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We consider the spacetime presented by Bonnor in 1998, whose matter content is a spheroid of
electrically counterpoised dust, in the context of the geometrical inequalities between area and charge.
We determine numerically the constant mean curvature surfaces that are candidates to be stable
isoperimetric surfaces and analyze the relation between area and charge for them, showing that both a
previously proved inequality and a conjectured inequality are far from being saturated. We also show that
the maximal initial data has a cylindrical limit where the minimum of the area-charge relation is attained.
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I. INTRODUCTION

General relativity, being fundamentally a geometric
theory, relies heavily in geometrically defined objects to
make physical predictions. In fact, many theoretical pre-
dictions depend on defining suitable geometric objects
associated with physical concepts and then prove geomet-
rical relations among them. As an already classical and
crucial example we have the positivity of mass, m ≥ 0, for
isolated systems [1,2]. An important family of such
relations is formed by the so-called geometrical inequal-
ities. They are predictions of the theory and allow us to
understand relevant properties of physical systems. For
black holes they relate physical parameters, such as mass,
charge, angular momentum, and area. As example we have
that for axially symmetric black holes

ffiffiffiffiffiffi
jJj

p
≤ m; ð1Þ

proved in [3], where J is the angular momentum of the
black hole. Also in this category we have the Penrose
inequality [4],

m ≥
ffiffiffiffiffiffiffiffi
A
16π

r
; ð2Þ

which presents still a very important open problem.
Crucially this last inequality and part of the motivation
for the former (and other inequalities) depend on the
cosmic censorship conjecture. For an up to date and
thorough review of geometrical inequalities in general
relativity the reader is referred to [5] and for the present
status of the Penrose inequality to [6].

A problem that turned out to be extremely challenging is
to find geometrical inequalities for “ordinary objects,” that
is, regular matter objects. One of the reasons for such
difficulty is that ordinary objects do not have geometrically
distinguished boundaries as black holes do. After the first
struggles to find geometric relations or conditions on matter
objects, it was realized that simple attempts to relate things
like the mass and area or length of an object were bound to
fail unless spherical symmetry was present. In this sense it
became clear that just the length of an object or its area was
not a good measure of its “size,” as it was possible to make
the area of an object go to zero without making its mass
zero, or it was possible to make an arbitrarily long object
with fixed mass. A much used example of this, and the
main concern of the present article, is the spacetime
presented in [7]. Progress was made once it was realized
that an extremality condition was lacking, which was
something that the black holes naturally had. To the rescue
came trapped surfaces for the spacetime and isoperimetric
surfaces for initial data. A stable isoperimetric surface is a
surface whose area is a minimum with respect to nearby
surfaces that enclose the same volume. In this sense, the
area of the smallest stable isoperimetric surface enclosing
an object is seen as a better representative of the size of the
object than the area of the object itself. Please refer again to
[5] for the state of the art and the discussion of possible
measures of size for ordinary objects.
The problem of finding the stable isoperimetric surfaces

in a given metric manifold, so-called isoperimetric prob-
lem, has a long and fruitful history in mathematics. Of
particular importance in general relativity are the results
showing that, for initial data that are asymptotic to
Schwarzschild, there exists a unique foliation by stable
isoperimetric surfaces in the asymptotic region. In this
regard please refer to [8–10] (this last work contains also an*acena.andres@conicet.gov.ar
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interesting appendix with an overview of results on iso-
perimetric regions).
Back to geometrical inequalities, it was proved in [11]

that for a stable isoperimetric surface in an electrovacuum
maximal initial data with a non-negative cosmological
constant

A ≥
4

3
πQ2; ð3Þ

where A is the area of the surface and Q is its electric
charge. This result is purely quasilocal and therefore
charged matter could be present inside or outside the
surface, although it needs to be noted that if there is
charged matter outside the surface, then Q refers only to
the charge contained inside the surface. To explore this
inequality in [12] the superextreme regime of the Reissner-
Nordström family of spacetimes was considered. Due to the
staticity and spherical symmetry the isoperimetric profile
was obtained and then it was possible to see that equality in
(3) was never attained. This led to conjecture the more
stringent inequality

A ≥
16

9
πQ2: ð4Þ

Continuing with the idea of testing the inequality (3), in
the present work we focus on the family of spacetimes
presented by Bonnor in [7]. These are solutions of the
Einstein-Maxwell field equations where the matter content
is a spheroid of electrically counterpoised dust (ECD).
These solutions are striking in the way the mathematical
properties of ECD are exploited. This allows to modify the
parameters of the spacetimes in order for example to test the
hoop conjecture [13]. Also, the area of the matter spheroid
can be made arbitrarily small while keeping its mass (and
charge) constant. This is a counterexample to the idea that
the area of an object can be bounded below by its mass. Our
main interest is to analyze these spacetimes in relation to
the inequality (3). So we want to find the isoperimetric
profile for a maximal initial slice and obtain the quotient
between area and charge. From the perspective of the
conjecture (4), we are interested in seeing if the spacetime
presents a challenge to it.
To find the stable isoperimetric surfaces in a metric

manifold is in general quite complicated. A necessary
condition for a surface to be stable isoperimetric is that its
mean extrinsic curvature has to be constant [14]. Such a
surface is said to be of constant mean curvature (CMC).
Even finding CMC surfaces is in general complicated, and
it is necessary to use algorithms as the one developed in
[15]. We have the benefit that the spacetime we consider is
static, axially symmetric and equatorially symmetric, and
consider only CMC surfaces that also have these sym-
metries, which allows us to reduce the problem to the
integration of a second order ordinary differential equation

(ODE) with a parameter to be determined. Therefore with
standard numerical methods we are able to find candidates
for stable isoperimetric surfaces, calculate their area, and
compare with the inequalities (3) and (4).
The article is organized as follows. In Sec. II we describe

the family of spacetimes found in [7]. Then, in Sec. III, we
calculate the ODE satisfied by CMC surfaces and discuss
the particularities of its integration and the numerical
scheme. The results on the relation between area an charge
are discussed in Sec. IV. This leads to an interesting limit
manifold that is analyzed in Sec. V. Finally the conclusions
are presented in Sec. VI.

II. THE METRIC FOR THE ECD
PROLATE SPHEROID

In [7], Bonnor presents a family of static, axially
symmetric, asymptotically flat solutions of the Einstein-
Maxwell field equations. The matter content of the space-
times corresponds to a prolate spheroid of ECD surrounded
by vacuum. The metric in prolate spheroidal coordinates is

ds2¼−U−2dt2þa2U2ðXðdu2þdθ2Þþ sinh2ucos2θdϕ2Þ;
ð5Þ

where a is a constant and

X ¼ cosh2u − sin2θ: ð6Þ

The boundary between the matter and vacuum regions is
defined by choosing a positive constant u0, with u < u0
corresponding to the region where the matter is, and u > u0
corresponding to thevacuum region. Themetric functionU is

U ¼
(
1þ m

a ln coth
u
2
; u > u0;

1þ m
a

�
ln coth u0

2
þ u5

0
−u5

5u4
0
sinh u0

�
; u < u0:

ð7Þ

We refer the reader to [7] for details regarding the field
equations. The parameter m is the ADM mass of the
spacetime, and as we are dealing with ECD it is also the
total electric charge, Q ¼ m. The parameter a comes from
the definition of prolate spheroidal coordinates, as in fact
such coordinates are not a single system of coordinates but
a family. It is interesting that changing this parameter
changes the spacetime, as it changes the coordinates on
which the spacetime is constructed.
In [7] the geometric properties of the ECD spheroid are

discussed. If we consider u0 as a parameter defining a
family of spacetimes, while the other parameters are kept
constant, then it is shown that the equatorial perimeter and
area of the spheroid go to zero as u0 goes to zero, while the
polar perimeter diverges. This implies that given any
positive number k, there is always possible to choose u0
such that
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Au0 < km2; ð8Þ

or in terms of the total charge

Au0 < kQ2; ð9Þ

where Au0 is the area of said spheroid. This is used in [7] as
a counterexample to the conjecture that any mass distri-
bution whose area is small enough with respect to its mass
should form a black hole.

III. CMC SURFACES

As the maximal initial hypersurface we simply take a
t ¼ constant slice. The extrinsic curvature vanishes and the
induced metric is

ds2 ¼ a2U2ðXðdu2 þ dθ2Þ þ sinh2ucos2θdϕ2Þ: ð10Þ

If we define the parameter

μ ¼ m
a
; ð11Þ

we see that a2 is just an overall constant factor in the metric,
which in fact is also an overall factor in the spacetime
metric if we rescale the coordinate t. Therefore we concern
ourselves with the metric

ds2 ¼ U2ðXðdu2 þ dθ2Þ þ sinh2 u cos2 θdϕ2Þ; ð12Þ

and powers of a can be restated later whenever necessary.
As we only need to consider the vacuum region or the
surface of the spheroid we have

U ¼ 1þ μ ln coth
u
2
: ð13Þ

In order to see why the inequality (9) is possible, we
calculate the mean extrinsic curvature, χ, of the u ¼
constant spheroids. A lengthy but straightforward compu-
tation gives

χ ¼ U cosh uð2 sinh2 uþ cos2 θÞ − 2μX

U2X
3
2 sinh u

: ð14Þ

This shows explicitly that the u0 spheroid is not an
isoperimetric surface. We indirectly knew this because
such spheroids can be made to violate the inequality (3).
As noted, a necessary condition for a surface to be

isoperimetric is that its mean extrinsic curvature has to be
constant. We describe a generic axisymmetric surface by
the embedding ðu; θ;ϕÞ ¼ ðsðθÞ; θ;ϕÞ, where sðθÞ is a
function of θ only, and we have made an abuse of notation
by denoting also by θ and ϕ the coordinates on the surface.
The mean extrinsic curvature for such a surface is

χ ¼ −
1

U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1þ s02Þ

p �
s00

1þ s02
−
1

2
s0 sinð2θÞ

�
1

X
þ 1

cos2θ

�

ð15Þ

−
1

2
sinhð2sÞ

�
1

X
þ 1

sinh2s

�
þ 2μ

U sinh s

�
; ð16Þ

where

X ¼ cosh2s − sin2θ; U ¼ 1þ μ ln coth
s
2
; ð17Þ

and prime denotes derivative with respect to θ. In the
special case sðθÞ ¼ constant we recover the formula for the
spheroids (14). Equation (15) can be written in a more
suggestive form as a differential equation for s, if we
consider χ as a constant parameter,

s00 ¼ ð1þ s02Þ
�
−χU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1þ s02Þ

q
þ1

2
s0 sinð2θÞ

�
1

X
þ 1

cos2θ

�
ð18Þ

þ 1

2
sinhð2sÞ

�
1

X
þ 1

sinh2s

�
−

2μ

U sinh s

�
: ð19Þ

A solution of (18) corresponds to a spherically symmetric
CMC surface. We also assume the surface to be equato-
rially symmetric, and therefore we want to integrate (18)
from θ ¼ − π

2
to θ ¼ 0. The first thing to consider is that the

solution needs to represent a smooth enough surface and
this means that at least s0ð− π

2
Þ ¼ s0ð0Þ ¼ 0. Also, the

differential equation (18) is singular at θ ¼ − π
2
, that is,

the rhs formally diverges at that point. This is a coordinate
problem due to the spheroidal coordinates being singular
there. This issue can be remedied, as discussed below, and
the rhs has a well-defined limit if s0ð− π

2
Þ ¼ 0, coincident

with one of the previous conditions.
Due to the complicated nature of (18) we integrate it

numerically using a shooting method. We fix the initial
conditions s0 ¼ sð− π

2
Þ and s1 ¼ s0ð− π

2
Þ ¼ 0, and make a

guess for χ. We can then integrate the differential equation.
We use as error function the value of s0 at the end point of
the integration, that is, s0ð0Þ. We update the guess for χ
using the Newton-Raphson method,

χkþ1 ¼ χk −
s0ð0Þ
_s0ð0Þ ; ð20Þ

where the dot means derivative with respect to χ. We iterate
until the value of the error function is small enough. After
this process we obtain the function sðθÞ and the corre-
sponding χ. By varying s0 we change the surface found and
by varying μ in (18) we change the metric in which the
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surface is embedded, correspondingly we denote by ss0;μ
the solution and by χs0;μ its mean extrinsic curvature.
As said, the differential equation (18) is singular at

θ ¼ − π
2
. Although the limit is well defined, the singularity

poses problems for the numerical integration. In order to
circumvent this issue, before integrating we extrapolate the
initial conditions from θ ¼ − π

2
to θ ¼ − π

2
þ δ, where δ is

the size of the first step on the integration grid. The
extrapolation is done via a Taylor expansion to the second
order

sðθÞ ≈ s0 þ s1

�
θ þ π

2

�
þ 1

2
s2

�
θ þ π

2

�
2

: ð21Þ

The coefficients s0 and s1 could in principle be prescribed,
but due to (18) being singular only s0 can be freely
prescribed. In order for (18) to have a well-defined limit
at θ ¼ − π

2
we need

s1 ¼ 0: ð22Þ
Once this is ensured, the rhs of (18) has a well-defined limit
that depends on s2, and equating this with the lhs, i.e., s2,
we obtain

s2 ¼ −
1

2
χU0 sinh s0 þ coth s0 −

μ

U0 sinh s0
; ð23Þ

where

U0 ¼ 1þ μ ln coth
s0
2
: ð24Þ

Summarizing, the new initial conditions are

s

�
−
π

2
þδ

�
¼ s0þ

1

2
s2δ2; s0

�
−
π

2
þδ

�
¼ s2δ; ð25Þ

and the integration is performed from θ ¼ − π
2
þ δ to θ ¼ 0.

An accompanying strategy to help with the singular limit
is to use a grid with unevenly spaced points, in order to
have more resolution close to the singular end. After some
trials we decided to use a grid where the point i is at
position

θi ¼ −
π

2
þ π

2

�
i
n

�
1.4
; 0 ≤ i ≤ n: ð26Þ

Once we have obtained ss0;μ we calculate its area, which
is given by

As0;μ ¼ 4π

Z
0

−π
2

U2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1þ s02Þ

q
sinh s cos θdθ: ð27Þ

To perform the ODE integration we use the Runge-
Kutta-Fehlberg method, and for the area integration the

composite Simpson’s rule. Both methods are already
implemented in SageMath [16]. To test the accuracy of
the numerical solution we use the μ ¼ 0 case, which is
simply Euclidean space and where we know that the
isoperimetric surfaces are spheres, which in prolate sphe-
roidal coordinates have the expression

sEðθÞ ¼ arccosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2s0 þ cos2θ

q
; ð28Þ

and for which

χE ¼ 2

cosh s0
; AE ¼ 4πcosh2ðs0Þ: ð29Þ

Comparing the numerical solution to the exact solution we
decided to use a grid with n ¼ 210 points for s0 > 0.005
and with n ¼ 211 points for s0 ≤ 0.005, which ensures
enough accuracy. The relative error in the area, which is our
main concern in the numerical scheme, is shown in Fig. 1.
Although certainly there is room for improvement, as could
be the use of spectral methods, the method used here is fit
for our purpose.
In Fig. 2 we have plotted several solutions to (18) with

varying s0 and μ, which illustrates the general tendency of
the CMC surfaces. As expected from the μ ¼ 0 case, each
ss0;μðθÞ is an increasing function of θ. Also expected, if we
fix μ, then ss0;μðθÞ is an increasing function of s0 for every θ
and therefore the solution ss0¼0;μðθÞ bounds from below all
the other solutions. Finally, if we fix s0, then ss0;μðθÞ is a
decreasing function of μ, and the solution does not go to
zero but there exists a limit solution as μ → ∞.
In Fig. 3 we show the mean extrinsic curvature of the

CMC surfaces as a function of s0 for several values of μ. In
general, as expected, χs0;μ is a decreasing function of s0,
although for some values of μ there is a range in s0 where
χs0;μ is an increasing function. In all cases the mean
extrinsic curvature goes to zero as s0 → ∞. Also, if we

FIG. 1. Relative error in the area for the Euclidean case.
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fix s0, then χs0;μ is a decreasing function of μ and goes to 0
as μ → ∞.

IV. RELATION BETWEEN AREA
AND CHARGE

Our main interest in this work is to analyze the relation
between area and charge for the surfaces we have inte-
grated, and compare with the inequalities (3) and (4). All
the surfaces we consider enclose the ECD spheroid and
therefore their charge is the charge of the spacetime. To
make the comparison easier we define the quantity

qs0;μ ¼
As0;μ

4πμ2
: ð30Þ

This quotient is the same as A=ð4πQ2Þ once we reinstate
the factors of a. We know that qs0;μ is not bounded above,
as the spacetime is asymptotically flat and then As0;μ can be
made as large as we want by taking s0 big enough. On the
other hand, qs0;μ has to be bounded below away from zero if

ss0;μ is a stable isoperimetric surface. In order to compare
with the inequalities (3) and (4) we note that, if they are
satisfied by ss0;μ, then qs0;μ ≥ k with k ¼ 1

3
for (3) and k ¼ 4

9

for (4).
In Fig. 4 we have plotted qs0;μ as a function of s0 for

several values of μ. We see that qs0;μ is an increasing
function of s0, as expected, and that there is a well-defined
limit for qs0;μ as s0 goes to zero, which can be quite large if
μ is small. We plot again qs0;μ as a function of s0 in Fig. 5,
but for higher values of μ. We observe the same behavior as
before, although the curves get closer as μ increases and
there is a limiting curve. We see already that the minimum
of qs0;μ seems to be above 0.96, a value that is far from 1

3
or

4
9
. There is a subtlety regarding the case when s0 is close to
zero. In Fig. 6 we have enlarged the region close to s0 ¼ 0
for μ ¼ 28. We see that the minimum of qs0;μ is not attained
at s0 ¼ 0 but at around s0 ¼ 0.0021. Analyzing the results
of the integrations we conclude that such minimum first
appears for μ ≈ 1, although we have not tried to find exactly

FIG. 2. CMC surfaces.

FIG. 3. Mean extrinsic curvature. FIG. 4. Area-charge quotient.
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when this happens. Said minimum moves to the right and
settles at around s0 ¼ 0.0026 with increasing μ.
From the plots we note that qs0;μ is a decreasing function

of μ if one keeps s0 constant. To analyze this we show in
Fig. 7 qs0;μ as a function of μ−1, which highlights its
behavior for large μ. We see that it is an increasing function
of μ−1. To see the limit as μ−1 → 0 we zoom in Fig. 8,
showing that qs0;μ has a well-defined limit there and that
said limit does depend on s0. As already noted we have
qs0;μ > 0.96. The behavior of qs0;μ suggest taking the limit
μ → ∞, which we do in the following section.
To close this section we point out that there are other

CMC surfaces besides those considered so far. In Fig. 9 we
have plotted five CMC surfaces, all with s0 ¼ 0.005 and for
μ ¼ 10. All of them satisfy the same boundary conditions
and are equally smooth, the difference being the value of χ
for each one. The surface plotted in red corresponds to a
candidate for a stable isoperimetric surface, while the other
four are not candidates, as they are concave and therefore
they are not stable isoperimetric surfaces. It is interesting

that these surfaces can violate both (4) and (3), which again
shows that the stability requirement is crucial.

V. THE LIMIT μ → ∞

From the results so far it is clear that the lowest possible
value for qs0;μ is attained in the limit μ → ∞ and for a CMC
surface with s0 close to zero. It is quite interesting that the
isoperimetric problem can be analyzed in the limit μ → ∞
as we show in the present section. We start by defining a
limit metric,

dŝ2 ¼ lim
μ→∞

ds2

μ2

¼ Û2ðXðdu2 þ dθ2Þ þ sinh2ucos2θdϕ2Þ; ð31Þ

where

Û ¼ ln coth
u
2
: ð32Þ

FIG. 5. Area-charge quotient for large μ.

FIG. 6. Area-charge quotient for small s0.

FIG. 7. Area-charge quotient.

FIG. 8. Area-charge quotient for large μ.
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The quantities that we calculated for ds2 can be obtained
for dŝ2 by performing the analogous calculations or simply
by multiplying the adequate factors of μ and then taking the
limit. In particular, the equation corresponding to a CMC
surface is

s00 ¼ ð1þs02Þ
�
−χ̂ Û

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1þs02Þ

q
þ1

2
s0 sinð2θÞ

�
1

X
þ 1

cos2θ

�
ð33Þ

þ 1

2
sinhð2sÞ

�
1

X
þ 1

sinh2s

�
−

2

Û sinh s

�
; ð34Þ

where

χ̂ ¼ lim
μ→∞

μχ: ð35Þ

For the numerical integration, the Taylor approximation
coefficients are

s1¼ 0; s2 ¼−
1

2
χ̂Û0 sinhs0þ coths0−

1

Û0 sinhs0
: ð36Þ

Also

Âs0 ¼ lim
μ→∞

As0;μ

μ2

¼ 4π

Z
0

−π
2

Û2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1þ s02Þ

q
sinh s cos θdθ; ð37Þ

and the quotient between area and charge takes the form

q̂s0 ¼
Âs0

4π
¼ lim

μ→∞
qs0;μ: ð38Þ

It is worth noticing that the limit metric can be written in
spherical coordinates as

dŝ2 ¼ Û2ðdr2 þ r2dΩ2Þ: ð39Þ

If we consider r to be large, then

dŝ2 ≈
dr2

r2
þ dΩ2; ð40Þ

with the relative error in the metric functions being of order
r−1. If we define r̂ ¼ ln r then

dŝ2 ≈ dr̂2 þ dΩ2; ð41Þ
which shows that the metric is asymptotically cylindrical
and that for r large the surfaces r ¼ constant are approxi-
mate isoperimetric surfaces, with area Âs0→∞ ¼ 4π, which
gives q̂s0→∞ ¼ 1.
For the integrations corresponding to this section we

increased the number of grid points to n ¼ 212 for
s0 ≤ 0.005, in order to have better accuracy. From the
numerical results, we first plot χ̂s0 in Fig. 10. We see that it
is a decreasing function that goes to zero. To analyze the
area-charge quotient, in Fig. 11 we have plotted q̂s0 , and we
zoom in close to s0 ¼ 0 in Fig. 12. We find that the

FIG. 9. Other CMC surfaces.

FIG. 10. Mean extrinsic curvature for μ → ∞.
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minimum of q̂s0 is attained at s0 ¼ 0.00259 and with a
value q̂s0 ¼ 0.9628862930603. From this we conclude that
all CMC surfaces that are candidates to be stable isoperi-
metric surfaces satisfy

qs0;μ ≥ 0.9628862930603; ð42Þ

which as noted before is sufficiently above 1
3
and 4

9
as not to

present a challenge for the inequalities (3) and (4).

VI. CONCLUSIONS

We have studied the spacetime found by Bonnor [7] in
the light of the geometrical inequality (3). Through a
shooting method we have obtained numerically a foliation
of part of the maximal initial slice by CMC surfaces that are
candidates to be stable isoperimetric surfaces. By the
results in [8–10], we know that for s0 large enough they
are indeed stable isoperimetric surfaces, and although we
do not know how large s0 needs to be it seems that the
foliation gets quite close to the ECD spheroid even when μ
diverges.

With these CMC surfaces we tested the inequalities (3)
and (4), showing that for the family of spacetimes

qs0;μ ≥ 0.9628862930603: ð43Þ

So the bound on qs0;μ is far from
1
3
and 4

9
, and therefore does

not present a challenge to the geometrical inequalities. This
not being close to saturate the inequalities can be interpreted
as the spacetime being far from extremality in terms of its
charge content. An important point here is that we have
several concepts for extremality. First, being thematter ECD,
the equality at each point between mass density and charge
density is interpreted as being extremal. Also, for the
spacetime we have Q ¼ m, and this corresponds to extrem-
ality in the sense of the extreme Reissner-Nordström space-
time or the Majumdar-Papapetrou solutions. Finally,
inequalities (3) and (4) give us also a sense of extremality.
With (4) being a conjecture, there is no rigidity result attached
to it. There is also no rigidity result regarding inequality (3),
and in fact the analysis that led to (4) suggests that there can
not be such rigidity. Then, the interpretation that we do about
the spacetime not being extremal refers to the quantity of
charge that can be contained in a stable isoperimetric surface.
An interesting consequence of searching for (43) is that

we were led naturally to consider a limit metric, which
instead of an asymptotically flat end has a cylindrical end,
and were the minimum of (43) is attained. Usually
cylindrical ends are associated with extremal black holes.
In our case the interior is always regular. The asymptotic
region for μ < ∞ corresponds to an asymptotically flat end
while in the limit μ → ∞ it is asymptotically cylindrical.
We also found CMC surfaces that are not stable

isoperimetric, showing that some of them do not satisfy
(3) or (4), illustrating that the stability requirement is
fundamental for the inequalities to be valid.
We have not analyzed several interesting properties of

the surfaces, most notably their stability, but it is a compli-
cated problem that did not add to the main objective of the
work, as the inequalities (3) and (4) were far from being
challenged. Also, we did not investigate the reasons why the
minimum of qs0;μ is achieved for a positive value of s0 for a
big enough μ, the increasing value of χs0;μ as a function of s0,
or the relation between the isoperimetric surfaces and the
spacetime, if there is any. Finally, and far more reaching, is
the question of finding a good measure of the “size” of an
object. We have not tried to analyze other proposed
measures of size and compare to the isoperimetric surfaces.
The numerical computations were performed and the

figures produced in SageMath [16].
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FIG. 11. Area-charge quotient for μ → ∞.

FIG. 12. Area-charge quotient for μ → ∞ close to s0 ¼ 0.
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