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There are several studies proposing phenomenological consequences of a deformation of special and
general relativity. Here, we cast novel constraints on the deformation parameter of a metric in the cotangent
bundle accounting for a curved momentum space. In an expanding universe, we study three possible
observations that could restrict our model, focusing on the deformations of velocity, redshift and luminosity
distance, which in the aforementioned framework, depend on the energy of the particles. We find that for an
energy dependent velocity there would be no time delay for massless particles since also the observed
distance to the source depends on the energy. For the redshift and luminosity distancewe see that a scale of the
order of some keV could be compatible with our model. This shows that the constraints on the high-energy
scale parametrizing the momentum dependent deviation from a Friedmann-Robertson-Walker metric are at
the moment weak due to the fact that the precision (rather than energies) needed in the observational
constraints are extremely high. However, this is not the case when considering the synchrotron radiation.
Indeed, the observation of such emission from the Crab Nebula, for deformations leading to subluminal
propagation at high energies, leads to a constraint for the high-energy scale of the order of 1 PeV.
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I. INTRODUCTION

The search for a quantum gravity theory (QGT) which
would reconcile quantum field theory (QFT) and general
relativity (GR) has been the focus of intense investigations
for many years now. In the literature, there are several
theoretical attempts for achieving such a goal, like string
theory [1–3], loop quantum gravity [4,5], supergravity [6,7],
or causal set theory [8–10]. One of the most noticeable
features that these theories have in common is the presence
of a minimum length [11–13], normally associated with the
Planck length lP ∼ 1.6 × 10−33 cm, which implies a char-
acteristic energy scale MP ∼ 1.22 × 1016 TeV.
One can distinguish different scenarios depending on the

Lorentz symmetry fate. For example, Lorentz invariance is
(at least in principle) maintained in loop quantum gravity
[14], in which a foam arises [15–18] (that can be interpreted
as a “quantum” spacetime), and in causal set theory and
string theory, in which nonlocality effects appear [19,20].
The main problem is that there is a lack of phenomenology
in these theories, making it very difficult to determine
which of them is the correct approach to a QGT. However,

some phenomenological studies have been carried out in
particle accelerators [21–24] (considering that the charac-
teristic scale could be of the order of some TeV) and also on
astrophysical sources [25–29] (time delay of massless
particles, luminosity distance, …).
Nevertheless, there are frameworks in which Lorentz

symmetry is only a low energy feature broken in the
ultraviolet range of energies. In these scenarios of Lorentz
invariance violation (LIV) [30], there are many studies
constraining the scale of Lorentz breaking (see [26,31] and
references therein) in particle dispersion relations.
However, a hard violation of Lorentz invariance is not the

only possibility to go beyond special relativity (SR). In
doubly special relativity (DSR) [32], the symmetries are
deformed for high energies, not broken. This means that a
relativity principle holds, making all inertial observers
describe the same physics. While in LIV scenarios there
are many testable effects due to the modification of the
kinematics [26] (modification in thresholds or allowed
processes that are forbidden in SR [33]), this is not the case
in DSR. This is due to the fact that LIV corrections are of
orderEn=Λn−2withn ≥ 3, whilst inDSR themodification of
the thresholds is generally very small and the processes that
are forbidden in SR are not allowed in this scheme, due to the
presence of a relativity principle. Then, since the scale of
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deformation is considered to be of the order of the Planck
scale, theusual phenomenologicalwindow for testingDSR is
a time delay of photons [34–39].
DSR has a long-standing history in the literature since its

original proposal [40]. The ideawas to implement a preferred
energy scale in the local symmetries of spacetime without
introducing a preferred frame. Not long after that it was
recognized in [41] that such a framework could be rigorously
derived from a top-down approach in 2þ 1 quantum gravity.
The year after it was suggested that DSR could be the
outcome of an energy (rainbow) spacetime [42].
Following this idea, there are several studies in DSR

[43–47] (also in LIV [48–50]) considering a modification
of the Riemannian geometry known as Finsler geometry
(this is a particular case of Lagrange space geometries
[51]). In this framework the metric, constructed from a
deformed dispersion relation, can depend on the tangent
vectors besides the space-time coordinates. In addition,
DSR kinematics have been understood from the geometry
of a curved momentum space [52,53]. Indeed, in [54] it was
rigorously shown that a de Sitter momentum space leads to
κ-Poincaré kinematics identifying the isometries and the
squared distance of the metric with the main ingredients of
the kinematics: translations, Lorentz isometries and the
square of the distance can be interpreted as the deformed
composition law, deformed Lorentz transformations and
deformed dispersion relation respectively (the last two facts
were previously contemplated in Refs. [52,53]).
Nevertheless, in order to study a possible time delay for

massless particles, one needs to take into account the
expansion of the universe. Then, it is mandatory to have a
theory combining DSR with a curved spacetime. In the
existent literature, there are several works trying to gather a
relativistic deformed kinematics with a curved spacetime
[55,56]. In [57], we proposed a simple generalization of
[54] in order to consider a curved spacetime, so obtaining a
metric depending on space-time and momentum variables.
It is an attempt to further advance this line of research
(motivated by both bottom-up as well as top-down reason-
ing) so to include phenomenology on curved spacetimes
and make the whole approach amenable to experimental
tests. This approach differs from other works in the
literature [58–61] in the framework of Hamiltonian geom-
etry (the Hamiltonian version of the Finsler space in which
the metric can depend on the cotangent vectors [51]) in that
the starting point is a metric in momentum space, not a
deformed dispersion relation. Indeed in the latter case there
is an ambiguity given that considering the so-called
“classical basis” of κ-Poincaré [62], in which the dispersion
relation is the usual one of SR, no momentum dependence
of the metric appears to arise.
In Ref. [57] some phenomenological aspects were

discussed for a Friedmann-Robertson-Walker universe.
In particular, we found that there is a dependence on the
energy for the velocity, redshift and luminosity distance.

In this work, we use experimental data in order to obtain
constraints on the high-energy scale characterizing the
momentum dependence of the metric.
Moreover, possible phenomenological consequences in

DSR regarding the synchrotron radiation were studied in
[63,64]. While in LIV scenarios a critical frequency is
obtained when the velocity of electrons is always sub-
luminal [65], in [63] it was argued that a deeper study is
required in order to check if the same effect takes place in
DSR. We are able, thanks to our geometrical formalism, to
describe this effect in DSR for the first time, since the
intrinsic limits of the previous geometrical descriptions of
the DSR scenarios had so far hampered any attempt of
extension to this phenomenon. We will show that from our
metric formalism a similar effect appears in this case,
leading to a completely novel (and weaker with respect to
Lorentz breaking theories) constraint on the high-energy
scale parametrizing the momentum deviation from the
Minkowski metric.
The structure of the paper is as follows. In Sec. II we

summarize how a metric in the cotangent bundle containing
a curved momentum space and a nontrivial spacetime can
be constructed, and the phenomenological results obtained
for the particular case of Friedmann-Robertson-Walker
universe. After that, in Sec. III we use recent experimental
data in order to constrain the scale of deformation. We find
that, despite having a velocity depending on momentum
pointing to a possible time delay for photons with different
energies, the distance to the source depends also on the
energy, leading to an absence of time delay. Then this
channel, which could severely constrain our proposal, is not
viable to cast a constraint on the high-energy scale, as
opposed to Lorentz breaking EFT. However, for the red-
shift and luminosity distance cases, we find that a scale
of some keV could be compatible with recent experiments.
In Sec. IV we see that a maximum frequency appears for
synchrotron radiation, leading to a constraint on the
deformation scale of the order of 1 PeV. Finally, we end
with conclusions and future prospects in Sec. V.

II. COTANGENT GEOMETRY IN A NUTSHELL

In this section we review the main ingredients of our
proposal for a metric in the cotangent bundle, gathering a
de Sitter momentum space and any curved spacetime. We
start by describing the free propagation of particles in SR
from an action and see how this action can be generalized in
order to depict the propagation in a curved spacetime. Let
us then start with the action for a particle in SR:

S ¼
Z

dτð_xμkμ −N ðCðkÞ −m2ÞÞ; ð1Þ

where CðkÞ ¼ kαηαβkβ is the SR dispersion relation and the
dot represents the derivative with respect to the proper time
of the particle, τ. Let us now note that one can obtain the
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geodesic motion in a curved geometry by just rewriting
Eq. (1) as

S ¼
Z

dτð_xμkμ −N ðCðk̄Þ −m2ÞÞ; ð2Þ

where k̄α ¼ ēναðxÞkν, with ēναðxÞ defined as the inverse of
the tetrad of the space-time metric eανðxÞ, satisfying

gxμνðxÞ ¼ eαμðxÞηαβeβνðxÞ ð3Þ

while the dispersion relation is given by

Cðk̄Þ ¼ k̄αηαβk̄β ¼ kμg
μν
x ðxÞkν: ð4Þ

It is easy to check that the worldlines obtained through this
action are the same that one would obtain in a metric theory
of gravity via the geodesic equation.
Let us now define the metric in momentum space (with

no dependence on the space-time coordinates [54]),

gμνk ðkÞ ¼ φ̄μ
αðkÞηαβφ̄ν

βðkÞ; ð5Þ

where φ̄μ
αðkÞ is the tetrad in momentum space, so that the

line element in momentum space is

dσ2 ¼ dkαg
αβ
k ðkÞdkβ ¼ dkαφ̄α

γ ðkÞηγδφ̄β
δðkÞdkβ: ð6Þ

Since in the step of going from SR to a curved spacetime
one replaces in the action k → k̄, we propose that the line
element in momentum space, when a curvature in space-
time is considered, becomes

dσ2 ≔ dk̄αg
αβ
k̄
ðk̄Þdk̄β ¼ dkμgμνðx; kÞdkν; ð7Þ

being

gμνðx; kÞ ¼ Φα
μðx; kÞηαβΦβ

νðx; kÞ; ð8Þ

where

Φα
μðx; kÞ ¼ eλμðxÞφα

λðk̄Þ; ð9Þ

and where φα
λðkÞ is the inverse of the tetrad in momen-

tum space.
If the base manifold has dimension n, the cotangent

bundle manifold has dimension 2n. On the cotangent
bundle, one can consider its tangent bundle, which has
also 2n dimensions. There is in the last construction a
remarkable distribution generated by ∂=∂kμ, which is
called the vertical distribution V, with dimension n. As
it is shown in [51] one can define a nonlinear connection N
(also called horizontal distribution), supplementary to the
vertical distribution, and also with dimension n.

One can construct an adapted basis for the horizontal
distribution:

δ

δxμ
≐

∂
∂xμ þ Nνμðx; kÞ

∂
∂kν ; ð10Þ

where Nμν are called the coefficients of the nonlinear
connection. The choice of these coefficients is not unique
but, as it is shown in [51], there is one and only one choice
of nonlinear connection coefficients that leads to a space-
time affine connection which is metric compatible (in the
sense of covariant derivative, as we show below) and
torsion free. In GR, the coefficients of the nonlinear
connection are given by

Nμνðx; kÞ ¼ kρΓ
ρ
μνðxÞ; ð11Þ

being Γρ
μνðxÞ the affine connection.

The line element in momentum space Eq. (7) is just a
part of the line element in the whole phase space (see
Chapter 4 of Ref. [51]), in which one can define a line
element for the cotangent bundle,

G ¼ gμνðx; kÞdxμdxν þ gμνðx; kÞδkμδkν; ð12Þ

where

δkμ ¼ dkμ − Nνμðx; kÞdxν: ð13Þ

From this line element we can define two different types
of curves. The vertical curves, which allow us to move
along a fiber for a fixed space-time point, lead to the line
momentum element we have written previously:

E ¼ dσ2 ¼ gμνðx; kÞdkμdkν: ð14Þ

As we have mentioned, from this we can define the Casimir
function to be the squared distance in momentum space for
a fixed space-time point x0: the distance from ðx0; 0Þ to
ðx0; kÞ. In GR, in which the metric does not depend on the
momenta, this leads to Eq. (4).
The horizontal curves lead to the usual geodesics in GR,

indeed the line element

E ¼ ds2 ¼ gμνðx; kÞdxμdxν ð15Þ

implies a geodesic equation of the form

δkλ
dτ

¼ dkλ
dτ

− Nσλðx; kÞ
dxσ

dτ
¼ 0: ð16Þ

The coefficients of the nonlinear connection are then giving
the evolution of the momenta as a function of τ. Moreover,
from the previous line element one can obtain the geodesic
equation [51]
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d2xμ

dτ2
þHμ

νσðx; kÞ dx
ν

dτ
dxσ

dτ
¼ 0; ð17Þ

where

Hρ
μνðx; kÞ ¼ 1

2
gρσðx; kÞ

�
δgσνðx; kÞ

δxμ
þ δgσμðx; kÞ

δxν

−
δgμνðx; kÞ

δxσ

�
ð18Þ

is the affine connection of spacetime. When the metric does
not depend on the momenta one obtains the same result
of GR.
In [57] we have considered the following choice of

momentum metric:

gk00ðkÞ¼1; gk0iðkÞ¼0; gkijðkÞ¼ηije∓2k0=Λ; ð19Þ

where Λ plays the role of the parameter of the deformation.
Both signs describe a de Sitter momentum space, where we
always regard Λ as a positive energy scale.1

From this momentum metric, we obtained three impor-
tant phenomenological results [57]:
(1) For a Friedmann-Robertson-Walker universe, the

metric in the cotangent bundle is

g00ðx; kÞ ¼ 1; g0iðx; kÞ ¼ 0;

gijðx; kÞ ¼ ηijR2ðx0Þe∓2k0=Λ; ð20Þ

where R is the usual scale factor, and the velocity in
these coordinates is (in 1þ 1 dimensions) [57]

dx1

dx0
¼ e�k0=Λ

Rðx0Þ : ð21Þ

(2) In this metric, there is a modification on the red-
shift, so that higher-energy particles suffer a larger
redshift [57],

1þ zðEÞ ¼ ð1þ zð0ÞÞ
�
1� E

Λ

�
1

Rðt0Þ
−

1

Rðt1Þ
��

¼ ð1þ zð0ÞÞ
�
1� E

Λ
zð0Þ

�
; ð22Þ

where in the last step we have used that

1þ zð0Þ ¼ Rðt0Þ
Rðt1Þ

¼ 1

Rðt1Þ
⇒

1

Rðt0Þ
−

1

Rðt1Þ
¼ zð0Þ;

ð23Þ

since we are considering that Rðt0Þ ¼ 1.
(3) Also, we found that the luminosity distance becomes

energy dependent in a similar way [57]:

dLð0Þ
dLðEÞ

¼
�
1þ zð0Þ
1þ zðEÞ

�
2

¼ 1 ∓ 2E
Λ

zð0Þ: ð24Þ

III. COSMOLOGICAL CONSTRAINTS

Let us now investigate the phenomenological implica-
tions of our framework in order to constrain it on the basis
of the available observations.

A. Time delays

Since we have a momentum dependent metric, particles
with different energies probe different spacetimes.
However, as anticipated, this does not lead in our frame-
work to the usual time delays between photons of different
energy as normally predicted in DSR [34–36] and Lorentz
breaking scenarios [67–70]. We start by considering the
particular DSR scenario in which there is a curved
momentum space but a flat spacetime. Then, for a metric
depending only on momentum coordinates as in Eq. (19),
the line element in spacetime is (in 1þ 1 dimensions)2

ds2 ¼ dt2 − dx2e−2k0=Λ: ð25Þ

Let us suppose a source at a distance r from our labo-
ratory emitting light at different frequencies. For a low
energy photon we can neglect the factor e−2k0=Λ (given that
k0=Λ ≈ 0) so that r ¼ xl, where the xl is the space
coordinate of a low energy photon. However, this is not
the case for a high energy photon. From the line element
then

ds2 ¼ dt2 − dr2 ¼ dt2 − dx2l ¼ dt2 − dx2he
−2k0=Λ; ð26Þ

which is tantamount to say that

r ¼ xl ¼ xhe−k0=Λ; ð27Þ

being r the real distance between the source and us. Then, if
the distance is given by Eq. (27), the velocity in these
coordinates is1As it was shown in [66], this particular form cannot be

obtained for the anti–de Sitter case just interchanging the sign
before Λ. Since the scalar of curvature is proportional to the
inverse of Λ squared, in these particular coordinates both signs
represent a de Sitter space.

2We use the minus sign through Eq. (19) here, but the same
results can be recovered in a straightforward fashion for the
opposite sign.
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dr
dt

¼ dxh
dt

e−k0=Λ ¼ 1; ð28Þ

where we have used the constancy of the energy due to the
independence of the metric on the space-time coordinates
and that from the metric element for photons one finds

ds2 ¼ 0 ⇒ 1 ¼ dx2h
dt2

e−2k0=Λ: ð29Þ

Then, we have found that in flat spacetime the speed of
photons is independent on their energy, which agrees with
other results in the literature [38,39].3

Now we can generalize the previous study to the curved
space-time case in a direct way. The line element for a
momentum modification of the Friedmann-Robertson-
Walker metric is given by the metric (20)

ds2 ¼ dt2 − dr2R2ðtÞ
¼ dt2 − dx2l R

2ðtÞ ¼ dt2 − dx2hR
2ðtÞe−2k0ðtÞ=Λ; ð30Þ

where the zero component of the momentum now depends
on the time due to the redshift. Therefore, one can find for
photons

dxh ¼
ek0ðtÞ=Λ

RðtÞ dt: ð31Þ

Then, if we define the (differential) real distance to the
source as

dr ¼ dxl ¼ dxhe−k0ðtÞ=Λ; ð32Þ
we find that the velocity, defined as

dr
dt

¼ dxh
dt

e−k0ðtÞ=Λ ¼ 1

RðtÞ ; ð33Þ

is independent of the photon energy. With this we show that
there is no time delay for massless particles with our
proposal, which is in agreement with the actual exper-
imental data [67–69].

B. Redshift

In this subsection, we use the redshift of several active
galactic nuclei (we use the same source numeration of
Ref. [71]) obtained from the visible and x-ray spectra [72],
which can be found in Table I. Since the energy of x rays is
between 2 and 7 keV and the visible spectrum energy is of
the order of a few eV [73], we can use Eq. (22) in order to
establish the lower bound on the scale Λ:

1þ zðEÞ ¼ ð1þ zð0ÞÞ
�
1� E

Λ
zð0Þ

�
⇒

1þ zðEÞ
1þ zð0Þ − 1

¼ �E
Λ
zð0Þ: ð34Þ

From here, it is easy to find

Λ ¼ E
zð0Þð1þ zð0ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzðEÞ − zð0ÞÞ2

p : ð35Þ

Now we can cast a constraint for Λ by requiring

Λ > Eobs
zobsð0Þð1þ zobsð0ÞÞ
jzobsðEÞ − zobsð0Þj

; ð36Þ

obtaining the minimum value of Λ compatible with all the
data with the errors. For each source we obtain the
lower value of Λ compatible with the experimental results.
Then, averaging the scale obtained for all cases, we find
that Λ > 49 keV (with Eobs ¼ 7 keV) would be compat-
ible with present observational data.

C. Luminosity distance

In this subsection, we use the combined results of the
gravitational waves and gamma rays from a binary neutron
star merger, GW170817 [74] and GRB170817A [75],
respectively. From the first, the luminosity distance of
the gravitational wave is 40þ8

−14 Mpc, while for the gamma
ray burst 42.9� 3.2 Mpc. There is also a difference in the
energy of both signals: the energy of the gravitational wave
is practically negligible (10−15 keV) while the energy of the
photon peak is around 300 keV (we are considering the data
of [76] and references therein). The redshift z ¼ 0.00968 is
computed with photons with energy of some eV [77] so we
can use Eq. (24):

dLðEÞ − dLð0Þ
dLð0Þ

¼ �2
E
Λ
zð0Þ; ð37Þ

and then

TABLE I. Redshift obtained from x-ray and visible light for
different sources.

Source X-ray redshift Visible redshift

4 0.31þ0.02
−0.03 0.28þ0.01

−0.01
5 1.89þ1.20

−1.46 2.88þ1.98
−1.17

6 0.78þ0.48
−0.48 1.06þ0.10

−0.02
7 3.35þ0.05

−0.05 2.97þ0.08
−0.11

13 1.97þ0.93
−1.36 2.60þ0.16

−0.19
16 1.81þ0.16

−1.03 1.85þ0.09
−0.09

3In [38,39], a different approach to the usual DSR studies was
followed, both for the noncommutativity of spacetime [34–36]
and for the geometrical approaches of Finsler [43–47] and
Hamilton [58–61] spaces.
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Λ >
2Eobszobsð0ÞdLobsð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2LobsðEÞ − d2Lobsð0Þ

p ; ð38Þ

finding that Λ > 8 keV would be compatible with the data.
In summary, we see that there would be no time delay in

our proposal since the distance depends also on the energy,
in such a way that there is a cancellation of effects (distance
and velocity dependence on the energy). Also, when using
cosmological data in order to constrain the high-energy
scale, we find that a momentum dependent redshift and
luminosity distance lead to very weak bounds on the scale,
being these of the order of some tens of keV.
This shows that from cosmological phenomenology we

are not able to cast strong constraints on the high-energy
scale deforming the usual Friedmann-Robertson-Walker
metric.

IV. ASTROPHYSICAL CONSTRAINTS:
SYNCHROTRON RADIATION

In this section we will study the behavior of the
synchrotron frequency with a metric formalism correspond-
ing to a de Sitter momentum space with no dependence on
the space-time coordinates. We will compute the critical
frequency of the synchrotron radiation with the metric (19).
As we will see, when the velocity of electrons is always
subluminal, we find a maximum frequency of the emitted
photons.
In order to obtain the critical frequency of the synchro-

tron radiation, we use the same procedure followed in
Ref. [65] in the LIV context. An electron of energy E emits
radiation in a cone of some opening angle δðEÞ. The cone
sweeps past a distant observer as the electron moves on a
circle of radius RðEÞ through the emission angle. The
electron speed is vðEÞ, so the time it takes to orbit through
the angle δðEÞ is Δt ¼ RðEÞδðEÞ=vðEÞ. The light from the
leading edge of the cone travels a distance cðωÞΔtwhile the
electron travels the distance vðEÞΔt along the circular
trajectory pointing towards the observer. Hence the spatial
width of the pulse seen by the observer is approximately
ðcðωÞ − vðEÞÞΔt, which arrives at the observer over a time
interval equal to this distance divided by the speed of light.
The cutoff frequency of the synchrotron pulse is roughly
the inverse of this time interval,

ωc ¼
3

4

1

RðEÞδðEÞ
1

cðωcÞ − vðEÞ : ð39Þ

But, as we have seen in the time delay discussion of the
previous section, the real distance that the electron travels
depends also on its energy. This leads us to modify the
previous equation accordingly with the metric (19) (with
the plus sign in order to have a subluminal velocity for
massive particles): the radius of the circular orbit is

RðEÞ ¼ rek0=Λ: ð40Þ

Moreover, this correction changes also the distance traveled
by the electron towards the observer, so we must replace
vðEÞΔt by vðEÞek0=ΛΔt. This modifies the equation found
in the LIV case leading to the following expression:

ωc ¼
3

4

1

rek0=ΛδðEÞ
1

cðωcÞ − vðEÞek0=Λ : ð41Þ

Let us note that we have neglected possible effects
coming from the interaction in DSR, i.e., due to the
deformed conservation law for the momenta. However,
this contribution is completely negligible since the modi-
fication of the result would be proportional to the product of
the photon and electron momentum divided by the high-
energy scale, which is insignificant due to the low energy of
the emitted photon, making the previous formula the main
source of modification in the synchrotron emission.
We start by obtaining the radius of the circular motion of

the electrons. Since in order to consider the electromagnetic
force one usually adds to the standard Casimir a term
proportional to the velocity, we will consider the following
action:

S ¼
Z �

_xμkμ −
1

2m
ðCðkÞ −m2Þ − e_xμAμðxÞ

�
dτ; ð42Þ

where the dot represents the derivative with respect the
proper time τ. In a future work we will show why this is the
correct way to take into account the electromagnetic force
in our cotangent bundle geometry formalism [78]. In the
case we are considering, AμðxÞ has to represent a static

magnetic field, so A0 ¼ 0 and A⃗ is a function of the space
coordinates. Then, considering the Casimir as the squared
distance in momentum space corresponding to the metric
(19) (with the plus sign) from the origin to a point k [79],

CðkÞ ¼ d2ð0; kÞ ¼ Λ2 arccosh2
�
cosh

�
k0
Λ

�
−
e−k0=Λk⃗2

2Λ2

�
;

ð43Þ

we obtain the equations of motion at first order in the power
series expansion on the high energy scale

_x0 ¼ k0
m
; _x⃗ ¼ −

k⃗
m

�
1 −

k0
Λ

�
;

_k0 ¼ 0; _k⃗ ¼ −e_x⃗ ∧ B⃗: ð44Þ

From this it is easy to obtain

J. J. RELANCIO and S. LIBERATI PHYS. REV. D 102, 104025 (2020)

104025-6



̈x⃗ ¼ e
m

_x⃗ ∧ B⃗

�
1 −

k0
Λ

�
: ð45Þ

The velocity can be easily obtained from the quotient

v ¼ _x
_x0

¼ 1 −
m2

2k20
−
k0
Λ
; ð46Þ

where _x ¼ j_x⃗j and v ¼ jv⃗j. From the previous expression
one can check that the choice of the positive sign of the
metric (19) is the one leading to subluminal velocities.
In order to write Eq. (45) as a function of time, we have

to find the γ factor, i.e., the relation between the proper time
and the time from the line element of the metric (19)

dτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt2 − dx⃗2e2k0=Λ

p

¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2e2k0=Λ

p
⇒ γ

¼ dt
dτ

≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v⃗2ð1þ 2k0=ΛÞ
p ≈

k0
m

�
1 −

k0
2Λ

�
: ð47Þ

One can note that this differs from the γ factor obtained in
[65] for a LIV scenario.
Therefore, the left side of Eq. (45) becomes

̈x⃗ ¼ d
dt

ðγv⃗Þ ¼ γa⃗þ γ3ðv⃗ · a⃗Þv⃗ ¼ γa⃗; ð48Þ

where a⃗ ¼ dv⃗=dt and we have used that the zero compo-
nent of the momentum is constant and that the acceleration
is perpendicular to the velocity. Now we can rewrite
Eq. (45) as a function of time:

a⃗ ¼ e
mγ

v⃗ ∧ B⃗

�
1 −

k0
Λ

�
; ð49Þ

so the radius of the circular motion is

a ¼ v2

r
⇒ r ¼ mvγ

eB

�
1þ k0

Λ

�
: ð50Þ

Note that this is the same expression appearing in SR times
a momentum dependent factor and where the γ factor
depends on the energy.
The last ingredient we need in order to compute the

critical frequency is the angle which can be still taken as in
SR to be proportional to the inverse of the γ factor, that is

δðEÞ ¼ 1

γ
: ð51Þ

Now we can substitute Eqs. (46), (50), and (51) into
Eq. (41), finding the lowest order modification to be

ωc ¼
3Bek20
2m3

�
1 −

2k0
Λ

�
: ð52Þ

If we derive the critical frequency with respect to the
energy we find that it has a maximum value

ωmax
c ¼ BeΛ2

18m3
; ð53Þ

for an energy

k0 ¼
Λ
3
: ð54Þ

Then, we can use the Crab Nebula data [65] in order to find
a constraint on the high energy scale. The radiation coming
from there is of 100 MeVand the magnetic field is no larger
than 0.6 mG in the emitting region. From our result, one
can check that the constraint on the high-energy scale is
Λ > 7.8 × 103 TeV. This result completely differs with the
one obtained in [65] for the LIV case, in which the high-
energy scale should be Λ≳ 107MP for a deviation of
OðE=MPÞ. Note that this constraint only appears when
considering that high-energy particles acquire always a
subluminal speed. For the superluminal case, the critical
frequency can be obtained from Eq. (52) just changing the
sign preceding Λ,

ωc ¼
3Bek20
2m3

�
1þ 2k0

Λ

�
; ð55Þ

which has not a maximum finite value, impeding us to cast
a constraint.

V. CONCLUSIONS AND FUTURE PROSPECTS

In a previous paper [57], it was shown how to generalize
a generic pseudo-Riemannian spacetime so as to include a
momentum dependence on the metric, leading to a geom-
etry in the cotangent bundle. This metric for the whole
phase space allowed us to compute phenomenological
aspects for the Friedmann-Robertson-Walker universe case
when the momentum space is maximally symmetric, and in
particular for de Sitter.
In this work, we have used these results in order to seek

for constraints on the scale of the deformation. We have
focused on three possible evidences: a time delay for
photons and a modification of the redshift and luminosity
distance. For the first case, we have seen that in our
proposal there is no such effect since, although photons
with different energies “see” different momentum depen-
dent spacetimes and velocities, there is a cancellation of the
momentum dependence in such a way that the real velocity
is 1, independently of their energy. This result could differ
if interactions play a role in the emission and detection of
the photons, which is left for another work.
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Moreover, we have contrasted the redshift of active
galactic nuclei obtained from x-ray and visible spectra.
Since our model proposes a momentum dependent redshift,
the redshift obtained for both spectra should be different.
From the data, we have found that a scale of 49 keV could
be compatible with the experimental observations.
Also, we have used the luminosity distance computed

from the gravitational waves source GW170817 and the
associated gamma ray burst GRB170817A in order to
establish a constraint on the high-energy scale. Since the
energy of the gravitational waves and photons are different,
following our model, there should be a difference in both
quantities. In this case, we find that a deformation scale of
8 keVis compatiblewith the experimental data. In summary,
the scale parametrizing the model we have proposed is very
difficult to constrain with actual data when considering this
kind of cosmological phenomenology.
However, this is not the case when studying the

synchrotron radiation with a space-time metric depending
on momenta in such a way that electrons are always
subluminal. In this work we have described for the very
first time this phenomenon in DSR theories. In this case, we
have seen that there is a critical frequency in the emitted
photons leading to a constraint for the de Sitter case of
Λ > 7.8 × 103 TeV when the modification starts at first
order in the scale, which nonetheless is still ∼1013 orders of
magnitude away from the Planck scale. Thanks to our
improved description, we can obtain a constraint which,
albeit not at the Planck scale, it is still quite promising, at
the PeV one, and represents one of the strongest and more
robust limits on this scenario to date (since as we have
shown, there is not a time delay of massless particles).
In this work we have used a particular choice of

coordinates of a de Sitter momentum metric in which
the momentum corrections of the Minkowski metric starts
at first order in the inverse of the high-energy scale. If we
had used another coordinates in which the momentum
deviation of the flat metric started at second order (as the
one considered in [54]) we would have generally obtained
different (weaker) constraints. This is related to the fact that
different bases could represent different physics was
considered deeply in the literature [63]. However, the
momenta we measure might change as well depending
on the momentum variables, so how we should identify
momenta with our measurements and if there is a physical

choice of momentum variables is still an open question. In a
future work we shall address this issue in detail [78].
We have obtained several constraints on the high-energy

scale for different kinds of phenomenology showing that
these bounds are generally low with respect to the Planck
scale. However, this work clarifies why the standard
methods for constraining the theory are inapplicable, what
observations can constrain at least in principle the model
and how far we shall have to go to be able to severely
constrain the theory in the future.
In this sense one should not view the here presented

results as discouraging from the phenomenological point of
view. Indeed, one could take the alternative point of view
that the here presented geometrical approach to DSR avoids
the strong constraints currently disfavoring competing
approaches. The fact that the scale in DSR is not highly
constrained (of the order of the Planck scale) has been
already claimed in the past years in DSR literature. In
Refs. [37–39] it was shown that the absence of time delay
could be present in this kind of theories and in Ref. [80],
from the study of the universe transparency with a
deformed relativistic kinematics, one finds that a scale of
the order of TeV could be compatible with current data.
Moreover, in Ref. [81] some deformed Feynman rules were
used in order to make some computations in QFT,
observing that a high-energy scale of some TeV could
be compatible with LEP data.
In this work we have shown that higher scales, of order

of PeV, can be constrained via current synchrotron radi-
ation observations. While this is still not as high as the
Planck scale, it still signifies that improvements in con-
straining this scenario are possible through a better theo-
retical understanding. We hence plan to further advance the
latter in future works.
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