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We present a new convenient framework for modeling Reissner-Nordström black hole perturbations
from charged distributions of matter. Using this framework, we quantify how gravitational wave
observations of compact binary systems would be affected if one or both components were charged.
Our approach streamlines the (linearized) Einstein-Maxwell equations through convenient master functions
that we designed to ameliorate certain disadvantages of prior strategies. By solving our improved master
equations with a point source, we are able to quantify the rate of orbital energy dissipation via
electromagnetic and gravitational radiation. Through adiabatic and quasicircular approximations, we
apply our dissipative calculations to determine trajectories for intermediate and extreme mass-ratio
inspirals. By comparing trajectories and waveforms with varied charges to those with neutral components,
we explore the potential effect of electric charge on gravitational wave signals. We observe that the case of
opposite charge-to-mass-ratios has the most dramatic impact. Our findings are largely interpreted through
the lens of the upcoming laser interferometer space antenna mission.
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I. INTRODUCTION

Relativistic systems involving black holes comprise a
diverse array of subjects at the forefront of astrophysics.
Various types of black holes are involved in a wide variety
of dramatic astronomical investigations ranging from active
galactic nuclei [1] to gravitational wave discoveries [2–8].
Naturally, it is valuable to explore how the fundamental
properties of black holes affect the dynamics of related
astronomical events. General relativity predicts that indi-
vidual black holes are exhaustively described by only three
properties: mass, spin, and electric charge. Often, a black
hole’s electric charge is assumed to be negligible in realistic
scenarios because the surrounding plasma is capable of
neutralization [9]. However, compelling models exist to
explain how black holes might become charged in a steady-
state configuration. Many of these charged black hole
models involve a rotating black hole in the presence of a
magnetic field [10–12], while other models consider more
exotic scenarios such as interactions with charged dark
matter [13,14]. In pursuit of a more comprehensive under-
standing of how the properties of black holes affect their
environment, this work refines black hole perturbation

theory techniques to develop a robust formalism for
modeling relativistic events involving charged black holes.
Our purpose here does not include further assessment

of how black holes might originally become charged.
Rather, we apply general relativity to predict the behavior
of systems involving black holes with preexisting charge.
For simplicity, we consider nonrotating black holes, which
are described by Reissner-Nordström (RN) spacetime. To
model dynamical scenarios using black hole perturbation
theory, an RN black hole is assumed to have the strongest
influence over nearby gravitational and electromagnetic
fields. Additional influences are then accounted for by
introducing small gravitational and electromagnetic per-
turbations to quantify the effect of nearby astronomical
objects (see Sec. II). Note that, unlike post-Newtonian
theory, these techniques do not require a slow motion
approximation so that even highly relativistic systems are
suitable candidates for this scheme provided that the size of
the perturbations remains small compared to that of the
black hole background. Perturbations of RN spacetime
have been studied in the past [15–18], but those analyses
involve certain disadvantages such as the assumption of a
source-free environment or restriction of calculations to the
frequency domain (see Sec. III A for a detailed discussion).
Here we present a mature and practical “master function”
formalism that mitigates disadvantages encountered in*tosburn@geneseo.edu
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prior work. A partial presentation of this formalism was
made in [19], but that analysis was restricted to an external
environment consisting solely of a neutral point mass. This
work generalizes that formalism to allow for arbitrary
distributions of charged matter by carefully introducing
appropriate electromagnetic source terms into the math-
ematical definitions of the master functions (see Sec. III).
To focus our analysis, we consider an example system in

which a charged compact object orbits the RN black hole.
This lower mass binary component could be a charged
neutron star [20] or smaller black hole. At linear order in
perturbation theory, such a compact object is represented
accurately by a point particle. The rapid radial infall of point
particles into an RN black hole has been studied previously
[14,21,22] (as have similar collisions of charged black holes
with comparable masses [23,24]), but relativistic charged
binary encounters involving sustained orbital configurations
have not been modeled before. Here we consider such a
sustained encounter by calculating the gravitational and
electromagnetic radiation emitted by a charged compact
object on a circular orbit in RN spacetime for the first time.
Compact binary systems like these are crucial sources for
gravitational wave astronomy [2–8,25]. Therefore, as an
application of the theoretical and computational techniques
presented here, we perform the first calculations to quantify
how electric charge on one or both binary components
would affect gravitational wave observations. We consider
intermediate and extreme mass-ratio binary systems in this
analysis (comparable mass binaries are not well represented
by linear perturbation theory). Extreme mass-ratio binaries
are valuable sources for the upcoming laser interferometer
space antenna (LISA) mission [26], while intermediate
mass-ratio binaries are important for both LISA and
LIGO-Virgo [27,28] observations depending on the total
mass of the system [19].
Compact binary systems such as these have orbits that

decay over time because electromagnetic and gravitational
waves described by the master functions in our formalism
carry away orbital energy. This radiation reaction is
formally quantified by considering how the point particle
interacts with its perturbations through a mechanism called
the self-force [29–31]. While preliminary work has been
conducted regarding the self-force in RN spacetime
[32–37], we avoid the technical complexities associated
with self-force calculations by making an adiabatic
approximation [38] that leverages the radiative energy
decay rate to generate equations of motion governing the
quasicircular inspiral of the charged compact object toward
the RN black hole (see Sec. IV). After calculating the
master functions through our perturbative analysis and
determining the inspiral trajectory through adiabatic and
quasicircular approximations, we finally generate wave-
forms describing the gravitational waves emitted by electri-
cally charged compact binary systems for the first time. By
comparing to the case with neutral binary components

(which reflects existing models), we are able to quantify
how critical it would be to account for electric charge in
practical waveform templates if gravitational waves from
charged binary systems were detected (see Sec. V).

II. PERTURBATIONS OF CHARGED
BLACK HOLES

A. Overview

We model the environment surrounding a charged black
hole (with massM and chargeQ) by considering first-order
perturbations of the Einstein-Maxwell equations in RN
spacetime. In this scheme, a small parameter, ϵ, is used to
expand the spacetime metric, gαβ, and the electromagnetic
potential four-vector, Aα,

gαβ ¼ gð0Þαβ þ gð1Þαβ þOðϵ2Þ; ð2:1Þ

Aα ¼ Að0Þ
α þ Að1Þ

α þOðϵ2Þ: ð2:2Þ

Aα and gαβ are governed by the Einstein equations,

Gαβ ¼ 8πTαβ; ð2:3Þ

and Maxwell’s equations,

∇βFαβ ¼ 4πJα; ð2:4Þ

where Fαβ is the electromagnetic field tensor,

Fαβ ¼ ∇αAβ −∇βAα; ð2:5Þ

Jα is the current density four-vector, Gαβ is the Einstein
tensor, and Tαβ is the stress-energy tensor,

Tαβ ¼ Tαβ
matter þ

1

4π

�
Fα

γFβγ −
1

4
gαβFγνFγν

�
: ð2:6Þ

When the charged black hole’s surroundings consist of a
lower mass compact object (with mass μ), the small
expansion parameter is the mass-ratio: ϵ ¼ μ=M. The

leading terms in the expansion, gð0Þαβ and Að0Þ
α , are exact

solutions of Eqs. (2.3) and (2.4) describing the central black
hole. Electric charge is incorporated by adopting the RN

metric for gð0Þαβ (we utilize Boyer-Lindquist coordinates, xα),

gð0Þαβ dx
αdxβ¼−fdt2þ1

f
dr2þr2ðdθ2þsin2θdφ2Þ; ð2:7Þ

f ≡ 1 −
2M
r

þQ2

r2
: ð2:8Þ

Að0Þ
α is a vacuum solution of Maxwell’s equations compat-

ible with the RN metric,
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Að0Þ
t ¼ −

Q
r
; ð2:9Þ

Að0Þ
r ¼ Að0Þ

θ ¼ Að0Þ
φ ¼ 0:

The first-order gravitational and electromagnetic

perturbations, gð1Þαβ and Að1Þ
α , are determined by expanding

Eqs. (2.3) and (2.4) through linear order in ϵ. Rather than
explicitly presenting the perturbed field equations here in
covariant form (see [39]), we first perform multipole

decompositions of gð1Þαβ and Að1Þ
α and then use separation

of variables to present the differential equations governing
each mode. At first order in ϵ, a smaller binary component
can be represented as a charged point mass with position
xαp, four-velocity uα, mass μ, and charge q. For such a point
particle, the sources driving Eqs. (2.3) and (2.4) are
described by Dirac delta functions,

Jα ¼ q
uα

utr2p sin θp
δðr − rpÞδðθ − θpÞδðφ − φpÞ; ð2:10Þ

Tαβ
matter ¼ μ

uαuβ

utr2p sin θp
δðr − rpÞδðθ − θpÞδðφ − φpÞ:

ð2:11Þ

We later narrow our focus even further by restricting
the point particle’s motion to a circular equatorial orbit
(rp ¼ constant, θp ¼ π=2, φp ¼ Ωt). Note, however, that
this formalism is not in any way restricted to the point
particle example studied here.

B. Multipole decompositions

The electromagnetic perturbation, Að1Þ
α , and current den-

sity, Jα, are decomposed into vector spherical harmonics,

Að1Þ
b ðt; r; θ;φÞ ¼

X
lm

almb ðrÞYlmðθ;φÞe−iωt; ð2:12Þ

Að1Þ
B ðt; r; θ;φÞ ¼

X
lm

½alm♯ ðrÞYlm
B ðθ;φÞ

þ aoddlm ðrÞXlm
B ðθ;φÞ�e−iωt; ð2:13Þ

Jaðt; r; θ;φÞ ¼ 1

4π

X
lm

J a
lmðrÞYlmðθ;φÞe−iωt; ð2:14Þ

JAðt; r; θ;φÞ ¼ 1

4πr2
X
lm

½J ♯
lmðrÞYA

lmðθ;φÞ

þ J ♭
lmðrÞXA

lmðθ;φÞ�e−iωt: ð2:15Þ

We have adopted the notation of Martel and Poisson [40]
where lowercase Latin indices (a; b) refer to t and r tensor
components and uppercase Latin indices (A; B) refer to θ and

φ tensor components. Similarly, the metric perturbation, gð1Þαβ ,

and material stress-energy tensor, Tαβ
matter, are decomposed

into tensor spherical harmonics,

gð1Þab ðt; r; θ;φÞ ¼
X
lm

hlmabðrÞYlmðθ;φÞe−iωt; ð2:16Þ

gð1ÞaBðt; r; θ;φÞ ¼
X
lm

½jlma ðrÞYlm
B ðθ;φÞ

þ hlma ðrÞXlm
B ðθ;φÞ�e−iωt; ð2:17Þ

gð1ÞABðt; r; θ;φÞ ¼
X
lm

½r2KlmðrÞΩABðθ;φÞYlmðθ;φÞ

þ r2GlmðrÞYlm
ABðθ;φÞ

þ hlm2 ðrÞXlm
ABðθ;φÞ�e−iωt; ð2:18Þ

Tab
matterðt; r; θ;φÞ ¼

1

8π

X
lm

Qab
lmðrÞYlmðθ;φÞe−iωt; ð2:19Þ

TaB
matterðt; r; θ;φÞ ¼

1

16πr2
X
lm

½Qa
lmðrÞYB

lmðθ;φÞ

þ Pa
lmðrÞXB

lmðθ;φÞ�e−iωt; ð2:20Þ

TAB
matterðt; r; θ;φÞ ¼

1

16πr2
X
lm

�
Q♭

lmðrÞΩABðθ;φÞYlmðθ;φÞ

þ 1

r2
Q♯

lmðrÞYAB
lm ðθ;φÞ

þ 2

r2
PlmðrÞXAB

lm ðθ;φÞ
�
e−iωt: ð2:21Þ

The definitions of all angular functions appearing in
Eqs. (2.12)–(2.21) are provided in [40]. We have also
entered the frequency domain by assuming (for brevity)
sinusoidal time dependence (this simple time representation
is easily generalizable via the Fourier transform). However, it
is important to note that the formalism presented here does
not require frequency domain calculations; rather, the
frequency domain is a convenient option for our circular
motion example. For arbitrary sources, time-domain general-
izability (−iω → ∂

∂t) is a major advantage afforded by the
methods presented here (see Sec. III). Expressions for the
multipole modes of the sources (J a

lm, J
♯
lm, J

♭
lm, Q

ab
lm, Q

a
lm,

Pa
lm, Q

♭
lm, Q

♯
lm, and Plm) are given in Appendix A.

Maxwell’s equations are enforced by expanding
Eq. (2.4) through the first power of ϵ for each multipole
(l; m) mode,
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J ♭
lm ¼ f

d2aoddlm

dr2
þ 2ðMr −Q2Þ

r3
daoddlm

dr

þ
�
ω2

f
−
lðlþ 1Þ

r2

�
aoddlm þ Q

r2
dhlmt
dr

−
2Q
r3

hlmt þ iωQ
r2

hlmr ; ð2:22Þ

J t
lm ¼ d2almt

dr2
þ 2

r
dalmt
dr

þ iω
dalmr
dr

−
lðlþ 1Þ
r2f

almt þ 2iω
r

almr

þ Q
2r2f

dhlmtt
dr

−
fQ
2r2

dhlmrr
dr

þ Q
r2

dKlm

dr

þQðQ2 −MrÞ
r5f2

ðhlmtt þ f2hlmrr Þ; ð2:23Þ

J r
lm ¼ iω

dalmt
dr

þ iωQ
2r2f

hlmtt −
iωfQ
2r2

hlmrr

þ iωQ
r2

Klm −
�
ω2 −

f
r2
lðlþ 1Þ

�
almr ; ð2:24Þ

J ♯
lm ¼ f

dalmr
dr

þ iω
f
almt −

2ðQ2 −MrÞ
r3

almr : ð2:25Þ

Similarly, Einstein’s equations are enforced by expanding
Eq. (2.3) through the first power of ϵ for each mode,

Pt
lm ¼ d2hlmt

dr2
þ iω

dhlmr
dr

þ 2iω
r

hlmr

−
lðlþ 1Þr2 − 4Mrþ 2Q2

fr4
hlmt þ 4Q

r2
daoddlm

dr
;

ð2:26Þ

Pr
lm ¼ iω

dhlmt
dr

−
2iω
r

hlmt −
�
ω2 −

f
r2

ðlþ 2Þðl − 1Þ
�
hlmr

þ 4iωQ
r2

aoddlm ; ð2:27Þ

Plm ¼ f
dhlmr
dr

−
2ðQ2 −MrÞ

r3
hlmr þ iω

f
hlmt ; ð2:28Þ

Qtt
lm ¼ −

d2Klm

dr2
−
2Q2 þ rð3r − 5MÞ

fr3
dKlm

dr

þ f
r
dhlmrr
dr

þ ðlþ 2Þðl − 1Þ
2fr2

Klm

−
4Q2 − rð4M þ rðlðlþ 1Þ þ 2ÞÞ

2r4
hlmrr

−
Q2

r4f2
hlmtt −

2Q
r2f

dalmt
dr

−
2iωQ
r2f

almr ; ð2:29Þ

Qtr
lm ¼ −iω

dKlm

dr
−
lðlþ 1Þ
2r2

hlmtr þ iωf
r

hlmrr

−
iωð2Q2 þ rðr − 3MÞÞ

r3f
Klm; ð2:30Þ

Qrr
lm ¼ fðr −MÞ

r2
dKlm

dr
−
f
r
dhlmtt
dr

þ
�
ω2 −

fðlþ 2Þðl − 1Þ
2r2

�
Klm −

f2

r2
hlmrr

−
2Q2 − rð4M þ rlðlþ 1ÞÞ

2r4
hlmtt −

2iωf
r

hlmtr

þ 2fQ
r2

dalmt
dr

þ 2iωfQ
r2

almr ; ð2:31Þ

Qt
lm ¼ −

dhlmtr
dr

− iωhlmrr þ 2ðQ2 −MrÞ
r3f

hlmtr

−
iω
f
Klm −

4Q
r2

almr ; ð2:32Þ

Qr
lm ¼ dhlmtt

dr
− f

dKlm

dr
−
r −M
r2f

hlmtt þ iωhtr

þ fðr −MÞ
r2

hlmrr þ 4Q
r2

almt ; ð2:33Þ

Q♭
lm ¼ f

d2Klm

dr2
−
d2hlmtt
dr2

þ 2ðr −MÞ
r2

dKlm

dr

−
�
2

r
−
r −M
r2f

�
dhlmtt
dr

−
fðr −MÞ

r2
dhlmrr
dr

− 2iω
dhlmtr
dr

þ lðlþ 1Þ
2r2f

ðhlmtt − f2hlmrr Þ

þ 2ðr −MÞðQ2 −MrÞ
f2r5

ðhlmtt þ f2hlmrr Þ

þ ω2hlmrr þ ω2

f
Klm −

2iωðr −MÞ
r2f

hlmtr

−
4Q
r2

dalmt
dr

−
4iωQ
r2

almr ; ð2:34Þ

Q♯
lm ¼ 1

f
hlmtt − fhlmrr : ð2:35Þ

The metric perturbation is not unique due to the 4 degrees
of gauge freedom. We adopt the Regge-Wheeler gauge
where hlm2 ¼ jlmt ¼ jlmr ¼ Glm ¼ 0. Similarly, there is
1 degree of electromagnetic gauge freedom, and we adopt
a gauge where alm♯ ¼ 0. Through this description, the
fundamental problem reduces to solving (for each mode)
Eqs. (2.22)–(2.35) for the nine nonvanishing radial func-
tions: almt , almr , aoddlm , hlmtt , hlmtr , hlmrr , Klm, hlmt , and hlmr . Then
the overall solution is constructed through Eqs. (2.12)
and (2.13) and (2.16)–(2.18).
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The source terms are required to obey certain constraints
implied by physical conservation laws. One such constraint
is conservation of charge, ∇αJα ¼ 0, which reduces to a
relationship between the modes of the current density,

0 ¼ iωJ t
lm −

2

r
J r

lm þ lðlþ 1Þ
r2

J ♯
lm −

dJ r
lm

dr
: ð2:36Þ

As Maxwell’s equations themselves imply conservation of
charge, Eq. (2.36) can also be derived by direct substitution
of the field equations. Similarly, there is conservation of
stress energy, ∇αTαβ ¼ 0, which also reduces to relation-
ships between the source modes,

0 ¼ iωPt
lm −

2

r
Pr

lm þ ðlþ 2Þðl − 1Þ
r2

Plm −
dPr

lm

dr
; ð2:37Þ

0 ¼ 2Q
r2f

J r
lm þ iωQtt

lm þ 2ðM − rÞ
r2f

Qtr
lm

þ lðlþ 1Þ
2r2

Qt
lm −

dQtr

dr
; ð2:38Þ

0 ¼ 2Qf
r2

J t
lm þ fðQ2 −MrÞ

r3
Qtt

lm þ iωQtr
lm

þ
�
r −M
r2f

−
3

r

�
Qrr

lm þ lðlþ 1Þ
2r2

Qr
lm

þ f
r
Q♭

lm −
dQrr

lm

dr
; ð2:39Þ

0 ¼ iωQt
lm −

2

r
Qr

lm −Q♭
lm þ ðlþ 2Þðl − 1Þ

2r2
Q♯

lm −
dQr

lm

dr
:

ð2:40Þ

As the Einstein equations themselves imply conservation of
stress energy, Eqs. (2.37)–(2.40) can also be derived by
direct substitution of the field equations. It is perhaps
surprising that current density modes, like J t

lm and J r
lm,

appear at all in Eqs. (2.37)–(2.40) considering that the
current density is not explicitly related to the stress-energy
tensor. Direct consideration of stress-energy conservation
necessarily involves the electromagnetic fields that appear
in the stress-energy tensor. However, explicit appearance
of any fields in the constraints can be eliminated through
careful substitution of Maxwells equations. Therefore,
Eqs. (2.37)–(2.40) involve a combination of stress-energy
conservation and Maxwells equations. Point particle source
terms are guaranteed to satisfy Eqs. (2.36)–(2.40) when
orbital motion is determined through the Lorentz force law.

III. MASTER FUNCTION FORMALISM

A. Background

Solving for the nine nonvanishing radial functions
presents a challenge because they are governed by 14 field

equations that are not entirely independent. One welcome
simplification recognizes that Eqs. (2.22) and (2.26)–(2.28)
are not at all coupled to Eqs. (2.23)–(2.25) and (2.29)–(2.35)
(and vice versa). These two separate sets of field equations
are referred to as the “odd-parity” system of four coupled
equations [Eqs. (2.22) and (2.26)–(2.28)] and the “even-
parity” system of ten coupled equations [Eqs. (2.23)–(2.25)
and (2.29)–(2.35)], which are named based on how their
respective angular functions behave under a parity trans-
formation. Each parity is then handled separately when
solving the field equations for a specific spherical harmonic
mode. The even- and odd-parity radial functions are later
reunited when summing over multipoles. For sources con-
fined to the equatorial plane (which includes the point
particle in circular motion example presented here), the
odd-parity source terms vanish when lþm is an even
number, and the even-parity source terms vanish when lþm
is an odd number. Therefore, it is natural in these scenarios to
consider only the odd-parity field equations when lþm is
odd and only the even-parity field equations when lþm
is even.
In addition to the odd- and even-parity split, we seek

additional simplifications through which the numerous
gravitational and electromagnetic fields (for a given parity)
are constructed from a decreased number of streamlined
elements called master functions. These master functions
are governed by “master equations” whose details are
motivated by the fundamental field equations. RN pertur-
bations have been described using master functions pre-
viously by Moncrief in the homogeneous case [16–18]
and by Zerilli [15] in the nonhomogeneous case. Zerilli’s
formalism has the advantage that it includes source terms,
but it is not well suited for time-domain calculations
because frequency (ω) appears in the denominator of his
master equations (and his metric reconstruction equations).
Also, Zerilli’s master equations have consequentially (and
perhaps inconveniently) different forms in the odd- and
even-parity cases. Conversely, Moncrief’s formalism has
the advantages that it is well suited for time-domain
calculations (frequency does not appear in the denomina-
tor) and that his even- and odd-parity master equations
share a convenient form. Unfortunately, Moncrief did not
consider source terms in his formalism. Here we present a
novel alternative that combines the advantages of Zerilli’s
and Moncrief’s formalisms while avoiding their disadvan-
tages. Our formalism is equivalent to generalizing
Moncrief’s master equations to the nonhomogeneous case.
A partial presentation of this formalism was made in [19],
but that work did not consider electromagnetic source
terms. This section completes that presentation by revealing
how any nonvanishing electromagnetic sources are neces-
sarily incorporated into the master function definitions and
master equations. The low multipole modes (l ¼ 1 and
l ¼ 0) modes require special treatment; see Appendix C for
more details.
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B. Odd-parity master equations

For each mode, the odd-parity perturbations are con-
structed from two master functions. The gravitational
master function, hoddlm , determines hlmt and hlmr ,

hlmt ¼ rf
2

dhoddlm

dr
þ f

2
hoddlm −

fr2

ðlþ 2Þðl − 1ÞP
t
lm; ð3:1Þ

hlmr ¼ −
iωr
2f

hoddlm þ r2

fðlþ 2Þðl − 1ÞP
r
lm: ð3:2Þ

The electromagnetic master function, aoddlm , has already
appeared in the multipole decomposition. These master
functions are governed by master equations that follow from
substituting Eqs. (3.1) and (3.2) into Eqs. (2.22) and (2.27),

4fðMr −Q2Þ
r2ðlþ 2Þðl − 1ÞP

t
lm −

2iωr
ðlþ 2Þðl − 1ÞP

r
lm þ 2f2r

ðlþ 2Þðl − 1Þ
dPt

lm

dr

¼ d2hoddlm

dr2�
þ
�
ω2 −

fðlðlþ 1Þr2 − 6Mrþ 4Q2Þ
r4

�
hoddlm þ 8fQ

r3
aoddlm ; ð3:3Þ

fJ ♭
lm ¼ d2aoddlm

dr2�
þ
�
ω2 −

fðlðlþ 1Þr2 þ 4Q2Þ
r4

�
aoddlm þ fQðlþ 2Þðl − 1Þ

2r3
hoddlm : ð3:4Þ

Here r� is the tortoise coordinate, which is related to r
through the differential equation dr�

dr ¼ f−1 with the follow-
ing solution:

r� ¼ rþ r2þ
rþ − r−

ln

�
r − rþ
M

�
−

r2−
rþ − r−

ln

�
r − r−
M

�
:

ð3:5Þ

The constants r� are the radii of the RN black hole’s inner
(−) and outer (þ) event horizons,

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð3:6Þ

We find it convenient to write the master equations
[Eqs. (3.3) and (3.4)] in matrix form,

�
d2

dr2�
þ ω2 þ

�
αoddl βoddl

γoddl σoddl

���
hoddlm

aoddlm

�
¼
�
Soddlm

Zodd
lm

�
; ð3:7Þ

where the coefficients and sources are determined through
comparison of Eq. (3.7) with Eqs. (3.3) and (3.4),

αoddl ðrÞ ¼ −
fðlðlþ 1Þr2 − 6Mrþ 4Q2Þ

r4
; ð3:8Þ

βoddl ðrÞ ¼ 8fQ
r3

; ð3:9Þ

σoddl ðrÞ ¼ −
fðlðlþ 1Þr2 þ 4Q2Þ

r4
; ð3:10Þ

γoddl ðrÞ ¼ fQðlþ 2Þðl − 1Þ
2r3

; ð3:11Þ

Soddlm ðrÞ ¼ 4fðMr −Q2Þ
r2ðlþ 2Þðl − 1ÞP

t
lm −

2iωr
ðlþ 2Þðl − 1ÞP

r
lm

þ 2f2r
ðlþ 2Þðl − 1Þ

dPt
lm

dr
; ð3:12Þ

Zodd
lm ðrÞ ¼ fJ ♭

lm: ð3:13Þ
The forms of Eqs. (3.1) and (3.2) were carefully selected so
that, although Eqs. (2.26) and (2.28) do not enter the master
equations directly [unlike Eqs. (2.22) and (2.27)], all four
odd-parity field equations are automatically satisfied when
Eq. (3.7) is solved for hoddlm and aoddlm .

C. Even-parity master equations

Despite their greater complexity, the even-parity master
equations follow from similar logic. The first step in
relating the even-parity fields to the even-parity master
functions is to express hlmtt , hlmtr , and hlmrr in terms of Klm,

hlmrr ¼ r2

2f
d2Klm

dr2
þ r −M

f2
dKlm

dr

þ
�
r2ω2

2f3
−
ðlþ 2Þðl − 1Þ

2f2

�
Klm −

2Q
f2

dalmt
dr

−
4Q
rf2

almt

−
2iωQ
f2

almr þ r
2f

dQ♯
lm

dr
þ r2

2f
Qtt

lm

−
4Q2 − rð12M þ rðlðlþ 1Þ − 4ÞÞ

4r2f2
Q♯

lm

−
r2

2f3
Qrr

lm −
r
f2

Qr
lm; ð3:14Þ
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hlmtr ¼ 2

lðlþ 1Þ
�
iωrfhlmrr − iωr2

dKlm

dr
−
iωð2Q2 þ rðr − 3MÞÞ

rf
Klm − r2Qtr

lm

�
; ð3:15Þ

hlmtt ¼ f2hlmrr þ fQ♯
lm: ð3:16Þ

It can be shown that Eqs. (3.14)–(3.16) follow from linear combinations of Eqs. (2.29)–(2.35) and their r derivatives.
Then the even-parity gravitational master function, hevenlm , enters through a relationship with Klm,

Klm ¼ ½2rð−2Q2rð2M þ λrÞ þ ðλþ 1Þr3ð3M þ λrÞ þ 2Q4Þ�−1
�
2fðλþ 1Þr3ðrð3M þ λrÞ − 2Q2Þ dh

even
lm

dr

− ðλþ 1Þ½−2r2ð6M2 þ 3λMrþ λðλþ 1Þr2Þ þ 2Q2rð11M þ 2ðλ − 1ÞrÞ − 8Q4�hevenlm

− 4r5fQ
dalmt
dr

− 4iωr5fQalmr − 2r7f2Qtt
lm − 2r3fQ2Q♯

lm

�
; ð3:17Þ

where λ≡ ðlþ 2Þðl − 1Þ=2. Similarly, almt and almr are expressed in terms of the electromagnetic master function aevenlm ,

almt ¼ f
d
dr

�
aevenlm þ Q

2r
hevenlm

�
−

r2f
2ðλþ 1ÞJ

t
lm; ð3:18Þ

almr ¼ −
iω
f

�
aevenlm þ Q

2r
hevenlm

�
þ r2

2fðλþ 1ÞJ
r
lm: ð3:19Þ

The forms of Eqs. (3.17)–(3.19) were carefully selected so that the six nonvanishing even-parity fields are constructed from
master functions hevenlm and aevenlm in such a way that all ten even-parity field equations will be satisfied after solving the master
equations. Although, satisfaction of the fundamental field equations will further rely on the specific properties of the even-
parity master equations. It can be shown that, when the master functions are defined according to Eqs. (3.17)–(3.19), the
appropriate even-parity master equations have the same form as the odd-parity master equations,

�
d2

dr2�
þ ω2 þ

�
αevenl βevenl

γevenl σevenl

���
hevenlm

aevenlm

�
¼
�
Sevenlm

Zeven
lm

�
; ð3:20Þ

but with alternate coefficients and source terms derived from the even-parity field equations,

αevenl ðrÞ ¼ 2f½r4ðrð3M þ λrÞ − 2Q2Þ2�−1ðQ2r2ð21M2 þ 16λMrþ 2ðλ − 1Þλr2Þ
− r3ð9M3 þ 9λM2rþ 3λ2Mr2 þ λ2ðλþ 1Þr3Þ − 2Q4rð8M þ 3λrÞ þ 4Q6Þ; ð3:21Þ

βevenl ðrÞ ¼ 8fQð−3M2rþMðQ2 þ 3r2Þ þ λðλþ 2Þr3Þ
r2ðrð3M þ λrÞ − 2Q2Þ2 ; ð3:22Þ

σevenl ðrÞ ¼ −
2fð−2Q2r2ð9M2 þ 8λMrþ ðλ − 1Þλr2Þ þ 2Q4rð8M þ 3λrÞ þ ðλþ 1Þr4ð3M þ λrÞ2 − 4Q6Þ

r4ðrð3M þ λrÞ − 2Q2Þ2 ; ð3:23Þ

γevenl ðrÞ ¼ λfQð−3M2rþMðQ2 þ 3r2Þ þ λðλþ 2Þr3Þ
r2ðrð3M þ λrÞ − 2Q2Þ2 ; ð3:24Þ

Sevenlm ðrÞ ¼ ½rð3M þ λrÞ − 2Q2�−1
�
r2fQr

lm þ r3Qrr
lm −

fðrð3M þ λrÞ − 2Q2Þ
r

Q♯
lm −

iωr4f
λþ 1

Qtr
lm þ r4f3

λþ 1

dQtt
lm

dr

−
f2rðr2ð12M2 þ 3ðλ − 3ÞMrþ ðλ − 1Þλr2Þ þ 2Q2rð5r − 8MÞ þ 4Q4Þ

ðλþ 1Þðrð3M þ λrÞ − 2Q2Þ Qtt
lm þ 2Qr2f2

λþ 1
J t

lm

�
; ð3:25Þ
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Zeven
lm ðrÞ ¼ r2Q

2ðrð3Mþ λrÞ− 2Q2Þ
�
iωrf
λþ 1

Qtr
lm þ f2ðrð2ðλþ 3ÞQ2 þ λðλþ 1Þr2Þ−Mð2Q2 þ ðλþ 3Þr2ÞÞ

rðλþ 1Þðrð3Mþ λrÞ− 2Q2Þ Qtt
lm −Qrr

lm

−
f
r
Qr

lm −
f3r
λþ 1

dQtt
lm

dr

�
þ r2f2

2ðλþ 1Þ
dJ t

lm

dr
−

iωr2

2ðλþ 1ÞJ
r
lm −

fðQ4 þQ2rð3r− 4MÞ þ r2ðM − rÞð3Mþ λrÞÞ
rðλþ 1Þðrð3Mþ λrÞ− 2Q2Þ J t

lm:

ð3:26Þ
Additional master function properties, such as inverse master function relationships, are described in Appendix B.

IV. NUMERICAL CALCULATIONS

A. Circular orbital motion

Here we demonstrate the techniques presented above by developing a computational model to describe gravitational
waves emitted during the quasicircular inspiral of a charged compact object into a more massive charged black hole. This
computational model is based on numerical calculations to determine the nonhomogeneous solution of the master equations
with source terms representing a charged point mass. Therefore, to generate appropriate source terms, we require a precise
description of the orbital motion.
Accelerated motion of a point charge under the influence of the Lorentz force in RN spacetime can be described via an

effective potential, Veff [41],

VeffðrÞ ¼
qQ
r

þ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f

�
1þ L2

r2

�s
: ð4:1Þ

For circular orbits, the specific angular momentum, L, is determined by finding a local minimum of Veff (evaluated at the
orbital radius r ¼ rp) and solving for L in terms of rp,

0 ¼ ∂Veff

∂r
����
r¼rp

; ð4:2Þ

μL ¼
rp


q2Q2r2pfp − 2μ2ðQ2 −MrpÞð2Q2 − 3Mrp þ r2pÞ − qQr2pfp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2Q2 þ 4μ2ð2Q2 − 3Mrp þ r2pÞ

qr
ffiffiffi
2

p ð2Q2 − 3Mrp þ r2pÞ
; ð4:3Þ

where functions of r with a p subscript (such as fp) are
evaluated at r ¼ rp. The specific energy, E, is Veff=μ with
the above value of L (and evaluated at r ¼ rp),

μE ¼ Veff jr¼rp : ð4:4Þ

It is useful to express the four-velocity, uα, in terms of the
orbital energy and angular momentum [42],

ut ¼ 1

μfp

�
μE −

qQ
rp

�
; ð4:5Þ

uφ ¼ L
r2p

; ð4:6Þ

ur ¼ uθ ¼ 0: ð4:7Þ

The angular speed, Ω, is the derivative of φp with respect
to t,

Ω ¼ dφp

dt
¼ uφ

ut
: ð4:8Þ

The angular speed also serves as the fundamental angular
frequency whose harmonics appear in the field equations,

ωm ¼ mΩ; ð4:9Þ

where m is the spherical harmonic index that is introduced
into the source modes during separation of variables. The
innermost stable circular orbit (ISCO) occurs at a particular
orbital radius, rISCO, where the effective potential exhibits
an inflection point,

0 ¼ ∂2Veff

∂r2
����
r¼rp¼rISCO

: ð4:10Þ

When rp slowly decreases to a value smaller than rISCO
during the inspiral, the smaller binary component will
rapidly plunge into the black hole. See Appendix A for
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details about how these orbital properties are used to
calculate the source terms driving the master equations.

B. Solving the master equations

The amplitudes of the nonhomogeneous master func-
tions inform our model regarding the dissipation rate of the
inspiral and its associated gravitational wave signature (see
Sec. V). We find those amplitudes by solving the nonho-
mogeneous master equations [Eqs. (3.7) and (3.20)] for
each mode. Because the odd- and even-parity master
equations have the same form, we omit the “odd” and
“even” superscripts in Eqs. (3.7) and (3.20),

�
d2

dr2�
þ ω2

m þ
�
αl βl

γl σl

���
hlm
alm

�
¼
�
Slm
Zlm

�
: ð4:11Þ

One property shared by the homogeneous ODE coefficients
is that they all vanish approaching r� ¼ �∞,

lim αl
r�→�∞

¼ lim βl
r�→�∞

¼ lim γl
r�→�∞

¼ lim σl
r�→�∞

¼ 0: ð4:12Þ

This property, in the context of Eq. (4.11), requires that hlm
and alm behave as traveling waves near the event horizon
(r − rþ ≪ M) and in the far-field (r ≫ jωmj−1).
For point particles, the radial source terms involve Dirac

delta functions

�
Slm
Zlm

�
¼
�
Blm

Dlm

�
δðr − rpÞ þ

�
Flm

Hlm

�
δ0ðr − rpÞ; ð4:13Þ

where Blm, Dlm, Flm, and Hlm are constants determined by
the orbital characteristics (see Appendix A), and a prime
denotes differentiation with respect to r.
Equation (4.11) has four independent homogeneous

solutions. We denote each independent homogeneous
solution with a superscript that implies certain boundary
behavior. The two “outgoing” homogeneous solutions
propagate toward r� ¼ þ∞ when r ≫ jωmj−1,"

h0þlm
a0þlm

#
r�→þ∞

≃ eþiωmr�

�
1

0

�
; ð4:14Þ

"
h1þlm
a1þlm

#
r�→þ∞

≃ eþiωmr�

�
0

1

�
: ð4:15Þ

The two “downgoing” homogeneous solutions propagate
toward r� ¼ −∞ when r − rþ ≪ M,"

h0−lm
a0−lm

#
r�→−∞

≃ e−iωmr�

�
1

0

�
; ð4:16Þ

"
h1−lm
a1−lm

#
r�→−∞

≃ e−iωmr�

�
0

1

�
: ð4:17Þ

While other sets of homogeneous solutions are available,
our chosen basis [Eqs. (4.14)–(4.17)] is convenient for
finding the retarded solution (our basis appropriately
preserves causality). We expand each homogeneous sol-
ution in a power series near the boundaries to generate
initial values for numerical integration of Eq. (4.11);
see [19]. These numerical integrations determine the global
homogeneous solutions.
Because the source terms involve Dirac delta functions

(with no more than one derivative), the nonhomogeneous
solution can be expressed as a piecewise function of
homogeneous solutions,

�
hlm
alm

�
¼
 
C0þ
lm

"
h0þlm
a0þlm

#
þ C1þ

lm

"
h1þlm
a1þlm

#!
Θðr − rpÞ

þ
 
C0−
lm

"
h0−lm
a0−lm

#
þ C1−

lm

"
h1−lm
a1−lm

#!
Θðrp − rÞ;

ð4:18Þ

where Θ is the Heaviside step function. The normalization
coefficients, Cj�

lm , are determined by enforcing a “jump
condition” motivated by substituting Eq. (4.18) into
Eq. (4.11). Through that procedure, a linear system
(involving the Wronskian matrix) determines the normali-
zation coefficients,

2
666664

h0þlm h1þlm h0−lm h1−lm
a0þlm a1þlm a0−lm a1−lm

∂r�h
0þ
lm ∂r�h

1þ
lm ∂r�h

0−
lm ∂r�h

1−
lm

∂r�a
0þ
lm ∂r�a

1þ
lm ∂r�a

0−
lm ∂r�a

1−
lm

3
777775
r¼rp

2
666664

C0þ
lm

C1þ
lm

−C0−
lm

−C1−
lm

3
777775

¼ 1

r3pf2p

2
666664

r3pFlm

r3pHlm

r3pfpBlm − 2ðQ2 −MrpÞFlm

r3pfpDlm − 2ðQ2 −MrpÞHlm

3
777775; ð4:19Þ

where all radial functions have been evaluated at r ¼ rp.
Given Q, q, and rp, our numerical approach to the above

section is summarized in the following list:
(1) A spherical harmonic (l, m) mode is chosen.

a. l is restricted to the range l ≥ 1.
b. m is restricted to the range 1 ≤ m ≤ l.
c. If lþm is even, we use the even-parity

equations.
d. If lþm is odd, we use the odd-parity equations.
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(2) A custom PYTHON function is used to generate initial
values for numerical integration of the homogeneous
solutions through series expansions (see [19]).

(3) The homogeneous version of Eq. (4.11) is integrated
numerically using scipy.integrate.odeint in PYTHON

(with accuracy tolerance ¼ 10−13) for each set of
initial values.
a. The initial position ri ¼ 30=jωmj þ 10M is used

for the solutions described by Eqs. (4.14)
and (4.15).

b. The initial position ri ¼ rþ þ 10−3M is used for
the solutions described by Eqs. (4.16)
and (4.17).

c. The final position rf ¼ rp is used for all homo-
geneous integrations.

(4) The nonhomogeneous solution is found using
Eq. (4.18).
a. The Wronskian matrix is generated using the

homogeneous solutions evaluated at r ¼ rp.
b. The source vector is generated using the orbital

characteristics implied by Q, q, and rp (see
Appendix A).

c. The normalization coefficients are calculated by
solving Eq. (4.19) using numpy.linalg.solve in
PYTHON.

(5) Steps (1)–(4) are repeated for all l and m values
through lmax ¼ 25 (which we have determined to be
a sufficient level of convergence).

C. Radiation reaction

The average rate of radiative energy dissipation, h _Ei, is
quantified through analysis of gravitational and electro-
magnetic wave propagation toward the far field and into the
event horizon; see [19]. The normalization coefficients
for the nonhomogeneous solutions of the master equations
quantify the combined gravitational and electromagnetic
energy flux,

h _Ei ¼
Xlmax

l¼1

Xl
m¼1

ω2
m

32π
ððlþ 2Þðlþ 1Þlðl− 1ÞðjC0þ

lm j2 þ jC0−
lm j2Þ

þ 16lðlþ 1ÞðjC1þ
lm j2 þ jC1−

lm j2ÞÞ: ð4:20Þ

The dissipative component of the self-force [29–31]
accounts for this radiative energy loss by causing the orbital
energy to decrease at the same rate. To avoid technical
challenges associated with calculating the self-force directly,
we incorporate radiation reaction through an adiabatic
approximation based on energy balance arguments,

μ
dE
dt

¼ −h _Ei: ð4:21Þ

By allowing the orbital radius, rp, to slowly decrease (the
quasicircular approximation), we can use Eq. (4.21) to

generate equations of motion by calculating h _Ei from the
nonhomogeneous master equations with different circular
orbits over a spectrum of orbital radii,

drp
dt

¼ −
h _Ei
μ

� ∂E
∂rp
�

−1
; ð4:22Þ

dφp

dt
¼ Ω: ð4:23Þ

Recall that E and Ω are known functions of rp according to
Sec. IVA. Therefore, the instantaneous velocities described
by Eqs. (4.22) and (4.23) depend only on rp. It is then
straightforward to choose an initial orbital radius and
integrate Eqs. (4.22) and (4.23) numerically to find rp
and φp as functions of t.
One interesting challenge is that, while E and Ω are

known exactly in terms of rp, h _Ei must be calculated
numerically from the master equations at each new orbital
radius. It would be inefficient to directly couple the
equations of motion to the master equations because that
would involve re-solving Eq. (4.11) for every l and m at
each function evaluation during numerical integration of
Eqs. (4.22) and (4.23). Instead, we precompute h _Ei for a
dense set of orbital radii and perform an interpolation. Then
this interpolant can be evaluated rapidly during the inspiral
evolution. We use the same interpolation strategy as [19],
except with twice the density of rp samples. This inter-
polation must be performed separately for each pair of
Q=M and q=μ values under investigation.

V. RESULTS

A. Inspirals

After numerically generating dissipation data throughout
a range of orbital radii for numerous charge-to-mass-ratio
pairs (Q=M and q=μ), we solved Eqs. (4.22) and (4.23) to
determine inspiral trajectories. Figure 1 depicts various
trajectories with ϵ ¼ 0.1 (which stretches the limitations
of our small mass-ratio approximation, but provides an
effective illustration). When comparing different charge-to-
mass-ratios, we intentionally choose different initial orbital
radii that minimize relative orbital dephasing (which also
minimizes waveform dephasing). Minimization of dephas-
ing is accomplished by matching the initial orbital frequen-
cies of the binary systems under comparison. It is
straightforward to fix one initial orbital radius and use
root finding [for the initial frequency difference according
to Eq. (4.8)] to determine the other initial orbital radius.
As the contrasting binaries evolve, their disparate proper-
ties cause a relative drift of their orbital frequencies (and
subsequent dephasing) over time.
The uppermost frame of Fig. 1 is representative of

previously existing (noncharged) adiabatic quasicircular
inspiral models for comparison. The other cases investigate
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how charging one or both bodies affects inspiral dynamics.
It is apparent from Fig. 1 that the inspiral decays more
rapidly when electric charge is present on either the smaller
or larger binary component. One noteworthy result is that
the system decays more rapidly when only the smaller body
is charged compared to when only the central black hole is
charged (at the same charge-to-mass-ratios). When the two
bodies possess like charge-to-mass-ratios, the system
decays more slowly than the neutral case. Finally, when
the two bodies have opposite charge-to-mass-ratios, the
system decays more rapidly than any other case. These
outcomes for like and opposite charges harmonize with
certain nonrelativistic intuition (attraction would increase
centripetal acceleration and, according to the Larmor
formula, intensify dissipation, while repulsion would have
the opposite effect). Building on these observations, we
seek to determine the necessary conditions (minimum
amount of charge) for which charged binary components
would impact gravitational wave astronomy.

B. Dephasing

To quantify observational impact, we examine dephas-
ing of charged binaries relative to noncharged binaries
(the prevalent case). Initially, we quantify dephasing via

(a)

(b)

(c)

(d)

(e)

FIG. 1. (Continued).

FIG. 1. Left: inspiral trajectories of the smaller binary compo-
nent until ISCO. A larger mass-ratio, ϵ ¼ 0.1 (near the upper
limits of our approximation scheme), provides an accentuated
illustration of how different charges affect the inspiral. The
different starting orbital radii are chosen to minimize relative
dephasing (which is appropriate for comparisons) by matching
the initial orbital frequencies. Frame (a) shows the trajectory with
two neutral bodies. Frame (b) shows the trajectory with charge-
to-mass-ratios Q=M ¼ 0 and q=μ ¼ 0.9. Radiation for this case
has been studied previously [43], but here we present the first
inspiral calculations with a smaller body that is charged. It is
perhaps unsurprising that frame (b) decays more rapidly than
frame (a) because of the additional dissipation mechanism
(electromagnetic radiation). A more interesting result follows
from comparison of frames (b) and (c) (the latter, with Q=M ¼
0.9 and q=μ ¼ 0, has been studied previously [19]). We find that
while (b) and (c) both decay more rapidly than (a) (the neutral
case), (b) decays more rapidly than (c). This suggests that when
only one component is charged, the charge-to-mass-ratio of the
smaller body has a more dramatic effect than that of the larger
body. Frames (d) and (e) represent the first inspiral calculations
where both bodies are charged. Frame (d) shows the case of like
charge-to-mass-ratios (Q=M ¼ 0.5 and q=μ ¼ 0.5), which de-
cays less rapidly than (a) (the neutral case). Finally, frame
(e) demonstrates that the case of opposite charges
(Q=M ¼ 0.5 and q=μ ¼ −0.5) involves that fastest decay of
all (much faster comparatively if the sizes of all nonvanishing
charge-to-mass ratios were fixed across cases).
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the accumulated orbital phase difference: Δφtotal ≡
φQ≠0
q≠0 ðtmaxÞ − φQ¼0

q¼0 ðtmaxÞ, where tmax is a time shortly
before plunge. Later we assess the waveforms directly
(see Sec. V C). To investigate a broad range of cases, we
performed inspiral integrations for 45 pairs of charge-to-
mass-ratios in the overlapping ranges 0 ≤ Q=M ≤ 0.2 and
−0.2 ≤ q=μ ≤ 0.2 (later we introduce an additional data set
focusing on smaller charges). Throughout this subsection,
we use the initial value rpð0Þ ≃ 20M as a rough guideline
for appropriate conditions. Figure 2 depicts these data in the
form of a contour plot featuring lines of constant Δφtotal.
Many of our preliminary observations from Fig. 1 are
affirmed with greater detail by Fig. 2. As one example, notice
that the steepest gradient ofΔφtotal in Fig. 2 is in the direction
of opposite charge-to-mass-ratios (−q=μ¼Q=M), which is
consistent with the rapid decay rate for opposite charges in
Fig. 1. Similarly, the like charge-to-mass-ratio direction in
Fig. 2 involves a negative Δφtotal, which matches the slower
decay rate for like charges in Fig. 1.
Because the very existence of charged compact bodies is

speculative, next we highlight cases involving small
charge-to-mass-ratios (as those may be the most likely to
exist). For this small charge analysis, we consider four
categories: Q ¼ 0 (with q=μ ≠ 0), q ¼ 0 (with Q=M ≠ 0),
q=μ ¼ Q=M, and −q=μ ¼ Q=M. For each category,
we numerically calculated Δφtotal for a variety of small

charge-to-mass-ratios. Figure 3 demonstrates that, in all
four categories, Δφtotal depends quadratically on the
charge-to-mass-ratio (but with unique coefficients for each
category) in the realm of small charge. Another (perhaps
expected) result is the inverse dependence of Δφtotal on the
mass-ratio, ϵ. With the aid of least-squares fitting, we
determined best-fit coefficients for Δφtotal as a function of
the charge-to-mass-ratio for each category (also shown
in Fig. 3). These approximate functions for Δφtotal in the
small charge realm are in qualitative agreement with the
broader (but less quantitative) picture of Fig. 2. One of
these shared predictions, the intensified dephasing in cases
with −q=μ ¼ Q=M, motivates our choice of system for
exploring gravitational wave signals directly.

FIG. 3. To highlight cases with small amounts of charge, we
plot jΔφtotalj vs charge-to-mass-ratio (κ) on a log-log scale for
four different categories reflecting possible small charge scenar-
ios (see legend for unique shapes/colors). Each data point
represents a numerical calculation for the amount of dephasing
(vertical axis) relative to a noncharged binary. In this plot, the
mass-ratio is fixed at ϵ ¼ 0.01, but we performed similar
calculations for a variety of mass-ratios. With the aid of least-
squares fitting, we determined best-fit coefficients for power-law
models (valid with small amounts of charge for each category)
describing Δφtotal as a function of charge-to-mass-ratio, κ, and
mass-ratio, ϵ. Approximate expressions for these fitted models
are available in the legend, and their behaviors are depicted by the
dashed lines. For the q ¼ 0 (Q=M ≠ 0) category, our best-fit
coefficients agree with past work [19]. The best-fit coefficients
for the other three categories are new results. Although the
definition of κ is different for each category, in all four categories
Δφtotal depends quadratically on the appropriate charge-to-mass
ratio. Another (perhaps expected) result is the inverse dependence
of Δφtotal on the mass-ratio, ϵ. Many of the qualitative results
from Fig. 2, such as the intensified dephasing for −q=μ ¼ Q=M,
are confirmed quantitatively by this small charge analysis.

FIG. 2. This contour plot depicts lines of constant Δφtotal for
numerous combinations of q=μ (horizontal axis) and Q=M
(vertical axis). Each position on the q=μ–Q=M plane represents
a charged inspiral that was compared with a neutral inspiral to
determine their accumulated phase difference (Δφtotal). For this
plot, we have fixed the mass-ratio at a constant value of ϵ ¼ 0.01
(changing ϵ shifts the values of each contour by a uniform factor,
but has a negligible effect on the qualitative pattern). Notice that
the most dramatic dephasing occurs when −q=μ ¼ Q=M (the
gradient is steepest in that direction from the origin). Conversely,
the amount of dephasing has a negative correlation with charge-
to-mass-ratio when q=μ ¼ Q=M, which is to say that binaries of
like charge traverse fewer total revolutions than neutral binaries
(with comparable initial conditions and the same overall dura-
tion). Figure 3 further investigates these two cases, along with the
Q ¼ 0 and q ¼ 0 cases, in the realm of smaller charge.
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C. Waveforms

Predicting the nature of gravitational wave signals will
require interfacing our inspiral model with an appropriate
waveform generation scheme. Although simple qualitative
approximations exist (such as kludge models), formally the
waveform is encoded within the far-field (nonhomogene-
ous) metric perturbation. Fortunately, the same process for
determining the energy dissipation rate (which forms the
backbone of our inspiral scheme) also provides complex
amplitudes describing the far-field metric perturbation [44],

hþ − ih× ¼ 1

r

Xlmax

l¼2

Xl
m¼−l

Hlmðt; rÞ−2Ylmðθ;φÞ; ð5:1Þ

Hlmðt; rÞ≡C0þ
lm

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðlþ 1Þlðl− 1Þ

p
e−imφpjt→t−r ; ð5:2Þ

where −2Ylm is a spin-weighted spherical harmonic. Similar
to our treatment of the inspiral dissipation rate, we
interpolate (using the same scheme and numerical data
set as before) the waveform amplitudes across orbital radii,
so that C0þ

lm is a function of rpjt→t−r (the replacement
indicates evaluation at the retarded time: t → t − r). These
waveforms are not exact because each snapshot assumes a
fixed orbital radius (in reality the orbital radius is decreas-
ing); however, this “evolving snapshots” technique pro-
vides an accurate approximation for the waveform [44].
To investigate the differences between waveforms from

charged and noncharged binaries, we consider two extreme
mass-ratio inspirals (one with charged bodies, the other
with noncharged bodies) with comparable properties. The
two inspiraling systems involve the same pairs of masses
for the larger and smaller binary components that we
chose to represent typical LISA sources: M ¼ 106 M⊙
and μ ¼ 10 M⊙ (therefore ϵ ¼ 10−5). Following evidence
from Figs. 2 and 3, for the charged system, we calculate
waveforms in the opposite charge-to-mass-ratio case
(which maximizes contrast with the noncharged system).
Figure 4 demonstrates that an opposite charge-to-mass-
ratio of −q=μ ¼ Q=M ¼ 0.001 is sufficient for gravita-
tional wave signals involving charged bodies to entirely
dephase from those of a noncharged binary system.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented an improved Reissner-
Nordström perturbation formalism based on newly
enhanced (compared to prior work [15–18]) master
equations and master functions. Our method involves
perturbatively expanding the spacetime metric and
electromagnetic potential four-vector in the vicinity of a
Reissner-Nordström black hole. After applying separation
of variables via vector and tensor spherical harmonic
decompositions, we defined gravitational and electromag-
netic master functions with convenient properties. Our
master function framework allows for perturbations from
arbitrary distributions of electrically charged matter and,
unlike aforementioned nonhomogeneous master function
formalisms, is well suited for time-domain calculations.
We pursued an application of our formalism involving

gravitational wave source modeling by considering inter-
mediate and extreme mass-ratio inspirals of a charged
compact object into a Reissner-Nordström black hole.
Other than passing references to prior work [10–14], we
did not investigate further how the two bodies may have
become charged in the first place. Instead, we sought to
quantify an amount of charge (on one or both bodies) for
which existing noncharged theoretical models would be
insufficient for gravitational wave data analysis after a
hypothetical detection involving a charged two-body
source. In pursuit of this goal, we applied our master
function formalism to a variety of two-body systems with

FIG. 4. Quadrupole waveforms for two extreme mass-ratio
inspirals withM ¼ 106 M⊙ and μ ¼ 10 M⊙. The blue waveform
involves noncharged components, while the orange waveform
involves bodies with opposite charge-to-mass-ratios: −q=μ ¼
Q=M ¼ 0.001. The noncharged inspiral has an initial orbital
radius rpð0Þ ¼ 11M, while the charged inspiral has a slightly
different initial orbital radius chosen to match the initial frequen-
cies of the two waveforms (the same matching has been
performed to ensure consistency in all prior comparisons). Notice
that even this relatively small charge-to-mass-ratio (1=1000) is
sufficient for gravitational wave signals involving charged bodies
to entirely dephase from those of a noncharged binary system.
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various charges and mass-ratios. For each pair of charges
(q and Q), we solved our master equations numerically
across multipole modes with a point source (a charged
point mass) in circular motion. We used the nonhomo-
geneous master function amplitudes to quantify the rate of
radiative energy decay as a function of orbital radius (by re-
solving the master equations with a new source for each
radius). This dissipation rate facilitated approximate equa-
tions of motion governing the slowly decreasing orbital
radius that is characteristic of quasicircular inspirals.
Through these calculations, we observed that the case of

opposite charge-to-mass-ratios (−q=μ ¼ Q=M) involved
the most significant dephasing compared to the neutral
case. We also quantified lesser dephasing for like charges
(q=μ ¼ Q=M) and solo charges (q ¼ 0 or Q ¼ 0). By
comparing gravitational waveforms for charged vs neutral
binaries, we determined that charge-to-mass-ratios greater
than ∼10−3 can involve total dephasing for sources acces-
sible by LISA (we examined ϵ ≃ 10−5). Based on these
results, we believe it is plausible that LISA observations
could be used to quantify whether (and howmuch) compact
binary components are charged (or perhaps an upper limit
could be established).
Future applications of this framework include noncir-

cular orbital motion and/or self-force calculations. Bound
eccentric orbital motion is one important [45] noncircular
case that would introduce an additional fundamental
frequency and an associated spectrum of discrete harmon-
ics, but otherwise should involve similar techniques. Other
noncircular cases, such as hyperbolic encounters or many
body systems, would benefit from the time-domain appli-
cability of our framework. Calculating the gravitational and
electromagnetic self-forces in Reissner-Nordström space-
time would require a careful regularization of the field near
the small body. Such techniques have been applied for the
scalar self-force [32,33,37], but not for the gravitational and
electromagnetic self-forces in Reissner-Nordström space-
time (but preliminary work has been conducted [34–36]).
If the appropriate self-forces were calculated, they could
be applied to investigate the mechanisms behind cosmic
censorship [46,47].
Other potential directions might involve generalization

of the background environment to include additional
effects. One obvious enhancement would be to consider
a central black hole that is both charged and rotating
(perturbations of Kerr-Newman spacetime). This is appro-
priate because some models require spinning black holes to
explain how charge might accumulate [10–12]. However,
past efforts have been unsuccessful in applying separation
of variables to Kerr-Newman perturbations [48] (and so we
believe this direction to be especially challenging). There
are also other effects that could impact the environment
surrounding the black hole. One example involves consid-
ering that a nearby plasma could radiate upon acceleration
of its constituent particles during the inspiral and merger

process [49]. Another example is the prediction that
charged black holes could be surrounded by an oppositely
charged magnetosphere [12], which would likely affect
the dynamics of the smaller body and its gravitational
wave signature.
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APPENDIX A: SOURCE TERMS

The individual spherical harmonic modes that make up
the source terms are calculated by leveraging the ortho-
gonality of the angular basis functions [40],

J a
lme

−iωt ¼ 4π

Z
JaȲlmdΩ; ðA1Þ

J ♯
lme

−iωt ¼ 4πr2

lðlþ 1Þ
Z

JAȲlm
A dΩ; ðA2Þ

J ♭
lme

−iωt ¼ 4πr2

lðlþ 1Þ
Z

JAX̄lm
A dΩ; ðA3Þ

Qab
lme

−iωt ¼ 8π

Z
Tab
matterȲ

lmdΩ; ðA4Þ

Qa
lme

−iωt ¼ 16πr2

lðlþ 1Þ
Z

TaB
matterȲ

lm
B dΩ; ðA5Þ

Q♭
lme

−iωt ¼ 8πr2
Z

TAB
matterΩABȲlmdΩ; ðA6Þ

Q♯
lme

−iωt ¼ 32πr4

ðlþ 2Þðlþ 1Þlðl − 1Þ
Z

TAB
matterȲlm

ABdΩ; ðA7Þ

Pa
lme

−iωt ¼ 16πr2

lðlþ 1Þ
Z

TaB
matterX̄

lm
B dΩ; ðA8Þ

Plme−iωt ¼
16πr4

ðlþ 2Þðlþ 1Þlðl − 1Þ
Z

TAB
matterX̄lm

ABdΩ: ðA9Þ

Similar to Sec. II B, the sources are represented as if they
exhibit sinusoidal time dependence, but Eqs. (A1)–(A9)
are easily generalizable for arbitrary time dependence via
Fourier transform. For a charged point mass, the sources are
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described by Eqs. (2.10) and (2.11). It is straightforward to
find expressions for the multipole modes of a point particle
source in circular motion,

J r
lm ¼ Qtr

lm ¼ Qrr
lm ¼ Qr

lm ¼ Pr
lm ¼ 0; ðA10Þ

J t
lm ¼ 4πq

r2p
δðr − rpÞYlm

�
π

2
; 0

�
; ðA11Þ

J ♯
lm ¼ 4πquφ

lðlþ 1Þut δðr − rpÞYlm
φ

�
π

2
; 0

�
; ðA12Þ

J ♭
lm ¼ 4πquφ

lðlþ 1Þut δðr − rpÞXlm
φ

�
π

2
; 0

�
; ðA13Þ

Qtt
lm ¼ 8πμut

r2p
δðr − rpÞYlm

�
π

2
; 0

�
; ðA14Þ

Qt
lm ¼ 16πμuφ

lðlþ 1Þ δðr − rpÞYlm
φ

�
π

2
; 0

�
; ðA15Þ

Q♭
lm ¼ 8πμðuφÞ2

ut
δðr − rpÞYlm

�
π

2
; 0

�
; ðA16Þ

Q♯
lm ¼ 32πμr2pðuφÞ2

ðlþ 2Þðlþ 1Þlðl − 1Þut δðr − rpÞYlm
φφ

�
π

2
; 0
�
;

ðA17Þ

Pt
lm ¼ 16πμuφ

lðlþ 1Þ δðr − rpÞXlm
φ

�
π

2
; 0

�
; ðA18Þ

Plm ¼ 16πμr2pðuφÞ2
ðlþ 2Þðlþ 1Þlðl − 1Þut δðr − rpÞXlm

φφ

�
π

2
; 0

�
;

ðA19Þ

where φ subscripts indicate differentiation with respect to φ
(following [40]). These are the building blocks for the
master equation sources that appear in Eq. (4.13), with sets
of odd-parity coefficients,

Bodd
lm ¼ 32πμfpðQ2 − r2pÞuφ

r2pðlþ 2Þðlþ 1Þlðl − 1Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mÞ

p
Yl;mþ1

�
π

2
; 0

�
; ðA20Þ

Fodd
lm ¼ 32πμrpf2puφ

ðlþ 2Þðlþ 1Þlðl − 1Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mÞ

p
Yl;mþ1

�
π

2
; 0

�
; ðA21Þ

Dodd
lm ¼ 4πqfpuφ

lðlþ 1Þut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmþ 1Þðl −mÞ

p
Yl;mþ1

�
π

2
; 0

�
;

ðA22Þ

Hodd
lm ¼ 0; ðA23Þ

and even-parity coefficients,

Beven
lm ¼ 8πfp½λðλþ 1Þr3putðrpð3M þ λrpÞ − 2Q2Þ2�−1ðλqQfpr3putðrpð3M þ λrpÞ − 2Q2Þ

− μ½λðfpr2pðutÞ2ð12M2r2p þQ2rpð2rp − 21MÞ þ 8Q4Þ þ r4pðuφÞ2ð2Q2 − 3MrpÞ½rpð2ðm2 − 1Þrp − 3MÞ þ 2Q2�Þ
þ λ2r2pðr4pðuφÞ2½rpðrpð1 −m2Þ þ 6MÞ − 4Q2� þ fpr2pðutÞ2ðrpð5M þ rpÞ − 4Q2ÞÞ

þ λ3r4pðfpr2pðutÞ2 þ r4pðuφÞ2Þ − ðm2 − 1Þr4pðuφÞ2ð2Q2 − 3MrpÞ2�ÞYlm

�
π

2
; 0

�
; ðA24Þ

Feven
lm ¼ 8πμf3pr2put

ðλþ 1Þðrpð3M þ λrpÞ − 2Q2ÞY
lm

�
π

2
; 0

�
; ðA25Þ

Deven
lm ¼ 4πfp½ðλþ 1Þr3pðrpð3Mþ λrpÞ− 2Q2Þ2�−1ðμQfprput½r2pð6M2 þ 3ðλþ 1ÞMrp þ λðλþ 2Þr2pÞ þ 6Q4

−Q2rpð14Mþ 3λrpÞ� þ qð2Q2 − rpð3Mþ λrpÞÞðQ2rpðrpð1− λÞ− 7MÞ þMr2pð3Mþ λrpÞ þ 3Q4ÞÞYlm

�
π

2
;0

�
;

ðA26Þ

Heven
lm ¼ 2πf2p½qðrpð3M þ λrpÞ − 2Q2Þ − 2μQfprput�

ðλþ 1Þðrpð3M þ λrpÞ − 2Q2� Ylm

�
π

2
; 0

�
: ðA27Þ
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APPENDIX B: ADDITIONAL MASTER
FUNCTION PROPERTIES

1. Inverse master function relationships

Section III provides expressions to calculate the fields
from the master functions, but it would also be useful to
calculate the master functions from the fields. In Regge-
Wheeler gauge, the odd-parity master function is con-
structed according to

hoddlm ¼ 1

λ

�
iωr hlmr − 2hlmt þ r

dhlmt
dr

þ 4Q
r

aoddlm

�
: ðB1Þ

Recall that aoddlm has simultaneous roles as field and master
function. Similarly, the even-parity master functions are
constructed as follows:

hevenlm ¼ r
λþ 1

Klm þ fr3

ðλþ 1Þðrð3M þ λrÞ − 2Q2Þ

×

�
fhlmrr − r

dKlm

dr

�
; ðB2Þ

aevenlm ¼ 1

2ðλþ 1Þ
�
iωr2almr þ r2

dalmt
dr

þ Q
2f

hlmtt

−
Qfrðrðλþ 2Þ −MÞ
2rð3M þ λrÞ − 4Q2

hlmrr

þ Qfr3

rð3M þ λrÞ − 2Q2

dKlm

dr

�
: ðB3Þ

Through these relationships, it is straightforward to trans-
form back and forth between fields and master functions in
Regge-Wheeler gauge.

2. Decoupled master equations

It was shown by Moncrief [16–18] that the coupled
homogeneous master equations can be decoupled through a
linear transformation of the master functions. Here we
demonstrate that procedure in the nonhomogeneous case
(and derive appropriate sources for the decoupled equa-
tions). The master equations can be written in the following
form:

�
d2

dr2�
þ ω2 −Ul −WlTl

��
hlm
alm

�
¼
�
Slm
Zlm

�
; ðB4Þ

where Ul and Wl are functions of r, and Tl is a matrix of
constants. In the odd-parity case, these are determined
through comparison with Eq. (3.7),

Uodd
l ¼ f

r2

�
lðlþ 1Þ − 3M

r
þ 4Q2

r2

�
; ðB5Þ

Wodd
l ¼ −

f
r3
; ðB6Þ

Todd
l ¼

�
3M 8Q

λQ −3M

�
; ðB7Þ

and in the even-parity case they are determined through
comparison with Eq. (3.20),

Ueven
l ¼ f½r4ðrð3M þ λrÞ − 2Q2Þ2�−1ð−Q2r2½39M2

þ 32λMrþ 4ðλ − 1Þλr2� þ r3½9M3

þ 9M2rð2λþ 1Þ þ 3λð3λþ 2ÞMr2

þ 2λ2ðλþ 1Þr3� þ 4Q4rð8M þ 3λrÞ − 8Q6Þ;
ðB8Þ

Weven
l ¼ −

fð−3M2rþMðQ2 þ 3r2Þ þ λðλþ 2Þr3Þ
r2ðrð3M þ λrÞ − 2Q2Þ2 ;

ðB9Þ

Teven
l ¼

�
3M 8Q

λQ −3M

�
: ðB10Þ

Diagonalizing Tl (which is the same for even or odd parity)
is the key to finding new master functions that conveniently
satisfy decoupled equations,

Tl ¼ PlDlP−1
l ; ðB11Þ

where Dl is a diagonal matrix consisting of the eigenvalues
of Tl, and Pl is a matrix where each column is an
appropriate eigenvector of Tl. Based on this diagonaliza-
tion, the transformation

�
hlm
alm

�
¼ Pl

"
Rð0Þ
lm

Rð1Þ
lm

#
ðB12Þ

produces decoupled master equations governing new

master functions Rð0Þ
lm and Rð1Þ

lm ,�
d2

dr2�
þ ω2 − Vð0Þ

l

�
Rð0Þ
lm ¼ Xð0Þ

lm ; ðB13Þ

�
d2

dr2�
þ ω2 − Vð1Þ

l

�
Rð1Þ
lm ¼ Xð1Þ

lm : ðB14Þ

Note that equivalent decoupled equations are available in
[50] for static spacetimes in an arbitrary number of spatial
dimensions. The potentials and source terms for the
decoupled master equations are related to the original
(coupled) versions,
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"
Vð0Þ
l

Vð1Þ
l

#
¼ ðUl þWlDlÞ

�
1

1

�
; ðB15Þ

"
Xð0Þ
lm

Xð1Þ
lm

#
¼ P−1

l

�
Slm
Zlm

�
: ðB16Þ

APPENDIX C: LOW MULTIPOLE MODES

1. Even-parity dipole mode

For l ¼ 1, m ¼ �1 the tensor spherical harmonic Y1m
AB

vanishes, which eliminates Eq. (2.35) from the field
equations and causes Q♯

1m (a source term) and G1m

(a mode of the metric perturbation) to vanish. The auto-
matic vanishing of G1m relinquishes 1 degree of gauge
freedom, which we fix by enforcing K1m ¼ 0. It is possible
to express h1mtt and h1mtr in terms of h1mrr by forming
linear combinations of the nonvanishing even-parity field
equations,

h1mtt ¼ r4f
Q2 − 3Mr

�
f
r3
ðr3ω2 −MÞh1mrr þ 2Q

r2
da1mt
dr

þ 4Q
r3

a1mt þ 2iωQ
r2

a1mr −
1

f
Qrr

1m

þ iωrQtr
1m −

1

r
Qr

1m

�
; ðC1Þ

h1mtr ¼ iωrfh1mrr − r2Qtr
1m: ðC2Þ

With only one unknown piece of the metric perturbation
(h1mrr ), we do not use a gravitational master function for
this case, but we do define an electromagnetic master
function, aeven1m ,

a1mt ¼ f
daeven1m

dr
−

2fQ2

rð2Q2 − 3MrÞa
even
1m þ rf2Q

2ð2Q2 − 3MrÞh
1m
rr

−
r3f2Q

2ð2Q2 − 3MrÞQ
tt
1m −

r2f
2

J t
1m; ðC3Þ

a1mr ¼ −
iω
f
aeven1m þ iωr2fQ

2ð2Q2 − 3MrÞ h
1m
rr þ r2

2f
J r

1m: ðC4Þ

According to that definition, the field equations reduce to
two differential equations governing aeven1m and h1mrr ,

r
f
Qtt

1m ¼ dh1mrr
dr

þ
�

3M
2Q2 − 3Mr

þ 5r − 4M
r2f

−
2

r

�
h1mrr

−
4Q
r3f2

aeven1m ; ðC5Þ

r2f2

2

dJ t
1m

dr
−
iωr2

2
J r

1m þ fðQ2 −MrÞð3rðr −MÞ þQ2Þ
rð2Q2 − 3MrÞ J t

1m þ rQ
2Q2 − 3Mr

�
r2f3

2

dQtt
1m

dr
−
iωr2f
2

Qtr
1m þ r

2
Qrr

1m

−
f2ð2MQ2 − 6Q2rþ 3Mr2Þ

2ð2Q2 − 3MrÞ Qtt
1m þ f

2
Qr

1m

�
¼ d2aeven1m

dr2�
þ
�
ω2 þ 2fð4Q6 − 16MQ4rþ 18M2Q2r2 − 9M2r4Þ

r4ð2Q2 − 3MrÞ2
�
aeven1m :

ðC6Þ

Note that Eq. (C6) is identical to the general master
equation governing aeven1m [Eq. (3.20) with l ¼ 1] and is
not coupled to h1mrr [although Eq. (C5) couples aeven1m to
h1mrr ]. See [19] for additional details about how we
determine the even-parity dipole mode in practice.

2. Odd-parity dipole mode

For l ¼ 1, m ¼ 0 the tensor spherical harmonic X10
AB

vanishes, which eliminates Eq. (2.28) from the field
equations and causes P10 (a source term) and h102 (a mode
of the metric perturbation) to vanish. The automatic
vanishing of h102 leaves 1 degree of gauge freedom.
Regardless of gauge, linear combinations of Eqs. (2.22)
and (2.26) and (2.27) (and their r derivatives) result in the
following decoupled equation governing aodd10 :

fJ ♭
10 −

fQ
iωr2

Pr
10 ¼

d2aodd10

dr2�
þ
�
ω2 −

f
r4
ð2r2 þ 4Q2Þ

�
aodd10 :

ðC7Þ

Unlike the even-parity dipole, Eq. (C7) is not identical to
the general master equation governing aoddlm [Eq. (3.7) with
l ¼ 1] because it involves an additional source term.
Unfortunately, frequency appears in the denominator of
this extra source term, which inhibits consideration of static
modes or time-domain strategies (and this issue cannot be
avoided by reexpressing the source based on stress-energy
conservation). Considering that we have carefully devel-
oped our formalism for other modes to avoid exactly this
problem, we present here a practical alternative.
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Although Eq. (C7) is gauge invariant, there are specific
gauges where a10odd can be found via coupled equations
without frequency in the denominator. One such gauge
involves choosing h10r ¼ 0. The following are the non-
vanishing field equations [Eqs. (2.22) and (2.26)–(2.27)]
for this gauge:

J ♭
10 ¼ f

d2aodd10

dr2
þ 2ðMr −Q2Þ

r3
daodd10

dr
þ
�
ω2

f
−

2

r2

�
aodd10

þ Q
r2
dh10t
dr

−
2Q
r3

h10t ; ðC8Þ

Pt
10 ¼

d2h10t
dr2

−
2

r2
h10t þ 4Q

r2
daodd10

dr
; ðC9Þ

Pr
10 ¼ iω

dh10t
dr

−
2iω
r

h10t þ 4iωQ
r2

aodd10 : ðC10Þ

Equations. (C9) and (C10) are redundant because linear
combinations of Eq. (C10) and its r derivative are identical
to Eq. (C9) (after appropriate application of stress-energy
conservation). Therefore, we believe that Eqs. (C8) and
(C9) form a coupled system that is straightforward to solve
(perhaps after adjustment for desirable numerical proper-
ties) for aodd10 and h10t regardless of whether static modes or
the time domain are involved. We should note that we have
not actually calculated numerical solutions for the odd-
parity dipole case because it is nonradiative for point
particles in circular motion.

3. Monopole mode

For l ¼ 0, m ¼ 0 the tensor and vector spherical har-
monics Y00

AB and Y00
A vanish, which eliminate Eqs. (2.25),

(2.32), (2.33), and (2.35) from the field equations (and J ♯
00,

Qt
00, Q

r
00, Q

♯
00, a

00
♯ , j00t , j00r , and G00 also vanish). Three

degrees of gauge freedom remain after the automatic
vanishing of aforementioned fields. We fix the gauge
by enforcing a00r ¼ h00tr ¼ K00 ¼ 0. The following are
the nonvanishing field equations [Eqs. (2.23), (2.24),
(2.29)–(2.31), and (2.34)] for this gauge:

J t
00 ¼

d2a00t
dr2

þ 2

r
da00t
dr

þ Q
2r2f

dh00tt
dr

−
fQ
2r2

dh00rr
dr

þQðQ2 −MrÞ
r5f2

ðh00tt þ f2h00rr Þ; ðC11Þ

J r
00 ¼ iω

da00t
dr

þ iωQ
2r2f

h00tt −
iωfQ
2r2

h00rr ; ðC12Þ

Qtt
00 ¼

f
r
dh00rr
dr

−
2Q2 − rð2M þ rÞ

r4
h00rr

−
Q2

r4f2
h00tt −

2Q
r2f

da00t
dr

; ðC13Þ

Qtr
00 ¼

iωf
r

h00rr ; ðC14Þ

Qrr
00 ¼ −

f
r
dh00tt
dr

−
f2

r2
h00rr −

Q2 − 2Mr
r4

h00tt þ 2fQ
r2

da00t
dr

;

ðC15Þ

Q♭
00 ¼ −

d2h00tt
dr2

−
�
2

r
−
r −M
r2f

�
dh00tt
dr

−
fðr −MÞ

r2
dh00rr
dr

þ 2ðr −MÞðQ2 −MrÞ
f2r5

ðh00tt þ f2h00rr Þ þ ω2h00rr

−
4Q
r2

da00t
dr

: ðC16Þ

Similar to Eqs. (C9) and (C10), many of the monopole
equations [like Eqs. (C11) and (C12)] are redundant. We
propose an approach where first the r derivative of h00rr is
eliminated from the field equations via Eq. (C13),

dh00rr
dr

¼ 2Q2− rð2Mþ rÞ
r3f

h00rr þ
Q2

r3f3
h00tt þ

2Q
rf2

da00t
dr

þ r
f
Qtt

00;

ðC17Þ

and then h00rr is subsequently eliminated from the field
equations via Eq. (C15),

h00rr ¼ −
r
f
dh00tt
dr

−
Q2 − 2Mr

r2f2
þ 2Q

f
da00t
dr

−
r2

f2
Qrr

00: ðC18Þ

The remaining unknowns, a00t and h00tt , are governed by a
reduced system with refactored Eqs. (C11) and (C16),

J t
00 þ

Q
2r

Qtt
00 þ

Q
2rf2

Qrr
00 ¼

d2a00t
dr2

þ 2

r
da00t
dr

; ðC19Þ

Q♭
00 þ

r −M
r

Qtt
00 þ

r −M þ ω2r3

rf2
Qrr

00

¼ −
d2h00tt
dr2

−
2

r
dh00tt
dr

þ 4Q
r2

da00t
dr

− ω2

�
Q2 − 2Mr

r2f2
h00tt þ r

f
dh00tt
dr

þ 2Q
f

da00t
dr

�
: ðC20Þ

Similar to the odd-parity dipole case, we have not calcu-
lated numerical solutions for the monopole mode because it
is nonradiative, although we predict there may be subtleties
related to consistency between the perturbed mass energy
and properties of the source.
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