power series),
Heun functions, Heun polynomials and path-multiplicative
solutions [15]. The solutions Fiziev found are mostly local
solutions, where a countable set exists below the event
horizon, simultaneously finite at the horizon and center,
and obviously square integrable. In his opinion, if these are
proven to form a complete set in the corresponding func-
tional space, they will present a natural basis of normal
modes for a well-defined expansion of any small perturba-
tion of the metric in the interior of the black hole [13].
The perspective of Fiziev amounts to a sophisticated

scheme to analyze waves, essentially via Fourier expansion
in terms of the so-called normal modes, which are solutions
to the Wheeler equation, with a boundary value (zero for
example) imposed upon the event horizon by some physics
which, to the best of our knowledge, has not yet been
identified.
Here we tackle the problem from the optical point of

view so that, as long as light rays exist in the void below the
event horizon, in addition to their presence above, it is
sufficient for us to know length contraction and time
dilation from the Schwarzschild metric to determine the
speed of the waves in order to trace the rays, with no need to
identify additional physics. The result is a differential
version of Snell’s law which, like its counterpart in classical
optics, reveals interesting physics.
For example, above the event horizon, our version of

Snell’s law enables us to find the correct amount of
light deflection by the Sun via straightforward evaluation.
It enables us to define quantitatively the external
Oppenheimer-Snyder cone, together with properties of
the so-called phonon sphere, to determine whether or*xhz@qub.ac.uk
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not a ray launched above the event horizon can escape
from the gravitational field. It also tells us clearly that, if
incapable of escaping, the ray must encounter the event
horizon at a right angle.
Below the event horizon, we find from our version of

Snell’s law the internal Oppenheimer-Snyder cone to
determine the allowed angles for light rays to propagate
in both the outward and inward directions. Historically
Einstein started with optics to derive the general theory of
relativity [17], adding length contraction and time dilation
to the arsenal of optics as devices to manipulate light rays.
We conclude that deflection, the traditional device in optics
to manipulate light, on its own cannot retain light rays
below the event horizon.
We arrange this article as follows. In Sec. II we explain

the motions of light rays in a gravitational field. In Sec. III
we specify relations between the speed of light and gravity.
In Sec. IV we derive a differential version of Snell’s law for
black holes. In Sec. V we apply Snell’s law to find the
correct amount of light deflection by the Sun. In Secs. VI
and VII we study analytical and numerical trajectories of
the rays. In Sec. VIII we discuss the Wheeler equation.
Brief discussions and conclusions are in Sec. IX.

II. HUYGENS PRINCIPLE AND GRAVITY

In 1678 the Dutch physicist Huygens proposed that
every point to which a luminous disturbance reaches
becomes a source of a spherical wavelet, and the sum of
these wavelets determines the form of the luminous
disturbance at any subsequent time [18]. He applied this
principle to explain linear and spherical wave propagation,
and to derive the laws of reflection and refraction. In 1911
Einstein applied the same principle to explain deflection of
light rays in a gravitational field, and to outline the general
theory of relativity [17]. In Fig. 1 we redraw the historic
illustration by Einstein with some modifications. We follow
Einstein to show how the wavelets emitted from two
exemplary points on the first wave front, P1 and P2,
expand and determine the second wave front. In addition
we show how the same process repeats itself to determine
the third front.
In Fig. 1 the wave fronts can be seen as the floors and

roof of a two-level building, with the wavelets for pillars to
support the first floor and roof. Einstein stated: “the
velocity of light in the gravitational field is a function of
the place” [17]. From now on we will refer to Einstein’s
“velocity of light” in the quotation as the speed of light seen
by a distant observer, or the visual speed of light. We also
will refer to the velocity of light seen by a local observer as
the local speed of light, or simply the speed of light, which
is a relativistic invariant. In the upper part of the figure
gravity is uneven at P1 and P2 so that the building tilts
towards P2 where the visual speed of light is slower due to
stronger gravity. In the lower part of Fig. 1 gravity is even at

P1 and P2 so that the building does not tilt but with its
levels piled closer to each other the stronger the gravity.
Now we have a problem: what would happen if a ray

were launched from below the event horizon to approach
the horizon at a right angle, as is shown in the lower part of
Fig. 1? It definitely will not make a U-turn and fall back
to the center, because it is well known that the wavelets in
the Huygens principle cannot propagate in the backward
direction. From the optical point of view, what could stop
the ray from escaping across the event horizon?
We will show that light rays launched outwardly from

below the event horizon indeed encounter the horizon at
right angles. They are kept below the horizon not by
deflection but by length contraction and time dilation,
which in our view are new devices in the arsenal of optics to
manipulate light, capable of lending deflection a helping
hand to impede and eventually stop the escaping rays on
their outward trajectories.

III. VISUAL SPEED OF LIGHT AND GRAVITY

Above the event horizon the Schwarzschild metric can
be written as

ðdsÞ2 ¼ ðdl0Þ2 − c2ðdt0Þ2; r > rs ð1Þ

where c is the local speed of light, or speed of light,
invariant under all circumstances,

FIG. 1. Illustrations of the Huygens principle originally from
Einstein, where P1 and P2 are centers on the first wave front to
emit spherical wavelets whose envelope becomes the next front to
emit further wavelets, C1 and C2 are visual speeds of light (as
defined in Sec. II) which become slower the stronger the gravity,
and dt is the differential time of wavelet expansion. The ray is
launched either parallel to (upper part) or towards (lower part) the
event horizon (location indicated by N).
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ðdl0Þ2 ¼
�
1 −

rs
r

�
−1
ðdrÞ2 þ r2ðdΩÞ2;

ðdt0Þ2 ¼
�
1 −

rs
r

�
ðdtÞ2 ð2Þ

measure length contraction and time dilation, with rs being
the Schwarzschild radius, and ðdΩÞ2¼ðdθÞ2þsin2ðθÞðdϕÞ2.
We are reminded that the Schwarzschild metric is presented
in the coordinate system ðt; r; θ;ϕÞ accommodating a distant
observer. It is valid only in the presence of the factor ð1 −
rs=rÞ−1 for length contraction, and 1 − rs=r for time dilation.
It tells us dl0=dt0 ¼ c, because ds ¼ 0 for light rays, that is
the speed of light is invariant in the eyes of a local observer
experiencing both length contraction and time dilation. But
this is not true in the eyes of the distant observer. Letting

cos2ðαÞðdlÞ2 ¼ ðdrÞ2;
sin2ðαÞðdlÞ2 ¼ r2ðdΩÞ2 ð3Þ

where α is the angle of incidence made by the ray and the
radial direction, explicitly specified asα1 andα2 atB andC in
Fig. 2, we find from Eqs. (1) and (2)

�
dl0

dt0

�
2

¼ r2

ðr − rsÞ2
�
1 −

rs
r
sin2ðαÞ

��
dl
dt

�
2

ð4Þ

or ðdl0=dt0Þ2 ¼ V2ðdl=dtÞ2 to relate the local and visual
speed of light. We should take notice that in Eq. (4) dl0 and
dt0 are local measurements, whereas r, rs, α and dl are from
the distant observer, comparable with say an object and its
optical image. Consequently V can be compared with the
refractive index that defines images in classical optics.
Indeed Eq. (4) tells us clearly that, when α ¼ 0, we have
v ¼ dl=dt ¼ ð1 − r=rsÞc which is the well-known formula
for the visual speed of a ray in the radial direction of a
Schwarzschild black hole from the eyes of the distant
observer.
We follow the same procedure to investigate light rays

below the event horizon. In this case the Schwarzschild
metric is written as

−ðdsÞ2 ¼ ðdl0Þ2 − c2ðdt0Þ2; r < rs ð5Þ

where

ðdl0Þ2 ¼
�
rs
r
− 1

�
−1
ðdrÞ2 − r2ðdΩÞ2;

ðdt0Þ2 ¼
�
rs
r
− 1

�
ðdtÞ2 ð6Þ

which too leads to dl0=dt0 ¼ cwhen ds ¼ 0. Equations (2)
and (6), like the Schwarzschild metric, are presented in the

coordinate system ðt; r; θ;ϕÞ, valid only in the presence
of the length contraction and time dilation factors.
Equation (4) still applies but under the condition

sin2ðαÞ ≤ r
rs

ð7Þ

in order to avoid V, defined below Eq. (4), from becoming
imaginary, a new issue arising from the term −r2ðdΩÞ2
in Eq. (6).
To understand Eqs. (4) and (7) it is worth noting that

Eqs. (2) and (6) are our choice, or ansatz, to test if we are
correct to anticipate light rays below the event horizon. Our
choice assumes consistency between Eqs. (1) and (5), true
because they differ just by the sign of ðdsÞ2, which vanishes
in the case of light rays. In addition our choice is evidently
supported by the observation of Fiziev that the Wheeler
equation has exact solutions both above and below the
horizon [13]. In fact in theWheeler equation the time factor,
expðiωtÞ (declared to be an ansatz by Fiziev), also is a
choice to test if the equation has similar solutions both
above and below the event horizon [13,14]. The test might
fail, or become reduction to absurdity, in case the ansatz
leads to a contradiction in general. Since Eq. (6) leads to a
contradiction only when Eq. (7) is violated, not in general,
we might be correct to expect light rays below the event
horizon, provided we can find the physical reason for
Eq. (7).
In the Schwarzschild metric length contraction takes

place only in the r direction. Above the event horizon it has
less of an effect in other directions due to the term r2ðdΩÞ2
in Eq. (2). Below the event horizon, however, length
contraction is always enhanced by the term −r2ðdΩÞ2 in
Eq. (6). When Eq. (7) has been violated, the enhancement
to length contraction turns out to be so significant that
ðdl0Þ2 in Eq. (6) becomes negative, indicating the wavelets
in the Huygens principle can no longer be in phase to direct
their energy to form a thin pencil around a single direction,
similar to what happens to the refractive ray when total
reflection occurs. Indeed the criterion for total reflection in
classical optics does bear a fair resemblance to Eq. (7).
Equation (7) defines a cone about the radial direction,

with aperture → 0 when r → 0. In a landmark paper in
1939 Oppenheimer and Snyder revealed that, by the
gravitational deflection of light, all energy emitted from
the surface of a collapsing star will almost all be reduced to
within a cone about the outward normal, of progressively
shrinking aperture as the star contracts [19]. From now on
we will refer to the cone defined in Eq. (7) as the internal
Oppenheimer-Snyder cone, because it also is from gravi-
tational deflection, located below the event horizon, with
the aperture progressively shrinking with decreasing values
of r, similar to what happens on the surface of a con-
tracting star.
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IV. SNELL’S LAW FOR BLACK HOLES

We apply Eq. (4) to specify the rule to determine the
direction of light rays in the Schwarzschild metric. On
account of the principle of phase matching we must have

V1 sinðα1Þ ¼ V2 sinðα2 þ δϕÞ ð8Þ

for the ray in Fig. 2. Here V1 ¼ Vðr1; α1Þ and V2 ¼
Vðr2; α2Þ are values of V defined in Eq. (4), α1 and α2
are ray angles of incidence against the outward normal, and
δϕ is the incremental angle made by r when it rotates to
take the values r1 and r2. Equation (8) can be written as

V1

sinðα2 þ δϕÞ − sinðα1Þ
α2 þ δϕ − α1

ðα2 þ δϕ − α1Þ

¼ −
V2 − V1

δϕ
sinðα2 þ δϕÞδϕ

which can readily be transformed into a differential equation.
To this end we divide the above equation by δϕ and let
δϕ → 0 so that ðα2 þ δϕ − α1Þ=δϕ → dα=dϕþ 1, assum-
ing α2 → α1 when δϕ → 0. At the same timewe find cosðα1Þ
on the left-hand side of the above equation. We also find
dV=dϕ and sinðα1Þ on the right-hand side of the equation,
assuming V2 → V1 when δϕ → 0. Letting α1 ¼ α for gen-
erality, we find via simple rearrangement of the terms that

dα
dϕ

¼ −1 −
r
V
dV
dr

tanðαÞdr
rdϕ

where

tanðαÞdr
rdϕ

¼ lim
δϕ→0

tanðα2Þðr2 − r1Þ
r1δϕ

¼ 1

from the geometry in Fig. 2, giving

dα
dϕ

¼ −1 −
r
V
dV
dr

;
dr
dϕ

¼ r cotðαÞ ð9Þ

as a differential version of Snell’s law for Schwarzschild
black holes. With the help of the expression of V in Eq. (4),
and some rather involved algebra, we find�

1 −
2rs
r

sin2ðαÞ
�
dα
dϕ

¼ −
�
1 −

rs
2r

sin2ðαÞ
�

þ
�
1 −

rs
r
sin2ðαÞ

�
rs

r − rs
ð10Þ

to evaluate dα=dϕ in Eq. (9).

V. LIGHT DEFLECTION BY THE SUN

Letting r1 ¼ 6.96 × 108 and rs ¼ 2.95 × 103 be the
radius and Schwarzschild radius of the Sun in meters
respectively, we have rs=r < rs=r1 ¼ 4.24 × 10−6 for a ray
passing the Sun at a grazing angle. Since in Eq. (4) the term
ðrs=rÞsin2ðαÞ represents a high-order correction, due to
inhomogeneous length contraction in different directions,
we neglect similar terms in Eq. (10) (radial gravity
approximation) and find

dα
dϕ

¼ −1þ rs
r − rs

ð11Þ

where the effect of gravitational deflection is represented
by the last term on the right-hand side. To a very good
approximation r − rs ≃ r1= cosðϕÞ holds to give

α ¼
Z

0.5π

−0.5π

rs
r − rs

dϕ ≃
2rs
r1

¼ 1.75 arc seconds ð12Þ

as the amount of light deflection by the Sun, consistent with
the well-known astronomical observation.

VI. ANALYTICAL TRAJECTORIES: RADIAL
GRAVITY APPROXIMATION

To illustrate the physics we integrate Eq. (11) analyti-
cally for simplicity and clarity. By using the second formula
in Eq. (9) to eliminate dϕ we find

r
dr

d sinðαÞ
sinðαÞ ¼ −1þ rs

r − rs
ð13Þ

which is a closed relationship between α and r ready to be
integrated. The result is

FIG. 2. Passage of a ray defined as rðϕÞ in the ðr;ϕÞ plane of
the spherical coordinates, ðr;ϕ; θÞ, with r1 ¼ rðϕ1Þ, r2 ¼ rðϕ2Þ,
δϕ ¼ ϕ2 − ϕ1. The ray is shown to start from A, and be deflected
at B with an angle of incidence, α1, and refraction, α2 þ δϕ, both
against the r direction. Eventually it reaches C with an angle of
incidence, α2, also measured against r. The visual speed of the ray
is determined by V1 or V2 when r < r1 or otherwise.
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r=rs
1 − rs=r

sinðαÞ ¼ r0=rs
1 − rs=r0

sinðα0Þ ð14Þ

for trajectories of light rays in the radial gravity approxi-
mation, where r0 and α0 are the initial conditions of the ray.
Letting r and rs be the radius and Schwarzschild radius of
the Earth for example, we have r=rs ≃ r0=rs ¼ 7.18 × 108

and Eq. (14) tells us sinðαÞ ≃ sinðα0Þ, that is a ray around us
must travel along a straight path in its initial direction. If the
ray is launched to ascend and pulled back by gravity
afterwards, then α ¼ π=2 must occur at some stage, giving
via Eq. (14)

rs − r0
r20

r2 þ sinðα0Þr − sinðα0Þrs ¼ 0 ð15Þ

to determine the maximum value of r the ray can reach.
Equation (15) has no real solution if

sinðα0Þ ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs
r0

−
�
rs
r0

�
2

s
ð16Þ

which means the initial angle is too steep for the ray to be
pulled back. Equation (16) can be compared with Eq. (7)
and can be seen as an extended criteria for total reflection.
From now on we will refer to the cone defined by Eq. (16)
as the external Oppenheimer-Snyder cone, because the two
authors discussed a similar cone above the surface of a
collapsing star [19].
Equation (16) tells us that α0 ¼ 0 when r0 ¼ rs, that is,

immediately above the event horizon, a ray still can defy
gravity and escape if it is launched in the radial direction.
On the other hand we have α0 ¼ π=2 when r0 ¼ 2rs where
lies the so-called phonon sphere [20] made from circular
orbits of rays launched horizontally.
Data fromEq. (14) are ready to be presented graphically to

illustrate the physics. All we have to do is find ϕ from the
second equation in Eq. (9) with a simple numerical pro-
cedure. To this end we need ϕ0, in addition to r0 and α0, for
the initial conditions to launch the rays. Above the event
horizon in Fig. 3 we launch rays at r0 ¼ 2rs and ϕ0 ¼ 0.25π
(northeast direction) with 0.05 ≤ α0 ≤ 0.48π to descend and
ascend in the clockwise and counterclockwise directions
respectively. The ascending rays are traced until r ¼ 2.5rs
whereas the descending rays are traced to encounter the event
horizon (r ≃ rs with α ¼ 0). Afterwards the rays are shown
to continue their journey to illustrate their straight trajectories
(α≡ 0) until r ¼ 0.5rs.
We also launch rays below the event horizon at r0 ¼

0.5rs and ϕ0 ¼ 1.25π (southwest direction) with 0.05 ≤
α0 ≤ 0.48π to ascend in counterclockwise directions. The
rays are traced to encounter the event horizon (r ≃ rs with
α ¼ 0) and continue their journey along straight lines
(α≡ 0) until r ¼ 2.5rs. We are reminded that r ¼ rs is a
singular point where α in Eq. (14) has no definition. Each of

the trajectories in Fig. 3 is made from two pieces separated
by a gap to indicate infinite length contraction and time
dilation.

VII. NUMERICAL TRAJECTORIES

To solve Eq. (10) we use the second equation in Eq. (9)
to replace dϕ with dr and apply the following numerical
scheme:

unþ1

un
¼ 1þ Δξn

ξn − 2u2n

�
2 − ξn
ξn − 1

þ
�

3

2ξn
−

1

ξn − 1

�
u2n

�
ð17Þ

where un ¼ sinðαnÞ, ξn ¼ rn=rs, Δξn ¼ ξnþ1 − ξn,
n ¼ 0; 1; 2;…, iteratively for rays above the event horizon,
with the initial condition ξ0 ¼ 2 and ϕ0 ¼ 0.25π,
0.05 ≤ α0 ≤ 0.3π, and we let the ray ascend until
ξ ¼ 2.5, or descend until ξ ¼ 1þ Δξ, that is one numerical
step above the event horizon. Afterwards we let the rays
continue their journeys along straight trajectories until
ξ ¼ 0.5. We also apply Eq. (17) with the initial condition
ξ0 ¼ 0.5 and ϕ0 ¼ 1.25π, 0.05 ≤ α0 ≤ 0.16π, and let the
ray ascend until ξ ¼ 1 − Δξ, that is just one numerical step
short below the event horizon. Afterwards we let the rays
continue their journeys along straight trajectories until
ξ ¼ 2.5.
We evaluate Eq. (17) numerically with a first-order

Runge-Kutta procedure written in house, always with
8000 steps when ξ varies between 0.5 and 2.5. We use
the analytical solution in Eq. (14) as a reference to test the

FIG. 3. Event horizon (interior shaded, radius ¼ rs) and ana-
lytic trajectories of rays in the radial gravity approximation from
Eq. (14) and detailed discussion in Sec. VI. The rays are launched
at r0 ¼ 0.5 or 2rs with 0.05 ≤ α0 ≤ 0.48π until r ∼ rs. After-
wards the rays are illustrated to continue their journeys along
straight lines, leaving a schematic gap behind indicating length
contraction and time dilation.
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accuracy of the outcome of Eq. (17), with terms in sin2ðαÞ
removed from Eq. (10). We find that, over the range of ξ,
the rms deviation in α is 1.15 × 10−4 on average when ξ0 ¼
0.5 and 1.38 × 10−4 when ξ0 ¼ 2.
Our numerical trajectories from Eq. (17) are shown

graphically in Fig. 4 ready to be comparedwith the analytical
trajectories in Fig. 3. We find that, if we do not assume
sinðαÞ ¼ 0 for the radial gravity approximation, then we
have to let α ≤ 0.16π to restrict the initial incidencewhen the
ray is launched at ξ ¼ 0.5. The reason apparently lies in the
internal Oppenheimer cone in Eq. (7) demanding α < 0.25π
when ξ ¼ 0.5.Above the event horizonwe findwehave to let
α ≤ 0.3π initially when the ray is launched at ξ ¼ 2.
It is remarkable that, in Fig. 3, the ray launched with r0 ¼

2rs and α0 ¼ 0.48π follows a nearly circular trajectory to
orbit the event horizon. Furthermore, with r0 ¼ 2rs and
α0 ¼ π=2, we can balance Eq. (14) with r≡ 2r0 and
α≡ π=2, which represents a perfect circular trajectory.
However it is clear from Fig. 4 that, numerically, we cannot
launch a ray to follow this trajectory. The reason lies in that, if
we let sin2ðαÞ ¼ 1 in Eq. (10), Eq. (13) will be replaced by

r
dr

d sinðαÞ
sinðαÞ ¼ −1þ rs

r − rs
þ rs
r − 2rs

for the transverse gravity approximation. It tells us r≡ 2rs
and α≡ π=2 definitely cannot be a solution to Eq. (10). The
phonon sphere, specified in Sec. IV as made from circular
rays at r ¼ 2rs in the radial gravity approximation, cannot
actually accommodate rays. It is interesting that, according to
Nitta et al., phonon orbits becomeunstable inside the phonon
sphere [20].

VIII. WHEELER EQUATION

For the Schwarzschild metric and weak electromagnetic
waves, with a negligible effect on spacetime curvature, the
Wheeler equation assumes the form

d2R
dx2

þ
�
k2 −

LðLþ 1Þ
r2

eν
�
R ¼ 0 ð18Þ

where k ¼ ω=c, ω is the circular frequency of the waves, L
is the angular momentum, eν ¼ 1 − rs=r and x ¼
rþ rs ln jr=rs − 1j is the so-called tortoise coordinate
[13]. If we add 3ðrs=r3Þeν to the terms in the square
brackets in Eq. (18) then we find the Regge-Wheeler
equation for gravitational waves which, unlike the
Wheeler equation, is perturbational and approximate [16].
Equation (18) is reduced to the Riccati-Bessel equation

in flat spacetime, where rs → 0, x → r and eν → 1. If we
let RðrÞ ¼ rZðrÞ then Eq. (18) is further reduced to the
standard spherical Bessel equation in ZðrÞ and its first- and
second-order derivatives in r [21]. In curved spacetime,
however, it becomes very challenging to study Eq. (18),
partly due to the simultaneous presence of both x and r.
Fiziev found that Eq. (18) can be transformed into Heun’s
equation, with an explicit transform to remove x. He also
found a number of exact solutions, mostly in the form of
power series [13]. Now the challenge lies in understanding
the physical implications of these solutions. For example
Fiziev was not certain if a complete set can be found in a
functional space to present a natural basis of normal modes
for an expansion of the solution to Eq. (18) below the event
horizon [13].
It is interesting that when L ¼ 0 for electromagnetic

disturbances without angular momentum, that is light rays
propagating in the radial direction, the presence of r in
Eq. (18) is automatically removed, and the equation is
reduced to the Helmholtz equation, with a simple solution
in the tortoise coordinate:

RðxÞ ∝ expðiωtÞ expð−ikxÞ ð19Þ

of which the real part is evaluated and shown in Fig. 5.
It represents a harmonic wave propagating from r ¼ 0 to
∞. Clearly we are justified to expect the void below the
event horizon being filled with electromagnetic disturb-
ances, that serves as the premise of our analysis.
In Eq. (19) we have ωt − kx ¼ const for the location of a

wave front, giving ωdt−kdx¼ωdt−kdr=ð1− rs=rÞ¼ 0,
or dr=dt ¼ ð1 − rs=rÞc as the speed of the wave. Letting
α ¼ 0 in Eqs. (2) and (3) we also find dr=dt ¼ dl=dt ¼
ð1 − rs=rÞdl0=dt0 ¼ ð1 − rs=rÞc. Apparently solutions to
the Wheeler equation can be identified as light rays in our
black hole optics, at least in the radial direction, for the very
reason that solutions to theMaxwell equationwere identified
as light rays for the first time in history.
In Eq. (19) the wave propagates outwardly, on account of

the term expð−ikxÞ. The wave can also propagate inwardly,
because we can replace expð−ikxÞ with expðikxÞ. This
endorses our understanding that gravity cannot force a ray
to make a U-turn and pull it back to the center, if the ray is
launched outwardly towards the event horizon at a right

FIG. 4. Numerical trajectories of light rays from Eq. (17) and
the detailed discussion in Sec. VII, with the same conventions as
in Fig. 3, with the schematic gaps indicating infinite length
contraction and time dilation in particular.
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angle. It must be time dilation and length contraction that
impede and eventually stop the escaping ray on its outward
trajectory.
The effect of length contraction is clearly appreciable

from Fig. 5. The real part of RðrÞ oscillates, with the pitch
growing progressively higher as r → rs indicating that the
wave fronts of RðrÞ are squeezed tighter the closer the
distance from the event horizon. Indeed, in the lower part of
Fig. 1, the wave fronts from the Huygens principle are
squeezed tighter towards the event horizon.
In Fig. 5 we have to shade sections of r close to the event

horizon to hide high pitches for clarity, indicating that RðrÞ
has no definite value at r ¼ rs (that is x ¼ ∞). Therefore it
may be difficult to find normal modes (solutions to the
Wheeler equation with a definite boundary value at r ¼ rs
due to some physics) for a well-defined expansion of
electromagnetic disturbances in the interior of the black
hole [13].

IX. CONCLUSIONS

The theory for the gravitational and electromagnetic
fields is represented in an elegant set of compact equations,
namely the Einstein-Maxwell equations [1–12], or the
Wheeler equation coupled with the Schwarzschild metric
when spherical symmetry is assumed [14]. With an explicit
substitution Fiziev transformed the Wheeler equation into

Heun’s equation which is known to have exact solutions
both above and below the event horizon, in the form of
spherical waves propagating both inwardly and outwardly
[13]. Therefore the void below the event horizon may not
be empty but filled with electromagnetic disturbances (light
rays) constantly trying to cross the horizon from below and
escape.
To pull back or to slow down to a standstill? That is the

question when the task is to prevent a ray from crossing a
certain barrier. It turns out that, from the optical point of
view, light rays may not be kept below the event horizon of
a black hole by deflection, which cannot force the rays to
make a U-turn and fall back when they are propagating
towards the horizon to escape. It must be length contraction
and time dilation that lend deflection a helping hand and
slow the escaping rays to a standstill.
The optical point of view is in accordance with Einstein’s

vision with respect to light rays in a gravitational field, in
terms of the Huygens principle, when he outlined his plan
to develop the general theory of relativity [17]. It is
immediately clear from his vision that deflection alone
cannot stop light rays from escaping across the event
horizon, because the wavelets in the Huygens principle
cannot propagate in the backward direction. His vision also
accommodates the possibility that light rays may be slowed
down to a standstill in a strong gravitational field, although
at that time the concept of a black hole had not yet been
envisaged.
Oppenheimer and Snyder listed three reasons to explain

why a collapsing star may close itself off from any
communication with a distant observer, apart from via
its gravitational field. Two of these, the Doppler effect and
gravitational redshift, are devices from general relativity
due to length contraction and time dilation. The remaining
reason, concerning the aperture of the external
Oppenheimer-Snyder cone in Sec. VI, is due to gravita-
tional deflection [19]. It certainly helps to stop light rays
from escaping, but may be compromised by the tendency
of the light rays from below the event horizon to encounter
the horizon at right angles.
Our black hole optics interprets and verifies the obser-

vation of Fiziev that the Wheeler equation has exact
solutions both above and below the event horizon, in the
form of waves propagating in both the outward and inward
directions. Fiziev looks forward to identifying some phys-
ics, to impose a boundary condition upon the event horizon,
that would enable him to find a natural basis of normal
modes for a well-defined expansion of any small perturba-
tion of the metric in the interior of the black hole [13]. Our
black hole optics could become a useful alternative to help
tackle this problem, because it is entirely based on the
Schwarzschild metric, with no need for additional physics.

FIG. 5. Real part of the solution to the Wheeler equation
(L ¼ 0, k ¼ 12.57=rs) in Eq. (18) shown as a function of r. A
section of the solution, over a shaded range of 0.0249 in r=rs in
the main frame, is shown in the inset for clarity. A section of the
solution in the inset is also shaded for clarity. There can be an
infinite number of such zoom-in procedures, like a Russian doll
with infinite layers. No definite boundary value can be imposed
on the event horizon for the Fourier expansion over ½0; rs�.
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