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We derive the gravitational Lagrangian to all orders of curvature when the canonical constraint algebra
is deformed by a phase space function as predicted by some studies into loop quantum cosmology.
The deformation function seems to be required to satisfy a nonlinear conservation equation usually found
in fluid mechanics and can form discontinuities quite generally. These results arise from attempting to
consistently incorporate general spatial inhomogeneities in effective models of loop quantum cosmology
rather than directly investigating the nature of signature change in such models. We work within the
restriction of not allowing additional degrees of freedom.
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I. INTRODUCTION

Many effective models of quantum gravity work from
the hypothesis that the symmetries of general relativity
should be deformed by quantum effects. The mechanism
by which it is implemented at the effective level is
diverse and often only considers individual particles.
This includes deformed special relativity [1] and rainbow
gravity [2], which struggle to go beyond describing
particles coupled to a metric dependent on the particle’s
energy. Such models can suffer from a breakdown of
causality [3] or find it difficult to describe multiparticle
states [4]. The model we consider in this paper, deformed
general relativity, should not suffer from these problems
by construction since it is energy density and curvature
that the deformation depends on. However, it includes
the possibility of metric signature change, which has a
different implication for causality [5].
A specific kind of deformation consistently appears

in some investigations of loop quantum cosmology,
when loop quantization effects are introduced into
minisuperspace models without causing anomalies
[5–11]. The constraint algebra,1 which ensures space-
time covariance is maintained when we have made a
spacetime decomposition [12], is deformed by a phase
space function βðq; pÞ. For a more in-depth review,
please see Ref. [13].
In this paper we seek to derive the most general effective

gravitational action that satisfies the deformed constraint
algebra without introducing additional degrees of freedom

and only includes the Ricci scalar for spatial curvature. We
derive the restrictions on the Lagrangian in Sec. II. In
Sec. III we use them to find the allowed forms of the
deformation and the general Lagrangian. Curiously, we find
the deformation function must satisfy the inviscid form
of the Burgers’ equation in curvature space. This may be
related to the curved phase space hypothesis [14], which is
known to be linked with similar models of deformed
relativity. These calculations generalize those presented
in Ref. [15] where the fourth order gravitational Lagrangian
was perturbatively derived from the constraint algebra.2

This is a companion paper to Ref. [16], wherein we
calculate the general scalar-tensor Hamiltonian with
deformed general covariance.
We foliate spacetime into a stack of time-labeled spatial

hypersurfaces as usual for canonical relativity. We are using
the same definitions as Refs. [16,17], but for full details, see
Refs. [13,18]. Each spatial hypersurface has a metric qab,
and the spatial slicing is characterized by the lapse N
and the shift Na. These act as Lagrange multipliers in the
classical action, and they produce constraints (i.e., they
vanish in the dynamical regime) definable from the total
Hamiltonian,

C ≔
δH
δN

; Da ≔
δH
δNa ; ð1:1Þ

which are, respectively, known as the Hamiltonian con-
straint and the diffeomorphism constraint. The classical
Poisson bracket structure of these constraints forms a
Lie algebroid [19],

*rhiannon.cuttell@kcl.ac.uk
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1Also known as the hypersurface deformation algebra.

2An updated version of the calculation of the fourth order
perturbative gravitational Lagrangian can be found in [13].
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fDa½Na�; Db½Mb�g ¼ Da½LMNa�; ð1:2aÞ

fC½N�; D½Ma�g ¼ C½LMN�; ð1:2bÞ

fC½N�; C½M�g ¼ Da½qabðN∂bM − ∂bNMÞ�: ð1:2cÞ

Since there are no anomalous terms (those not constrained
to vanish), N and Na are gauge functions, and therefore the
observable dynamics are unaffected by the spatial slicing.
Classical general relativity with a spacetime decompo-

sition can be formulated equivalently using different
variables. Geometrodynamics usually uses the spatial
metric qab and the extrinsic curvature Kab ¼ 1

2
Lnqab.

Connection dynamics uses the Ashtekar-Barbero connec-
tion AI

a and densitized triads Ea
I [20,21]. The connection

has an ambiguity in its definition given by the Barbero-
Immirzi parameter γ, which parametrizes the contribution
of the extrinsic curvature relative to the triad’s spin
connection, but the exact value of γ should not affect
the dynamics [22]. The other prominent alternative is loop
dynamics, which uses integrated versions of the AI

a and Ea
I .

If the integration regions are taken to be infinitesimal, then
the one can easily relate loop dynamics and connection
dynamics [23, p. 21].
Upon quantization, the different variables no longer

describe equivalent dynamics, particularly with a depend-
ence on γ [24,25]. Significantly, quantizing loop variables
(loop quantum gravity) explicitly discretize the geometry,
and so the integration regions cannot be taken to be
infinitesimal [23, p. 105]. In this work, we use the metric
variables of geometrodynamics because the comparison to
classical models of gravity should be clearer, and there is
no ambiguity arising from γ.
We are considering only the spatial metric field qab and

its normal derivative vab ¼ Lnqab. Time derivatives above
first-order, mixed-type derivatives such as∇cvab and tensor
contractions of derivatives above second order are asso-
ciated with additional degrees of freedom [26], and for
simplicity we do not consider such terms in this paper. The
only index-free quantities we can form up to second order
in derivatives from the spatial metric are the determinant
q ¼ det qab and the Ricci curvature scalar R. The normal
derivative can be split into its trace and traceless compo-
nents, vab ¼ vTab þ 1

3
vqab, so it can form scalars from the

trace v and a variety of contractions of the traceless tensor
vTab. However, to second order we only need to consider
w ≔ vTabv

ab
T . Therefore, we consider the Lagrangian given

by L ¼ Lðq; v; w; RÞ. Throughout this investigation we
often need to take the logarithmic derivative with respect to
the metric determinant, so we will use the simplifying
definition ∂q ≔ ∂

∂ log q.
Some studies into loop quantum cosmology predict that

the classical constraint algebra should be deformed in a
specific way when loop-quantization effects are included

without introducing anomalies [5–11]. This retains gauge
invariance, and therefore arbitrariness of the lapse and shift.
Were the constraint algebra to contain anomalous terms,
then the theory would not be gauge invariant and solving
the constraints would determine specific values for N and
Na. This privileging of a particular frame of reference
demonstrates the breaking of general covariance.
In the referenced studies, the Poisson bracket of two

Hamiltonian constraints (1.2c) is deformed by a phase
space function β,

fC½N�; C½M�g ¼ Da½βqabðN∂bM − ∂bNMÞ�: ð1:3Þ

This has not been demonstrated to be generally true, but it is
a feature that has appeared in several independent models.
Since the constraint algebra is without anomaly, the model
technically remains generally covariant. As interpreted in
Ref. [12], Eq. (1.2c) specifies the form of C such that the
spatial hypersurfaces can be embedded in spacetime
geometry. So it may be that the deformed form of this
as given by (1.3) implies that the embeddability is in some
way no longer valid.
This deformation appears to be necessary only when

γ ∈ R. By comparison, when γ ¼ �i, the deformation does
not appear in similar calculations [27]. However, the latter
case does not seem to resolve curvature singularities, and
obtaining the correct classical limit is nontrivial [25] and
therefore does not seem as desirable. The fact that our
calculations consider β ≠ 1 and assume the correct classical
limit means that, though we use metric variables, there
should be relevance to the models of loop quantum
cosmology with γ ∈ R.
From the constraint algebra, we can derive equations

which restrict the relationship between the deformation β
and either the Hamiltonian constraint C or the Lagrangian
L. The diffeomorphism constraint Da is not affected when
the deformation is a scalar3 and so is completely deter-
mined [16]. With Da as an input, and with assumptions
about field content, we can find how β relates to C and
thereby to L by manipulating (1.3).
Firstly, we must find the unsmeared form of the

deformed algebra. For general canonical variables ðqI; pIÞ,

0 ¼ fC½N�; C½M�g −Da½βqabðN∂bM − ∂bNMÞ� ð1:4aÞ

¼
Z

d3z

�X
I

δC½N�
δqIðzÞ

δC½M�
δpIðzÞ

− ðDaβN∂aMÞz
�

− ðN ↔ MÞ: ð1:4bÞ

For when we wish to derive the action instead of the
constraint, we can transform the equation by first noting
that

3That is, when β has a density weight of zero [18].
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δC½N�
δqI

¼ −
δL½N�
δqI

; NvI ¼
δC½N�
δpI

; ð1:5Þ

where vI ≔ LnqI and the Lagrangian is defined such
that S ¼ R

dtd3xNL ¼ R
dtL½N�. We substitute these into

(1.4b), then take functional derivatives to remove N andM,
and are left with a distribution equation,

0¼
X
I

δLðxÞ
δqIðyÞ

vIðyÞþðβDa∂aÞxδðx;yÞ−ðx↔yÞ: ð1:6Þ

To find a useful form for this, we need to use a specific form
for the diffeomorphism constraint. Because it depends on
momenta, we must replace them using

pI ≔
δS
δ _qI

¼ 1

N
δL½N�
δvI

; ð1:7Þ

and, as before, if we note that we will only consider actions
without mixed derivatives, this simplifies to

pI ¼
∂L
∂vI : ð1:8Þ

Therefore, substituting the diffeomorphism constraint,
and the momenta (1.8) into (1.6), we find the distribution
equation which can be used for restricting the form of the
deformed action.
It would be helpful to have a general understanding

of how a deformation function that depends on curvature
affects the form of the action before we calculate the
specific solutions. In particular, can a curvature-deformed
Lagrangian be a finite-order polynomial of curvature?
Consider the distribution equation (1.6) with only a
scalar field,

0 ¼ δLðxÞ
δψðyÞ vψ ðyÞ þ

�
β
∂L
∂vψ ∂

aψ∂a

�
x

δðx; yÞ − ðx ↔ yÞ;

ð1:9Þ

where we have used the diffeomorphism constraint for a
scalar field Da ¼ pψ∂aψ [16], where pψ ¼ ∂L

∂vψ . Let us

consider a simplified model to match the derivative orders
for the deformation and the derivative orders for the
Lagrangian in a way analogous to dimensional analysis.
First order time derivatives are given by vψ, and two orders
of spatial derivatives are given by Δ. We can collect terms
in the distribution equation of the same order of time
derivatives as they are linearly independent. Schematically,
the distribution equation is given by

0 ¼ ∂L
∂Δ vψ þ ∂L

∂vψ β; ð1:10Þ

and expanding the Lagrangian and deformation in powers
of vψ ,

L ¼
XnL
m¼0

LðmÞvmψ ; β ¼
Xnβ
m¼0

βðmÞvmψ ; ð1:11Þ

the coefficient of vnψ is then given by

0 ¼ ∂Lðn−1Þ

∂Δ þ
Xnβ
m¼0

ðn −mþ 1ÞLðn−mþ1ÞβðmÞ: ð1:12Þ

We can relabel and rearrange to find a schematic solution
for the highest order of L appearing here,

LðnÞ ¼ −1
nβð0Þ

�∂Lðn−2Þ

∂Δ þ
Xnβ
m¼1

ðn−mÞβðmÞLðn−mÞ
�
: ð1:13Þ

We can see that if nβ > 0, then this equation is recursive
and nL → ∞ because there is no natural cutoff, suggesting
that a deformed L is required to be nonpolynomial. If we
wish to truncate the action at some order, then it must be
treated as a perturbative approximation. We considered a
perturbative fourth order Lagrangian in Ref. [15]; footnote
2, and the nonperturbative gravitational Lagrangian is
considered in this paper.

II. SOLVING THE DISTRIBUTION EQUATION

The general deformed Lagrangian must satisfy the
distribution equation from (1.6), which when we are only
considering metric variables is given by

0 ¼ δLðxÞ
δqabðyÞ

vabðyÞ þ ðβDa∂aÞxδðx; yÞ − ðx ↔ yÞ: ð2:1Þ

As shown in Ref. [16] the diffeomorphism constraint for a
metric is uniquely given by

Da ¼ −2∇bpab ¼ −2ðδaðb∂cÞ þ Γa
bcÞ

∂L
∂vbc : ð2:2Þ

First, we integrate (2.1) by parts to move spatial derivatives
from L onto the delta functions. We discard the surface
term and find

0 ¼ δLðxÞ
δqabðyÞ

vabðyÞ − 2

�
β

∂L
∂vbc Γ

a
bc∂a

�
x
δðx; yÞ

þ 2

� ∂L
∂vab ∂b

�
x
½ðβ∂aÞxδðx; yÞ� − ðx ↔ yÞ; ð2:3Þ

from this we take the functional derivative with respect to
vabðzÞ (after relabeling the other indices),
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0 ¼ δLðxÞ
δqabðyÞ

δðy; zÞ þ
�

δ∂LðxÞ
δqcdðyÞ∂vabðxÞ vcdðyÞ þ 2

� ∂β;d
∂vab;e

∂L
∂vcd ∂c

�
x
δðx; yÞ∂dðxÞ

þ 2

� ∂
∂vab

�
∂dβ

∂L
∂vcd − β

∂L
∂vde Γ

c
de

�
∂c þ

∂
∂vab

�
β

∂L
∂vcd

�
∂cd

�
x
δðx; yÞ

�
δðx; zÞ − ðx ↔ yÞ: ð2:4Þ

Following a procedure similar to that used in [28], we move the derivative from δðx; zÞ and exchange some terms using the
(x ↔ y) symmetry to find it in the form

0 ¼ Aabðx; yÞδðy; zÞ − Aabðy; xÞδðx; zÞ; ð2:5Þ

where

Aabðx; yÞ ¼ δLðxÞ
δqabðyÞ

− vcdðxÞ
δ∂LðyÞ

δqcdðxÞ∂vabðyÞ þ 2

� ∂
∂vab

�
β

∂L
∂vde Γ

c
de − ∂dβ

∂L
∂vcd

�
∂c

−
∂

∂vab
�
β

∂L
∂vcd

�
∂cd þ ∂e

� ∂β;d
∂vab;e

∂L
∂vcd

�
∂d

�
y
δðy; xÞ: ð2:6Þ

Integrating over y, we find that part of the equation can be combined into a tensor dependent only on x,

0 ¼ Aabðx; zÞ − δðz; xÞ
Z

d3yAabðy; xÞ ¼ Aabðx; zÞ − δðz; xÞAabðxÞ; where AabðxÞ ¼
Z

d3yAabðy; xÞ: ð2:7Þ

Substituting in the definition of Aabðx; zÞ and then relabeling,

0 ¼ δLðxÞ
δqabðyÞ

− vcdðxÞ
δ∂LðyÞ

δqcdðxÞ∂vabðyÞ þ 2

� ∂
∂vab

�
β

∂L
∂vde Γ

c
de − ∂dβ

∂L
∂vcd

�
∂c

−
∂

∂vab
�
β

∂L
∂vcd

�
∂cd þ ∂e

� ∂β;d
∂vab;e

∂L
∂vcd

�
∂c

�
y
δðy; xÞ − AabðxÞδðx; yÞ: ð2:8Þ

To find this in terms of one independent variable, we multiply by the test tensor θabðyÞ, and integrate by parts over y.
Then collecting derivatives of θab,

0 ¼ θabð� � �Þab þ ∂cθab

� ∂L
∂qab;c þ vde

∂2L
∂qde;c∂vab − 2vef∂d

� ∂2L
∂qef;cd∂vab

�

þ 2
∂

∂vab
�
∂dβ

∂L
∂vcd − β

∂L
∂vde Γ

c
de

�
− 4∂d

� ∂
∂vab

�
β

∂L
∂vcd

��
þ 2∂e

� ∂β;d
∂vab;c

∂L
∂vde

��

þ ∂cdθab

� ∂L
∂qab;cd − vef

∂2L
∂qef;cd∂vab − 2

∂
∂vab

�
β

∂L
∂vcd

�
þ 2

∂β;e
∂vab;ðc

∂L
∂vdÞe

�
; ð2:9Þ

where we have discarded the terms containing θab without derivatives, because they do not provide any restrictions on the

form of the Lagrangian. This is simplified by noting that ∂c and ∂
∂vab commute, and that ∂β;e

∂vab;c ¼ δce
∂β
∂vab. Therefore, the

solution is given by

0 ¼ θabð� � �Þab þ ∂cθab

� ∂L
∂qab;c þ vde

∂2L
∂qde;c∂vab − 2vef∂d

� ∂2L
∂qef;cd∂vab

�
− 2Γc

de
∂

∂vab
�
β

∂L
∂vde

�

− 2∂dβ
∂2L

∂vab∂vcd − 4β∂d

� ∂2L
∂vab∂vcd

�
− 2

∂β
∂vab ∂d

� ∂L
∂vcd

��
þ ∂cdθab

� ∂L
∂qab;cd − vef

∂2L
∂qef;cd∂vab − 2β

∂2L
∂vab∂vcd

�
:

ð2:10Þ
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To find the derivatives with respect to spatial derivatives of
the metric, we must use equations from Ref. [16] for
decomposing the Ricci curvature scalar.

A. Finding the conditions on the Lagrangian

Unlike similar previous studies such as Refs. [15,29], to
reach this point we have not used an ansatz for the
Lagrangian. Going forward, we make assumptions about
what scalar variables the Lagrangian depends on, but we do
not make a finite-order expansion in the hope of finding as
general a solution as possible.
Substituting the variables into (2.10), the resulting

equation contains a series of unique tensor combinations.
The test tensor θab is completely arbitrary so the coefficient
of each unique tensor contraction with it must independ-
ently vanish. For example, suppose that we find the
equation 0 ¼ Babθab. Decomposing Bab in terms of the
only available tensors, qab and vTab, we find

0 ¼ qabθabB0 þ vabT θabB1 þ vacT vbdT qcdθabB2

þ vacT vbdT vTcdθabB3 þ � � � : ð2:11Þ

For this to be satisfied for general metrics, the coefficient of
each unique term must vanish independently, so we can
conclude in this example that BI ¼ 0 for all I.
First, we focus on the terms depending on the second

order derivative ∂cdθab. We evaluate each individual term
in Appendix. Substituting (A3) into (2.10), we find the
following independent conditions:

qab∂2θab∶0 ¼ ∂L
∂R −

2v
3

∂2L
∂R∂vþ 2β

�∂2L
∂v2 −

2

3

∂L
∂w

�
;

ð2:12aÞ

qacqbd∂cdθab∶0 ¼ ∂L
∂R − 4β

∂L
∂w ; ð2:12bÞ

qabvcdT ∂cdθab∶0 ¼ ∂2L
∂R∂vþ 4β

∂2L
∂w∂v ; ð2:12cÞ

vabT ∂2θab∶0 ¼ v
3

∂2L
∂R∂w − β

∂2L
∂v∂w ; ð2:12dÞ

vabT vcdT ∂cdθab∶0 ¼ ∂2L
∂R∂wþ 4β

∂2L
∂w2

: ð2:12eÞ

Before we analyze these equations, we will find the
conditions from the first order derivative part of (2.10).
There are many different complicated configurations of
tensors, so we define Xa ≔ qbc∂aqbc and Ya ≔ qbc∂cqab
for convenience. We evaluate the individual terms in
Appendix. When we substitute the results (A4) into
(2.10), we once again find a series of unique tensor
combinations with their own coefficient that vanishes
independently. Most of these conditions are the same as
those found in (2.12) so we will not bother duplicating
them again here. However, we do find the following new
conditions:

Xa∂bθab∶0 ¼ ∂L
∂R − 4ð∂qβ þ 2β∂qÞ

∂L
∂w ; ð2:13aÞ

qabXc∂cθab∶0 ¼ −1
2

∂L
∂Rþ v

3
ð4∂q − 1Þ ∂2L

∂v∂Rþ ∂β
∂v ð1 − 2∂qÞ

∂L
∂v þ ðβ − 2∂qβ − 4β∂qÞ

�∂2L
∂v2 −

2

3

∂L
∂w

�
; ð2:13bÞ

vabT Xc∂cθab∶0 ¼ v
3
ð4∂q − 1Þ ∂2L

∂w∂Rþ ∂β
∂w ð1 − 2∂qÞ

∂L
∂v þ ðβ − 2∂qβ − 4β∂qÞ

∂2L
∂v∂w ; ð2:13cÞ

qabvcdT Xd∂cθab∶0 ¼ ð1 − 2∂qÞ
∂2L
∂v∂R − 4ð∂qβ þ 2β∂qÞ

∂2L
∂v∂w − 4

∂β
∂v ∂q

∂L
∂w ; ð2:13dÞ

vabT vcdT Xd∂cθab∶0 ¼ ð1 − 2∂qÞ
∂2L
∂w∂R − 4ð∂qβ þ 2β∂qÞ

∂2L
∂w2

− 4
∂β
∂w ∂q

∂L
∂w ; ð2:13eÞ

qabvcdT Yd∂cθab∶0 ¼ 2β
∂2L
∂v∂wþ ∂β

∂v
∂L
∂w ; ð2:13fÞ

vabT vcdT Yd∂cθab∶0 ¼ 2β
∂2L
∂w2

þ ∂β
∂w

∂L
∂w ; ð2:13gÞ

∂aF∂bθab∶0 ¼
�∂β
∂F þ 2β

∂
∂F

� ∂L
∂w ; ð2:13hÞ
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qab∂cF∂cθab∶0 ¼ 2v
3

∂3L
∂F∂v∂R −

∂β
∂v

∂2L
∂F∂v −

�∂β
∂F þ 2β

∂
∂F

��∂2L
∂v2 −

2

3

∂L
∂w

�
; ð2:13iÞ

vabT ∂cF∂cθab∶0 ¼ 2v
3

∂3L
∂F∂w∂R −

∂β
∂w

∂2L
∂F∂v −

�∂β
∂F þ 2β

∂
∂F

� ∂2L
∂v∂w ; ð2:13jÞ

qabvcdT ∂dF∂cθab∶0 ¼ 1

2

∂3L
∂F∂v∂Rþ ∂β

∂v
∂2L
∂F∂wþ

�∂β
∂F þ 2β

∂
∂F

� ∂2L
∂v∂w ; ð2:13kÞ

vabT vcdT ∂dF∂cθab∶0 ¼ 1

2

∂3L
∂F∂w∂Rþ ∂β

∂w
∂2L
∂F∂wþ

�∂β
∂F þ 2β

∂
∂F

� ∂2L
∂w2

; ð2:13lÞ

where F ∈ fv; w; Rg.
We have now acquired all conditions on the form of the

Lagrangian for our choice of variables. The next step is to
try and consolidate them.

III. DERIVING THE LAGRANGIAN

As shown in (1.13), the deformed Lagrangian must be
calculated either perturbatively, as has been done in
Refs. [13,15], or completely generally. Before we attempt
the general calculation, we note the results found for the
perturbative case which were derived in Ref. [13] (though
an incomplete form of the calculation was first done in
Ref. [15]). For a deformation function that depends
quadratically on derivatives and an action which depends
quartically on derivatives, we found that a deformed
covariance was perturbatively maintained for the solutions,

β ¼ β∅ þ βðRÞ

�
Rþ K

β∅

�
þOð∂q3Þ; ð3:1aÞ

L¼ L∅ þ ξv
ffiffiffi
q

p þω

2

ffiffiffiffiffiffiffiffiffiffiffi
qjβ∅j

p �
R−

K
β∅

−
βðRÞ
4β∅

�
Rþ K

β∅

�
2
�

þOð∂q5Þ; ð3:1bÞ

where K is what we call the standard extrinsic curvature
contraction,

K ¼ K2 − KabKab ¼ 1

4
ðv2 − vabvabÞ ¼

v2

6
−
w
4
: ð3:2Þ

We now turn to the calculation of the general deformed
Lagrangian. Take Eqs. (2.12) and (2.13), which solve the
distribution equation for the gravitational Lagrangian when
we expand it in terms of the variables fq; v; w; Rg, and see
what can be deduced about the effective action when it is
treated nonperturbatively. Starting with the condition for
∂aF∂bθab where F ∈ fv; w; Rg, Eq. (2.13h), this can be
rewritten as

0 ¼ β

�∂L
∂w

�
2 ∂
∂F log

�
β

�∂L
∂w

�
2
�
; ð3:3Þ

which implies that

β

�∂L
∂w

�
2

¼ λ1ðqÞ; ð3:4Þ

and so we can solve up to a sign, σL ¼ �1,

∂L
∂w ¼ σL

ffiffiffiffiffiffiffiffi				 λ1β
				

s
: ð3:5Þ

Then, from qacqbd∂cdθab, Eq. (2.12b), we find

∂L
∂R ¼ 4β

∂L
∂w ¼ 4σLσβ

ffiffiffiffiffiffiffiffiffiffi
jλ1βj

p
; ð3:6Þ

where σβ ≔ sgnðβðq; v; w; RÞÞ. If we then match the

second derivative of the Lagrangian, ∂2L
∂w∂R, using both

equations, we find a nonlinear partial differential equation
for the deformation function,

0 ¼ ∂β
∂Rþ 4β

∂β
∂w ; ð3:7Þ

which is the same form as Burgers’ equation for a fluid with
vanishing viscosity [30]. However, before we attempt to
interpret this, we will find further restrictions on the
Lagrangian and deformation.
We now seek to find how the trace of the metric’s normal

derivative, v, appears. Take the condition for vabT ∂2θab,
Eq. (2.12d),

0 ¼ v
3

∂2L
∂R∂w − β

∂2L
∂v∂w ¼ σL

2

ffiffiffiffiffiffiffiffi				 λ1β
				

s �
4v
3

∂β
∂wþ ∂β

∂v
�
; ð3:8Þ

which we can solve to find that β ¼ βðq; w̄; RÞ, where
w̄ ¼ w − 2v2=3. So in the deformation, the trace v must
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always be paired with the traceless tensor squared w like
this. We can see that this is related to the standard extrinsic
curvature contraction by w̄ ¼ −4K. To find how the trace
appears in the Lagrangian, we look at the condition from
qab∂2θab, Eq. (2.12a),

0 ¼ ∂L
∂R −

2v
3

∂2L
∂v∂Rþ 2β

�∂2L
∂v2 −

2

3

∂L
∂w

�
: ð3:9Þ

Substituting in our solutions so far, we can solve for the
second derivative with respect to the trace,

∂2L
∂v2 ¼ −4σL

3

ffiffiffiffiffiffiffiffi				 λ1β
				

s �
1 −

v
2

∂β
∂v

�
: ð3:10Þ

We integrate over v to find the first derivative,

∂L
∂v ¼ −4vσL

3

ffiffiffiffiffiffiffiffi				λ1β
				

s
þ ξ1ðq;w;RÞ ¼

−4v
3

∂L
∂wþ ξ1ðq;w;RÞ;

ð3:11Þ

where ξ1 is a function arising as an integration constant.
To make sure that the solutions (3.5), (3.6), and (3.11)
match for the second derivatives ∂2L

∂v∂R and
∂2L
∂v∂w, we find that

ξ1 ¼ ξ1ðqÞ. Therefore, from this we can see that the
Lagrangian should have the time derivatives only appear
in the combined form w̄ apart from a single linear term
L ⊃ vξ1ðqÞ.
Now we just have to determine what restrictions there are

on how the metric determinant appears in the Lagrangian.
First, we have the condition from Xa∂bθab, Eq. (2.13a),

0 ¼ ∂L
∂R − 4ð∂qβ þ 2β∂qÞ

∂L
∂w

¼ 4σLσβ
ffiffiffiffiffiffiffiffiffiffi
jλ1βj

p �
1 −

∂qλ1
λ1

�
; ∴ λ1ðqÞ ¼ λ2q; ð3:12Þ

and second, from vabT Xc∂cθab, Eq. (2.13c),

0 ¼ v
3
ð4∂q − 1Þ ∂2L

∂w∂Rþ ∂β
∂w ð1 − 2∂qÞ

∂L
∂v

þ ðβ − 2∂qβ − 4β∂qÞ
∂2L
∂v∂w

¼ ∂β
∂w ðξ1 − 2∂qξ1Þ; ∴ ξ1ðqÞ ¼ ξ2

ffiffiffi
q

p
: ð3:13Þ

Both these results show that our Lagrangian will indeed
have the correct density weight when β → 1, that is,
L ∝ ffiffiffi

q
p

.
All the remaining conditions from the distribution

equation that have not been explicitly referenced are
already solved by what we have found so far, so to make

progress we must now attempt to consolidate our equations
to find an explicit form for the Lagrangian. If we integrate
(3.5), we find

L ¼ σL
ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p Z
w̄

0

dw̄0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβðq; w̄0; RÞjp þ f1ðq; v; RÞ; ð3:14Þ

and then if we match the derivative of this with respect to v
with (3.11), we find the v dependence of the function which
appeared as an integration constant,

f1ðq; v; RÞ ¼ vξ2
ffiffiffi
q

p þ f2ðq; RÞ: ð3:15Þ

If we then match the derivative of (3.14) with respect to R
with (3.6), we see that

∂L
∂R ¼ 4σLσβ

ffiffiffiffiffiffiffiffiffiffiffiffi
jqλ2βj

p
¼ ∂f2

∂R −
σL
2

ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p Z
w̄

0

σβdw̄0

jβðq; w̄0; RÞj3=2
∂
∂R βðq; w̄0; RÞ;

ð3:16Þ

and using (3.7) to change the derivative of β,

4σLσβ
ffiffiffiffiffiffiffiffiffiffiffiffi
jqλ2βj

p
¼ ∂f2

∂R þ 2σL
ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p Z
w̄

0

dw̄0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβðq; w̄0; RÞjp ∂
∂w̄0 βðq; w̄0; RÞ;

ð3:17Þ

from which we see we can change the integration variable,

4σLσβ
ffiffiffiffiffiffiffiffiffiffiffiffi
jqλ2βj

p
¼ ∂f2

∂R þ 2σL
ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p Z
βðq;w̄;RÞ

βðq;0;RÞ

dβ0ffiffiffiffiffiffiffijβ0jp :

ð3:18Þ

The upper integration limit cancels with the left-hand side
of the equality, and therefore

∂f2
∂R ¼ 4σLσ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqλ2βðq; 0; RÞj

p
; ð3:19Þ

where σ0 ≔ sgnðβðq; 0; RÞÞ. Then integrating this over R,

f2ðq; RÞ ¼ 4σL
ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p Z
R

0

σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβðq; 0; R0Þj

p
dR0 þ f3ðqÞ;

ð3:20Þ

which means that finally we have our solution for the
Lagrangian to all orders of curvature,
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L ¼ σL
ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p �Z
w̄

0

dw̄0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβðq; w̄0; RÞjp
þ 4

Z
R

0

σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβðq; 0; R0Þj

p
dR0

�
þ vξ2

ffiffiffi
q

p þ f3ðqÞ:

ð3:21Þ

Now, we test this with a zeroth order deformation so we can
match terms with our previous results. Using β ¼ β∅ðqÞ,

L ¼ σL
ffiffiffiffiffiffiffiffiffiffi
jqλ2j

p �
w̄ffiffiffiffiffiffiffiffijβ∅j

p þ 4Rsgnðβ∅Þ
ffiffiffiffiffiffiffiffi
jβ∅j

p �

þ vξ2
ffiffiffi
q

p þ f3ðqÞ; ð3:22Þ

comparing this to Refs. [13,17] and using w̄ ¼ −4K
leads to

σL ¼ σβ;
ffiffiffiffiffiffiffi
jλ2j

p
¼ ω

8
; f3 ¼ −

ffiffiffi
q

p
UðqÞ; ð3:23Þ

and therefore, the full solution is given by

L ¼ ωσβ
ffiffiffi
q

p
2

�Z
R

0

σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβðq; 0; R0Þj

p
dR0

−
Z

K

0

dK0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβðq;K0; RÞjp �
þ ffiffiffi

q
p ðvξ −UðqÞÞ; ð3:24Þ

where we have relabeled ξ2 → ξ, and the deformation
function must satisfy the nonlinear partial differential
equation,

∂β
∂R ¼ β

∂β
∂K : ð3:25Þ

By performing a Legendre transform, we can see that the
Hamiltonian constraint associated with this Lagrangian
(3.24) is given by

C ¼ ωσβ
ffiffiffi
q

p
2

�Z
K

0

dK0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβðq;K0; RÞjp −
2Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijβðq;K; RÞjp

−
Z

R

0

σ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jβðq; 0; R0Þj

p
dR0

�
þ ffiffiffi

q
p

U: ð3:26Þ

A. Solving for the deformation function

The nonlinear partial differential equation for the
deformation function (3.25) is an unexpected result and
invites a comparison to a very different area of physics.
We can compare it to Burgers’ equation for nonlinear
diffusion [30]

∂u
∂t þ u

∂u
∂x ¼ η

∂2u
∂x2 ; ð3:27Þ

(where u is a density function) and see that our equation is
very similar to the “inviscid” limit of vanishing viscosity
η → 0. This equation is not trivial to solve because it can
develop discontinuities where the equation breaks down,
termed “shock waves.” Returning to our own equa-
tion (3.25), we analyze its characteristics. It implies that
there are trajectories parametrized by s given by

dq
ds

¼ 0;
dR
ds

¼ 1;
dK
ds

¼ −βðq;K; RÞ; ð3:28Þ

along which β is constant. These trajectories have gradients
given by

dR
dK

¼ −1
βðq;K; RÞ ; ð3:29Þ

and because β is constant along the trajectories, they are a
straight line in the ðK; RÞ plane. We must have an “initial”
condition in order to solve the equation, and because R is
here the analogue of −t in (3.27) we define the initial
function when R ¼ 0, given by βðq;K; 0Þ≕ αðq;KÞ. Since
there are trajectories along which β is constant, we can use
α to solve for RðKÞ along those curves, given an initial
value K0,

R ¼ K0 −K
αðK0Þ

: ð3:30Þ

We reorganize to get K0 ¼ Kþ RαðK0Þ, and then sub-
stitute into β. This leads to the implicit relation,

βðq;K; RÞ ¼ αðq;Kþ Rβðq;K; RÞÞ: ð3:31Þ

We invoke the implicit function theorem to calculate the
derivatives of β,

∂β
∂K ¼ α0

1 − Rα0
;

∂β
∂R ¼ −βα0

1 − Rα0
; ð3:32Þ

which show that a discontinuity develops when Rα0 → 1.
This is the point where the characteristic trajectories along
which β is constant converge to form a caustic. Beyond this
point, β seems to become a multivalued function.
An analytic solution to β exists only when α is linear

in K,

α ¼ α∅ðqÞ þ α2ðqÞK; β ¼ α∅ðqÞ þ α2ðqÞK
1 − α2ðqÞR

; ð3:33Þ

which matches the equations for linear βðK; 0Þ and the
corresponding βð0; RÞ found in Ref. [16]. When jα2Rj ≪ 1,
we can expand β into a series,
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β ≃ α∅ þ α2ðKþ α∅RÞ
X∞
n¼0

Rnαn2; ð3:34Þ

and by comparing this to the perturbative deformation
found in Ref. [13] and written in Eq. (3.1) we can see the
correspondence α∅ ¼ β∅ and α2 ¼ βðRÞ=β∅. For nonlinear
initial functions, the deformation must be found numeri-
cally. As a test, in Fig. 1, we numerically solve for β when
α ¼ tanh ðωKÞ. We see that, as R increases, the positive
gradient inK intensifies to form a discontinuity and softens
as R decreases.
We have also numerically solved for the deformation

when the initial function is given by α ¼ cos ðωKÞ, shown
in Fig. 2. This function is somewhat motivated by loop
quantum cosmology models with holonomy corrections
[5,10,11]. As with the tanh numerical solution in Fig. 1, we
see the positive gradient intensify and the negative gradient
soften as R becomes more positive. We could not evolve the
equations past the formation of the shock wave so from this
we cannot determine for certain whether a periodicity
emerges in R, but we can compare the cross sections for
β in Fig. 2(d). This cross section appears to match that
found in Ref. [16] when we attempted to find the
correspondence between βðK; 0Þ and βðRÞ for nonlinear
functions. In that, R is a function of the canonical metric
momentum and R. It would seem that βð0; RÞ should be a
nonvanishing function even when βðK; 0Þ does vanish for
some values of K.
When the inviscid Burgers’ equation is being simulated

in the context of fluid dynamics, a choice must be made on
how to model the shock wave [30]. The direct continuation
of the equation means that the density function u becomes
multivalued, and the physical interpretation of it as a
density breaks down. The alternative is to then propagate
the shock wave as a singular object, which requires a
modification to the equations.
Considering our case of the deformation function,

allowing a shock wave to propagate does not seem to
make sense. It might require being able to interpret β as a

density function and the space of ðK; RÞ to be interpreted as
a medium. Whether the shock wave remains singular or
becomes multivalued, the most probable interpretation is that
it represents a disconnection between different branches of
curvature configurations. That is, for a universe to transition
from one side of the discontinuity to the other may require
taking an indirect path through the phase space. It may be
that the behavior in ðK; RÞ is an embodiment of the curved
momentum space hypothesis [14].

B. Linear deformation

If we take the analytic solution for the deformation
function when its initial condition is linear (3.33), we can
substitute it into the general form for the gravitational
Lagrangian (3.24). If we assume we are in a region where
1 − α2R > 0, we get the solution

L ¼ ω
ffiffiffi
q

p
α2

�
sgn

�
1þ α2K

α∅

� ffiffiffiffiffiffiffiffi
jα∅j

p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jα∅ þ α2Kj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2R

p �
þ ffiffiffi

q
p ðvξ − UÞ; ð3:35Þ

and expanding in series for small derivatives of the metric
when we are in a region where jα∅j ≫ jα2Kj,

L ¼ ω

2

ffiffiffiffiffiffiffiffiffiffiffi
qjα∅j

p �
R −

K
α∅

−
α2
4

�
Rþ K

α∅

�
2

þOð∂q5Þ
�

þ ffiffiffi
q

p ðvξ −UÞ; ð3:36Þ

which matches exactly the previously calculated fourth
order perturbative Lagrangian (3.1) when α∅ ¼ β∅ and
α2 ¼ βðRÞ=β∅.
The Hamiltonian constraint associated with the non-

perturbative effective action can be found by using (3.26).
Substituting in the Lagrangian for a linear deformation
(3.35), we can solve for K when the constraint vanishes (as
long as we specify that it must be finite in the limit α2 → 0),

FIG. 1. Numerically solved deformation function for initial function α ¼ tanh ðωKÞ. The numerical evolution breaks for ωR > 1
because a discontinuity has developed. The initial function is indicated by the black line. The plots are in ω ¼ 1 units.
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K ¼
�
2

ω
sgnðα∅Þ

ffiffiffiffiffiffiffiffi
jα∅j

p
U

�
1 −

α2U

2ω
ffiffiffiffiffiffiffiffijα∅j

p �
− α∅R

�

×

�
1 −

α2U

ω
ffiffiffiffiffiffiffiffijα∅j

p �
−2
: ð3:37Þ

If we restrict to the Friedmann-Lemaître-Robertson-Walker
metric, where qab ¼ a2Σab, R ¼ 6ka−2, K ¼ 6H2, and
U ¼ ρðaÞ, as described in Ref. [16], we find the modified
Friedmann equation,

H2 ¼
�
sgnðα∅Þ

ffiffiffiffiffiffiffiffijα∅j
p

3ω
ρ

�
1 −

α2ρ

2ω
ffiffiffiffiffiffiffiffijα∅j

p �
−
α∅k
a2

�

×

�
1 −

α2ρ

ω
ffiffiffiffiffiffiffiffijα∅j

p �
−2
: ð3:38Þ

There is a correction term similar to that found for the fourth
order perturbative Lagrangian [15] which suggests there
could be a bounce when ρ → 2ω

ffiffiffiffiffiffiffiffijα∅j
p

=α2. However, there
is also an additional factor that causes H to diverge when
ρ → ω

ffiffiffiffiffiffiffiffijα∅j
p

=α2, which is before that potential bounce.
This is directly comparable to the modified Friedmann

equation found for the deformation function βðRÞ ¼
β∅ð1þ β2RÞ−1, investigated in Ref. [16], with α∅ ¼ β∅
and α2 ¼ ωβ2=2. As is found here, those results suggested
a sudden singularity where H diverges when a and ρ
remain finite. Note that this is for the deformation function
with a linear dependence on K which, unlike the cosine
deformation, is not motivated by loop quantum cosmology.
It does, however, demonstrate the difference that higher
order corrections can have on dynamics.

FIG. 2. Numerically solved deformation function with an initial function α ¼ cos ðωKÞ and periodic boundary conditions. The
numerical evolution breaks for jωRj > 1 because discontinuities have developed. The initial function is indicated by the black line.
The plots are in ω ¼ 1 units.
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IV. CONCLUSIONS

We derived the deformed effective gravitational action to
all orders of scalar curvature from the deformed constraint
algebra. The way the deformation function is differently
affected by extrinsic and intrinsic curvature (i.e., by time
and space derivatives) was found to be similar to a
differential equation that usually appears in fluid mechan-
ics. Discontinuities in the deformation function seem to be
inevitable, but the interpretation of what they mean is not
clear. The discontinuities might be avoided if there
were natural restrictions on the sign of the deformation’s
coefficients or the curvature. This effect may be linked to
the curved phase space hypothesis.
We sought to provide insight into the problem of

incorporating spatial inhomogeneities into models of loop
quantum cosmology with a deformed constraint algebra.
From our results, we can see that it is indeed possible to
determine the dependence of the deformation on spatial
derivatives from its dependence on time derivatives.
However, the lack of analytical solutions, and numerical

solutions which tend toward discontinuities, means that
determining general behavior is difficult. Unfortunately this
study does not seem to provide much new information on
the nature of signature change or the ultralocal regime in
loop quantum cosmology.
There are important caveats to these conclusions. The

use of metric variables rather than connection or loop
variables might hinder comparison to the motivating
studies. Considering the deformed algebra implicitly
restricts us to real values of γ. Last, the order of tensor
combinations and derivatives considered were limited, even
though higher orders are likely to appear from quantum
corrections.
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APPENDIX: EXTRA CALCULATIONS

For convenience, we use the abbreviating definitions,

Qabcd ≔ qaðcqdÞb; Xa ≔ qbc∂aqbc; Ya ≔ qbc∂cqba ¼ ∂bqab; Za ≔ vbcT ∂aqbc; Wa ≔ vbcT ∂cqba: ðA1Þ

Evaluating each term in the ∂cdθab bracket of (2.10), by substituting in the variables

q ≔ det qab; v ≔ qabvab; w ≔ vTabv
ab
T ¼ vabvab −

1

3
v2; R ≔ qbcRa

bac ðA2Þ

and using the equations derived for decomposing R in Ref. [16],

∂L
∂qab;cd ¼ ðQabcd − qabqcdÞ ∂L∂R ; ðA3aÞ

vef
∂2L

∂qef;cd∂vab ¼
�
vcdT −

2

3
vqcd

��
qab

∂2L
∂v∂Rþ 2vabT

∂2L
∂w∂R

�
; ðA3bÞ

∂2L
∂vab∂vcd ¼ qabqcd

�∂2L
∂v2 −

2

3

∂L
∂w

�
þ 2Qabcd ∂L

∂wþ 2ðqabvcdT þ vabT qcdÞ ∂2L
∂v∂wþ 4vabT vcdT

∂2L
∂w2

: ðA3cÞ

Evaluating each term in the ∂cθab bracket of (2.10),

∂L
∂qab;c ¼

∂L
∂R

�
3

2
Qabde∂cqde − qcðdqeÞða∂bÞqde þ qabYc −

1

2
qabXc − 2qcðaYbÞ þ qcðaXbÞ

�
; ðA4aÞ

vef
∂2L

∂qef;c∂vab ¼
�
3

2
Zc −Wc − 2vcdT Yd þ vcdT Xd þ

v
3
Xc

��
qab

∂2L
∂v∂Rþ 2vabT

∂2L
∂w∂R

�
; ðA4bÞ
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vef∂d

� ∂2L
∂qef;cd∂vab

�
¼

�
Zc −Wc þ v

3
Xc þ v

3
Yc − vcdT Yd

��
qab

∂2L
∂v∂Rþ 2vabT

∂2L
∂w∂R

�

þ
�
vcdT −

2v
3
qcd

��
ðqab∂d −Qabef∂dqefÞ

∂2L
∂v∂R

þ 2ðvabT ∂d þQabef∂dvTef − 2veðaT qbÞf∂dqefÞ
∂2L
∂w∂R

�
; ðA4cÞ

Γc
de

∂2L
∂vab∂vde ¼ ð2qcdqeða∂bÞqde −Qabde∂cqdeÞ

∂L
∂wþ ð2Wc − ZcÞ

�
qab

∂2L
∂v∂wþ 2vabT

∂2L
∂w2

�

þ
�
Yc −

1

2
Xc

��
qab

�∂2L
∂v2 −

2

3

∂L
∂w

�
þ 2vabT

∂2L
∂v∂w

�
; ðA4dÞ

Γc
de

∂β
∂vab

∂L
∂vcd ¼

�
qab

∂β
∂vþ 2vabT

∂β
∂w

���
Yc −

1

2
Xc

� ∂L
∂v þ ð2Wc − ZcÞ ∂L∂w

�
; ðA4eÞ

∂dβ
∂2L

∂vab∂vcd ¼ ∂cβ

�
qab

�∂2L
∂v2 −

2

3

∂L
∂w

�
þ 2vabT

∂2L
∂v∂w

�
þ 2qcða∂bÞβ

∂L
∂wþ 2vcdT ∂dβ

�
qab

∂2L
∂v∂wþ 2vabT

∂2L
∂w2

�
; ðA4fÞ

∂d

� ∂2L
∂vab∂vcd

�
¼ ðqab∂c − qabYc −Qabef∂cqefÞ

�∂2L
∂v2 −

2

3

∂L
∂w

�
þ 2ðqcða∂bÞ − qcðaYbÞ − qcðeqfÞða∂bÞqefÞ

∂L
∂w

þ 2
n
qabðvcdT ∂d − vcdT Yd −Wc þ qcd∂evTdeÞ þ vabT ∂c − vabT Yc þQabefð∂cvTef − vcdT ∂dqefÞ

− 2veðaT qbÞf∂cqef
o ∂2L
∂v∂wþ 4

n
vabT ðvcdT ∂d −Wc − vcdT Yd þ qcd∂evTdeÞ

þQabefvcdT ∂dvTef − 2veðaT qbÞfvcdT ∂dqef
o ∂2L
∂w2

; ðA4gÞ

∂β
∂vab ∂d

� ∂L
∂vcd

�
¼

�
qab

∂β
∂vþ 2vabT

∂β
∂w

��
ð∂c − YcÞ ∂L∂v þ 2ðvcdT ∂d þ qcd∂evTde − vcdT Yd −WcÞ ∂L∂w

�
: ðA4hÞ
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