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The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond
Cauchy horizons is a crucial ingredient to examine the limits of general relativity. Strong cosmic censorship
serves as a firewall for gravitation by demanding the inextendibility of spacetime beyond the Cauchy
horizon. For asymptotically flat spacetimes, the predominance of the blueshift instability and the
subsequent formation of a mass-inflation singularity at the Cauchy horizon have, so far, substantiated
the conjecture. Accelerating black holes, described by the C metric, are exact solutions of the field
equations without a cosmological constant, which possess an acceleration horizon with similar causal
properties to the cosmological horizon of de Sitter spacetime. Here, by considering linear scalar field
perturbations, we provide numerical evidence for the stability of the Cauchy horizon of charged
accelerating black holes. In particular, we show that the stability of Cauchy horizons in accelerating
charged black holes is connected to quasinormal modes, discuss the regularity requirement for which weak
solutions to the field equations exist at the Cauchy horizon, and show that strong cosmic censorship may be
violated near extremality.
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I. INTRODUCTION

One of the many fundamental questions concerning
black holes (BHs) is their internal anatomy [1]. The inner
structure of BHs, together with the nature of the singular-
ities [2] lying deep inside them, is of paramount importance
to understand the global uniqueness of solutions to the
Einstein field equations given suitable initial data, as well
as the fate of infalling observers.
While the issue of observers plunging into static and

neutral BHs is quite clear [3], their journey takes an
unpredictable turn if the BH is charged and/or rotating.
In those cases, the observer’s journey seems to continue
unaffected through the interior of the BH, eventually
emerging into a region where neither the geometry nor
the fate of the observer can be determined uniquely by
initial data. The boundary of deterministic evolutions is
called the Cauchy horizon (CH) and marks the division
between the region where general relativity (GR) is able to
forecast spacetime developments and the region where the
predictability of the field equations is lost.

Although Kerr and Reissner-Nordström (RN) BHs are
known to have CHs [4], those are highly symmetric
solutions which, on more realistic physical grounds, will
eventually be perturbed by small time-dependent fluctua-
tions. The relaxation of perturbed BHs leads to the
emission of gravitational radiation in the form of damped
sinusoid oscillations, described by quasinormal modes
(QNMs) [5–7].
The CH of asymptotically flat BHs is expected to be

unstable under those perturbations, yielding a spacetime
singularity that effectively seals off the tunnel to regions
where the field equations cease to make sense [8]. Any
observer approaching the CH would measure a divergent
energy flux [9] which leads to the formation of a “mass-
inflation” singularity [10,11], due to the uneven competi-
tion between the power-law cutoff of perturbations in the
exterior [12–18] and the exponential blueshift effect trig-
gered at the CH. That this occurs generically is the essence
of the strong cosmic censorship (SCC) conjecture [19–21],
which states that weak solutions of the field equations
that arise from proper initial data are future inextendible
beyond CHs.
If a positive cosmological constant is included in those

settings, then the exponential decay rate of perturbations in*kyriakos.destounis@uni-tuebingen.de
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the exterior [22–24], which in turn is controlled by the
dominant QNMs [25–28], may possibly counterbalance the
blueshift amplification at the CH [29–32]. This leads to a
weaker singularity, where the tidal deformations imposed
on the observer there are bounded [33] and weak solutions
to the field equations may exist. Then, to test SCC, it all
comes down to the regularity of scalar field solutions at the
CH [23,32,34] and the calculation of β≡ − inffImðωÞg=κ−
[22,35,36], where the numerator captures the decay rate of
the dominant QNM ω and κ− is the surface gravity of the
CH, which governs the exponential perturbation growth
there. For SCC to hold in these asymptotically de Sitter
settings, β < 1=2, which guarantees the breakdown of field
equations at the CH [37]. If on the other hand β > 1=2, then
SCC may be violated.
The conclusions of very recent studies are the following:

near-extremally charged Reissner-Nordström–de Sitter
(RNdS) BHs violate SCC with scalar [35,38–40], Dirac
[41,42], and gravitational perturbations [43], while Kerr–
de Sitter BHs do not [44]. For a list of contemporary
studies, see Refs. [45–66].
So far, most studies have been performed under the

assumption that BHs are static (or stationary) objects which
do not “move” in space. On the contrary, many BHs are
found in binary systems. The gravitational-wave emission
from those binaries leads to the increment of the BH
velocities. Thus, these BHs seem to move and accelerate
with respect to our own reference frame.
A starting point to describe accelerating BHs is the C

metric [67], which is an axisymmetric exact solution of the
field equations with a boost symmetry [68]. Although its
geometrical properties are well known [68], the physics
of accelerating BHs has not been so well understood and,
in part, this is because an appropriate framework to study their
thermodynamics was lacking until recently [69–72]. Within
GR, theCmetric has also been used to investigate radiation at
infinity [73–76]. However, it has been beyond classical GR
that applications of theCmetric have hadmost impact, e.g., in
studies about the creation of BH pairs [77,78], the splitting of
cosmic strings [79], and, most notably, in the construction of
the black ring solution in five dimensions [80].
The charged version of the C metric possesses a CH,

similar to that of RN [78]. The additional feature of the C
metric is the existence of an acceleration horizon, a
hypersurface beyond which any event is unobservable to
the accelerating BH’s light cone. Although the C metric
that we consider here has no cosmological constant, its
causal structure shares many similarities with RNdS space-
times [78,81]. The reason is that the acceleration horizon
essentially disconnects infinity from the region between the
event and acceleration horizons, where observers reside,
and the boundary conditions for the wave equation are
significantly altered.
The investigation of the stability of the Cauchy horizon

in accelerated BHs has been hampered by the fact that, until

very recently, there were no studies about the decay of
scalar perturbations in those backgrounds. This was partly
due to the nontrivial geometry of accelerating BHs and
their horizons, which are not spherically symmetric. Note
though the preliminary study [82], where a simplified
analysis was performed using null radiation.
A recent numerical approach has revealed that linear

scalar perturbations decay exponentially on the charged C
metric and, most importantly, their decay between the event
and acceleration horizons is controlled by the dominant
QNMs [83]. This result is in agreement with the rigorous
proof of stability and exponential decay of perturbations in
asymptotically de Sitter black holes [22–24,27]. So, as in
RNdS, the exponential decay of perturbations in the exterior
of the accelerating BH may possibly counterbalance the
exponential blueshift at the CH. This is in contrast with the
behavior of perturbations on nonaccelerating asymptotically
flat BHs, which exhibit a power-law cutoff at late times.
Unlike the case of Kerr-dS [27], there is no rigorous

mathematical proof yet about the spectral gap and QNM
dominance close to the horizons of the charged C metric.
However, the methods of Ref. [27] for Kerr-dS are expected
to apply in our case, as the wave operator involved is
considerably simpler in the absence of rotation.
Another ingredient that was missing in order to study

SCC in the charged C metric was the calculation of an
eventual β threshold beyond which the conjecture could
be violated. We argue that a threshold indeed exists and is
still given by β > 1=2. Then, by computing β we provide
clear numerical evidence that indicates that SCC may be
violated in near-extremally charged accelerating BHs. To
our knowledge, this is the first stability result of the Cauchy
horizon in accelerating BH spacetimes.

II. THE CHARGED C METRIC IN BRIEF

Spacetimes based on the charged C metric can be
interpreted as representing axisymmetric electrically
charged BHs, accelerating along the axis of symmetry
due to the presence of a cosmic string [68,81,84]. Such BHs
are described by the line element

ds2 ¼ 1

Ω2

�
−fðrÞdt2 þ dr2

fðrÞ þ
r2dθ2

PðθÞ þ PðθÞr2sin2θdφ2

�
;

ð1Þ

with Ω ¼ 1 − αr cos θ and

fðrÞ ¼
�
1 −

2M
r

þQ2

r2

�
ð1 − α2r2Þ; ð2Þ

PðθÞ ¼ 1 − 2αM cos θ þ α2Q2cos2θ; ð3Þ

whereM, Q, and α are related to the BH mass, charge, and
acceleration, respectively. We observe that although there is
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no cosmological constant term in Eq. (2) the acceleration
parameter α2 is dimensionally equivalent to a cosmologi-
cal constant (in geometrized units). Therefore, one can
expect that α2 may play the role of an effective cosmo-
logical constant in Eq. (1). For a generalization of the C
metric to include an actual cosmological constant, see
Ref. [85]. The metric (1) asymptotes to the RN solution as
α → 0 and to the C metric as Q → 0. There is a curvature
singularity at r ¼ 0, while the roots of fðrÞ determine the
causal structure of spacetime. There exist three null
hypersurfaces at

r ¼ rα ≔ α−1; r ¼ r� ≔ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð4Þ

called the acceleration horizon rα, event horizon rþ, and
Cauchy horizon r−, which must satisfy r− ≤ rþ ≤ rα,
where α ≤ 1=rþ. If M ¼ Q, then the event horizon
coincides with the CH and the BH is extremal. Each
horizon has a surface gravity given by [81,86]

κi ¼
���� f

0ðrÞ
2

����
r¼ri

; i ∈ f−;þ;αg: ð5Þ

Conical singularities occur on the axis at θ ¼ 0 and
θ ¼ π, designating the existence of deficit or excess
angles. If we assume that φ ∈ ½0; 2πCÞ, where
C ¼ 1=PðπÞ, then we can remove the conical singularity
at θ ¼ π to end up with a deficit angle at θ ¼ 0 (see
Refs. [81,83] for a detailed analysis). The metric (1) can,
therefore, be understood as a RN-like BH accelerating
along the axis θ ¼ 0 [81,87].
We can conformally rescale Eq. (1) as ds̃2 ¼ Ω2ds2.

The asymptotic structure of the charged C metric has been
analyzed in Refs. [73,78,81,87].

III. QUASINORMAL MODES OF SCALAR
FIELDS IN THE CHARGED C METRIC

The charged C metric (1) is a solution to the vacuum
Einstein-Maxwell field equations. Therefore, the Ricci
curvature vanishes and the wave equation for a minimally
coupled massless scalar field ϕ is equivalent to the con-
formally invariant wave equation [78]. The latter is invariant
under g̃μν → Ω2gμν, ϕ̃ → Ω−1ϕ and can be written as

□g̃ϕ̃ −
1

6
R̃ ϕ̃ ¼ 0; ð6Þ

where R̃ is the conformally rescaled Ricci curvature [88]
and□g̃ ≔ g̃μν∇μ∇ν. We can separate Eq. (6) by choosing an
ansatz for the scalar field

ϕ̃ ¼ e−iωteimφ ΦðrÞ
r

χðθÞ; ð7Þ

where ω is the QNM and m ¼ m0PðπÞ is the azimuthal
quantum number that guarantees the periodicity of φ, where
m0 > 0 is an integer [89]. Then, Eq. (6) becomes

d2ΦðrÞ
dr2�

þ ðω2 − VrÞΦðrÞ ¼ 0; ð8Þ

d2χðθÞ
dz2

− ðm2 − VθÞχðθÞ ¼ 0; ð9Þ

where dr� ¼ dr=fðrÞ and dz ¼ dθ=ðPðθÞ sin θÞ, and

Vr ¼ fðrÞ
�
λ

r2
−
fðrÞ
3r2

þ f0ðrÞ
3r

−
f00ðrÞ
6

�
; ð10Þ

Vθ ¼ PðθÞ
�
λ sin2θ −

PðθÞ sin2θ
3

þ sin θ cos θP0ðθÞ
2

þ sin2θP00ðθÞ
6

�
; ð11Þ

where λ is the separation constant. The existence and nature
of the acceleration horizon forces us to restrict our evolution
to the range rþ < r < rα, where Eq. (2) is positive and
Eq. (1) has fixed signature, implying that PðθÞ is positive for
θ ∈ ½0; π�. Thus, for QNMs the boundary conditions are
divided into two categories:

Φðr → rþÞ ∼ e−iωr� ; Φðr → rαÞ ∼ eiωr� ; ð12Þ

χðθ → 0Þ ∼ emz; χðθ → πÞ ∼ e−mz: ð13Þ

The conditions (12) impose purely ingoing (outgoing) waves
at the event (acceleration) horizon, while the conditions (13)
are taken so that the scalar field is bounded at the interval
boundaries of θ [78]. By solving Eq. (9), subject to the
boundary conditions (13), one obtains the eigenvalues λ, for
a given m0. Then, those eigenvalues can be substituted into
Eq. (8), subject to the boundary conditions (12), to obtain a
discrete set of QNMs ω.
In Ref. [27] it was shown that asymptotic solutions to the

wave equation in the Kerr-dS metric can be expressed as a
sum of QNMs plus other subdominant terms. This result
provides a mathematical proof for the physical interpreta-
tion of QNMs as complex frequencies of (linear scalar)
gravitational waves in Kerr-dS. However, there is no such
result for the Cmetric yet. Instead, in Ref. [83] we provided
strong numerical evidence that this is the case, i.e., that
QNMs indeed dominate the asymptotic dynamics of
solutions to the wave equation.
Specifically, the results in Ref. [83] indicate that the

late-time decay of scalar field perturbations in the charged
C metric follows the numerically extracted exponential
law [83]
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ϕ ∼ e−γt; for t → ∞; ð14Þ

where γ ≔ −infmnfImðωÞg is the smallest (in absolute
value) imaginary part of all families of QNMs. This
justifies the use of QNMs to study the decay of scalar
perturbations in the C metric and, ultimately, the regularity
of the spacetime extensions using, as a proxy, the regularity
requirements for the solutions ϕ to the wave equation [22].
Although ϕ and gμν may not necessarily be continuously

differentiable, heuristically one can still make sense of the
Einstein-Maxwell field equations by multiplying with a
smooth, compactly supported test function ψ and integrat-
ing in a neighborhood V around the CH. If the result is
finite, we may consider weak solutions to the field
equations. The energy-momentum tensor of the confor-
mally coupled scalar field [90] leads, after integration, to
the regularity requirement that ϕ should belong to the
(Sobolev) function space H1

loc for weak solutions to exist at
the CH.
By considering Eq. (8) as r → r−, we find two inde-

pendent mode solutions,

ϕ1 ∼ e−iωu; ϕ2 ∼ e−iωujr − r−jiω=κ− ; ð15Þ

where we have dropped the angular dependence and used
outgoing null coordinates u ¼ t − r�, which are regular at
the CH. There, ϕ1 is smooth, while ϕ2 is not necessarily so.
Therefore, considering ϕ ∈ H1

loc, we require the finiteness
of

R
Vð∂rϕ2Þ2dr and arrive at the condition

β ≔ γ=κ− > 1=2; ð16Þ

which is identical to the one derived rigorously in Ref. [22]
for Kerr-dS. Since the metric should share similar regularity
requirements as ϕ [23,32,34], then, for β > 1=2, the
corresponding BH spacetime should extend beyond the
CH with the metric in H1

loc.
To obtain the separation constant λ from Eq. (9) for a

given m0, we use the Mathematica package QNMSpectral
developed in Ref. [91] (based on pseudospectral colloca-
tion methods [92]) and confirm the validity of our results
with the Frobenius method [83]. To calculate ω, we use
QNMSpectral, and confirm our results with the numerical
scheme developed in Ref. [17], based on the time-domain
integration of Eq. (8) and the application of the Prony
method [93] to extract the QNMs. For an extensive QNM
analysis of the charged C metric, see Ref. [83].

IV. QUASINORMAL MODES AND CAUCHY
HORIZON STABILITY

Our numerics indicate the existence of three families of
QNMs which antagonize each other in different regions of
the parameter space, as shown in Figs. 1 and 2.

The first family of QNMs consists of the usual oscil-
latory modes obtained with standard WKB tools. We refer
to them as “photon surface” (PS) modes (in blue in Figs. 1
and 2). These modes asymptote the oscillatory QNMs of
nonaccelerating BHs when α → 0. The dominant mode of
the PS family is obtained in the large-m limit. Our numerics
indicate that m0 ¼ 10 gives a very good approximation of
the actual dominant mode [83].
The second family of modes—the acceleration QNMs

(in red in Figs. 1 and 2)—is a novel family first found in
Ref. [83], which depends linearly on the acceleration
parameter and vanishes when α → 0. The acceleration
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FIG. 1. Left: imaginary parts of the lowest-lying quasinormal
modes for m0 ¼ 0 and αM ¼ 0.15 as a function of Q=M. The
solid blue curves correspond to photon surface modes, the red
dashed curves to acceleration modes, and the green dotted curves
to near extremal modes. Right: time evolution of scalar pertur-
bations on the charged C metric with m0 ¼ 10, Q=M ¼ 0.3,
αM ¼ 0.1 (blue curve), m0 ¼ 0, Q=M ¼ 0.3, αM ¼ 0.05 (red
curve), and m0 ¼ 0, Q=M ¼ 0.9995, αM ¼ 0.6 (green curve).
The dominant modes extracted from the blue, red, and green
curves, at late times, belong to the photon surface, acceleration,
and near extremal family, respectively.
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FIG. 2. The parameter β calculated from the dominant quasi-
normal modes of a conformally coupled scalar field propagating
on the fixed near-extremally charged C metric, for various
acceleration parameters αM. The black horizontal lines denote
β ¼ 1=2 (lower) and β ¼ 1 (upper), respectively. The blue curves
correspond to the m0 ¼ 10 approximation of the dominant
photon surface modes, the red dashed curves correspond to
the m0 ¼ 0 dominant acceleration modes, while the green dotted
curves correspond to the m0 ¼ 0 dominant near extremal modes.
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modes are purely imaginary and arise due to the presence of
the acceleration horizon. They are analogous to the de Sitter
QNMs found in Ref. [35,91,94]. Our numerics suggest
that the dominant mode of this family is obtained when
m0 ¼ 0 [83].
The final family of modes is the near-extremal (NE)

family (in green in Figs. 1 and 2) which consists of purely
imaginary modes and dominates the ringdown when the
event and CH approach each other. This family asymptotes
the NE modes of RN [95] as α → 0 and vanishes at
extremality. Similar modes have been found in RNdS for
scalar [35,38,40] and fermionic perturbations [41]. In our
case, the dominant mode is obtained when m0 ¼ 0 [83].
For completeness, in the right panel of Fig. 1 we provide

the temporal response of scalar perturbations for three
distinct cases, chosen so that a different family dominates
in each case. We observe that the late-time behavior of
scalar fields on the charged C metric is indeed exponential,
while the extracted QNMs at late times accurately match
the dominant QNMs derived from the spectral analysis. The
parameters for these examples are only indicative, as we
find that Eq. (14) holds for various cases throughout the
subextremal parameter space [83].
In Fig. 2, we present the ratio −ImðωÞ=κ− determined by

the dominant QNMs of each family, in near-extremally
charged accelerating BHs, for various acceleration param-
eters αM. Then, β is obtained from the smallest contribu-
tion of all families of modes [cf. Eq. (16)]. For slowly
accelerating charged BHs, the m0 ¼ 0 acceleration modes
dominate throughout most of the subextremal parameter
space. On the other hand, for sufficiently large acceleration
the high-frequency PS modes dominate. However, inde-
pendently of the acceleration parameter, there is always a
small but finite region in the parameter space, when
Q → M, where them0 ¼ 0NE family of modes dominates.
For all cases shown, β exceeds 1=2. In fact, β would

diverge at extremality if only the PS and acceleration
modes were present. However, the NE modes take over to
keep β from exceeding unity. Nevertheless, the existence of
regions in the parameter space of near-extremally charged
accelerating BHs where β > 1=2 indicates a potential
violation of SCC.

V. CONCLUSIONS

Until now, BHs without a cosmological constant were
known to have unstable Cauchy horizons and satisfy SCC.
In those cases, linear perturbations decay slowly enough
[12] to guarantee that the exponential blueshift effect,
triggered at the CH, will turn this region into a mass-
inflation singularity, where the field equations cease to
make sense [10,11].

A recent study of linear scalar perturbations in the
charged C metric [83] revealed that the existence of
acceleration horizons leads to the exponential decay of
perturbations which, in turn, are controlled by the dominant
QNM at late times, even though the spacetime does not
possess a cosmological constant. This can be understood
from the fact that the asymptotic region is causally
disconnected from the region considered for the evolution
of the wave equation and the initial data considered
resemble those used for the wave equation in RNdS
spacetimes.
In this article we exploited this late-time behavior of

perturbations to test the modern formulation of SCC [96],
using QNMs [35], in accelerating charged BHs.
We have provided robust numerical evidence supporting

the fact that the CH of near-extremally charged accelerating
BHs is stable against linear scalar field perturbations, and
thus SCC may be violated. This result is in agreement with
the prediction that charged accelerating BHs may violate
SCC near extremality [82] and disproves the conjecture
of Ref. [97].
Although accelerating BHs without a cosmological

constant may violate SCC, the charged C metric describes
an idealized scenario where BHs are uniformly accelerating
away from each other indefinitely. While such accelerations
may approximately occur in particle accelerators, a long-
lasting acceleration horizon does not seem to be present in
BHs residing in binary mergers. The absence of an
acceleration horizon would then lead to the usual power-
law decay of scalar perturbations in asymptotically flat
BHs, and SCC would be restored. In any case, the
formation and evolution of cosmic strings [98], predicted
by quantum field theory and string theory, can provide the
perpetual energy needed for a BH to form an acceleration
horizon.
Finally, if one considers that SCC has been an important

mathematical conjecture and a way to test classical GR and
its limits, then its potential violation in the charged C
metric, which is an exact solution of GR generalizing the
RN solution, deserves further investigation.
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