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It is well known that the Klein Gordon (KG) equation□Φþm2Φ ¼ 0 has tachyonic unstable modes on
large scales (k2 < jmj2) for m2 < m2

cr ¼ 0 in a flat Minkowski spacetime with maximum growth rate
ΩFðmÞ ¼ jmj achieved at k ¼ 0. We investigate these instabilities in a Reissner-Nordström-deSitter
(RN-dS) background spacetime with mass M, charge Q, cosmological constant Λ > 0 and multiple
horizons. By solving the KG equation in the range between the event and cosmological horizons, using
tortoise coordinates r�, we identify the bound states of the emerging Schrodinger-like Regge-Wheeler
equation corresponding to instabilities. We find that the critical value mcr such that for m2 < m2

cr bound
states and instabilities appear, remains equal to the flat space value mcr ¼ 0 for all values of background
metric parameters despite the locally negative nature of the Regge-Wheeler potential for m ¼ 0. However,
the growth rate Ω of tachyonic instabilities for m2 < 0 gets significantly reduced compared to the flat case
for all parameter values of the background metric (ΩðQ=M;M2Λ; mMÞ < jmj). This increased lifetime of
tachyonic instabilities is maximal in the case of a near extreme Schwarzschild-deSitter (SdS) black hole
where Q ¼ 0 and the cosmological horizon is nearly equal to the event horizon (ξ≡ 9M2Λ ≃ 1). The
physical reason for this delay of instability growth appears to be the existence of a cosmological horizon
that tends to narrow the negative range of the Regge-Wheeler potential in tortoise coordinates.

DOI: 10.1103/PhysRevD.102.104034

I. INTRODUCTION

Scalar fields are used to describe a wide range of degrees
of freedom in a diverse set of physical systems in particle
physics (e.g., the Higgs field and other symmetry breaking
scalar fields [1]), cosmology (e.g., the inflaton [2] and
the quintessence field [3]), gravitational theories (e.g.,
scalar field hair on black holes [4] or modified gravity
scalar degrees of freedom like fðRÞ theories [5–16]
or scalar tensor theories [17]), condensed matter (e.g.,
the Bose-Eistein scalar field condensate [18]) etc.
The dynamical evolution of a scalar field in a classical

system is determined by three main factors
(i) The form of its Lagrangian density and especially

the scalar field potential VðϕÞ which may be e.g., of
the form VðϕÞ ¼ m2ϕ2 for a simple massive scalar
field or of a symmetry breaking form VðϕÞ ¼
λ
4
ðϕ2 − η2Þ2 where η is the scale of symmetry

breaking.
(ii) The form of the background spacetime which may

be for example flat Minkowski, cosmological Fried-
mann-Robertson-Walker (FRW), Schwarzschild etc.

(iii) The boundary/initial conditions used for the solution
of the resulting dynamical scalar field equation
emerging from the above two factors.

The simplest Lagrangian density describing the evolution
of a scalar field is that corresponding to a free massive
scalar which is of the form

L ¼ 1

2
∂μΦ∂μΦ −m2Φ2 ð1:1Þ

leading to the Klein-Gordon equation [19]

□Φþm2Φ ¼ 0: ð1:2Þ

In flat Minkowski space this equation may be written as

Φ̈ −∇2Φ ¼ −m2Φ: ð1:3Þ

Its solutions are propagating waves of the form

Φð r!; tÞ ¼ Að k!Þeiðωt− k
!

r!Þ þ Bð k!Þe−iðωt− k
!

r!Þ ð1:4Þ

with dispersion relation

ω2 ¼ k2 þm2: ð1:5Þ
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For m2 > 0 we have well behaved propagating waves.
However, for m2 < 0 we have

ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − jmj2

q
ð1:6Þ

and exponentially growing tachyonic instabilities develop
on large scales (k < jmj) where ImðωÞ ≠ 0 [20]. In the
context of a spontaneous symmetry breaking potential,
these instabilities usually imply the presence of a broken
symmetry and the transition of the scalar field to a new
stable (or metastable) vacuum. However, in the context of a
potential that is unbounded from below they may also
imply that the theory is unphysical and should be ruled out.
This argument has lead to disfavor of a wide range of
theories which involve scalar fields with negative m2

including a wide range of massive Brans-Dicke (BD)
theories and fðRÞ theories where such tachyonic instabil-
ities are also known as Dolgov-Kawasaki-Faraoni (DKF)
instabilities [21,22] (see also [23–28]). For example a
massive BD scalar field has an action of the form1[29–33]

S¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΦR−

ω

Φ
gμν∂μΦ∂νΦ−m2ðΦ−Φ0Þ2

�
:

ð1:7Þ

In this theory (using finite boundary conditions at
infinity) a small point mass M located at the origin creates
a scalar field and metric configurations of the form

Φ ¼ Φ0 þ φ ð1:8Þ

gμν ¼ ημν þ hμν ð1:9Þ

where

φ ¼ 2GM
ð2ωþ 3Þr e

−m̄ðωÞr ð1:10Þ

h00 ¼
2GM
Φ0r

�
1þ 1

2ωþ 3
e−m̄ðωÞr

�
ð1:11Þ

hij ¼
2GM
Φ0r

δij

�
1 −

1

2ωþ 3
e−m̄ðωÞr

�
ð1:12Þ

with m̄ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2Φ0m2

2ωþ3

q
(Φ0 is dimensionless) [31].

This h00 metric perturbation corresponds to an effective
Newton’s constant that has a Yukawa correction of the form

Geff ¼
G
Φ0

�
1þ 1

2ωþ 3
e−m̄ðωÞr

�
: ð1:13Þ

This Yukawa correction is decaying exponentially for
m2 > 0 and is observationally/experimentally viable either
for large values of ω > 40000 [34] (so that the amplitude of
the Newtonian correction is small) or for large values of the
scalar field mass m (so that the Newtonian correction
decays fast) [31].
Form2 < 0 it is easy to show that the corresponding Geff

is spatially oscillating with wavelength λ ≃ 2π
m̄

Geff ¼
G
Φ0

�
1þ 1

2ωþ 3
cos ðm̄ðωÞrþ θÞ

�
ð1:14Þ

where θ is an arbitrary constant. For spatial oscillations
of Geff with wavelength less that sub-mm scales
(m≳ 10−3 eV (λ≲ 1 mm) [35,36]) these spatial oscilla-
tions of Geff would have hardly any observational/exper-
imental effects with current experiments/observations
despite of the fact that there is no Newtonian limit as
m2 → 0− [35,37]. This is due to the local spatial cancella-
tion of the spatially oscillating force correction. However,
the main problem with m2 < 0 are tachyonic instabilities
[38–41].
It is easy to show that perturbations of the BD scalar

Eq. (1.10) obey in flat space a KG equation of the form

δ̈φ −∇2δφþm2δφ ¼ 0 ð1:15Þ

which for m2 < 0 implies the presence of exponentially
growing with time tachyonic instabilities for large scales
[35]. Thus, this theory with m2 < 0 is only viable if the
unstable scales are pushed beyond the cosmological hori-
zon ∼H−1

0 which corresponds to scalar field mass jmj <
10−33 eV similar to a quintessence scalar field mass. Such
spatially oscillating modes have a cosmological horizon
scale wavelength and have no observable effects on small
scale gravity experiments.
In the case of fðRÞ theories which may be shown to be

equivalent to BD theories with no kinetic term (ω ¼ 0)
[42–46] a similar instability occurs. For example the fðRÞ
theory of the form (Starobinsky model [47])

fðRÞ ¼ Rþ 1

6m2
R2 ð1:16Þ

is easily shown to be equivalent to the BD theory with
action [35,45,48–52]

SBD ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΦR −

3

2
m2ðΦ − 1Þ2

�

þ Smatter ð1:17Þ

and therefore has the same tachyonic instabilities as the
above mentioned massive BD theory (DKF instability).
The parameter value jmj ≃ 10−3 eVwithm2 < 0 leads to

an oscillating Newton’s constant with wavelength about
1The BD parameter ω should not be confused with angular

frequency ω used above.
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1 mm. In this case the lifetime of the unstable tachyonic
modes in Minkowski spacetime would be about 10−11 sec.
Thus, even though themass range jmj>10−3 eVwithm2<0
leads to oscillating modifications of Newton’s constant that
are consistent with observations/experiments, in the context
of fðRÞ and BD theories and in a flat space background, this
mass range is ruled out due to the predicted tachyonic
instabilities. This inconsistency is undesirable in view of
recent studies [35,53,54]2 that pointed out the existence of
oscillating force signals in short range gravity experiments. It
is therefore interesting to investigate if there are physical
conditions that can eliminate these tachyonic instabilities or
at least drastically change their lifetime.
A crucial assumption used in the derivation of the above

tachyonic instability is the existence of a Minkowski
background. The following questions therefore emerge:

(i) Do scalar tachyonic instabilities for m2 < 0 persist
in the presence of a non-flat background?

(ii) How do the instability lifetime and growth rate
change in a curved background?

(iii) What are the parameter values of a background
metric required to significantly increase the insta-
bility lifetime compared to its value in a Minkowski
spacetime?

The main goal of the present analysis is to address these
questions. In particular we solve the KG equation in a
Reissner-Nordström-deSitter (RN-dS) background metric
[58,59] with charge Q, mass M and cosmological constant
Λ, in the region between the event horizon and the cosmo-
logical horizon with boundary conditions corresponding to a
finite scalar field Φ with exponential tachyonic instabilities.
Using tortoise coordinates that shift these horizons to �∞,
the KG equation is reduced to a Schrodinger-like Regge-
Wheeler equation whose bound states correspond to insta-
bility modes. We find the critical value ofm2 (m2

cr) such that
for m2 < m2

cr bound states (instability modes) exist. For the
tachyonic unstable modes (m2 < m2

cr) we also find the
growth rate of the instabilities (ground state eigenvalues of
Regge-Wheeler equation) and comparewith the correspond-
ing growth rate in a flat Minkowski background. We also
consider special cases of the RN-dS metric including the
Schwarzschild metric [60], the deSitter (dS) metric [61–65],
the Schwarzschild-deSitter (SdS) metric [66,67] and the
Reissner-Nordström (RN) metric [68–70].
In the present analysis we focus on the existence of

tachyonic exponentially growing solutions and do not
consider propagating waves on the boundary horizons
which would lead to calculation of quasinormal modes3

(QNMs) [84,85] (see Refs. [86–90] for reviews on QNMs
of black holes). Such investigation of QNMs has been
performed in previous studies in Schwarzschild black hole
[91–93], in SdS background form ¼ 0 [94–97], form2 > 0
in RN-dS background [98–101] and in Kerr-deSitter back-
ground [102–107] where a different type of instability
was observed in the context of scalar field wave scattering.
This instability is connected with the phenomenon of
superradiance [108–117] in which a reflected wave has
larger amplitude than the corresponding incident wave.
Superradiant instabilities occur in rotating and in charged
black holes embedded in a de Sitter space and are based on
the extraction of mass and/or rotational or electromagnetic
energy from the black hole. This energy is then carried
away from the black hole during a scattering process
through the propagation of a reflected scalar field wave
with amplitude increased compared to the incident scalar
field wave. Superradiance would lead to a decrease in black
hole energy and increase of the energy of the scalar field
causing further enhancement of the instability. Thus, the
endpoints of such instability could be the evacuation of
matter from the black hole and/or the formation of a novel
scalar field configuration around the black hole leading
to a phenomenon called “scalarization” and violation of the
no-hair theorem, which states that black holes are fully
characterized by their mass, charge and angular momentum.
A crucial property of spacetimes with superradiant insta-
bilities is the combination of an event horizon with a
cosmological de Sitter horizon in four or higher dimensions
[118,119]. In this context one of the goals of the present
analysis is the identification of the role of this combination of
horizons on tachyonic instabilities and the discussion of their
possible connection with superradiant instabilities which
involve boundary conditions of propagating wave modes.
The structure of this paper is the following: In the next

Sec. II we use spherical tortoise coordinates r� in the
context of an instability ansatz, to transform the KG
equation to a Schrodinger-like Regge-Wheeler equation
for the radial function ulðr�Þ with potential that depends on
the angular scale l, the dimesionless parameters ξ≡ 9M2Λ
and q≡Q=M defined above as well as the scalar field mass
m2. The existence of unstable modes that are finite at the
two horizons, is equivalent with the existence of bound
states of this Regge-Wheeler equation. In Sec. III, we solve
the Regge-Wheeler equation numerically and identify the
range m2ðq; ξÞ for which bound states (unstable modes)
exist. In the parameter range that remains unstable
(m2 < m2

crðq; ξÞ) we find the growth rate Ω of the insta-
bilities. In Sec. IV we discuss the scalar tachyonic
instabilities in the limiting cases of pure deSitter and pure
Schwarzschild backgrounds. Finally, in Sec. V we con-
clude and discuss the physical implications of our results.
We also discuss possible extensions of this analysis.
In what follows we use Planck units (G ¼ c ¼ ℏ ¼ 1)

and a metric signature ðþ − −−Þ.

2For viable theoretical models with spatially oscillating Geff
see [55–57].

3A semi-analytical method for calculations of QNMs based on
the Wentzel-Kramers-Brillouin (WKB) approximation [71,72].
This method was used in a wide range of spacetimes and in a lot
of studies (see e.g., [73–83]).
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II. KG equation in SdS/RN-dS spacetimes

A. Schwarzschild-de Sitter background

Consider a SdS background spacetime defined by the
metric [66]

ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − r2ðdθ2 þ sin2 θdϕ2Þ ð2:1Þ

where

fðrÞ ¼ 1 −
2M
r

−
Λ
3
r2 ð2:2Þ

In such a background the KG equation (1.2) takes the form

1

fðrÞ
∂2Φ
∂t2 −

∂
∂r fðrÞ

∂Φ
∂r −

2fðrÞ
r

∂Φ
∂r −

ΔθϕΦ
r2

þm2Φ ¼ 0

ð2:3Þ

with

Δθϕ ¼ 1

sin θ
∂
∂θ sin θ

∂
∂θ þ

1

sin2 θ
∂2

∂ϕ2
ð2:4Þ

Using now the ansatz

Φðt; r; θ;ϕÞ ¼
X
lm

Ψlðt; rÞ
r

Υlmðθ;ϕÞ ð2:5Þ

the eigenvalue equation

Δθϕϒlmðθ;ϕÞ ¼ −lðlþ 1Þϒlmðθ;ϕÞ ð2:6Þ

and transforming to tortoise coordinates defined as (see
e.g., [120–122])

dr� ≡ dr
fðrÞ ð2:7Þ

the KG equation reduces to

� ∂2

∂t2 −
∂2

∂r2� þ VlðrÞ
�
Ψlðt; r�Þ ¼ 0 ð2:8Þ

where VlðrÞ is a Regge-Wheeler type potential which when
expressed in the original radial coordinate is of the form

VlðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ f0ðrÞ

r
ð1 − sÞ þm2

�
ð2:9Þ

with s ¼ 0 (spin of the considered field) for the case of a
scalar field. This type of effective potential was first derived
for “axial” (vector type) perturbations in the Schwarzschild
background by Regge-Wheeler [123]. For “polar”(scalar

type) gravitational perturbations the effective potential
was first derived by Zerilli [124,125]. As discussed in
[126], the Regge-Wheeler-Zerilli formalism is based on the
assumption of spherical symmetry.
For the solution of Eq. (2.8) we need to express the

Regge-Wheeler potential VlðrÞ in tortoise coordinates
V�lðr�Þ≡ Vlðrðr�ÞÞ. Thus we need to evaluate the integral

r� ≡
Z

dr
fðrÞ ¼

Z
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
r − Λ

3
r2

q ð2:10Þ

To evaluate the integral (2.10) we follow [127] (see also
[128]) and factorize fðrÞ. Let

ξ ¼ 9M2Λ ð2:11Þ

For ξ < 1 there are three real solutions of fðrÞ ¼ 0. Two of
them correspond to the event and cosmological horizons
(rH and rC) while the third is negative (rN) and does not
correspond to a physical horizon. The three horizon radii
are [121,122,127–132]

rH ¼ 2ffiffiffiffi
Λ

p cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ þ π

3

�
ð2:12Þ

rC ¼ 2ffiffiffiffi
Λ

p cos

�
1

3
cos−1ð3M

ffiffiffiffi
Λ

p
Þ − π

3

�
ð2:13Þ

rN ¼ −ðrH þ rCÞ ð2:14Þ

For ξ ¼ 1 which corresponds to the Nariai solution
[133,134]) we have an extremal SdS spacetime [120,129,
135,136]

rH ¼ rC ¼ 2ffiffiffiffi
Λ

p cos
π

3
¼ 1ffiffiffiffi

Λ
p ≃ 1026 m ð2:15Þ

where in the last equality we have assumed the observed
value of Λ ¼ 3H2

0ΩΛ. The surface gravity of the SdS metric
at a coordinate radius r0 is defined as [96,120,121,137]

κ0 ≡ 1

2

df
dr

����
r¼r0

¼ M
r20

−
1

3
Λr0 ð2:16Þ

and describes the gravitational acceleration of a test particle
at position r0. Using Eqs. (2.12), (2.13) and (2.14) to
factorize fðrÞ in Eq. (2.10) and the definition (2.16) we
may obtain r�ðrÞ as [96,127]
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r� ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r − Λ
3
r2

q

¼ 1

2κH
ln

�
r
rH

− 1

�
þ 1

2κC
ln

�
1 −

r
rC

�

þ 1

2κN
ln

�
1 −

r
rN

�
ð2:17Þ

where we note that κC is negative.
Using now Eqs. (2.9) and (2.17) it is easy to make a

parametric plot of V�lðr�Þ by plotting pairs of ðr�ðrÞ; VlðrÞÞ
for r ∈ ½rH; rC�.
From Eq. (2.17) it is clear that the tortoise coordinates

map the event and cosmological horizons to �∞

r → rH ⇒ r� → −∞

r → rC ⇒ r� → þ∞: ð2:18Þ

The Regge-Wheeler potential V�lðr�Þ of Eq. (2.9) has the
important property that it vanishes at both infinities (�∞).
This is easy to see since

VðrHÞ ¼ VðrCÞ ¼ 0 ⇒

V�ðr� → −∞Þ ¼ V�ðr� → þ∞Þ ¼ 0: ð2:19Þ

As shown below, this property leads to a simple asymptotic
solution of Eq. (2.8).
At this point we introduce a rescaling of the radial and

time coordinates by M (r=M → r̄, t=M → t̄) and use the
dimensionless parameters ξ [defined in Eq. (2.11)] and

mM ≡GMm
ℏc

: ð2:20Þ

In order to search for scalar field instabilities we also use
the following ansatz in Eq. (2.8)

Ψlðt; r�Þ ¼ ðC1eΩt þ C2e−ΩtÞulðr�Þ: ð2:21Þ

This ansatz along with the above rescaling transforms
Eq. (2.8) to a Schrodinger-like Regge-Wheeler equation of
the form

du2l
dr2�

−M2ðΩ2 þ V�lðr�ÞÞulðr�Þ ¼ 0 ð2:22Þ

where r� ∈ ð−∞;þ∞Þ and

M2V�0ðrðr�ÞÞ ¼
�
1 −

2

rðr�Þ
−

1

27
ξrðr�Þ2

�

×

�
2

rðr�Þ3
−

2

27
ξþm2M2

�
: ð2:23Þ

In (2.22), (2.23) we have omitted the bar of the rescaled
coordinates and in (2.23) we have fixed l ¼ 0. Since
V�lðrÞ > V�l¼0, the most unstable scales are the large
angular scales l ¼ 0. This behavior is similar to the case
of the Minkowski spacetime discussed in the introduction
where the scale corresponding to k ¼ 0 was the most
unstable scale (largest growth rate, smallest lifetime). Thus
in what follows we focus on the l ¼ 0 modes. If these
modes are stable then all scales (l > 0) are also stable.

B. Reissner-Nordström-de Sitter background

We now generalize the metric of the previous section by
including charge in the black hole metric. The RN-dS
spacetime is defined by the metric function [136,138]

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2

¼ 1 −
2

r
þ q2

r2
−

ξ

27
r2 ð2:24Þ

where ξ is defined in Eq. (2.11), q≡ Q
M (where Q is the

black hole electric charge) and in the second equality we
have used the rescaling r=M → r.
The horizons are obtained by solving the equation

fðrÞ ¼ 0. For ξ < 2 and q2 < 9=8 there are four real
solutions [136]. Two of them correspond to the inner
(Cauchy) and outer (event) horizons of a RN black hole
r− and rþ ¼ rH (with 0 < r− < rH) respectively. The third
corresponds to the cosmological horizon rC (with rC > rH)
while the fourth rN (with rN ¼ −ðr− þ rH þ rCÞ) is neg-
ative and does not correspond to a physical horizon.
The three horizons coincide at [136]

r− ¼ rH ¼ rC ¼ 3ffiffiffiffiffi
2ξ

p ð2:25Þ

when ξ ¼ 2 and q2 ¼ 9=8.
By demanding that two of the physical horizons coincide

we set the discriminant of the quartic equation fðrÞ ¼ 0 to
zero and obtain the equation [136,139])

1 − q2 − ξþ 4

3
ξq2 −

8

27
ξq4 −

16

729
ξ2q6 ¼ 0 ð2:26Þ

which has real solutions for ξwhen 0 < q2 < 9
8
. The critical

value ξH;C at which rH ¼ rC and the corresponding value
ξ−;H at which r− ¼ rH may be obtained in terms of q2 by
solving Eq. (2.26) as
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ξH;C ¼ −22.7813q−6 þ 30.375q−4 − 6.75q−2

þ 19.0919q−6ð1.125 − q2Þ32 ð2:27Þ

ξ−;H ¼ −22.7813q−6 þ 30.375q−4 − 6.75q−2

− 19.0919q−6ð1.125 − q2Þ32: ð2:28Þ

The first case corresponds to the charged Nariai solution
[139]. The critical values ξH;Cðq2Þ and ξ−;Hðq2Þ as a
function of q2 are shown in Fig. 1 (left panel). The critical
value ξH;Cðq2Þ that leads to a coincidence between the
event and cosmological horizons (blue line) varies between
1 (SdS limit, q ¼ 0) and 2 (triple horizon coincidence limit,
q2 ¼ 9=8). The corresponding form of the function fðrÞ in
these (and in other) limits is shown in Fig. 1 (right panel).
The orange line corresponds to the coincidence of the event
with the cosmological horizon rH ¼ rC in the SdS limit
while the blue line shows the coincidence of the same
roots of fðrÞ (rH ¼ rC) in the general RN-dS case with
q2 ¼ 1.02. In both cases the local maximum of fðrÞ occurs
at fðrÞ ¼ 0.
In the case of RN-dS, we study tachyonic instabilities of

the neutral massive scalar field perturbations in the event-
cosmological horizon region, defined as rþ ¼ rH < r < rC
using tortoise coordinates r�ðrÞ defined as

r� ¼
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

r þ Q2

r2 −
Λ
3
r2

q ¼ 1

2κ−
ln

�
r
r−

− 1

�

þ 1

2κH
ln

�
r
rH

− 1

�
þ 1

2κC
ln

�
1 −

r
rC

�

þ 1

2κN
ln

�
1 −

r
rN

�
ð2:29Þ

with κi (i ¼ −; H; C) the surface gravity for the horizon
r ¼ ri

κi ≡ 1

2

df
dr

jr¼ri ¼
M
r2i

−
Q2

r3i
−
1

3
Λri ð2:30Þ

where we note that κ− < 0 and κC < 0. It is easy to see that
the tortoise coordinates r�ðrÞ shift the horizons rH and rC
to �∞.
The values of the inner (Cauchy) and outer (event)

horizon in the case of RN background (Λ ¼ 0) for Q < M
are (see e.g., [140])

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð2:31Þ

In the case of RN-dS spacetime a rescaling of the radial and
time coordinates by M (r=M → r, t=M → t) and the
introduction of the dimensionless parameters ξ [defined
in Eq. (2.11)], q ¼ Q=M and mM [defined in Eq. (2.20)]
lead to the Schrodinger-like equation (2.22) with maximum
scale (l ¼ 0) generalized Regge-Wheeler potential of the
form

M2V�0ðrðr�ÞÞ¼
�
1−

2

rðr�Þ
þ q2

rðr�Þ2
−

1

27
ξrðr�Þ2

�

×

�
2

rðr�Þ3
−

2q2

rðr�Þ4
−

2

27
ξþm2M2

�
ð2:32Þ

with r� ∈ ð−∞;þ∞Þ.

FIG. 1. The critical values ξH;Cðq2Þ (with 0 < q2 < 9=8) and ξ−;Hðq2Þ (with 1 < q2 < 9=8) as a function of q2 at which rH ¼ rC and
r− ¼ rH respectively (left panel). The colored shaded regions correspond to the physical corresponding regions of Fig. 6 discussed
below. The metric function fðrÞ as a function of r in the case of the RN-dS/SdS/RN spacetimes for critical value ξH;C (when event and
cosmological horizons coincide) and ξ−;H (when inner Cauchy and outer event horizons coincide) (right panel). The blue, green and red
solid curves correspond to RN-dS spacetime while the purple and orange dashed curves correspond to RN and SdS spacetime
respectively.
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III. NUMERICAL SOLUTION: PARAMETER
REGION FOR INSTABILITY, GROWTH RATE

The questions we want to address in this section are the
following:

(i) What is the critical valuemcrðq; ξÞ2 such that form2 >
m2

cr Eq. (2.22) with a real Ω2 has no bound state
solutions (no instabilities) respecting the physically
acceptable boundary conditions that correspond to
finite field values at the two horizons (r� → �∞)?

(ii) What is the growth rate Ωðq; ξ; m2M2Þ of tachyonic
instabilities (m2 < m2

cr) and how does this growth
rate compare with the corresponding growth rate in a
flat Minkowski spacetime?

We thus solve the Schrodinger-like Regge-Wheeler equa-
tion (2.22) and for fixed values of q and ξwe start from a low
negative m2 and identify the ground state solution. Then we
increase the value of m2 until there are no bound states
(instability modes) with physically acceptable boundary
conditions. At the critical value m2 ¼ m2

cr there will only
be a zero mode solution with eigenvalue Ω ¼ 0 (infinite
lifetime mode). Such a mode may be interpreted as a scalar
hair zero mode. As discussed in the Introduction, in
Minkowski space (M ¼ Λ ¼ Q ¼ 0), we have mcr ¼ 0.
Does this value ofmcr change inRN-dSor in SdS spacetimes?
To address this question we must first find the required

“physical boundary conditions.” We demand that the
physically acceptable solution should be finite on the
two horizons i.e.,

u0ðr� → ∞Þ < þ∞

u0ðr� → −∞Þ < þ∞: ð3:1Þ

Since V�0ðr�Þ goes exponentially fast to 0 for r� → �∞,
we conclude that the general asymptotic solution of
Eq. (2.22) is

u0ðr� → �∞Þ ¼ AeΩr� þ Be−Ωr� : ð3:2Þ

For finiteness we demand

u0ðr� → þ∞Þ ¼ Be−Ωr� ð3:3Þ

u0ðr� → −∞Þ ¼ AeΩr� : ð3:4Þ

These imply

u00ðr� → þ∞Þ ¼ −ΩBe−Ωr� ð3:5Þ

u00ðr� → −∞Þ ¼ ΩAeΩr� ð3:6Þ

where we can rescale u0ðr�Þ such that A ¼ 1. These
boundary conditions leading to instability may be associ-
ated with bound states (Ω2 > 0, Ω ∈ R) of the
Schrodinger-like equation (2.22) with effective Regge-
Wheeler potential V�0ðr�Þ (see Eq. (2.23) for SdS space-
time and Eq. (2.32) for RN-dS spacetime). Our search for
scalar instabilities (Ω2 > 0) should be contrasted with the
search for the values of QNMs which involves propagating
boundary conditions at the horizons. These studies have
also indicated the presence of scalar instabilities in a
different physical setup (charged massive scalar field in
Kerr-Newman black holes with positive m2 [141]).
The Regge-Wheeler potential V�0ðr�Þ is mostly accept-

ing bound states for lower values of m2M2 and for higher
values of Q=M. This is demonstrated in Fig. 2 where we

FIG. 2. The m2M2 dependent Regge-Wheeler dimensionless potentials VM2 (left panel) and V�M2 (middle panel) as a function of
r=M and r�=M respectively in the cases of the SdS (Q ¼ 0) (red curves) and RN-dS (Q=M ¼ 0.9) (blue curves) spacetimes for angular
scale l ¼ 0 and dimensionless parameter fixed to ξ ¼ 0.5. The solid curves correspond to the critical value of the scalar field mass
m2

crM2 ¼ 0. The right panel demonstrates the process for identifying the zero eigenvalue eigenstate i.e., setting Ω ¼ 0 in Eq. (2.22) and
increasing the dimensionless parameter m2M2 until the solution u0ðr�=MÞ satisfies both end boundary conditions (3.7)–(3.10) for
Ω ¼ 0. This value of m2M2 is the critical value for the considered value of ξ. The potential gets deeper and more accepting to bound
states (instabilities) as the m2M2 gets lower.
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show the form of V�0ðr�Þ for various values of the
dimensionless parameter m2M2 in the cases of the SdS
(Q ¼ 0) and RN-dS (Q=M ¼ 0.9) spacetimes for angular
scale l ¼ 0 and ξ ¼ 0.5 indicating that as m2M2 gets lower
and as Q=M gets higher, the minimum of the Regge-
Wheeler potential gets deeper and thus it becomes more
accepting to the existence of bound states (instabilities).
The critical value mcrðq; ξÞ2 is such that for m2 > m2

cr there
are no bound states (instabilities) respecting the boundary
conditions (3.3), (3.4), (3.5), and (3.6).
The critical value mcrðq; ξÞ2 is obtained by solving

Eq. (2.22) with boundary conditions (3.3), (3.4), (3.5)
and (3.6) for a zero eigenvalue Ω ¼ 0 corresponding to a
borderline unstable mode (zero mode) with infinite lifetime
and zero growth rate. For such a zero mode, the boundary
conditions (3.3), (3.4), (3.5) and (3.6) become

u0ðr� → −∞Þ ¼ 1 ð3:7Þ

u00ðr� → −∞Þ ¼ 0 ð3:8Þ

u0ðr� → þ∞Þ ¼ B ð3:9Þ

u00ðr� → þ∞Þ ¼ 0 ð3:10Þ

where we have set A ¼ 1.
In practice we use the shooting method in solving

Eq. (2.22) with Ω ¼ 0, fixed ξ, q, boundary conditions
(3.7), (3.8) at large negative r� and adjust m2M2 until the
boundary conditions (3.9) and (3.10) are satisfied (see
Fig. 2 right panel). By repeating this process for several
values of q2 ∈ ½0; 9

8
� and ξ ∈ ½0; ξH;CðqÞ� we have found

mcrðξ; qÞ2 ¼ 0 i.e., the zero mode appears at m2 ¼ 0 for all
parameter values ξ; q where there is a finite distance
between the event and the cosmological horizons.
In Fig. 3 we show the form of the Regge-Wheeler

potentials V0ðr=MÞ and V�0ðr�=MÞ as well as the radial
zero mode solution u0ðr�=MÞ for the critical value
mcrðq; ξÞ ¼ 0 for ξ ¼ 0.1; 0.5; 0.9 in the case of the SdS
spacetime (q ¼ 0) and in the case of RN-dS spacetime
(q ¼ 0.9). Notice that in the absence of a cosmological
horizon (ξ ¼ 0, pure Schwarzschild and Reissner-
Nordström spacetimes) the Regge-Wheeler potential V�
is positive everywhere for m ¼ 0 and the absence of bound
states is obvious. However, this is not the case for ξ > 0
which requires numerical solution of the Schrodinger-like
equation for the determination of mcr.
There is a simple semianalytical way to derive sufficient

conditions for instability and for stability and thus test the
validity of the numerically obtained form of m2

cr ¼ 0 for
various values of the parameters ξ and q. It is well known
that a sufficient condition for the existence of bound states
in a Schrodinger equation potential V�0ðr�Þ is the following
sufficient for instability criterion (SIC) [142–144]

ISIC¼
Z þ∞

−∞
V�0ðr�Þdr�<0⟹

Z
rC

rH

V0ðrÞ
fðrÞ dr¼

Z
rC

rH

�
lðlþ1Þ

r2
þf0ðrÞ

r
þm2

�

l¼0

dr¼
Z

rC

rH

�
lðlþ1Þ

r2
þ 2

r3
−
2q2

r4
−

2

27
ξþm2M2

�

l¼0

dr<0

ð3:11Þ

FIG. 3. The ξ dependent Regge-Wheeler dimensionless potentials VM2 (left panel) and V�M2 (middle panel) as a function of r=M and
r�=M respectively in the case of the SdS (solid curves) and RN-dS (dashed curves) spacetimes for angular scale l ¼ 0 and critical value
form2 ¼ m2

cr ¼ 0. The radial function u0ðr�=MÞ (right panel) which is the radial zero mode solution of Schrodinger-like equation (2.22)
with Ω ¼ 0 and boundary conditions (3.7) and (3.8) at large negative r�. For critical value of the scalar field mass m2

crM2 ¼ 0 the
boundary conditions (3.9) and (3.10) at large positive r� are satisfied. The brown and purple dotted curves correspond to the pure
Schwarzschild (Q ¼ 0, ξ ¼ 0) and RN (Q ≠ 0, ξ ¼ 0) backgrounds respectively. The potential gets deeper as ξ decreases and Q=M
increases. However, since the local maximum of the potential also increases as the potential gets deeper, the critical value mcrM for the
existence of bound states remains the same and equal to zero in all cases.
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where we have used Eqs. (2.9) and (2.32) for the form of
V0ðrÞ and the dimensionless parameters ξ and q. In
addition, a positive definite potential cannot have bound
states (negative eigenvalues corresponding to Ω2 > 0) and
thus in such a potential we would only have stable
oscillating modes (Ω2 < 0). Thus a sufficient for stability
criterion (SSC) is that the minimum of the Schrodinger
potential should be positive i.e.,

V0; minðrminÞ > 0: ð3:12Þ

Using the SIC and the SSC we have constructed the upper
and lower curves in Fig. 4 which correspond to the values
of mðξÞ2M2 that saturate the SSC (upper curves) and SIC
(lower curves). Also, using the SSC we find an analytical
expression m2ðξÞM2 for Q ¼ 0 (upper curve in Fig. 4 see
the Appendix A). Thus, by construction all parameter
values below the lower curves satisfy the SIC Eq. (3.11)
and must correspond to tachyonic instabilities while all
parameter values above the upper curves of Fig. 4 satisfy
the SSC Eq. (3.12) and have no instabilities. As expected
the precise numerically obtained values of mcrðξÞ2 ¼ 0 are
between the SIC and SSC curves so that none of the two
sufficient (but not necessary) conditions is violated. Even

though the value mcrðq; ξÞ ¼ 0 for the emergence of
tachyonic instabilities is independent of the metric param-
eters and remains the same in the RN-dS spacetime as in the
flat Minkowski spacetime, the growth rate Ωðq; ξ; mÞ of
tachyonic instabilities (m2 < 0) does have a dependence on
the metric parameters. In order to identify this dependence
we consider an unstable mode with fixed m2 <
mcrðq; ξÞ2 ¼ 0 and given ξ and q, we find the growth rate
Ω of the instability by finding the ground state eigenvalue4

Ω2 and eigenfunction u0ðr�Þ of the Schrodinger-like
equation (2.22) which has no nodes and obeys the
boundary conditions (3.4)–(3.6), (3.3) and (3.5). We thus
construct Fig. 5 which shows the dimensionless growth rate
of the instability ΩM as a function of the dimensionless
parameters ξ and q2 ¼ Q2=M2 for scalar field mass
m2M2 ¼ −0.05 and m2M2 ¼ −0.2. Clearly, when ξ
increases and/or q decreases toward 0, the growth rate
of the instability ΩM decreases and as m2M2 → 0 we have
ΩM → 0 (the zero mode is reached). In addition to this
interesting monotonic behavior of the instability growth
rateΩwith respect to the metric parameters,Ω also remains
smaller than its flat space value ΩF ¼ jmj. This is dem-
onstrated in Fig. 6 where we show the dependence of Ω

ΩF
on

q2 for various values of ξ for m2M2 ¼ −0.05 (left panel)
and m2M2 ¼ −0.2 (right panel). We have considered
parameter values between the green and blue lines of
Fig. 1 where three distinct horizon exist in the RN-dS
metric. The following observations can be made based on
Figs. 5, 6

(i) The relative growth rate of the tachyonic instabilities
Ω
ΩF

is a monotonically increasing function of q2 and a
monotonically decreasing function of ξ.

FIG. 4. The critical value of the scalar field mass m2
crM2 is zero

and independent of the dimensionless parameter ξ (with
ξ ∈ ½0; ξH;CðqÞ�) in the case of the SdS and RN-dS spacetime
(blue straight line) for l ¼ 0. The solid curves show the form of
mcrðq; ξÞ2M2 that saturates the Sufficient for Instability Criterion
(SIC) Eq. (3.11) while the corresponding dashed curves shows
the forms of mcrðq; ξÞ2M2 that saturate the Sufficient for Stability
Criterion (SSC) Eq. (3.12) for three values of Q=M. As expected,
the exact value of mcrM ¼ 0 is between the SIC lines (lower
lines) and SSC lines (upper lines) so that none of the criteria is
violated (SSC or SIC).

FIG. 5. The dimensionless growth rate of the instability ΩM as
a function of the dimensionless parameters ξ and q2 ¼ Q2=M2

for scalar field mass m2M2 ¼ −0.05 (cyan surface) and m2M2 ¼
−0.2 (yellow surface).

4Possible excited states would correspond to lower values ofΩ
and thus lower growth rate. We thus find the maximum possible
growth rate of instabilities for a given set of parameters.
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FIG. 6. The ξ dependent relative growth rate of the instability Ω=ΩF (with ΩF the growth rate of the instability in flat spacetime) as a
function of the dimensionless parameter q2 ¼ Q2=M2 for the scalar field mass m2M2 ¼ −0.05 (left panel) and m2M2 ¼ −0.2 (right
panel). The curves for a given parameter value ξ (with ξ < 1) turn out to be straight lines. The range of values of ξ and q is determined by
the physically interesting parameter region between the green and blue lines of Fig. 1.The parameter region corresponding to linear
behavior of Ωðq2Þ (yellow region) is also shown in Fig. 1.

FIG. 7. The ξ dependent dimensionless growth rate of the instability ΩM as a function of the scalar field mass m2M2 (with
mðξÞ2 < mcrðξÞ2 ¼ 0) for dimensionless parameters Q2=M2 ¼ 0 (SdS spacetime) (left panel) and Q2=M2 ¼ 0.3 (RN-dS spacetime)
(right panel). The green dashed curves correspond to ΩMðm2M2Þ in the case of the Minkowski spacetime. Clearly, for a given field
mass, the growth rate is more suppressed in the absence of charge and for higher values of ξ.
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(ii) Ω
ΩF

is significantly smaller than unity. This reduction
implies that background curvature and especially
the combination of an event horizon with a cosmo-
logical horizon tend to delay the evolution of
instabilities.

(iii) There is a linear relation between Ω
ΩF

and q2 for fixed
ξ < 1. This is evident in both Fig. 6 and in Fig. 5.
For example the straight blue lines of Fig. 5 corre-
spond to the dependence of ΩM on q2 for fixed ξ
which are equivalent to the straight lines of Fig. 6.
Notice that this linear relation is violated for ξ > 1
(see shaded regions in Figs 1, 6).

(iv) The growth rate Ω is a decreasing function of jmj2
which goes to zero as m2 → m2

cr ¼ 0 where the zero
mode develops. This is illustrated in more detail
in Fig. 7.

The crucial feature of the RN-dS metric that has lead to the
above described trend for delay of instability growth of the
tachyonic modes is the combination of the cosmological
horizon with an event horizon. This combination, limits the
range of negative values of the Regge-Wheeler potential in
tortoise coordinates for m2 < 0 and thus makes it less
accepting to bound states and instabilities. In the absence of
a cosmological horizon the Regge-Wheeler potential in
tortoise coordinates would remain negative out to r� → ∞.
This is illustrated in the next section.

IV. LIMITING CASESWITH A SINGLE HORIZON:
PURE DE SITTER AND PURE SCHWARZSCHILD

SPACETIMES

We now consider separately the two single horizon
limiting cases: pure de Sitter and pure Schwarzschild
spacetimes in order to isolate the effects of the cosmologi-
cal and event horizons.

A. Pure de Sitter background

In the pure de Sitter case (M ¼ 0, Q ¼ 0), the potential
V�0ðr�Þ is shown in Fig. 8 for various values of m2=Λ and
may be obtained analytically as [145]

V�0ðr�Þ¼
m2− 2

3
Λ

cosh2 r�ffiffi
3
Λ

p ≃0<r�≪
ffiffi
3
Λ

p

�
m2−

2

3
Λ
�
þΛ
9
ð2Λ−3m2Þr2�þOðr4�Þ ð4:1Þ

After a rescaling r�
ffiffiffiffi
Λ

p
→ r�, m2=Λ → m2 which practi-

cally amounts to setting Λ ¼ 1 it is obvious that the SSC is
satisfied for m2 > 2

3
which guarantees no instabilities for

this range of m2. Since there is only cosmological horizon
in this case, the range of the tortoise coordinate is
r� ∈ ½0;þ∞�. For Ω ¼ 0 the Schrodinger-like equation
to solve in this case takes the form

du20
dr2�

−
1

Λ
V�ðr�Þu0ðr�Þ ¼ 0: ð4:2Þ

Since the potential vanishes atþ∞ due to the cosmological
horizon, the physically interesting (finite) boundary con-
dition at r� ⟶ þ∞ is

u0ðr� → þ∞Þ ¼ C ð4:3Þ

u00ðr� → þ∞Þ ¼ 0 ð4:4Þ

At the other boundary r� → 0 we have

dr�
dr

¼ 1 ⇒ r� ¼ r ð4:5Þ

and due to Eqs. (2.5) and (2.21) for a finite scalar field at
r ¼ 0 we must have

Ψ0ðr → 0Þ ¼ 0 ⇒ u0ðr → 0Þ ¼ u0ðr� → 0Þ ¼ 0: ð4:6Þ

Thus using Eqs. (4.1) and (4.2) it is straightforward to
show that

u0ðr� → 0Þ ¼ r� ð4:7Þ
where we have used the normalization freedom to set the
slope of the linear function to unity. Thus in this case, the
physical boundary conditions are

FIG. 8. The m2=Λ dependent Regge-Wheeler dimensionless
potential V�=Λ as a function of r�

ffiffiffiffi
Λ

p
in the case of the deSitter

spacetime (M ¼ 0, ξ ¼ 0) for angular scale l ¼ 0. The green solid
curve corresponds to the critical value of the scalar field mass
m2

cr=Λ ¼ 0. The dotted (m2=Λ > 0) and dashed (m2=Λ < 0)
curves correspond to nonexistence of bound states (stabilities)
and existence of bound states (instabilities) respectively.
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u00ðr� → 0Þ ¼ 1 ð4:8Þ

u0ðr� → 0Þ ¼ 0 ð4:9Þ

u0ðr� → þ∞Þ ¼ C ð4:10Þ

u00ðr� → þ∞Þ ¼ 0: ð4:11Þ

Solving Eq. (4.2) corresponding toΩ ¼ 0 from r� ¼ 0with
the boundary conditions (4.8) and (4.9), we obtain (4.10)
and (4.11) only for mcr ¼ 0. Thus, despite of the negative
effective Regge-Wheeler potential in the deSitter back-
ground, the tachyonic instabilities develop for the same
range of m2 as in the Minkowski space (m2 < 0). It is
straightforward to find the ground state eigenvalue and
show that Ωðm2=ΛÞ < jmj as in the case of other spece-
times where a cosmological horizon is present (see Fig. 9).

B. Pure Schwarzschild background

In the pure Schwarzschild background (Λ ¼ 0) we have
[146,147]

fðrÞ ¼ 1 −
2M
r

ð4:12Þ

VðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3
þm2

�
ð4:13Þ

r�ðrÞ ¼ rþ 2M ln

�
r
2M

− 1

�
: ð4:14Þ

It is easy to see that in both the tortoise and the
Schwarzschild coordinates the Regge-Wheeler potential
V�0 does not vanish asymptotically atþ∞. Instead we have
(see also Fig. 10)

FIG. 9. The dimensionless growth rate of the instability Ω=
ffiffiffiffi
Λ

p
as a function of the scalar field massm2=Λ (withm < mcr ¼ 0) in
the case of deSitter spacetime. Clearly Ωðm2=ΛÞ < jmj as in the
other cases where a cosmological horizon is present.

FIG. 10. Them2M2 dependent Regge-Wheeler dimensionless potentials VM2 (left panel) and V�M2 (right panel) as a function of r=M
and r�=M respectively in the case of the Schwarzschild spacetime (Λ ¼ 0, ξ ¼ 0) for angular scale l ¼ 0. The blue solid curves
correspond to the critical value of the scalar field mass m2

crM2 ¼ 0. The dotted (m2M2 > 0) and dashed (m2M2 < 0) curves correspond
to nonexistence of bound states (stabilities) and existence of bound states (instabilities) respectively.
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lim
r�→þ∞

V�0 ¼ m2: ð4:15Þ

This implies that for m2 < 0 the SIC implies instability
since

Z
∞

−∞
Vðr�Þdr� ¼

Z
∞

rH

VðrÞdr ¼
Z

∞

rH

�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3
þm2

�
dr ¼ −∞ < 0:

ð4:16Þ

Therefore for m2 < 0 we have tachyonic instability just as
in the Minkowski space. Similarly for m2 > 0 we have
VðrÞ > 0 and V�0ðr�Þ > 0 which is the SSC (see also
Fig. 10) which secures that we have stability. Thus in the
Schwarzchild backround, tachyonic instabilities develop
for the same mass parameter range as for the Minkowski
background.
In this case, for m2 < 0, the boundary conditions (3.3)–

(3.4) become

u0ðr� → þ∞Þ ¼ Be−i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jmj2−Ω2

p
r� ð4:17Þ

u0ðr� → −∞Þ ¼ AeΩr� ð4:18Þ

i.e., there are propagating waves toward þ∞ even for
m2 < 0. There are nonzero solutions satisfying these
boundary conditions only for Ω ≤ jmj. This implies that
the maximum growth rate of tachyonic instabilities in this
case is the same as in flat space Ω ¼ jmj. This is due to the
absence of a cosmological horizon.

V. CONCLUSION, DISCUSSION, OUTLOOK

We have shown that tachyonic scalar instabilities of the
KG equation have a slower growth rate in RN-dS/ SdS
metric background compared to flat Minkowski space for
all values of metric parameters where a cosmological
horizons exists. We have also identified the critical value
of scalar field mass m2

cr that for m2 < m2
cr tachyonic

instabilities develop and confirmed that mcr ¼ 0 as in flat
Minkowski spacetime.
The crucial property of the SdS spacetime that allows for

this delayed growth of instabilities appears to be the
presence of a cosmological horizon that forces the effective
Regge-Wheeler potential to vanish at þ∞ in tortoise
coordinates even for negative scalar field mass m2. Thus
the r� range where the Regge-Wheeler potential is negative
is limited favoring increased eigenvalues and lower growth
rate of instabilities.
This stabilizing effect of multiple horizons on tachyonic

instabilities may have various interesting implications
which include the following

(i) Tachyonic instabilities of fðRÞ and scalar-tensor
theories can get significantly delayed in back-
grounds involving cosmological horizons with pos-
sible implications for the development of preheating
after inflation [20,148–150].

(ii) Symmetry breaking phase transitions in field theory is
based on the existence of tachyonic instabilities in a
scalar field potential which lead the system toward a
new vacuum state with less symmetry. In the context
of a RN-dS background the delay of such tachyonic
instabilities could have interesting effects in the
evolution of phase transitions in the Early Universe
with possible interesting observable effects related
e.g., to the efficiency of the formation of topological
defects [151,152].

(iii) The backreaction effects of the tachyonic instabil-
ities on the gravitational background may lead to
superradiance and scalarization effects [115,153]
in RN-dS spacetime in the same way that scat-
tering processes lead to similar effects in these
spacetimes.

(iv) The consideration of scalar field potentials support-
ing topological or semilocal defects (e.g., electro-
weak strings [154]) may lead to interesting new
stabilization mechanisms induced by a multihorizon
gravitational background.

These implications open up a wide range of extensions of
the present analysis. For example interesting extensions
include the following:

(i) Consideration of more general background metrics
to investigate the existence and growth rate of
tachyonic instability modes. Such backgrounds
may include Kerr-Newman-deSitter spacetime
[153,155–162] or corresponding higher dimension
spacetimes, Gödel-like spacetime [163,164] etc.

(ii) Investigate the effects of such delay of instabilities in
the Early Universe and in particular during inflation
and cosmological phase transitions [165–168] in the
context of more general scalar field potentials
beyond the KG equation.

(iii) Investigate different types of perturbations (Dirac
and gravitational) in multihorizon backgrounds and
in the presence of tachyonic modes.

(iv) Consider different types of boundary conditions
corresponding to scattering processes (propagating
waves at infinity) leading to evaluation of QNMs
and scattering amplitudes (superradiance).

(v) Investigate the stability of semilocal and electroweak
strings in strongly curved backgrounds including
multihorizon metrics.

In conclusion, the interesting nontrivial effects of the
gravitational background on the tachyonic scalar instabilities
pointed out in the present analysis open up a wide range of
new directions in the understanding of the dynamics of scalar
fields in curved spacetimes.
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The Mathematica file used for the numerical analysis
and for construction of the figures can be found in [169].
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APPENDIX: ANALYTICAL FORM OF
SSC CURVES

The above mentioned sufficient for stability criterion
(SSC) is that the minimum of the Schrodinger potential

should be larger than 0 [see Eq. (3.12)]. Thus by demand-
ing that the minimum of the Schrodinger potential

V0; minðrminÞ ¼ 0 ðA1Þ

we can obtain the analytical form of SSC curves for various
values of Q (see Fig. 4). The SSC curve for Q ¼ 0 as
function of ξ takes the following analytical form

m2ðξÞM2 ¼ 2ðgðξÞ − 1Þ
9gðξÞ3 ðA2Þ

where

gðξÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ4 − ξ3

p
− ξ2

	1
3

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ4 − ξ3
p
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